os/ossrv/ossrv_pub/boost_apis/boost/python/slice.hpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/ossrv_pub/boost_apis/boost/python/slice.hpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,266 @@
     1.4 +#ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP
     1.5 +#define BOOST_PYTHON_SLICE_JDB20040105_HPP
     1.6 +
     1.7 +// Copyright (c) 2004 Jonathan Brandmeyer
     1.8 +//  Use, modification and distribution are subject to the
     1.9 +//  Boost Software License, Version 1.0. (See accompanying file 
    1.10 +//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
    1.11 +
    1.12 +#include <boost/python/detail/prefix.hpp>
    1.13 +#include <boost/config.hpp>
    1.14 +#include <boost/python/object.hpp>
    1.15 +#include <boost/python/extract.hpp>
    1.16 +#include <boost/python/converter/pytype_object_mgr_traits.hpp>
    1.17 +
    1.18 +#include <boost/iterator/iterator_traits.hpp>
    1.19 +
    1.20 +#include <iterator>
    1.21 +#include <algorithm>
    1.22 +
    1.23 +namespace boost { namespace python {
    1.24 +
    1.25 +namespace detail
    1.26 +{
    1.27 +  class BOOST_PYTHON_DECL slice_base : public object
    1.28 +  {
    1.29 +   public:
    1.30 +      // Get the Python objects associated with the slice.  In principle, these 
    1.31 +      // may be any arbitrary Python type, but in practice they are usually 
    1.32 +      // integers.  If one or more parameter is ommited in the Python expression 
    1.33 +      // that created this slice, than that parameter is None here, and compares 
    1.34 +      // equal to a default-constructed boost::python::object.
    1.35 +      // If a user-defined type wishes to support slicing, then support for the 
    1.36 +      // special meaning associated with negative indicies is up to the user.
    1.37 +      object start() const;
    1.38 +      object stop() const;
    1.39 +      object step() const;
    1.40 +        
    1.41 +   protected:
    1.42 +      explicit slice_base(PyObject*, PyObject*, PyObject*);
    1.43 +
    1.44 +      BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object)
    1.45 +  };
    1.46 +}
    1.47 +
    1.48 +class slice : public detail::slice_base
    1.49 +{
    1.50 +    typedef detail::slice_base base;
    1.51 + public:
    1.52 +    // Equivalent to slice(::)
    1.53 +    slice() : base(0,0,0) {}
    1.54 +
    1.55 +    // Each argument must be slice_nil, or implicitly convertable to object.
    1.56 +    // They should normally be integers.
    1.57 +    template<typename Integer1, typename Integer2>
    1.58 +    slice( Integer1 start, Integer2 stop)
    1.59 +        : base( object(start).ptr(), object(stop).ptr(), 0 )
    1.60 +    {}
    1.61 +    
    1.62 +    template<typename Integer1, typename Integer2, typename Integer3>
    1.63 +    slice( Integer1 start, Integer2 stop, Integer3 stride)
    1.64 +        : base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )
    1.65 +    {}
    1.66 +        
    1.67 +    // The following algorithm is intended to automate the process of 
    1.68 +    // determining a slice range when you want to fully support negative
    1.69 +    // indicies and non-singular step sizes.  Its functionallity is simmilar to 
    1.70 +    // PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.
    1.71 +    // This template returns a slice::range struct that, when used in the 
    1.72 +    // following iterative loop, will traverse a slice of the function's
    1.73 +    // arguments.
    1.74 +    // while (start != end) { 
    1.75 +    //     do_foo(...); 
    1.76 +    //     std::advance( start, step); 
    1.77 +    // }
    1.78 +    // do_foo(...); // repeat exactly once more.
    1.79 +    
    1.80 +    // Arguments: a [begin, end) pair of STL-conforming random-access iterators.
    1.81 +        
    1.82 +    // Return: slice::range, where start and stop define a _closed_ interval
    1.83 +    // that covers at most [begin, end-1] of the provided arguments, and a step 
    1.84 +    // that is non-zero.
    1.85 +    
    1.86 +    // Throws: error_already_set() if any of the indices are neither None nor 
    1.87 +    //   integers, or the slice has a step value of zero.
    1.88 +    // std::invalid_argument if the resulting range would be empty.  Normally, 
    1.89 +    //   you should catch this exception and return an empty sequence of the
    1.90 +    //   appropriate type.
    1.91 +    
    1.92 +    // Performance: constant time for random-access iterators.
    1.93 +    
    1.94 +    // Rationale: 
    1.95 +    //   closed-interval: If an open interval were used, then for a non-singular
    1.96 +    //     value for step, the required state for the end iterator could be 
    1.97 +    //     beyond the one-past-the-end postion of the specified range.  While 
    1.98 +    //     probably harmless, the behavior of STL-conforming iterators is 
    1.99 +    //     undefined in this case.
   1.100 +    //   exceptions on zero-length range: It is impossible to define a closed 
   1.101 +    //     interval over an empty range, so some other form of error checking 
   1.102 +    //     would have to be used by the user to prevent undefined behavior.  In
   1.103 +    //     the case where the user fails to catch the exception, it will simply
   1.104 +    //     be translated to Python by the default exception handling mechanisms.
   1.105 +
   1.106 +    template<typename RandomAccessIterator>
   1.107 +    struct range
   1.108 +    {
   1.109 +        RandomAccessIterator start;
   1.110 +        RandomAccessIterator stop;
   1.111 +        typename iterator_difference<RandomAccessIterator>::type step;
   1.112 +    };
   1.113 +    
   1.114 +    template<typename RandomAccessIterator>
   1.115 +    slice::range<RandomAccessIterator>
   1.116 +    get_indicies( const RandomAccessIterator& begin, 
   1.117 +        const RandomAccessIterator& end) const
   1.118 +    {
   1.119 +        // This is based loosely on PySlice_GetIndicesEx(), but it has been 
   1.120 +        // carefully crafted to ensure that these iterators never fall out of
   1.121 +        // the range of the container.
   1.122 +        slice::range<RandomAccessIterator> ret;
   1.123 +        
   1.124 +        typedef typename iterator_difference<RandomAccessIterator>::type difference_type;
   1.125 +        difference_type max_dist = boost::detail::distance(begin, end);
   1.126 +
   1.127 +        object slice_start = this->start();
   1.128 +        object slice_stop = this->stop();
   1.129 +        object slice_step = this->step();
   1.130 +        
   1.131 +        // Extract the step.
   1.132 +        if (slice_step == object()) {
   1.133 +            ret.step = 1;
   1.134 +        }
   1.135 +        else {
   1.136 +            ret.step = extract<long>( slice_step);
   1.137 +            if (ret.step == 0) {
   1.138 +                PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");
   1.139 +                throw_error_already_set();
   1.140 +            }
   1.141 +        }
   1.142 +        
   1.143 +        // Setup the start iterator.
   1.144 +        if (slice_start == object()) {
   1.145 +            if (ret.step < 0) {
   1.146 +                ret.start = end;
   1.147 +                --ret.start;
   1.148 +            }
   1.149 +            else
   1.150 +                ret.start = begin;
   1.151 +        }
   1.152 +        else {
   1.153 +            difference_type i = extract<long>( slice_start);
   1.154 +            if (i >= max_dist && ret.step > 0)
   1.155 +                    throw std::invalid_argument( "Zero-length slice");
   1.156 +            if (i >= 0) {
   1.157 +                ret.start = begin;
   1.158 +                BOOST_USING_STD_MIN();
   1.159 +                std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));
   1.160 +            }
   1.161 +            else {
   1.162 +                if (i < -max_dist && ret.step < 0)
   1.163 +                    throw std::invalid_argument( "Zero-length slice");
   1.164 +                ret.start = end;
   1.165 +                // Advance start (towards begin) not farther than begin.
   1.166 +                std::advance( ret.start, (-i < max_dist) ? i : -max_dist );
   1.167 +            }
   1.168 +        }
   1.169 +        
   1.170 +        // Set up the stop iterator.  This one is a little trickier since slices
   1.171 +        // define a [) range, and we are returning a [] range.
   1.172 +        if (slice_stop == object()) {
   1.173 +            if (ret.step < 0) {
   1.174 +                ret.stop = begin;
   1.175 +            }
   1.176 +            else {
   1.177 +                ret.stop = end;
   1.178 +                std::advance( ret.stop, -1);
   1.179 +            }
   1.180 +        }
   1.181 +        else {
   1.182 +            difference_type i = extract<long>(slice_stop);
   1.183 +            // First, branch on which direction we are going with this.
   1.184 +            if (ret.step < 0) {
   1.185 +                if (i+1 >= max_dist || i == -1)
   1.186 +                    throw std::invalid_argument( "Zero-length slice");
   1.187 +                
   1.188 +                if (i >= 0) {
   1.189 +                    ret.stop = begin;
   1.190 +                    std::advance( ret.stop, i+1);
   1.191 +                }
   1.192 +                else { // i is negative, but more negative than -1.
   1.193 +                    ret.stop = end;
   1.194 +                    std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);
   1.195 +                }
   1.196 +            }
   1.197 +            else { // stepping forward
   1.198 +                if (i == 0 || -i >= max_dist)
   1.199 +                    throw std::invalid_argument( "Zero-length slice");
   1.200 +                
   1.201 +                if (i > 0) {
   1.202 +                    ret.stop = begin;
   1.203 +                    std::advance( ret.stop, (std::min)( i-1, max_dist-1));
   1.204 +                }
   1.205 +                else { // i is negative, but not more negative than -max_dist
   1.206 +                    ret.stop = end;
   1.207 +                    std::advance( ret.stop, i-1);
   1.208 +                }
   1.209 +            }
   1.210 +        }
   1.211 +        
   1.212 +        // Now the fun part, handling the possibilites surrounding step.
   1.213 +        // At this point, step has been initialized, ret.stop, and ret.step
   1.214 +        // represent the widest possible range that could be traveled
   1.215 +        // (inclusive), and final_dist is the maximum distance covered by the
   1.216 +        // slice.
   1.217 +        typename iterator_difference<RandomAccessIterator>::type final_dist = 
   1.218 +            boost::detail::distance( ret.start, ret.stop);
   1.219 +        
   1.220 +        // First case, if both ret.start and ret.stop are equal, then step
   1.221 +        // is irrelevant and we can return here.
   1.222 +        if (final_dist == 0)
   1.223 +            return ret;
   1.224 +        
   1.225 +        // Second, if there is a sign mismatch, than the resulting range and 
   1.226 +        // step size conflict: std::advance( ret.start, ret.step) goes away from
   1.227 +        // ret.stop.
   1.228 +        if ((final_dist > 0) != (ret.step > 0))
   1.229 +            throw std::invalid_argument( "Zero-length slice.");
   1.230 +        
   1.231 +        // Finally, if the last step puts us past the end, we move ret.stop
   1.232 +        // towards ret.start in the amount of the remainder.
   1.233 +        // I don't remember all of the oolies surrounding negative modulii,
   1.234 +        // so I am handling each of these cases separately.
   1.235 +        if (final_dist < 0) {
   1.236 +            difference_type remainder = -final_dist % -ret.step;
   1.237 +            std::advance( ret.stop, remainder);
   1.238 +        }
   1.239 +        else {
   1.240 +            difference_type remainder = final_dist % ret.step;
   1.241 +            std::advance( ret.stop, -remainder);
   1.242 +        }
   1.243 +        
   1.244 +        return ret;
   1.245 +    }
   1.246 +        
   1.247 + public:
   1.248 +    // This declaration, in conjunction with the specialization of 
   1.249 +    // object_manager_traits<> below, allows C++ functions accepting slice 
   1.250 +    // arguments to be called from from Python.  These constructors should never
   1.251 +    // be used in client code.
   1.252 +    BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)
   1.253 +};
   1.254 +
   1.255 +
   1.256 +namespace converter {
   1.257 +
   1.258 +template<>
   1.259 +struct object_manager_traits<slice>
   1.260 +    : pytype_object_manager_traits<&PySlice_Type, slice>
   1.261 +{
   1.262 +};
   1.263 +    
   1.264 +} // !namesapce converter
   1.265 +
   1.266 +} } // !namespace ::boost::python
   1.267 +
   1.268 +
   1.269 +#endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP