os/ossrv/ossrv_pub/boost_apis/boost/numeric/interval/arith2.hpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/ossrv_pub/boost_apis/boost/numeric/interval/arith2.hpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,227 @@
     1.4 +/* Boost interval/arith2.hpp template implementation file
     1.5 + *
     1.6 + * This header provides some auxiliary arithmetic
     1.7 + * functions: fmod, sqrt, square, pov, inverse and
     1.8 + * a multi-interval division.
     1.9 + *
    1.10 + * Copyright 2002-2003 Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion
    1.11 + *
    1.12 + * Distributed under the Boost Software License, Version 1.0.
    1.13 + * (See accompanying file LICENSE_1_0.txt or
    1.14 + * copy at http://www.boost.org/LICENSE_1_0.txt)
    1.15 + */
    1.16 +
    1.17 +#ifndef BOOST_NUMERIC_INTERVAL_ARITH2_HPP
    1.18 +#define BOOST_NUMERIC_INTERVAL_ARITH2_HPP
    1.19 +
    1.20 +#include <boost/config.hpp>
    1.21 +#include <boost/numeric/interval/detail/interval_prototype.hpp>
    1.22 +#include <boost/numeric/interval/detail/test_input.hpp>
    1.23 +#include <boost/numeric/interval/detail/bugs.hpp>
    1.24 +#include <boost/numeric/interval/detail/division.hpp>
    1.25 +#include <boost/numeric/interval/arith.hpp>
    1.26 +#include <boost/numeric/interval/policies.hpp>
    1.27 +#include <algorithm>
    1.28 +#include <cmath>
    1.29 +
    1.30 +namespace boost {
    1.31 +namespace numeric {
    1.32 +
    1.33 +template<class T, class Policies> inline
    1.34 +interval<T, Policies> fmod(const interval<T, Policies>& x,
    1.35 +                           const interval<T, Policies>& y)
    1.36 +{
    1.37 +  if (interval_lib::detail::test_input(x, y))
    1.38 +    return interval<T, Policies>::empty();
    1.39 +  typename Policies::rounding rnd;
    1.40 +  typedef typename interval_lib::unprotect<interval<T, Policies> >::type I;
    1.41 +  T const &yb = interval_lib::user::is_neg(x.lower()) ? y.lower() : y.upper();
    1.42 +  T n = rnd.int_down(rnd.div_down(x.lower(), yb));
    1.43 +  return (const I&)x - n * (const I&)y;
    1.44 +}
    1.45 +
    1.46 +template<class T, class Policies> inline
    1.47 +interval<T, Policies> fmod(const interval<T, Policies>& x, const T& y)
    1.48 +{
    1.49 +  if (interval_lib::detail::test_input(x, y))
    1.50 +    return interval<T, Policies>::empty();
    1.51 +  typename Policies::rounding rnd;
    1.52 +  typedef typename interval_lib::unprotect<interval<T, Policies> >::type I;
    1.53 +  T n = rnd.int_down(rnd.div_down(x.lower(), y));
    1.54 +  return (const I&)x - n * I(y);
    1.55 +}
    1.56 +
    1.57 +template<class T, class Policies> inline
    1.58 +interval<T, Policies> fmod(const T& x, const interval<T, Policies>& y)
    1.59 +{
    1.60 +  if (interval_lib::detail::test_input(x, y))
    1.61 +    return interval<T, Policies>::empty();
    1.62 +  typename Policies::rounding rnd;
    1.63 +  typedef typename interval_lib::unprotect<interval<T, Policies> >::type I;
    1.64 +  T const &yb = interval_lib::user::is_neg(x) ? y.lower() : y.upper();
    1.65 +  T n = rnd.int_down(rnd.div_down(x, yb));
    1.66 +  return x - n * (const I&)y;
    1.67 +}
    1.68 +
    1.69 +namespace interval_lib {
    1.70 +
    1.71 +template<class T, class Policies> inline
    1.72 +interval<T, Policies> division_part1(const interval<T, Policies>& x,
    1.73 +                                     const interval<T, Policies>& y, bool& b)
    1.74 +{
    1.75 +  typedef interval<T, Policies> I;
    1.76 +  b = false;
    1.77 +  if (detail::test_input(x, y))
    1.78 +    return I::empty();
    1.79 +  if (zero_in(y))
    1.80 +    if (!user::is_zero(y.lower()))
    1.81 +      if (!user::is_zero(y.upper()))
    1.82 +        return detail::div_zero_part1(x, y, b);
    1.83 +      else
    1.84 +        return detail::div_negative(x, y.lower());
    1.85 +    else
    1.86 +      if (!user::is_zero(y.upper()))
    1.87 +        return detail::div_positive(x, y.upper());
    1.88 +      else
    1.89 +        return I::empty();
    1.90 +  else
    1.91 +    return detail::div_non_zero(x, y);
    1.92 +}
    1.93 +
    1.94 +template<class T, class Policies> inline
    1.95 +interval<T, Policies> division_part2(const interval<T, Policies>& x,
    1.96 +                                     const interval<T, Policies>& y, bool b = true)
    1.97 +{
    1.98 +  if (!b) return interval<T, Policies>::empty();
    1.99 +  return detail::div_zero_part2(x, y);
   1.100 +}
   1.101 +
   1.102 +template<class T, class Policies> inline
   1.103 +interval<T, Policies> multiplicative_inverse(const interval<T, Policies>& x)
   1.104 +{
   1.105 +  typedef interval<T, Policies> I;
   1.106 +  if (detail::test_input(x))
   1.107 +    return I::empty();
   1.108 +  T one = static_cast<T>(1);
   1.109 +  typename Policies::rounding rnd;
   1.110 +  if (zero_in(x)) {
   1.111 +    typedef typename Policies::checking checking;
   1.112 +    if (!user::is_zero(x.lower()))
   1.113 +      if (!user::is_zero(x.upper()))
   1.114 +        return I::whole();
   1.115 +      else
   1.116 +        return I(checking::neg_inf(), rnd.div_up(one, x.lower()), true);
   1.117 +    else
   1.118 +      if (!user::is_zero(x.upper()))
   1.119 +        return I(rnd.div_down(one, x.upper()), checking::pos_inf(), true);
   1.120 +      else
   1.121 +        return I::empty();
   1.122 +  } else 
   1.123 +    return I(rnd.div_down(one, x.upper()), rnd.div_up(one, x.lower()), true);
   1.124 +}
   1.125 +
   1.126 +namespace detail {
   1.127 +
   1.128 +template<class T, class Rounding> inline
   1.129 +T pow_dn(const T& x_, int pwr, Rounding& rnd) // x and pwr are positive
   1.130 +{
   1.131 +  T x = x_;
   1.132 +  T y = (pwr & 1) ? x_ : static_cast<T>(1);
   1.133 +  pwr >>= 1;
   1.134 +  while (pwr > 0) {
   1.135 +    x = rnd.mul_down(x, x);
   1.136 +    if (pwr & 1) y = rnd.mul_down(x, y);
   1.137 +    pwr >>= 1;
   1.138 +  }
   1.139 +  return y;
   1.140 +}
   1.141 +
   1.142 +template<class T, class Rounding> inline
   1.143 +T pow_up(const T& x_, int pwr, Rounding& rnd) // x and pwr are positive
   1.144 +{
   1.145 +  T x = x_;
   1.146 +  T y = (pwr & 1) ? x_ : static_cast<T>(1);
   1.147 +  pwr >>= 1;
   1.148 +  while (pwr > 0) {
   1.149 +    x = rnd.mul_up(x, x);
   1.150 +    if (pwr & 1) y = rnd.mul_up(x, y);
   1.151 +    pwr >>= 1;
   1.152 +  }
   1.153 +  return y;
   1.154 +}
   1.155 +
   1.156 +} // namespace detail
   1.157 +} // namespace interval_lib
   1.158 +
   1.159 +template<class T, class Policies> inline
   1.160 +interval<T, Policies> pow(const interval<T, Policies>& x, int pwr)
   1.161 +{
   1.162 +  BOOST_USING_STD_MAX();
   1.163 +  using interval_lib::detail::pow_dn;
   1.164 +  using interval_lib::detail::pow_up;
   1.165 +  typedef interval<T, Policies> I;
   1.166 +
   1.167 +  if (interval_lib::detail::test_input(x))
   1.168 +    return I::empty();
   1.169 +
   1.170 +  if (pwr == 0)
   1.171 +    if (interval_lib::user::is_zero(x.lower())
   1.172 +        && interval_lib::user::is_zero(x.upper()))
   1.173 +      return I::empty();
   1.174 +    else
   1.175 +      return I(static_cast<T>(1));
   1.176 +  else if (pwr < 0)
   1.177 +    return interval_lib::multiplicative_inverse(pow(x, -pwr));
   1.178 +
   1.179 +  typename Policies::rounding rnd;
   1.180 +  
   1.181 +  if (interval_lib::user::is_neg(x.upper())) {        // [-2,-1]
   1.182 +    T yl = pow_dn(static_cast<T>(-x.upper()), pwr, rnd);
   1.183 +    T yu = pow_up(static_cast<T>(-x.lower()), pwr, rnd);
   1.184 +    if (pwr & 1)     // [-2,-1]^1
   1.185 +      return I(-yu, -yl, true);
   1.186 +    else             // [-2,-1]^2
   1.187 +      return I(yl, yu, true);
   1.188 +  } else if (interval_lib::user::is_neg(x.lower())) { // [-1,1]
   1.189 +    if (pwr & 1) {   // [-1,1]^1
   1.190 +      return I(-pow_up(-x.lower(), pwr, rnd), pow_up(x.upper(), pwr, rnd), true);
   1.191 +    } else {         // [-1,1]^2
   1.192 +      return I(static_cast<T>(0), pow_up(max BOOST_PREVENT_MACRO_SUBSTITUTION(static_cast<T>(-x.lower()), x.upper()), pwr, rnd), true);
   1.193 +    }
   1.194 +  } else {                                // [1,2]
   1.195 +    return I(pow_dn(x.lower(), pwr, rnd), pow_up(x.upper(), pwr, rnd), true);
   1.196 +  }
   1.197 +}
   1.198 +
   1.199 +template<class T, class Policies> inline
   1.200 +interval<T, Policies> sqrt(const interval<T, Policies>& x)
   1.201 +{
   1.202 +  typedef interval<T, Policies> I;
   1.203 +  if (interval_lib::detail::test_input(x) || interval_lib::user::is_neg(x.upper()))
   1.204 +    return I::empty();
   1.205 +  typename Policies::rounding rnd;
   1.206 +  T l = !interval_lib::user::is_pos(x.lower()) ? static_cast<T>(0) : rnd.sqrt_down(x.lower());
   1.207 +  return I(l, rnd.sqrt_up(x.upper()), true);
   1.208 +}
   1.209 +
   1.210 +template<class T, class Policies> inline
   1.211 +interval<T, Policies> square(const interval<T, Policies>& x)
   1.212 +{
   1.213 +  typedef interval<T, Policies> I;
   1.214 +  if (interval_lib::detail::test_input(x))
   1.215 +    return I::empty();
   1.216 +  typename Policies::rounding rnd;
   1.217 +  const T& xl = x.lower();
   1.218 +  const T& xu = x.upper();
   1.219 +  if (interval_lib::user::is_neg(xu))
   1.220 +    return I(rnd.mul_down(xu, xu), rnd.mul_up(xl, xl), true);
   1.221 +  else if (interval_lib::user::is_pos(x.lower()))
   1.222 +    return I(rnd.mul_down(xl, xl), rnd.mul_up(xu, xu), true);
   1.223 +  else
   1.224 +    return I(static_cast<T>(0), (-xl > xu ? rnd.mul_up(xl, xl) : rnd.mul_up(xu, xu)), true);
   1.225 +}
   1.226 +
   1.227 +} // namespace numeric
   1.228 +} // namespace boost
   1.229 +
   1.230 +#endif // BOOST_NUMERIC_INTERVAL_ARITH2_HPP