os/ossrv/ossrv_pub/boost_apis/boost/array.hpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/ossrv_pub/boost_apis/boost/array.hpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,321 @@
     1.4 +/* The following code declares class array,
     1.5 + * an STL container (as wrapper) for arrays of constant size.
     1.6 + *
     1.7 + * See
     1.8 + *      http://www.boost.org/libs/array/
     1.9 + * for documentation.
    1.10 + *
    1.11 + * The original author site is at: http://www.josuttis.com/
    1.12 + *
    1.13 + * (C) Copyright Nicolai M. Josuttis 2001.
    1.14 + *
    1.15 + * Distributed under the Boost Software License, Version 1.0. (See
    1.16 + * accompanying file LICENSE_1_0.txt or copy at
    1.17 + * http://www.boost.org/LICENSE_1_0.txt)
    1.18 + *
    1.19 + * 29 Jan 2004 - c_array() added, BOOST_NO_PRIVATE_IN_AGGREGATE removed (Nico Josuttis)
    1.20 + * 23 Aug 2002 - fix for Non-MSVC compilers combined with MSVC libraries.
    1.21 + * 05 Aug 2001 - minor update (Nico Josuttis)
    1.22 + * 20 Jan 2001 - STLport fix (Beman Dawes)
    1.23 + * 29 Sep 2000 - Initial Revision (Nico Josuttis)
    1.24 + *
    1.25 + * Jan 29, 2004
    1.26 + */
    1.27 +#ifndef BOOST_ARRAY_HPP
    1.28 +#define BOOST_ARRAY_HPP
    1.29 +
    1.30 +#include <cstddef>
    1.31 +#include <stdexcept>
    1.32 +#include <boost/assert.hpp>
    1.33 +
    1.34 +// Handles broken standard libraries better than <iterator>
    1.35 +#include <boost/detail/iterator.hpp>
    1.36 +#include <boost/throw_exception.hpp>
    1.37 +#include <algorithm>
    1.38 +
    1.39 +// FIXES for broken compilers
    1.40 +#include <boost/config.hpp>
    1.41 +
    1.42 +
    1.43 +namespace boost {
    1.44 +
    1.45 +    template<class T, std::size_t N>
    1.46 +    class array {
    1.47 +      public:
    1.48 +        T elems[N];    // fixed-size array of elements of type T
    1.49 +
    1.50 +      public:
    1.51 +        // type definitions
    1.52 +        typedef T              value_type;
    1.53 +        typedef T*             iterator;
    1.54 +        typedef const T*       const_iterator;
    1.55 +        typedef T&             reference;
    1.56 +        typedef const T&       const_reference;
    1.57 +        typedef std::size_t    size_type;
    1.58 +        typedef std::ptrdiff_t difference_type;
    1.59 +
    1.60 +        // iterator support
    1.61 +        iterator begin() { return elems; }
    1.62 +        const_iterator begin() const { return elems; }
    1.63 +        iterator end() { return elems+N; }
    1.64 +        const_iterator end() const { return elems+N; }
    1.65 +
    1.66 +        // reverse iterator support
    1.67 +#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR) && !defined(BOOST_NO_STD_ITERATOR_TRAITS)
    1.68 +        typedef std::reverse_iterator<iterator> reverse_iterator;
    1.69 +        typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
    1.70 +#elif defined(_MSC_VER) && (_MSC_VER == 1300) && defined(BOOST_DINKUMWARE_STDLIB) && (BOOST_DINKUMWARE_STDLIB == 310)
    1.71 +        // workaround for broken reverse_iterator in VC7
    1.72 +        typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, iterator,
    1.73 +                                      reference, iterator, reference> > reverse_iterator;
    1.74 +        typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, const_iterator,
    1.75 +                                      const_reference, iterator, reference> > const_reverse_iterator;
    1.76 +#else
    1.77 +        // workaround for broken reverse_iterator implementations
    1.78 +        typedef std::reverse_iterator<iterator,T> reverse_iterator;
    1.79 +        typedef std::reverse_iterator<const_iterator,T> const_reverse_iterator;
    1.80 +#endif
    1.81 +
    1.82 +        reverse_iterator rbegin() { return reverse_iterator(end()); }
    1.83 +        const_reverse_iterator rbegin() const {
    1.84 +            return const_reverse_iterator(end());
    1.85 +        }
    1.86 +        reverse_iterator rend() { return reverse_iterator(begin()); }
    1.87 +        const_reverse_iterator rend() const {
    1.88 +            return const_reverse_iterator(begin());
    1.89 +        }
    1.90 +
    1.91 +        // operator[]
    1.92 +        reference operator[](size_type i) 
    1.93 +        { 
    1.94 +            BOOST_ASSERT( i < N && "out of range" ); 
    1.95 +            return elems[i];
    1.96 +        }
    1.97 +        
    1.98 +        const_reference operator[](size_type i) const 
    1.99 +        {     
   1.100 +            BOOST_ASSERT( i < N && "out of range" ); 
   1.101 +            return elems[i]; 
   1.102 +        }
   1.103 +
   1.104 +        // at() with range check
   1.105 +        reference at(size_type i) { rangecheck(i); return elems[i]; }
   1.106 +        const_reference at(size_type i) const { rangecheck(i); return elems[i]; }
   1.107 +    
   1.108 +        // front() and back()
   1.109 +        reference front() 
   1.110 +        { 
   1.111 +            return elems[0]; 
   1.112 +        }
   1.113 +        
   1.114 +        const_reference front() const 
   1.115 +        {
   1.116 +            return elems[0];
   1.117 +        }
   1.118 +        
   1.119 +        reference back() 
   1.120 +        { 
   1.121 +            return elems[N-1]; 
   1.122 +        }
   1.123 +        
   1.124 +        const_reference back() const 
   1.125 +        { 
   1.126 +            return elems[N-1]; 
   1.127 +        }
   1.128 +
   1.129 +        // size is constant
   1.130 +        static size_type size() { return N; }
   1.131 +        static bool empty() { return false; }
   1.132 +        static size_type max_size() { return N; }
   1.133 +        enum { static_size = N };
   1.134 +
   1.135 +        // swap (note: linear complexity)
   1.136 +        void swap (array<T,N>& y) {
   1.137 +            std::swap_ranges(begin(),end(),y.begin());
   1.138 +        }
   1.139 +
   1.140 +        // direct access to data (read-only)
   1.141 +        const T* data() const { return elems; }
   1.142 +        T* data() { return elems; }
   1.143 +
   1.144 +        // use array as C array (direct read/write access to data)
   1.145 +        T* c_array() { return elems; }
   1.146 +
   1.147 +        // assignment with type conversion
   1.148 +        template <typename T2>
   1.149 +        array<T,N>& operator= (const array<T2,N>& rhs) {
   1.150 +            std::copy(rhs.begin(),rhs.end(), begin());
   1.151 +            return *this;
   1.152 +        }
   1.153 +
   1.154 +        // assign one value to all elements
   1.155 +        void assign (const T& value)
   1.156 +        {
   1.157 +            std::fill_n(begin(),size(),value);
   1.158 +        }
   1.159 +
   1.160 +        // check range (may be private because it is static)
   1.161 +        static void rangecheck (size_type i) {
   1.162 +            if (i >= size()) {
   1.163 +                throw std::range_error("array<>: index out of range");
   1.164 +            }
   1.165 +        }
   1.166 +
   1.167 +    };
   1.168 +
   1.169 +#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
   1.170 +    template< class T >
   1.171 +    class array< T, 0 > {
   1.172 +
   1.173 +      public:
   1.174 +        // type definitions
   1.175 +        typedef T              value_type;
   1.176 +        typedef T*             iterator;
   1.177 +        typedef const T*       const_iterator;
   1.178 +        typedef T&             reference;
   1.179 +        typedef const T&       const_reference;
   1.180 +        typedef std::size_t    size_type;
   1.181 +        typedef std::ptrdiff_t difference_type;
   1.182 +
   1.183 +        // iterator support
   1.184 +        iterator begin() { return iterator( reinterpret_cast< T * >( this ) ); }
   1.185 +        const_iterator begin() const { return const_iterator(  reinterpret_cast< const T * >( this ) ); }
   1.186 +        iterator end() { return begin(); }
   1.187 +        const_iterator end() const { return begin(); }
   1.188 +
   1.189 +        // reverse iterator support
   1.190 +#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR) && !defined(BOOST_NO_STD_ITERATOR_TRAITS)
   1.191 +        typedef std::reverse_iterator<iterator> reverse_iterator;
   1.192 +        typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
   1.193 +#elif defined(_MSC_VER) && (_MSC_VER == 1300) && defined(BOOST_DINKUMWARE_STDLIB) && (BOOST_DINKUMWARE_STDLIB == 310)
   1.194 +        // workaround for broken reverse_iterator in VC7
   1.195 +        typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, iterator,
   1.196 +                                      reference, iterator, reference> > reverse_iterator;
   1.197 +        typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, const_iterator,
   1.198 +                                      const_reference, iterator, reference> > const_reverse_iterator;
   1.199 +#else
   1.200 +        // workaround for broken reverse_iterator implementations
   1.201 +        typedef std::reverse_iterator<iterator,T> reverse_iterator;
   1.202 +        typedef std::reverse_iterator<const_iterator,T> const_reverse_iterator;
   1.203 +#endif
   1.204 +
   1.205 +        reverse_iterator rbegin() { return reverse_iterator(end()); }
   1.206 +        const_reverse_iterator rbegin() const {
   1.207 +            return const_reverse_iterator(end());
   1.208 +        }
   1.209 +        reverse_iterator rend() { return reverse_iterator(begin()); }
   1.210 +        const_reverse_iterator rend() const {
   1.211 +            return const_reverse_iterator(begin());
   1.212 +        }
   1.213 +
   1.214 +        // operator[]
   1.215 +        reference operator[](size_type i)
   1.216 +        {
   1.217 +            return failed_rangecheck();
   1.218 +        }
   1.219 +
   1.220 +        const_reference operator[](size_type i) const
   1.221 +        {
   1.222 +            return failed_rangecheck();
   1.223 +        }
   1.224 +
   1.225 +        // at() with range check
   1.226 +        reference at(size_type i)               {   return failed_rangecheck(); }
   1.227 +        const_reference at(size_type i) const   {   return failed_rangecheck(); }
   1.228 +
   1.229 +        // front() and back()
   1.230 +        reference front()
   1.231 +        {
   1.232 +            return failed_rangecheck();
   1.233 +        }
   1.234 +
   1.235 +        const_reference front() const
   1.236 +        {
   1.237 +            return failed_rangecheck();
   1.238 +        }
   1.239 +
   1.240 +        reference back()
   1.241 +        {
   1.242 +            return failed_rangecheck();
   1.243 +        }
   1.244 +
   1.245 +        const_reference back() const
   1.246 +        {
   1.247 +            return failed_rangecheck();
   1.248 +        }
   1.249 +
   1.250 +        // size is constant
   1.251 +        static size_type size() { return 0; }
   1.252 +        static bool empty() { return true; }
   1.253 +        static size_type max_size() { return 0; }
   1.254 +        enum { static_size = 0 };
   1.255 +
   1.256 +        void swap (array<T,0>& y) {
   1.257 +        }
   1.258 +
   1.259 +        // direct access to data (read-only)
   1.260 +        const T* data() const { return 0; }
   1.261 +        T* data() { return 0; }
   1.262 +
   1.263 +        // use array as C array (direct read/write access to data)
   1.264 +        T* c_array() { return 0; }
   1.265 +
   1.266 +        // assignment with type conversion
   1.267 +        template <typename T2>
   1.268 +        array<T,0>& operator= (const array<T2,0>& ) {
   1.269 +            return *this;
   1.270 +        }
   1.271 +
   1.272 +        // assign one value to all elements
   1.273 +        void assign (const T& ) {   }
   1.274 +
   1.275 +        // check range (may be private because it is static)
   1.276 +        static reference failed_rangecheck () {
   1.277 +                std::range_error e("attempt to access element of an empty array");
   1.278 +                boost::throw_exception(e);
   1.279 +                //
   1.280 +                // We need to return something here to keep
   1.281 +                // some compilers happy: however we will never
   1.282 +                // actually get here....
   1.283 +                //
   1.284 +                static T placeholder;
   1.285 +                return placeholder;
   1.286 +            }
   1.287 +    };
   1.288 +#endif
   1.289 +
   1.290 +    // comparisons
   1.291 +    template<class T, std::size_t N>
   1.292 +    bool operator== (const array<T,N>& x, const array<T,N>& y) {
   1.293 +        return std::equal(x.begin(), x.end(), y.begin());
   1.294 +    }
   1.295 +    template<class T, std::size_t N>
   1.296 +    bool operator< (const array<T,N>& x, const array<T,N>& y) {
   1.297 +        return std::lexicographical_compare(x.begin(),x.end(),y.begin(),y.end());
   1.298 +    }
   1.299 +    template<class T, std::size_t N>
   1.300 +    bool operator!= (const array<T,N>& x, const array<T,N>& y) {
   1.301 +        return !(x==y);
   1.302 +    }
   1.303 +    template<class T, std::size_t N>
   1.304 +    bool operator> (const array<T,N>& x, const array<T,N>& y) {
   1.305 +        return y<x;
   1.306 +    }
   1.307 +    template<class T, std::size_t N>
   1.308 +    bool operator<= (const array<T,N>& x, const array<T,N>& y) {
   1.309 +        return !(y<x);
   1.310 +    }
   1.311 +    template<class T, std::size_t N>
   1.312 +    bool operator>= (const array<T,N>& x, const array<T,N>& y) {
   1.313 +        return !(x<y);
   1.314 +    }
   1.315 +
   1.316 +    // global swap()
   1.317 +    template<class T, std::size_t N>
   1.318 +    inline void swap (array<T,N>& x, array<T,N>& y) {
   1.319 +        x.swap(y);
   1.320 +    }
   1.321 +
   1.322 +} /* namespace boost */
   1.323 +
   1.324 +#endif /*BOOST_ARRAY_HPP*/