os/ossrv/ossrv_pub/boost_apis/boost/math/complex/atanh.hpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/ossrv_pub/boost_apis/boost/math/complex/atanh.hpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,245 @@
     1.4 +//  (C) Copyright John Maddock 2005.
     1.5 +//  Use, modification and distribution are subject to the
     1.6 +//  Boost Software License, Version 1.0. (See accompanying file
     1.7 +//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
     1.8 +
     1.9 +#ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED
    1.10 +#define BOOST_MATH_COMPLEX_ATANH_INCLUDED
    1.11 +
    1.12 +#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
    1.13 +#  include <boost/math/complex/details.hpp>
    1.14 +#endif
    1.15 +#ifndef BOOST_MATH_LOG1P_INCLUDED
    1.16 +#  include <boost/math/special_functions/log1p.hpp>
    1.17 +#endif
    1.18 +#include <boost/assert.hpp>
    1.19 +
    1.20 +#ifdef BOOST_NO_STDC_NAMESPACE
    1.21 +namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
    1.22 +#endif
    1.23 +
    1.24 +namespace boost{ namespace math{
    1.25 +
    1.26 +template<class T> 
    1.27 +std::complex<T> atanh(const std::complex<T>& z)
    1.28 +{
    1.29 +   //
    1.30 +   // References:
    1.31 +   //
    1.32 +   // Eric W. Weisstein. "Inverse Hyperbolic Tangent." 
    1.33 +   // From MathWorld--A Wolfram Web Resource. 
    1.34 +   // http://mathworld.wolfram.com/InverseHyperbolicTangent.html
    1.35 +   //
    1.36 +   // Also: The Wolfram Functions Site,
    1.37 +   // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/
    1.38 +   //
    1.39 +   // Also "Abramowitz and Stegun. Handbook of Mathematical Functions."
    1.40 +   // at : http://jove.prohosting.com/~skripty/toc.htm
    1.41 +   //
    1.42 +   
    1.43 +   static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L);
    1.44 +   static const T pi = static_cast<T>(3.141592653589793238462643383279502884197L);
    1.45 +   static const T one = static_cast<T>(1.0L);
    1.46 +   static const T two = static_cast<T>(2.0L);
    1.47 +   static const T four = static_cast<T>(4.0L);
    1.48 +   static const T zero = static_cast<T>(0);
    1.49 +   static const T a_crossover = static_cast<T>(0.3L);
    1.50 +
    1.51 +   T x = std::fabs(z.real());
    1.52 +   T y = std::fabs(z.imag());
    1.53 +
    1.54 +   T real, imag;  // our results
    1.55 +
    1.56 +   T safe_upper = detail::safe_max(two);
    1.57 +   T safe_lower = detail::safe_min(static_cast<T>(2));
    1.58 +
    1.59 +   //
    1.60 +   // Begin by handling the special cases specified in C99:
    1.61 +   //
    1.62 +   if(detail::test_is_nan(x))
    1.63 +   {
    1.64 +      if(detail::test_is_nan(y))
    1.65 +         return std::complex<T>(x, x);
    1.66 +      else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity()))
    1.67 +         return std::complex<T>(0, ((z.imag() < 0) ? -half_pi : half_pi));
    1.68 +      else
    1.69 +         return std::complex<T>(x, x);
    1.70 +   }
    1.71 +   else if(detail::test_is_nan(y))
    1.72 +   {
    1.73 +      if(x == 0)
    1.74 +         return std::complex<T>(x, y);
    1.75 +      if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity()))
    1.76 +         return std::complex<T>(0, y);
    1.77 +      else
    1.78 +         return std::complex<T>(y, y);
    1.79 +   }
    1.80 +   else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper))
    1.81 +   {
    1.82 +
    1.83 +      T xx = x*x;
    1.84 +      T yy = y*y;
    1.85 +      T x2 = x * two;
    1.86 +
    1.87 +      ///
    1.88 +      // The real part is given by:
    1.89 +      // 
    1.90 +      // real(atanh(z)) == log((1 + x^2 + y^2 + 2x) / (1 + x^2 + y^2 - 2x))
    1.91 +      // 
    1.92 +      // However, when x is either large (x > 1/E) or very small
    1.93 +      // (x < E) then this effectively simplifies
    1.94 +      // to log(1), leading to wildly inaccurate results.  
    1.95 +      // By dividing the above (top and bottom) by (1 + x^2 + y^2) we get:
    1.96 +      //
    1.97 +      // real(atanh(z)) == log((1 + (2x / (1 + x^2 + y^2))) / (1 - (-2x / (1 + x^2 + y^2))))
    1.98 +      //
    1.99 +      // which is much more sensitive to the value of x, when x is not near 1
   1.100 +      // (remember we can compute log(1+x) for small x very accurately).
   1.101 +      //
   1.102 +      // The cross-over from one method to the other has to be determined
   1.103 +      // experimentally, the value used below appears correct to within a 
   1.104 +      // factor of 2 (and there are larger errors from other parts
   1.105 +      // of the input domain anyway).
   1.106 +      //
   1.107 +      T alpha = two*x / (one + xx + yy);
   1.108 +      if(alpha < a_crossover)
   1.109 +      {
   1.110 +         real = boost::math::log1p(alpha) - boost::math::log1p(-alpha);
   1.111 +      }
   1.112 +      else
   1.113 +      {
   1.114 +         T xm1 = x - one;
   1.115 +         real = boost::math::log1p(x2 + xx + yy) - std::log(xm1*xm1 + yy);
   1.116 +      }
   1.117 +      real /= four;
   1.118 +      if(z.real() < 0)
   1.119 +         real = -real;
   1.120 +
   1.121 +      imag = std::atan2((y * two), (one - xx - yy));
   1.122 +      imag /= two;
   1.123 +      if(z.imag() < 0)
   1.124 +         imag = -imag;
   1.125 +   }
   1.126 +   else
   1.127 +   {
   1.128 +      //
   1.129 +      // This section handles exception cases that would normally cause
   1.130 +      // underflow or overflow in the main formulas.
   1.131 +      //
   1.132 +      // Begin by working out the real part, we need to approximate
   1.133 +      //    alpha = 2x / (1 + x^2 + y^2)
   1.134 +      // without either overflow or underflow in the squared terms.
   1.135 +      //
   1.136 +      T alpha = 0;
   1.137 +      if(x >= safe_upper)
   1.138 +      {
   1.139 +         // this is really a test for infinity, 
   1.140 +         // but we may not have the necessary numeric_limits support:
   1.141 +         if((x > (std::numeric_limits<T>::max)()) || (y > (std::numeric_limits<T>::max)()))
   1.142 +         {
   1.143 +            alpha = 0;
   1.144 +         }
   1.145 +         else if(y >= safe_upper)
   1.146 +         {
   1.147 +            // Big x and y: divide alpha through by x*y:
   1.148 +            alpha = (two/y) / (x/y + y/x);
   1.149 +         }
   1.150 +         else if(y > one)
   1.151 +         {
   1.152 +            // Big x: divide through by x:
   1.153 +            alpha = two / (x + y*y/x);
   1.154 +         }
   1.155 +         else
   1.156 +         {
   1.157 +            // Big x small y, as above but neglect y^2/x:
   1.158 +            alpha = two/x;
   1.159 +         }
   1.160 +      }
   1.161 +      else if(y >= safe_upper)
   1.162 +      {
   1.163 +         if(x > one)
   1.164 +         {
   1.165 +            // Big y, medium x, divide through by y:
   1.166 +            alpha = (two*x/y) / (y + x*x/y);
   1.167 +         }
   1.168 +         else
   1.169 +         {
   1.170 +            // Small x and y, whatever alpha is, it's too small to calculate:
   1.171 +            alpha = 0;
   1.172 +         }
   1.173 +      }
   1.174 +      else
   1.175 +      {
   1.176 +         // one or both of x and y are small, calculate divisor carefully:
   1.177 +         T div = one;
   1.178 +         if(x > safe_lower)
   1.179 +            div += x*x;
   1.180 +         if(y > safe_lower)
   1.181 +            div += y*y;
   1.182 +         alpha = two*x/div;
   1.183 +      }
   1.184 +      if(alpha < a_crossover)
   1.185 +      {
   1.186 +         real = boost::math::log1p(alpha) - boost::math::log1p(-alpha);
   1.187 +      }
   1.188 +      else
   1.189 +      {
   1.190 +         // We can only get here as a result of small y and medium sized x,
   1.191 +         // we can simply neglect the y^2 terms:
   1.192 +         BOOST_ASSERT(x >= safe_lower);
   1.193 +         BOOST_ASSERT(x <= safe_upper);
   1.194 +         //BOOST_ASSERT(y <= safe_lower);
   1.195 +         T xm1 = x - one;
   1.196 +         real = std::log(1 + two*x + x*x) - std::log(xm1*xm1);
   1.197 +      }
   1.198 +      
   1.199 +      real /= four;
   1.200 +      if(z.real() < 0)
   1.201 +         real = -real;
   1.202 +
   1.203 +      //
   1.204 +      // Now handle imaginary part, this is much easier,
   1.205 +      // if x or y are large, then the formula:
   1.206 +      //    atan2(2y, 1 - x^2 - y^2)
   1.207 +      // evaluates to +-(PI - theta) where theta is negligible compared to PI.
   1.208 +      //
   1.209 +      if((x >= safe_upper) || (y >= safe_upper))
   1.210 +      {
   1.211 +         imag = pi;
   1.212 +      }
   1.213 +      else if(x <= safe_lower)
   1.214 +      {
   1.215 +         //
   1.216 +         // If both x and y are small then atan(2y),
   1.217 +         // otherwise just x^2 is negligible in the divisor:
   1.218 +         //
   1.219 +         if(y <= safe_lower)
   1.220 +            imag = std::atan2(two*y, one);
   1.221 +         else
   1.222 +         {
   1.223 +            if((y == zero) && (x == zero))
   1.224 +               imag = 0;
   1.225 +            else
   1.226 +               imag = std::atan2(two*y, one - y*y);
   1.227 +         }
   1.228 +      }
   1.229 +      else
   1.230 +      {
   1.231 +         //
   1.232 +         // y^2 is negligible:
   1.233 +         //
   1.234 +         if((y == zero) && (x == one))
   1.235 +            imag = 0;
   1.236 +         else
   1.237 +            imag = std::atan2(two*y, 1 - x*x);
   1.238 +      }
   1.239 +      imag /= two;
   1.240 +      if(z.imag() < 0)
   1.241 +         imag = -imag;
   1.242 +   }
   1.243 +   return std::complex<T>(real, imag);
   1.244 +}
   1.245 +
   1.246 +} } // namespaces
   1.247 +
   1.248 +#endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED