os/ossrv/ossrv_pub/boost_apis/boost/lambda/closures.hpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/ossrv_pub/boost_apis/boost/lambda/closures.hpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,274 @@
     1.4 +/*=============================================================================
     1.5 +    Adaptable closures
     1.6 +
     1.7 +    Phoenix V0.9
     1.8 +    Copyright (c) 2001-2002 Joel de Guzman
     1.9 +
    1.10 +    Distributed under the Boost Software License, Version 1.0. (See
    1.11 +    accompanying file LICENSE_1_0.txt or copy at
    1.12 +    http://www.boost.org/LICENSE_1_0.txt)
    1.13 +
    1.14 +    URL: http://spirit.sourceforge.net/
    1.15 +
    1.16 +==============================================================================*/
    1.17 +#ifndef PHOENIX_CLOSURES_HPP
    1.18 +#define PHOENIX_CLOSURES_HPP
    1.19 +
    1.20 +///////////////////////////////////////////////////////////////////////////////
    1.21 +#include "boost/lambda/core.hpp"
    1.22 +///////////////////////////////////////////////////////////////////////////////
    1.23 +namespace boost {
    1.24 +namespace lambda {
    1.25 +
    1.26 +///////////////////////////////////////////////////////////////////////////////
    1.27 +//
    1.28 +//  Adaptable closures
    1.29 +//
    1.30 +//      The framework will not be complete without some form of closures
    1.31 +//      support. Closures encapsulate a stack frame where local
    1.32 +//      variables are created upon entering a function and destructed
    1.33 +//      upon exiting. Closures provide an environment for local
    1.34 +//      variables to reside. Closures can hold heterogeneous types.
    1.35 +//
    1.36 +//      Phoenix closures are true hardware stack based closures. At the
    1.37 +//      very least, closures enable true reentrancy in lambda functions.
    1.38 +//      A closure provides access to a function stack frame where local
    1.39 +//      variables reside. Modeled after Pascal nested stack frames,
    1.40 +//      closures can be nested just like nested functions where code in
    1.41 +//      inner closures may access local variables from in-scope outer
    1.42 +//      closures (accessing inner scopes from outer scopes is an error
    1.43 +//      and will cause a run-time assertion failure).
    1.44 +//
    1.45 +//      There are three (3) interacting classes:
    1.46 +//
    1.47 +//      1) closure:
    1.48 +//
    1.49 +//      At the point of declaration, a closure does not yet create a
    1.50 +//      stack frame nor instantiate any variables. A closure declaration
    1.51 +//      declares the types and names[note] of the local variables. The
    1.52 +//      closure class is meant to be subclassed. It is the
    1.53 +//      responsibility of a closure subclass to supply the names for
    1.54 +//      each of the local variable in the closure. Example:
    1.55 +//
    1.56 +//          struct my_closure : closure<int, string, double> {
    1.57 +//
    1.58 +//              member1 num;        // names the 1st (int) local variable
    1.59 +//              member2 message;    // names the 2nd (string) local variable
    1.60 +//              member3 real;       // names the 3rd (double) local variable
    1.61 +//          };
    1.62 +//
    1.63 +//          my_closure clos;
    1.64 +//
    1.65 +//      Now that we have a closure 'clos', its local variables can be
    1.66 +//      accessed lazily using the dot notation. Each qualified local
    1.67 +//      variable can be used just like any primitive actor (see
    1.68 +//      primitives.hpp). Examples:
    1.69 +//
    1.70 +//          clos.num = 30
    1.71 +//          clos.message = arg1
    1.72 +//          clos.real = clos.num * 1e6
    1.73 +//
    1.74 +//      The examples above are lazily evaluated. As usual, these
    1.75 +//      expressions return composite actors that will be evaluated
    1.76 +//      through a second function call invocation (see operators.hpp).
    1.77 +//      Each of the members (clos.xxx) is an actor. As such, applying
    1.78 +//      the operator() will reveal its identity:
    1.79 +//
    1.80 +//          clos.num() // will return the current value of clos.num
    1.81 +//
    1.82 +//      *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)
    1.83 +//      introduced and initilally implemented the closure member names
    1.84 +//      that uses the dot notation.
    1.85 +//
    1.86 +//      2) closure_member
    1.87 +//
    1.88 +//      The named local variables of closure 'clos' above are actually
    1.89 +//      closure members. The closure_member class is an actor and
    1.90 +//      conforms to its conceptual interface. member1..memberN are
    1.91 +//      predefined typedefs that correspond to each of the listed types
    1.92 +//      in the closure template parameters.
    1.93 +//
    1.94 +//      3) closure_frame
    1.95 +//
    1.96 +//      When a closure member is finally evaluated, it should refer to
    1.97 +//      an actual instance of the variable in the hardware stack.
    1.98 +//      Without doing so, the process is not complete and the evaluated
    1.99 +//      member will result to an assertion failure. Remember that the
   1.100 +//      closure is just a declaration. The local variables that a
   1.101 +//      closure refers to must still be instantiated.
   1.102 +//
   1.103 +//      The closure_frame class does the actual instantiation of the
   1.104 +//      local variables and links these variables with the closure and
   1.105 +//      all its members. There can be multiple instances of
   1.106 +//      closure_frames typically situated in the stack inside a
   1.107 +//      function. Each closure_frame instance initiates a stack frame
   1.108 +//      with a new set of closure local variables. Example:
   1.109 +//
   1.110 +//          void foo()
   1.111 +//          {
   1.112 +//              closure_frame<my_closure> frame(clos);
   1.113 +//              /* do something */
   1.114 +//          }
   1.115 +//
   1.116 +//      where 'clos' is an instance of our closure 'my_closure' above.
   1.117 +//      Take note that the usage above precludes locally declared
   1.118 +//      classes. If my_closure is a locally declared type, we can still
   1.119 +//      use its self_type as a paramater to closure_frame:
   1.120 +//
   1.121 +//          closure_frame<my_closure::self_type> frame(clos);
   1.122 +//
   1.123 +//      Upon instantiation, the closure_frame links the local variables
   1.124 +//      to the closure. The previous link to another closure_frame
   1.125 +//      instance created before is saved. Upon destruction, the
   1.126 +//      closure_frame unlinks itself from the closure and relinks the
   1.127 +//      preceding closure_frame prior to this instance.
   1.128 +//
   1.129 +//      The local variables in the closure 'clos' above is default
   1.130 +//      constructed in the stack inside function 'foo'. Once 'foo' is
   1.131 +//      exited, all of these local variables are destructed. In some
   1.132 +//      cases, default construction is not desirable and we need to
   1.133 +//      initialize the local closure variables with some values. This
   1.134 +//      can be done by passing in the initializers in a compatible
   1.135 +//      tuple. A compatible tuple is one with the same number of
   1.136 +//      elements as the destination and where each element from the
   1.137 +//      destination can be constructed from each corresponding element
   1.138 +//      in the source. Example:
   1.139 +//
   1.140 +//          tuple<int, char const*, int> init(123, "Hello", 1000);
   1.141 +//          closure_frame<my_closure> frame(clos, init);
   1.142 +//
   1.143 +//      Here now, our closure_frame's variables are initialized with
   1.144 +//      int: 123, char const*: "Hello" and int: 1000.
   1.145 +//
   1.146 +///////////////////////////////////////////////////////////////////////////////
   1.147 +
   1.148 +
   1.149 +
   1.150 +///////////////////////////////////////////////////////////////////////////////
   1.151 +//
   1.152 +//  closure_frame class
   1.153 +//
   1.154 +///////////////////////////////////////////////////////////////////////////////
   1.155 +template <typename ClosureT>
   1.156 +class closure_frame : public ClosureT::tuple_t {
   1.157 +
   1.158 +public:
   1.159 +
   1.160 +    closure_frame(ClosureT& clos)
   1.161 +    : ClosureT::tuple_t(), save(clos.frame), frame(clos.frame)
   1.162 +    { clos.frame = this; }
   1.163 +
   1.164 +    template <typename TupleT>
   1.165 +    closure_frame(ClosureT& clos, TupleT const& init)
   1.166 +    : ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame)
   1.167 +    { clos.frame = this; }
   1.168 +
   1.169 +    ~closure_frame()
   1.170 +    { frame = save; }
   1.171 +
   1.172 +private:
   1.173 +
   1.174 +    closure_frame(closure_frame const&);            // no copy
   1.175 +    closure_frame& operator=(closure_frame const&); // no assign
   1.176 +
   1.177 +    closure_frame* save;
   1.178 +    closure_frame*& frame;
   1.179 +};
   1.180 +
   1.181 +///////////////////////////////////////////////////////////////////////////////
   1.182 +//
   1.183 +//  closure_member class
   1.184 +//
   1.185 +///////////////////////////////////////////////////////////////////////////////
   1.186 +template <int N, typename ClosureT>
   1.187 +class closure_member {
   1.188 +
   1.189 +public:
   1.190 +
   1.191 +    typedef typename ClosureT::tuple_t tuple_t;
   1.192 +
   1.193 +    closure_member()
   1.194 +    : frame(ClosureT::closure_frame_ref()) {}
   1.195 +
   1.196 +    template <typename TupleT>
   1.197 +    struct sig {
   1.198 +
   1.199 +        typedef typename detail::tuple_element_as_reference<
   1.200 +            N, typename ClosureT::tuple_t
   1.201 +        >::type type;
   1.202 +    };
   1.203 +
   1.204 +    template <class Ret, class A, class B, class C>
   1.205 +    //    typename detail::tuple_element_as_reference
   1.206 +    //        <N, typename ClosureT::tuple_t>::type
   1.207 +    Ret
   1.208 +    call(A&, B&, C&) const
   1.209 +    {
   1.210 +        assert(frame);
   1.211 +        return boost::tuples::get<N>(*frame);
   1.212 +    }
   1.213 +
   1.214 +
   1.215 +private:
   1.216 +
   1.217 +    typename ClosureT::closure_frame_t*& frame;
   1.218 +};
   1.219 +
   1.220 +///////////////////////////////////////////////////////////////////////////////
   1.221 +//
   1.222 +//  closure class
   1.223 +//
   1.224 +///////////////////////////////////////////////////////////////////////////////
   1.225 +template <
   1.226 +    typename T0 = null_type,
   1.227 +    typename T1 = null_type,
   1.228 +    typename T2 = null_type,
   1.229 +    typename T3 = null_type,
   1.230 +    typename T4 = null_type
   1.231 +>
   1.232 +class closure {
   1.233 +
   1.234 +public:
   1.235 +
   1.236 +    typedef tuple<T0, T1, T2, T3, T4> tuple_t;
   1.237 +    typedef closure<T0, T1, T2, T3, T4> self_t;
   1.238 +    typedef closure_frame<self_t> closure_frame_t;
   1.239 +
   1.240 +                            closure()
   1.241 +                            : frame(0)      { closure_frame_ref(&frame); }
   1.242 +    closure_frame_t&        context()       { assert(frame); return frame; }
   1.243 +    closure_frame_t const&  context() const { assert(frame); return frame; }
   1.244 +
   1.245 +    typedef lambda_functor<closure_member<0, self_t> > member1;
   1.246 +    typedef lambda_functor<closure_member<1, self_t> > member2;
   1.247 +    typedef lambda_functor<closure_member<2, self_t> > member3;
   1.248 +    typedef lambda_functor<closure_member<3, self_t> > member4;
   1.249 +    typedef lambda_functor<closure_member<4, self_t> > member5;
   1.250 +
   1.251 +private:
   1.252 +
   1.253 +    closure(closure const&);            // no copy
   1.254 +    closure& operator=(closure const&); // no assign
   1.255 +
   1.256 +    template <int N, typename ClosureT>
   1.257 +    friend struct closure_member;
   1.258 +
   1.259 +    template <typename ClosureT>
   1.260 +    friend class closure_frame;
   1.261 +
   1.262 +    static closure_frame_t*&
   1.263 +    closure_frame_ref(closure_frame_t** frame_ = 0)
   1.264 +    {
   1.265 +        static closure_frame_t** frame = 0;
   1.266 +        if (frame_ != 0)
   1.267 +            frame = frame_;
   1.268 +        return *frame;
   1.269 +    }
   1.270 +
   1.271 +    closure_frame_t* frame;
   1.272 +};
   1.273 +
   1.274 +}}
   1.275 +   //  namespace 
   1.276 +
   1.277 +#endif