os/ossrv/lowlevellibsandfws/genericusabilitylib/inc/emanaged.h
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/lowlevellibsandfws/genericusabilitylib/inc/emanaged.h	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,3207 @@
     1.4 +// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +//
    1.18 +
    1.19 +#ifndef EMANAGED_H
    1.20 +#define EMANAGED_H
    1.21 +
    1.22 +#include <e32base.h>
    1.23 +
    1.24 +#include <typerel.h>
    1.25 +#include <swap.h>
    1.26 +
    1.27 +
    1.28 +
    1.29 +
    1.30 +/**
    1.31 +   @file
    1.32 +   @brief Utility class templates that provide RAII-based automatic
    1.33 +   resource management.
    1.34 +
    1.35 +	 @publishedAll
    1.36 +	 @released
    1.37 +*/
    1.38 +
    1.39 +
    1.40 +  /**
    1.41 +     Implementation function.In order to override the default cleanup
    1.42 +     strategy for a particular type, use the provided
    1.43 +     DEFINE_CLEANUP_FUNCTION utility macro
    1.44 +     @internalComponent
    1.45 +  */
    1.46 +// Not for Client Use , Only to be used Internally.
    1.47 +template<class T>
    1.48 +inline void CallCleanupFunction(T* aObjPtr)
    1.49 +	{
    1.50 +	aObjPtr->Close();
    1.51 +	}
    1.52 +
    1.53 +
    1.54 +/**
    1.55 +Utility macro that can be used for defining the cleanup member
    1.56 +function for a class (typically a R-class).
    1.57 +
    1.58 +This macro can be used in the same namespace in which the R-class is
    1.59 +defined or in a namespace in which the R-class is used.
    1.60 +
    1.61 +Example:
    1.62 +
    1.63 +class RDestroyableClass
    1.64 +	{
    1.65 +  public:
    1.66 +	// ...
    1.67 +	void Destroy(); // member function used for cleanup and releasing the resources owned by a RDestroyableClass object
    1.68 +	// ...
    1.69 +	};
    1.70 +
    1.71 +DEFINE_CLEANUP_FUNCTION(RDestroyableClass, Destroy)
    1.72 +
    1.73 +@param AClass the name of the class
    1.74 +@param CleanupMemFun the name of the cleanup member function of the class
    1.75 + */
    1.76 +#define DEFINE_CLEANUP_FUNCTION(AClass, CleanupMemFun)	\
    1.77 +	inline void CallCleanupFunction(AClass* aObjPtr)	\
    1.78 +		{												\
    1.79 +		aObjPtr->CleanupMemFun();						\
    1.80 +		}
    1.81 +
    1.82 +/**
    1.83 +Utility macro that can be used for specializing the default cleanup
    1.84 +strategy class template TResourceCleanupStrategy for a particular
    1.85 +class (typically a R-class).  The default cleanup strategy for a class
    1.86 +specified using DEFINE_CLEANUP_STRATEGY overrides any other cleanup
    1.87 +strategy specified using DEFINE_CLEANUP_FUNCTION for that class.
    1.88 +
    1.89 +This macro must be used in the same namespace in which the R-class is
    1.90 +defined.
    1.91 +
    1.92 +
    1.93 +   Utility macro that can be used for enabling single phase
    1.94 +   construction for CBase-derived classes. This is necessary because
    1.95 +   Symbian OS currently lacks the placement delete operator
    1.96 +   counterparts corresponding to the placement new operators that take
    1.97 +   a TLeave parameter (new(ELeave)), which will result in memory leaks
    1.98 +   if a class constructor leaves.
    1.99 +
   1.100 +   This macro must be used within a public section of a class
   1.101 +   definition, if the single phase construction is part of the public
   1.102 +   interface of the class.
   1.103 +
   1.104 +   Current Limitation CONSTRUCTORS_MAY_LEAVE is an unfortunate blight on the
   1.105 +   usability of single-phase construction, but we have yet to come up
   1.106 +   with a better alternative in the face of the legacy handling of
   1.107 +   ELeave.
   1.108 +*/
   1.109 +#define CONSTRUCTORS_MAY_LEAVE											\
   1.110 +	static void operator delete(TAny* aPtr) __NO_THROW					\
   1.111 +		{																\
   1.112 +		::operator delete(aPtr);										\
   1.113 +		}																\
   1.114 +																		\
   1.115 +	static void operator delete(TAny*, TAny*) __NO_THROW				\
   1.116 +		{																\
   1.117 +		}																\
   1.118 +																		\
   1.119 +	static void operator delete(TAny* aPtr, TLeave) __NO_THROW			\
   1.120 +		{																\
   1.121 +		::operator delete(aPtr);										\
   1.122 +		}																\
   1.123 +																		\
   1.124 +	static void operator delete(TAny* aPtr, TUint) __NO_THROW			\
   1.125 +		{																\
   1.126 +		::operator delete(aPtr);										\
   1.127 +		}																\
   1.128 +																		\
   1.129 +	static void operator delete(TAny* aPtr, TLeave, TUint) __NO_THROW	\
   1.130 +		{																\
   1.131 +		::operator delete(aPtr);										\
   1.132 +		}																\
   1.133 +																		\
   1.134 +	static void operator delete[](TAny* aPtr) __NO_THROW				\
   1.135 +		{																\
   1.136 +		::operator delete[](aPtr);										\
   1.137 +		}																\
   1.138 +																		\
   1.139 +	static void operator delete[](TAny* aPtr, TLeave) __NO_THROW		\
   1.140 +		{																\
   1.141 +		::operator delete[](aPtr);										\
   1.142 +		}
   1.143 +
   1.144 +
   1.145 +// Implementation function.
   1.146 +template<typename T>
   1.147 +void ManagedPopCleanupStackItem(T aIsManaged)
   1.148 +	{
   1.149 +// CleanupStack-based cleanup is automatically triggered by a Leave,
   1.150 +// so, in the case when __LEAVE_EQUALS_THROW__,
   1.151 +// CleanupStack::PopAndDestroy must not be called again here
   1.152 +#ifndef __GCCXML__
   1.153 +// for gccxml builds the std::uncaught_exception function is not listed in std name space
   1.154 +// to supress GCCXML error
   1.155 +	if (!std::uncaught_exception())
   1.156 +		{
   1.157 +		if (aIsManaged)
   1.158 +			{
   1.159 +			CleanupStack::PopAndDestroy();
   1.160 +			}
   1.161 +		else
   1.162 +			{
   1.163 +			CleanupStack::Pop();
   1.164 +			}
   1.165 +		}
   1.166 +#endif		
   1.167 +	}
   1.168 +
   1.169 +/**
   1.170 +   Strategy (policy) class that defines the default cleanup strategy
   1.171 +   for managed resource class objects.
   1.172 +
   1.173 +   The default cleanup strategy is to call the cleanup member function
   1.174 +   of the managed class, which is the Close() member function of the
   1.175 +   managed class, unless explicitly defined otherwise, for example by
   1.176 +   using the provided DEFINE_CLEANUP_FUNCTION macro.
   1.177 +   
   1.178 +   @internalComponent
   1.179 +*/
   1.180 +// Not for Client Use , Only to be used Internally.
   1.181 +class TResourceCleanupStrategy
   1.182 +	{
   1.183 +  public:
   1.184 +	template<typename T>
   1.185 +	static void Cleanup(T* aObjPtr)
   1.186 +		{
   1.187 +		CallCleanupFunction(aObjPtr);
   1.188 +		}
   1.189 +	};
   1.190 +
   1.191 +/**
   1.192 +   Strategy (policy) class that defines a cleanup strategy for managed
   1.193 +   resource class objects.  This cleanup strategy calls the Close()
   1.194 +   member function of the managed class.
   1.195 +
   1.196 +   @see LCleanedupHandle to which this strategy type may be supplied as
   1.197 +   an (optional) second tamplate parameter
   1.198 +   @see LManagedHandle to which this strategy type may be supplied as
   1.199 +   an (optional) second tamplate parameter
   1.200 +*/
   1.201 +class TClose
   1.202 +	{
   1.203 +  public:
   1.204 +	template<class T>
   1.205 +	static void Cleanup(T* aObjPtr)
   1.206 +		{
   1.207 +		aObjPtr->Close();
   1.208 +		}
   1.209 +	};
   1.210 +
   1.211 +/**
   1.212 +   Strategy (policy) class that defines a cleanup strategy for managed
   1.213 +   resource class objects.  This cleanup strategy calls the Release()
   1.214 +   member function of the managed class.
   1.215 +
   1.216 +   @see LCleanedupHandle to which this strategy type may be supplied as
   1.217 +   an (optional) second tamplate parameter
   1.218 +   @see LManagedHandle to which this strategy type may be supplied as
   1.219 +   an (optional) second tamplate parameter
   1.220 +*/
   1.221 +class TRelease
   1.222 +	{
   1.223 +  public:
   1.224 +	template<class T>
   1.225 +	static void Cleanup(T* aObjPtr)
   1.226 +		{
   1.227 +		aObjPtr->Release();
   1.228 +		}
   1.229 +	};
   1.230 +
   1.231 +/**
   1.232 +   Strategy (policy) class that defines a cleanup strategy for managed
   1.233 +   resource class objects.  This cleanup strategy calls the Destroy()
   1.234 +   member function of the managed class.
   1.235 +
   1.236 +   @see LCleanedupHandle to which this strategy type may be supplied as
   1.237 +   an (optional) second tamplate parameter
   1.238 +   @see LManagedHandle to which this strategy type may be supplied as
   1.239 +   an (optional) second tamplate parameter
   1.240 +*/
   1.241 +class TDestroy
   1.242 +	{
   1.243 +  public:
   1.244 +	template<class T>
   1.245 +	static void Cleanup(T* aObjPtr)
   1.246 +		{
   1.247 +		aObjPtr->Destroy();
   1.248 +		}
   1.249 +	};
   1.250 +
   1.251 +/**
   1.252 +   Strategy (policy) class that defines a cleanup strategy for managed
   1.253 +   resource class objects.  This cleanup strategy calls the Free()
   1.254 +   member function of the managed class.
   1.255 +
   1.256 +   @see LCleanedupHandle to which this strategy type may be supplied as
   1.257 +   an (optional) second tamplate parameter
   1.258 +   @see LManagedHandle to which this strategy type may be supplied as
   1.259 +   an (optional) second tamplate parameter
   1.260 +*/
   1.261 +class TFree
   1.262 +	{
   1.263 +  public:
   1.264 +	template<class T>
   1.265 +	static void Cleanup(T* aObjPtr)
   1.266 +		{
   1.267 +		aObjPtr->Free();
   1.268 +		}
   1.269 +	};
   1.270 +
   1.271 +/**
   1.272 +   Strategy (policy) class that defines a cleanup strategy for managed
   1.273 +   resource class objects.  This cleanup strategy calls the
   1.274 +   ResetAndDestroy() member function of the managed class.
   1.275 +
   1.276 +   @see LCleanedupHandle to which this strategy type may be supplied as
   1.277 +   an (optional) second tamplate parameter
   1.278 +   @see LManagedHandle to which this strategy type may be supplied as
   1.279 +   an (optional) second tamplate parameter
   1.280 +*/
   1.281 +class TResetAndDestroy
   1.282 +	{
   1.283 +  public:
   1.284 +	template<class T>
   1.285 +	static void Cleanup(T* aObjPtr)
   1.286 +		{
   1.287 +		aObjPtr->ResetAndDestroy();
   1.288 +		}
   1.289 +	};
   1.290 +
   1.291 +
   1.292 +/**
   1.293 +   Strategy (policy) class that defines the default cleanup strategy
   1.294 +   for pointer types.  For pointers to CBase-derived types, the
   1.295 +   default cleanup strategy is to call CBase::Delete with the managed
   1.296 +   pointer.  For pointers to types that are not derived from CBase,
   1.297 +   the default cleanup strategy is to delete the managed pointer using
   1.298 +   non-array delete.
   1.299 +
   1.300 +   @see LCleanedupPtr to which this strategy type may be supplied as
   1.301 +   an (optional) second tamplate parameter
   1.302 +   @see LManagedPtr to which this strategy type may be supplied as
   1.303 +   an (optional) second tamplate parameter
   1.304 +*/
   1.305 +class TPtrCleanupStrategy
   1.306 +	{
   1.307 +  public:
   1.308 +	template<typename T>
   1.309 +	static void Cleanup(T* aPtr)
   1.310 +		{
   1.311 +		delete aPtr;
   1.312 +		}
   1.313 +
   1.314 +	static void Cleanup(CBase* aPtr)
   1.315 +		{
   1.316 +		CBase::Delete(aPtr);
   1.317 +		}
   1.318 +	};
   1.319 +
   1.320 +
   1.321 +/**
   1.322 +   Strategy (policy) class that defines a cleanup strategy for pointer
   1.323 +   types.  This cleanup strategy deletes the managed pointer by using
   1.324 +   non-array delete.
   1.325 +
   1.326 +   @see LCleanedupPtr to which this strategy type may be supplied as
   1.327 +   an (optional) second tamplate parameter
   1.328 +   @see LManagedPtr to which this strategy type may be supplied as
   1.329 +   an (optional) second tamplate parameter
   1.330 +*/
   1.331 +class TPointerDeleteStrategy
   1.332 +	{
   1.333 +  public:
   1.334 +	template<typename T>
   1.335 +	static void Cleanup(T* aPtr)
   1.336 +		{
   1.337 +		delete aPtr;
   1.338 +		}
   1.339 +	};
   1.340 +
   1.341 +
   1.342 +/**
   1.343 +   Strategy (policy) class that defines a cleanup strategy for
   1.344 +   pointers to CBase-derived types.  This cleanup strategy calls
   1.345 +   CBase::Delete with the managed pointer.
   1.346 +
   1.347 +   @see LCleanedupPtr to which this strategy type may be supplied as
   1.348 +   an (optional) second tamplate parameter
   1.349 +   @see LManagedPtr to which this strategy type may be supplied as
   1.350 +   an (optional) second tamplate parameter
   1.351 +*/
   1.352 +class TCBaseDeleteStrategy
   1.353 +	{
   1.354 +  public:
   1.355 +	static void Cleanup(CBase* aPtr)
   1.356 +		{
   1.357 +		CBase::Delete(aPtr);
   1.358 +		}
   1.359 +	};
   1.360 +
   1.361 +
   1.362 +/**
   1.363 +   Strategy (policy) class that defines a cleanup strategy for pointer
   1.364 +   types.  This cleanup strategy calls User::Free with the managed
   1.365 +   pointer.
   1.366 +
   1.367 +   @see LCleanedupPtr to which this strategy type may be supplied as
   1.368 +   an (optional) second tamplate parameter
   1.369 +   @see LManagedPtr to which this strategy type may be supplied as
   1.370 +   an (optional) second tamplate parameter
   1.371 +*/
   1.372 +class TPointerFree
   1.373 +	{
   1.374 +  public:
   1.375 +	static void Cleanup(TAny* aPtr)
   1.376 +		{
   1.377 +		User::Free(aPtr);
   1.378 +		}
   1.379 +	};
   1.380 +
   1.381 +
   1.382 +/**
   1.383 +   Strategy (policy) class that defines the default cleanup strategy
   1.384 +   for heap-allocated arrays.  This cleanup strategy deallocates the
   1.385 +   managed array by using array delete.
   1.386 +*/
   1.387 +class TArrayDelete
   1.388 +	{
   1.389 +  public:
   1.390 +	template<typename T>
   1.391 +	static void Cleanup(T* aPtr)
   1.392 +		{
   1.393 +		delete[] aPtr;
   1.394 +		}
   1.395 +	};
   1.396 +
   1.397 +
   1.398 +// enum type used for identifying the categories of managed pointer types
   1.399 +enum TManagedPtrType
   1.400 +{
   1.401 +	EPtrNonSpecial,
   1.402 +	EPtrCBaseDerived
   1.403 +};
   1.404 +
   1.405 +
   1.406 +// macro used for determining whether a pointer is special
   1.407 +#define IS_PTR_SPECIAL(T) IS_BASE_OF(CBase, T)
   1.408 +
   1.409 +
   1.410 +// enum type used for identifying the categories of resource handle types
   1.411 +enum TAutoHandleType
   1.412 +{
   1.413 +	EAutoHandleNonSpecial,
   1.414 +	EAutoRHandleBaseDerived,
   1.415 +	EAutoHandleRBuf
   1.416 +};
   1.417 +
   1.418 +
   1.419 +// macro used for determining whether a resource handle type is special
   1.420 +#define IS_HANDLE_SPECIAL(T) IS_BASE_OF(RHandleBase, T) ? EAutoRHandleBaseDerived : ( (IS_SAME(RBuf8, T) || IS_SAME(RBuf16, T)) ? EAutoHandleRBuf : EAutoHandleNonSpecial )
   1.421 +
   1.422 +
   1.423 +/**
   1.424 +   Implementation base class - not designed for public inheritance or
   1.425 +   direct use.
   1.426 +   
   1.427 +   @internalComponent
   1.428 +*/
   1.429 +// Not for Client Use , Only to be used Internally.
   1.430 +template<typename T,
   1.431 +		 TInt isHandleSpecial = IS_HANDLE_SPECIAL(T)>
   1.432 +class LAutoHandleBase
   1.433 +	{
   1.434 +  protected:
   1.435 +	LAutoHandleBase()
   1.436 +		: iEnabled(ETrue)
   1.437 +		{
   1.438 +		}
   1.439 +
   1.440 +	template<typename Param1>
   1.441 +	explicit LAutoHandleBase(const Param1& aParam1)
   1.442 +		: iHandle(aParam1),
   1.443 +		  iEnabled(ETrue)
   1.444 +		{
   1.445 +		}
   1.446 +
   1.447 +	template<typename Param1>
   1.448 +	explicit LAutoHandleBase(Param1& aParam1)
   1.449 +		: iHandle(aParam1),
   1.450 +		  iEnabled(ETrue)
   1.451 +		{
   1.452 +		}
   1.453 +
   1.454 +	template<typename Param1,
   1.455 +			 typename Param2>
   1.456 +	LAutoHandleBase(const Param1& aParam1,
   1.457 +					const Param2& aParam2)
   1.458 +		: iHandle(aParam1,
   1.459 +				  aParam2),
   1.460 +		  iEnabled(ETrue)
   1.461 +		{
   1.462 +		}
   1.463 +
   1.464 +	template<typename Param1,
   1.465 +			 typename Param2>
   1.466 +	LAutoHandleBase(Param1& aParam1,
   1.467 +					const Param2& aParam2)
   1.468 +		: iHandle(aParam1,
   1.469 +				  aParam2),
   1.470 +		  iEnabled(ETrue)
   1.471 +		{
   1.472 +		}
   1.473 +
   1.474 +	template<typename Param1,
   1.475 +			 typename Param2>
   1.476 +	LAutoHandleBase(const Param1& aParam1,
   1.477 +					Param2& aParam2)
   1.478 +		: iHandle(aParam1,
   1.479 +				  aParam2),
   1.480 +		  iEnabled(ETrue)
   1.481 +		{
   1.482 +		}
   1.483 +
   1.484 +	template<typename Param1,
   1.485 +			 typename Param2>
   1.486 +	LAutoHandleBase(Param1& aParam1,
   1.487 +					Param2& aParam2)
   1.488 +		: iHandle(aParam1,
   1.489 +				  aParam2),
   1.490 +		  iEnabled(ETrue)
   1.491 +		{
   1.492 +		}
   1.493 +
   1.494 +	template<typename U>
   1.495 +	LAutoHandleBase& operator=(const U& aHandle)
   1.496 +		{
   1.497 +		iHandle = aHandle;
   1.498 +		iEnabled = ETrue;
   1.499 +		return *this;
   1.500 +		}
   1.501 +
   1.502 +	T& Get()
   1.503 +		{
   1.504 +		return iHandle;
   1.505 +		}
   1.506 +
   1.507 +	const T& Get() const
   1.508 +		{
   1.509 +		return iHandle;
   1.510 +		}
   1.511 +
   1.512 +	T& operator*()
   1.513 +		{
   1.514 +		return iHandle;
   1.515 +		}
   1.516 +
   1.517 +	const T& operator*() const
   1.518 +		{
   1.519 +		return iHandle;
   1.520 +		}
   1.521 +
   1.522 +	T* operator->()
   1.523 +		{
   1.524 +		return &iHandle;
   1.525 +		}
   1.526 +
   1.527 +	const T* operator->() const
   1.528 +		{
   1.529 +		return &iHandle;
   1.530 +		}
   1.531 +
   1.532 +	T Unmanage()
   1.533 +		{
   1.534 +		iEnabled = EFalse;
   1.535 +		return iHandle;
   1.536 +		}
   1.537 +
   1.538 +	TBool IsEnabled() const
   1.539 +		{
   1.540 +		return iEnabled;
   1.541 +		}
   1.542 +
   1.543 +	void Disable()
   1.544 +		{
   1.545 +		iEnabled = EFalse;
   1.546 +		}
   1.547 +
   1.548 +	void Swap(LAutoHandleBase& aAutoHandle)
   1.549 +		{
   1.550 +		::Swap(iHandle, aAutoHandle.iHandle);
   1.551 +		::Swap(iEnabled, aAutoHandle.iEnabled);
   1.552 +		}
   1.553 +
   1.554 +  protected:
   1.555 +	T iHandle;
   1.556 +	TBool iEnabled;
   1.557 +
   1.558 +  private:
   1.559 +	LAutoHandleBase(const LAutoHandleBase&);
   1.560 +	LAutoHandleBase& operator=(const LAutoHandleBase&);
   1.561 +	};
   1.562 +
   1.563 +
   1.564 +/**
   1.565 +   Implementation base class - not designed for public inheritance or
   1.566 +   direct use.  Specialization for types derived from RHandleBase.
   1.567 +*/
   1.568 +template<typename T>
   1.569 +class LAutoHandleBase<T, EAutoRHandleBaseDerived>
   1.570 +	{
   1.571 +  protected:
   1.572 +	LAutoHandleBase()
   1.573 +		{
   1.574 +		}
   1.575 +
   1.576 +	template<typename Param1>
   1.577 +	explicit LAutoHandleBase(const Param1& aParam1)
   1.578 +		: iHandle(aParam1)
   1.579 +		{
   1.580 +		}
   1.581 +
   1.582 +	template<typename Param1>
   1.583 +	explicit LAutoHandleBase(Param1& aParam1)
   1.584 +		: iHandle(aParam1)
   1.585 +		{
   1.586 +		}
   1.587 +
   1.588 +	template<typename Param1,
   1.589 +			 typename Param2>
   1.590 +	LAutoHandleBase(const Param1& aParam1,
   1.591 +					const Param2& aParam2)
   1.592 +		: iHandle(aParam1,
   1.593 +				  aParam2)
   1.594 +		{
   1.595 +		}
   1.596 +
   1.597 +	template<typename Param1,
   1.598 +			 typename Param2>
   1.599 +	LAutoHandleBase(Param1& aParam1,
   1.600 +					const Param2& aParam2)
   1.601 +		: iHandle(aParam1,
   1.602 +				  aParam2)
   1.603 +		{
   1.604 +		}
   1.605 +
   1.606 +	template<typename Param1,
   1.607 +			 typename Param2>
   1.608 +	LAutoHandleBase(const Param1& aParam1,
   1.609 +					Param2& aParam2)
   1.610 +		: iHandle(aParam1,
   1.611 +				  aParam2)
   1.612 +		{
   1.613 +		}
   1.614 +
   1.615 +	template<typename Param1,
   1.616 +			 typename Param2>
   1.617 +	LAutoHandleBase(Param1& aParam1,
   1.618 +					Param2& aParam2)
   1.619 +		: iHandle(aParam1,
   1.620 +				  aParam2)
   1.621 +		{
   1.622 +		}
   1.623 +
   1.624 +	template<typename U>
   1.625 +	LAutoHandleBase& operator=(const U& aHandle)
   1.626 +		{
   1.627 +		iHandle = aHandle;
   1.628 +		return *this;
   1.629 +		}
   1.630 +
   1.631 +	T& Get()
   1.632 +		{
   1.633 +		return iHandle;
   1.634 +		}
   1.635 +
   1.636 +	const T& Get() const
   1.637 +		{
   1.638 +		return iHandle;
   1.639 +		}
   1.640 +
   1.641 +	T& operator*()
   1.642 +		{
   1.643 +		return iHandle;
   1.644 +		}
   1.645 +
   1.646 +	const T& operator*() const
   1.647 +		{
   1.648 +		return iHandle;
   1.649 +		}
   1.650 +
   1.651 +	T* operator->()
   1.652 +		{
   1.653 +		return &iHandle;
   1.654 +		}
   1.655 +
   1.656 +	const T* operator->() const
   1.657 +		{
   1.658 +		return &iHandle;
   1.659 +		}
   1.660 +
   1.661 +	T Unmanage()
   1.662 +		{
   1.663 +		T handle = iHandle;
   1.664 +		iHandle.SetHandle(KNullHandle);
   1.665 +		return handle;
   1.666 +		}
   1.667 +
   1.668 +	TBool IsEnabled() const
   1.669 +		{
   1.670 +		return iHandle.Handle() != KNullHandle;
   1.671 +		}
   1.672 +
   1.673 +	void Disable()
   1.674 +		{
   1.675 +		iHandle.SetHandle(KNullHandle);
   1.676 +		}
   1.677 +
   1.678 +	void Swap(LAutoHandleBase& aAutoHandle)
   1.679 +		{
   1.680 +		::Swap(iHandle, aAutoHandle.iHandle);
   1.681 +		}
   1.682 +
   1.683 +  protected:
   1.684 +	T iHandle;
   1.685 +
   1.686 +  private:
   1.687 +	LAutoHandleBase(const LAutoHandleBase&);
   1.688 +	LAutoHandleBase& operator=(const LAutoHandleBase&);
   1.689 +	};
   1.690 +
   1.691 +
   1.692 +// N.B. RBuf8, RBuf16 and RBuf cannot be used with LManagedHandle and
   1.693 +// LCleanedupHandle.  Use LString or managed references instead.
   1.694 +// The following specialization must not be used.
   1.695 +template<typename T>
   1.696 +class LAutoHandleBase<T, EAutoHandleRBuf>: protected T
   1.697 +	{
   1.698 +  private:
   1.699 +	LAutoHandleBase()
   1.700 +		{
   1.701 +		}
   1.702 +
   1.703 +	~LAutoHandleBase()
   1.704 +		{
   1.705 +		}
   1.706 +	};
   1.707 +
   1.708 +
   1.709 +/**
   1.710 +   A class template for the creation and automatic management of
   1.711 +   resource handles (typically R-class instances) held in the data
   1.712 +   members of objects.
   1.713 +
   1.714 +   @note This class should not used to define locals. See below for
   1.715 +   an explanation and links to management classes suitable for use in
   1.716 +   that context.
   1.717 +
   1.718 +   This class template can be used to protect a resource handle of
   1.719 +   type T (typically an R-class instance) such that the instance of T
   1.720 +   protected is automatically cleaned up when the management object is
   1.721 +   destroyed; typically when the object containing it is deleted.
   1.722 +
   1.723 +   By default, the cleanup action is to call the Close() member
   1.724 +   function of the managed handle. An alternative cleanup strategy may
   1.725 +   be selected by specifying a cleanup strategy template class in the
   1.726 +   optional second template parameter position. The most common
   1.727 +   alternative cleanup strategies are predefined. It is also possible
   1.728 +   to specialize the default cleanup action for a given class using
   1.729 +   the DEFINE_CLEANUP_FUNCTION macro.
   1.730 +
   1.731 +   The constructors of this class never leave (unless construction of
   1.732 +   the underlying T instance can leave, which is rare), so data
   1.733 +   members defined with this type may be initialized safely during any
   1.734 +   phase of construction of the owning class.
   1.735 +
   1.736 +   Any arguments supplied when initializing an instance of this class
   1.737 +   are automatically passed through to T's constructors.
   1.738 +
   1.739 +   As a convenience, the methods of the managed pointer may be
   1.740 +   accessed via "->" notation directly on the management object, while
   1.741 +   "." notation is used to access the interface of the management
   1.742 +   object itself. Using "*" to dereference the management object
   1.743 +   yields a T&, and is often useful when passing the managed object as
   1.744 +   an argument.
   1.745 +
   1.746 +   Automatic cleanup may be disabled at any time by calling
   1.747 +   Unmanage(), while cleanup may be forced at any time by calling
   1.748 +   ReleaseResource().
   1.749 +
   1.750 +   Example:
   1.751 +   @code
   1.752 +   class CComposite : public CBase
   1.753 +	   {
   1.754 +	 public:
   1.755 +	   CONSTRUCTORS_MAY_LEAVE
   1.756 +
   1.757 +	   CComposite()
   1.758 +		   {
   1.759 +		   iFileServ->Connect() OR_LEAVE;
   1.760 +		   iFile->Open(*iFileServ, ...);
   1.761 +		   }
   1.762 +
   1.763 +	   ~CComposite()
   1.764 +		   {
   1.765 +		   // the handles are automatically closed
   1.766 +		   }
   1.767 +
   1.768 +	 private:
   1.769 +
   1.770 +	   LManagedHandle<RFs> iFileServ;
   1.771 +	   LManagedHandle<RFile> iFile;
   1.772 +	   };
   1.773 +   @endcode
   1.774 +
   1.775 +   Behind the scenes, this class template simply relies on reliable
   1.776 +   execution of its destructor. If used for a local variable rather
   1.777 +   than a data member, cleanup will occur but out-of-order compared to
   1.778 +   objects protected using the LCleanupXxx variants or the
   1.779 +   CleanupStack directly. Therefore it is not recommended for use in
   1.780 +   that context.
   1.781 +
   1.782 +   These management classes may be used as the basis for implementing
   1.783 +   leave-safe single-phase construction, since fully initialized
   1.784 +   data members protected in this way will get destroyed (so reliably
   1.785 +   triggering cleanup) if their containing classes leave during
   1.786 +   execution of their constructors. Note, however, that single-phase
   1.787 +   construction must be explicitly enabled in the containing class
   1.788 +   using the CONSTRUCTORS_MAY_LEAVE macro.
   1.789 +
   1.790 +   This class template together with the cleanup strategy class
   1.791 +   templates provide a template-based implementation of the Strategy
   1.792 +   design pattern (See also: Policy-based design).
   1.793 +
   1.794 +   @see TClose which implements the default Close() calling cleanup strategy
   1.795 +   @see TResetAndDestroy which implements an alternative
   1.796 +   ResetAndDestroy() calling cleanup strategy
   1.797 +   @see TFree which implements an alternative Free() calling cleanup
   1.798 +   strategy
   1.799 +   @see TDestroy which implements an alternative Destroy() calling
   1.800 +   cleanup strategy
   1.801 +   @see TRelease which implements an alternative Release() calling cleanup strategy
   1.802 +   @see LCleanedupHandle which has the same interface, but uses the cleanup
   1.803 +   stack and is suitable for protecting locals
   1.804 +   @see CONSTRUCTORS_MAY_LEAVE
   1.805 +*/
   1.806 +template<typename T,
   1.807 +		 class CleanupStrategyType = TResourceCleanupStrategy>
   1.808 +class LManagedHandle: protected LAutoHandleBase<T, IS_HANDLE_SPECIAL(T)>
   1.809 +	{
   1.810 +	typedef LAutoHandleBase<T, IS_HANDLE_SPECIAL(T)> LAutoHandleBase;
   1.811 +
   1.812 +  public:
   1.813 +	typedef T ManagedType;
   1.814 +	typedef CleanupStrategyType CleanupStrategy;
   1.815 +
   1.816 +/**
   1.817 +   Default constructor.
   1.818 +*/
   1.819 +	LManagedHandle()
   1.820 +		{
   1.821 +		}
   1.822 +
   1.823 +	template<typename Param1>
   1.824 +	explicit LManagedHandle(const Param1& aParam1)
   1.825 +		: LAutoHandleBase(aParam1)
   1.826 +		{
   1.827 +		}
   1.828 +
   1.829 +	template<typename Param1>
   1.830 +	explicit LManagedHandle(Param1& aParam1)
   1.831 +		: LAutoHandleBase(aParam1)
   1.832 +		{
   1.833 +		}
   1.834 +
   1.835 +	template<typename Param1,
   1.836 +			 typename Param2>
   1.837 +	LManagedHandle(const Param1& aParam1,
   1.838 +				   const Param2& aParam2)
   1.839 +		: LAutoHandleBase(aParam1,
   1.840 +					   aParam2)
   1.841 +		{
   1.842 +		}
   1.843 +
   1.844 +	template<typename Param1,
   1.845 +			 typename Param2>
   1.846 +	LManagedHandle(const Param1& aParam1,
   1.847 +				   Param2& aParam2)
   1.848 +		: LAutoHandleBase(aParam1,
   1.849 +					   aParam2)
   1.850 +		{
   1.851 +		}
   1.852 +
   1.853 +	template<typename Param1,
   1.854 +			 typename Param2>
   1.855 +	LManagedHandle(Param1& aParam1,
   1.856 +				   const Param2& aParam2)
   1.857 +		: LAutoHandleBase(aParam1,
   1.858 +					   aParam2)
   1.859 +		{
   1.860 +		}
   1.861 +
   1.862 +	template<typename Param1,
   1.863 +			 typename Param2>
   1.864 +	LManagedHandle(Param1& aParam1,
   1.865 +				   Param2& aParam2)
   1.866 +		: LAutoHandleBase(aParam1,
   1.867 +					   aParam2)
   1.868 +		{
   1.869 +		}
   1.870 +
   1.871 +/**
   1.872 +   Assigns a new resource to be managed.  If the LManagedHandle object
   1.873 +   already contains a managed resource handle, then the managed
   1.874 +   resource is released using the specified cleanup strategy before
   1.875 +   assigning the new managed resource.
   1.876 +
   1.877 +   @param aHandle a reference to a handle object of a type that can be assigned to a handle object of type T
   1.878 + */
   1.879 +	template<typename U>
   1.880 +	LManagedHandle& operator=(const U& aHandle)
   1.881 +		{
   1.882 +		ReleaseResource();
   1.883 +		LAutoHandleBase::operator=(aHandle);
   1.884 +		return *this;
   1.885 +		}
   1.886 +
   1.887 +/**
   1.888 +   Destructor.	When automatic resource management is enabled, the
   1.889 +   destructor calls the cleanup function defined by the cleanup
   1.890 +   strategy with the contained resource handle object.
   1.891 + */
   1.892 +	~LManagedHandle()
   1.893 +		{
   1.894 +		if (IsEnabled())
   1.895 +			{
   1.896 +			CleanupStrategy::Cleanup(&Get());
   1.897 +			}
   1.898 +		}
   1.899 +
   1.900 +/**
   1.901 +   If automatic resource management is enabled, calls the cleanup
   1.902 +   function defined by the cleanup strategy with the managed resource
   1.903 +   handle object and then disables the automatic resource management
   1.904 +   for this object.	 The cleanup strategy is specified by the
   1.905 +   CleanupStrategy template template parameter.	 The default cleanup
   1.906 +   strategy is to call the cleanup member function on the contained
   1.907 +   resource handle object. which is a member function named Close(),
   1.908 +   unless explicitly defined otherwise for the class of the object,
   1.909 +   for example by using the provided DEFINE_CLEANUP_FUNCTION macro.
   1.910 +*/
   1.911 +	void ReleaseResource()
   1.912 +		{
   1.913 +		if (!IsEnabled())
   1.914 +			return;
   1.915 +
   1.916 +		CleanupStrategy::Cleanup(&Get());
   1.917 +		LAutoHandleBase::Disable();
   1.918 +		}
   1.919 +
   1.920 +/**
   1.921 +   Disables the automatic resource management for this object and
   1.922 +   returns a copy of the resource handle.
   1.923 +
   1.924 +   @return A copy of the resource handle.
   1.925 +*/
   1.926 +	using LAutoHandleBase::Unmanage;
   1.927 +
   1.928 +/**
   1.929 +   Returns ETrue if automatic resource management is enabled; EFalse
   1.930 +   otherwise.
   1.931 +
   1.932 +   @return ETrue if automatic resource management is enabled; EFalse
   1.933 +   otherwise.
   1.934 +*/
   1.935 +	using LAutoHandleBase::IsEnabled;
   1.936 +
   1.937 +/**
   1.938 +   Returns a reference to the resource handle.
   1.939 +
   1.940 +   @return A reference to the resource handle.
   1.941 +*/
   1.942 +	using LAutoHandleBase::Get;
   1.943 +
   1.944 +/**
   1.945 +   Overloaded indirection operator function.
   1.946 +
   1.947 +   @return A reference to the resource handle.
   1.948 +*/
   1.949 +	using LAutoHandleBase::operator*;
   1.950 +
   1.951 +/**
   1.952 +   Overloaded class member access operator function.
   1.953 +
   1.954 +   @return A pointer to the resource handle.
   1.955 +*/
   1.956 +	using LAutoHandleBase::operator->;
   1.957 +
   1.958 +	using LAutoHandleBase::Disable;
   1.959 +
   1.960 +	void Swap(LManagedHandle& aManagedHandle)
   1.961 +		{
   1.962 +		LAutoHandleBase::Swap(aManagedHandle);
   1.963 +		}
   1.964 +	};
   1.965 +
   1.966 +
   1.967 +/**
   1.968 +   Implementation base class - not designed for public inheritance or
   1.969 +   direct use.
   1.970 +   
   1.971 +   @internalComponent
   1.972 +*/
   1.973 +// Not for Client Use , Only to be used Internally.
   1.974 +template<typename T>
   1.975 +class LAutoPtrBase
   1.976 +	{
   1.977 +  protected:
   1.978 +	LAutoPtrBase()
   1.979 +		: iPtr(NULL)
   1.980 +		{
   1.981 +		}
   1.982 +
   1.983 +	explicit LAutoPtrBase(T* aPtr)
   1.984 +		: iPtr(aPtr)
   1.985 +		{
   1.986 +		}
   1.987 +
   1.988 +	LAutoPtrBase& operator=(T* aPtr)
   1.989 +		{
   1.990 +		iPtr = aPtr;
   1.991 +		return *this;
   1.992 +		}
   1.993 +
   1.994 +	T* Unmanage()
   1.995 +		{
   1.996 +		T* ptr = iPtr;
   1.997 +		iPtr = NULL;
   1.998 +		return ptr;
   1.999 +		}
  1.1000 +
  1.1001 +	TBool IsEnabled() const
  1.1002 +		{
  1.1003 +		return iPtr != NULL;
  1.1004 +		}
  1.1005 +
  1.1006 +	T* Get() const
  1.1007 +		{
  1.1008 +		return iPtr;
  1.1009 +		}
  1.1010 +
  1.1011 +	T* operator->() const
  1.1012 +		{
  1.1013 +		return iPtr;
  1.1014 +		}
  1.1015 +
  1.1016 +	void Disable()
  1.1017 +		{
  1.1018 +		iPtr = NULL;
  1.1019 +		}
  1.1020 +
  1.1021 +	void Swap(LAutoPtrBase& aAutoPtr)
  1.1022 +		{
  1.1023 +		::Swap(iPtr, aAutoPtr.iPtr);
  1.1024 +		}
  1.1025 +
  1.1026 +  protected:
  1.1027 +	T* iPtr;
  1.1028 +
  1.1029 +  private:
  1.1030 +	LAutoPtrBase(const LAutoPtrBase&);
  1.1031 +	LAutoPtrBase& operator=(const LAutoPtrBase&);
  1.1032 +	};
  1.1033 +
  1.1034 +
  1.1035 +// Cleanup traits class template
  1.1036 +template<typename T,
  1.1037 +		 class CleanupStrategyType,
  1.1038 +		 TInt isPtrSpecial = IS_PTR_SPECIAL(T)>
  1.1039 +struct TPtrCleanupTraits
  1.1040 +	{
  1.1041 +	};
  1.1042 +
  1.1043 +
  1.1044 +// Cleanup traits class template specialization for pointers to types
  1.1045 +// that are not derived from CBase
  1.1046 +template<typename T,
  1.1047 +		 class CleanupStrategyType>
  1.1048 +struct TPtrCleanupTraits<T, CleanupStrategyType, EPtrNonSpecial>
  1.1049 +	{
  1.1050 +	typedef T ManagedType;
  1.1051 +	typedef T BaseManagedType;
  1.1052 +	typedef CleanupStrategyType CleanupStrategy;
  1.1053 +	};
  1.1054 +
  1.1055 +// Cleanup traits class template specialization for pointers to types
  1.1056 +// that are derived from CBase
  1.1057 +template<typename T,
  1.1058 +		 class CleanupStrategyType>
  1.1059 +struct TPtrCleanupTraits<T, CleanupStrategyType, EPtrCBaseDerived>
  1.1060 +	{
  1.1061 +	typedef T ManagedType;
  1.1062 +	typedef CBase BaseManagedType;
  1.1063 +	typedef CleanupStrategyType CleanupStrategy;
  1.1064 +	};
  1.1065 +
  1.1066 +// Cleanup traits class template specialization for pointers to types
  1.1067 +// that are derived from CBase and the default pointer cleanup
  1.1068 +// strategy (TPtrCleanupStrategy)
  1.1069 +template<typename T>
  1.1070 +struct TPtrCleanupTraits<T, TPtrCleanupStrategy, EPtrCBaseDerived>
  1.1071 +	{
  1.1072 +	typedef CBase ManagedType;
  1.1073 +	typedef CBase BaseManagedType;
  1.1074 +	typedef TPtrCleanupStrategy CleanupStrategy;
  1.1075 +	};
  1.1076 +
  1.1077 +
  1.1078 +/**
  1.1079 +   Implementation base class - not designed for public inheritance or
  1.1080 +   direct use.
  1.1081 +*/
  1.1082 +template<typename T,
  1.1083 +		 class CleanupStrategyType>
  1.1084 +class LManagedPtrBase: protected LAutoPtrBase<typename TPtrCleanupTraits<T, CleanupStrategyType>::BaseManagedType>
  1.1085 +	{
  1.1086 +	typedef LAutoPtrBase<typename TPtrCleanupTraits<T, CleanupStrategyType>::BaseManagedType> LAutoPtrBase;
  1.1087 +
  1.1088 +  protected:
  1.1089 +	typedef typename TPtrCleanupTraits<T, CleanupStrategyType>::ManagedType ManagedType;
  1.1090 +	typedef typename TPtrCleanupTraits<T, CleanupStrategyType>::BaseManagedType BaseManagedType;
  1.1091 +	typedef typename TPtrCleanupTraits<T, CleanupStrategyType>::CleanupStrategy CleanupStrategy;
  1.1092 +
  1.1093 +	LManagedPtrBase()
  1.1094 +		{
  1.1095 +		}
  1.1096 +
  1.1097 +	template<typename U>
  1.1098 +	explicit LManagedPtrBase(U* aPtr)
  1.1099 +		: LAutoPtrBase(aPtr)
  1.1100 +		{
  1.1101 +		}
  1.1102 +
  1.1103 +/**
  1.1104 +   Destructor.	When automatic resource management is enabled, the
  1.1105 +   destructor invokes the specified cleanup strategy for the managed
  1.1106 +   pointer.
  1.1107 + */
  1.1108 +	~LManagedPtrBase()
  1.1109 +		{
  1.1110 +		if (IsEnabled())
  1.1111 +			{
  1.1112 +			CleanupStrategy::Cleanup(static_cast<ManagedType*>(iPtr));
  1.1113 +			}
  1.1114 +		}
  1.1115 +
  1.1116 +	template<typename U>
  1.1117 +	LManagedPtrBase& operator=(U* aPtr)
  1.1118 +		{
  1.1119 +		ReleaseResource();
  1.1120 +		LAutoPtrBase::operator=(aPtr);
  1.1121 +		return *this;
  1.1122 +		}
  1.1123 +
  1.1124 +/**
  1.1125 +   If automatic resource management is enabled, the specified cleanup
  1.1126 +   strategy is invoked for the managed pointer and the automatic
  1.1127 +   resource management is then disabled.  The underlying pointer is
  1.1128 +   reset to NULL.
  1.1129 +
  1.1130 +   @post Get() == NULL
  1.1131 +*/
  1.1132 +	void ReleaseResource()
  1.1133 +		{
  1.1134 +		if (!IsEnabled())
  1.1135 +			return;
  1.1136 +
  1.1137 +		CleanupStrategy::Cleanup(static_cast<ManagedType*>(iPtr));
  1.1138 +		LAutoPtrBase::Disable();
  1.1139 +		}
  1.1140 +
  1.1141 +	using LAutoPtrBase::Unmanage;
  1.1142 +
  1.1143 +	using LAutoPtrBase::IsEnabled;
  1.1144 +
  1.1145 +	using LAutoPtrBase::Get;
  1.1146 +
  1.1147 +	using LAutoPtrBase::operator->;
  1.1148 +
  1.1149 +	using LAutoPtrBase::Disable;
  1.1150 +
  1.1151 +	using LAutoPtrBase::iPtr;
  1.1152 +
  1.1153 +	void Swap(LManagedPtrBase& aManagedPtr)
  1.1154 +		{
  1.1155 +		LAutoPtrBase::Swap(aManagedPtr);
  1.1156 +		}
  1.1157 +	};
  1.1158 +
  1.1159 +
  1.1160 +/**
  1.1161 +   A class template that provides automatic management of pointers
  1.1162 +   held in the data members of objects.
  1.1163 +
  1.1164 +   @note This class should not used to define locals. See below for
  1.1165 +   an explanation and links to management classes suitable for use in
  1.1166 +   that context.
  1.1167 +
  1.1168 +   This class template can be used to protect a pointer to type T such
  1.1169 +   that the instance of T referred to is automatically cleaned up when
  1.1170 +   the management object is destroyed; typically when the object
  1.1171 +   containing it is deleted.
  1.1172 +
  1.1173 +   By default, the cleanup action is to delete the managed pointer
  1.1174 +   using a (non-array) delete operation. An alternative cleanup
  1.1175 +   strategy can be specified using the optional CleanupStrategy class
  1.1176 +   template parameter of the LManagedPtr class template. The most
  1.1177 +   common alternative cleanup strategies are predefined
  1.1178 +   (e.g. TPointerFree).
  1.1179 +
  1.1180 +   The constructors of this class never leave, so data members defined with
  1.1181 +   this type may be initialized safely during any phase of
  1.1182 +   construction of the owning class.
  1.1183 +
  1.1184 +   As a convenience, the methods of the managed pointer may be
  1.1185 +   accessed via "->" notation directly on the management object, while
  1.1186 +   "." notation is used to access the interface of the management
  1.1187 +   object itself. Using "*" to dereference the management object
  1.1188 +   yields a T&, and is often useful when passing the managed object as
  1.1189 +   an argument.
  1.1190 +
  1.1191 +   Automatic cleanup may be disabled at any time by calling
  1.1192 +   Unmanage(), while cleanup may be forced at any time by calling
  1.1193 +   ReleaseResource().
  1.1194 +
  1.1195 +   Example:
  1.1196 +   @code
  1.1197 +   class CComposite : public CBase
  1.1198 +	   {
  1.1199 +	 public:
  1.1200 +	   CONSTRUCTORS_MAY_LEAVE
  1.1201 +
  1.1202 +	   CComposite()
  1.1203 +		   : iComponent(CComponent::NewL())
  1.1204 +		   {
  1.1205 +		   //...
  1.1206 +		   }
  1.1207 +
  1.1208 +	   ~CComposite()
  1.1209 +		   {
  1.1210 +		   // the pointer to the CComponent object is automatically
  1.1211 +		   // deleted
  1.1212 +		   }
  1.1213 +
  1.1214 +	 private:
  1.1215 +	   LManagedPtr<CComponent> iComponent;
  1.1216 +	   };
  1.1217 +	@endcode
  1.1218 +
  1.1219 +   Behind the scenes, this class template simply relies on reliable
  1.1220 +   execution of its destructor. If used for a local variable rather
  1.1221 +   than a data member, cleanup will occur but out-of-order compared to
  1.1222 +   objects protected using the LCleanupXxx variants or the
  1.1223 +   CleanupStack directly. Therefore it is not recommended for use in
  1.1224 +   that context.
  1.1225 +
  1.1226 +   These management classes may be used as the basis for implementing
  1.1227 +   leave-safe single-phase construction, since fully initialized
  1.1228 +   data members protected in this way will get destroyed (so reliably
  1.1229 +   triggering cleanup) if their containing classes leave during
  1.1230 +   execution of their constructors. Note, however, that single-phase
  1.1231 +   construction must be explicitly enabled in the containing class
  1.1232 +   using the CONSTRUCTORS_MAY_LEAVE macro.
  1.1233 +
  1.1234 +   This class template together with the cleanup strategy class
  1.1235 +   templates provide a template-based implementation of the Strategy
  1.1236 +   design pattern (See also: Policy-based design).
  1.1237 +
  1.1238 +   @see TPointerDelete which implements the default deleting cleanup strategy
  1.1239 +   @see TPointerFree which implements the alternative User::Free() cleanup strategy
  1.1240 +   @see LCleanedupPtr which has the same interface, but uses the cleanup
  1.1241 +   stack and is suitable for protecting locals
  1.1242 +   @see CONSTRUCTORS_MAY_LEAVE
  1.1243 +*/
  1.1244 +template<typename T,
  1.1245 +		 class CleanupStrategyType = TPtrCleanupStrategy>
  1.1246 +class LManagedPtr: protected LManagedPtrBase<T, CleanupStrategyType>
  1.1247 +	{
  1.1248 +	typedef LManagedPtrBase<T, CleanupStrategyType> LManagedPtrBase;
  1.1249 +
  1.1250 +  public:
  1.1251 +	typedef T ManagedType;
  1.1252 +	typedef CleanupStrategyType CleanupStrategy;
  1.1253 +
  1.1254 +
  1.1255 +/**
  1.1256 +   Default constructor.	 Constructs an empty LManagedPtr object.
  1.1257 +
  1.1258 +   @post Get() == NULL
  1.1259 + */
  1.1260 +	LManagedPtr()
  1.1261 +		{
  1.1262 +		}
  1.1263 +
  1.1264 +/**
  1.1265 +   Explicit constructor template.  Constructs a LManagedPtr object
  1.1266 +   that manages the pointer aPtr of a type convertible to T* that can
  1.1267 +   be cleaned up using the cleanup strategy of the LManagedPtr class.
  1.1268 +   The default cleanup strategy is to delete the pointer to a
  1.1269 +   heap-allocated object by using non-array delete.	 Alternative
  1.1270 +   cleanup strategies can be specified by using the CleanupStrategy
  1.1271 +   template parameter of the LManagedPtr class template.
  1.1272 +
  1.1273 +   @param aPtr A pointer of a type that is convertible to T* that can
  1.1274 +   be cleaned up using the cleanup strategy.
  1.1275 +
  1.1276 +   @pre aPtr is of a type convertible to T* and can be cleaned up
  1.1277 +   using the cleanup strategy.
  1.1278 +
  1.1279 +   @post Get() == aPtr
  1.1280 + */
  1.1281 +	explicit LManagedPtr(T* aPtr)
  1.1282 +		: LManagedPtrBase(aPtr)
  1.1283 +		{
  1.1284 +		}
  1.1285 +
  1.1286 +/**
  1.1287 +   Destructor.	When automatic resource management is enabled, the
  1.1288 +   destructor invokes the specified cleanup strategy for the managed
  1.1289 +   pointer.
  1.1290 + */
  1.1291 +
  1.1292 +
  1.1293 +/**
  1.1294 +   Assigns a new pointer to be managed.	 The new pointer must be of a
  1.1295 +   type convertible to T* and it must be possible to use the cleanup
  1.1296 +   strategy of the LManagedPtr object for the cleanup of the new
  1.1297 +   managed pointer.	 If the LManagedPtr object already contains a
  1.1298 +   managed pointer, then the cleanup strategy is invoked with the
  1.1299 +   managed pointer before assigning the new managed pointer.
  1.1300 +
  1.1301 +   @param aPtr A pointer of a type that is convertible to T* that can
  1.1302 +   be cleaned up using the cleanup strategy.
  1.1303 +
  1.1304 +   @pre aPtr is a pointer of a type that is convertible to T* and can
  1.1305 +   be cleaned up using the cleanup strategy.
  1.1306 +
  1.1307 +   @post Get() == aPtr
  1.1308 + */
  1.1309 +	LManagedPtr& operator=(T* aPtr)
  1.1310 +		{
  1.1311 +		LManagedPtrBase::operator=(aPtr);
  1.1312 +		return *this;
  1.1313 +		}
  1.1314 +
  1.1315 +/**
  1.1316 +   Assigns a new pointer to be managed.	 The new pointer must be of a
  1.1317 +   type convertible to T* and it must be possible to use the cleanup
  1.1318 +   strategy of the LManagedPtr object for the cleanup of the new
  1.1319 +   managed pointer.	 If the LManagedPtr object already contains a
  1.1320 +   managed pointer, then the cleanup strategy is invoked with the
  1.1321 +   managed pointer before assigning the new managed pointer.
  1.1322 +
  1.1323 +   @param aPtr A pointer of a type that is convertible to T* that can
  1.1324 +   be cleaned up using the cleanup strategy.
  1.1325 +
  1.1326 +   @pre aPtr is a pointer of a type that is convertible to T* and can
  1.1327 +   be cleaned up using the cleanup strategy.
  1.1328 +
  1.1329 +   @post Get() == aPtr
  1.1330 + */
  1.1331 +	template<typename U>
  1.1332 +	LManagedPtr& operator=(U* aPtr)
  1.1333 +		{
  1.1334 +		LManagedPtrBase::operator=(aPtr);
  1.1335 +		return *this;
  1.1336 +		}
  1.1337 +
  1.1338 +	using LManagedPtrBase::ReleaseResource;
  1.1339 +
  1.1340 +/**
  1.1341 +   Disables the automatic resource management for this object and
  1.1342 +   returns a pointer to the object of type T.
  1.1343 +
  1.1344 +   @return A pointer to the object of type T.
  1.1345 +*/
  1.1346 +	T* Unmanage()
  1.1347 +		{
  1.1348 +		return static_cast<T*>(LManagedPtrBase::Unmanage());
  1.1349 +		}
  1.1350 +
  1.1351 +/**
  1.1352 +   Returns ETrue if automatic resource management is enabled; EFalse
  1.1353 +   otherwise.
  1.1354 +
  1.1355 +   @return ETrue if automatic resource management is enabled; EFalse
  1.1356 +   otherwise.
  1.1357 +*/
  1.1358 +	using LManagedPtrBase::IsEnabled;
  1.1359 +
  1.1360 +/**
  1.1361 +   Returns a pointer to the managed object of type T.
  1.1362 +
  1.1363 +   @return A pointer to the managed object of type T.
  1.1364 +*/
  1.1365 +	T* Get() const
  1.1366 +		{
  1.1367 +		return static_cast<T*>(iPtr);
  1.1368 +		}
  1.1369 +
  1.1370 +/**
  1.1371 +   Overloaded indirection operator function.
  1.1372 +
  1.1373 +   @return A reference to the managed object of type T.
  1.1374 +*/
  1.1375 +	T& operator*() const
  1.1376 +		{
  1.1377 +		return *(static_cast<T*>(iPtr));
  1.1378 +		}
  1.1379 +
  1.1380 +/**
  1.1381 +   Overloaded class member access operator function.
  1.1382 +
  1.1383 +   @return A pointer to the managed object of type T.
  1.1384 +*/
  1.1385 +	T* operator->() const
  1.1386 +		{
  1.1387 +		return static_cast<T*>(iPtr);
  1.1388 +		}
  1.1389 +
  1.1390 +
  1.1391 +// Implementation type - do not use
  1.1392 +	typedef typename LManagedPtrBase::BaseManagedType* LManagedPtr<T, CleanupStrategy>::*TUnspecifiedBoolType;
  1.1393 +
  1.1394 +/**
  1.1395 +   Conversion operator that enables LCleanedupPtr objects to be used
  1.1396 +   in boolean contexts.
  1.1397 +
  1.1398 +   @return An unspecified value of an unspecified type convertible to
  1.1399 +   boolean, which has a boolean value equal to Get() != NULL
  1.1400 + */
  1.1401 +	operator TUnspecifiedBoolType()
  1.1402 +		{
  1.1403 +		return iPtr ? &LManagedPtr::iPtr : NULL;
  1.1404 +		}
  1.1405 +
  1.1406 +
  1.1407 +	using LManagedPtrBase::Disable;
  1.1408 +
  1.1409 +	void Swap(LManagedPtr& aManagedPtr)
  1.1410 +		{
  1.1411 +		LManagedPtrBase::Swap(aManagedPtr);
  1.1412 +		}
  1.1413 +
  1.1414 +  private:
  1.1415 +	using LManagedPtrBase::iPtr;
  1.1416 +	};
  1.1417 +
  1.1418 +
  1.1419 +// function template used for comparing two LManagedPtr-managed
  1.1420 +// pointers for equality
  1.1421 +template<typename T, typename U>
  1.1422 +TBool operator==(const LManagedPtr<T>& aPtr1, const LManagedPtr<U>& aPtr2)
  1.1423 +	{
  1.1424 +	return aPtr1.Get() == aPtr2.Get();
  1.1425 +	}
  1.1426 +
  1.1427 +// function template used for comparing two LManagedPtr-managed
  1.1428 +// pointers for inequality
  1.1429 +template<typename T, typename U>
  1.1430 +TBool operator!=(const LManagedPtr<T>& aPtr1, const LManagedPtr<U>& aPtr2)
  1.1431 +	{
  1.1432 +	return aPtr1.Get() != aPtr2.Get();
  1.1433 +	}
  1.1434 +
  1.1435 +// function template used for testing the ordering of two
  1.1436 +// LManagedPtr-managed pointers
  1.1437 +template<typename T, typename U>
  1.1438 +TBool operator<(const LManagedPtr<T>& aPtr1, const LManagedPtr<U>& aPtr2)
  1.1439 +	{
  1.1440 +	return aPtr1.Get() < aPtr2.Get();
  1.1441 +	}
  1.1442 +
  1.1443 +
  1.1444 +/**
  1.1445 +   A class template that provides automatic management of arrays. Such
  1.1446 +   managed arrays can be data members of composite classes.
  1.1447 +
  1.1448 +   @note This class should not used to define locals. See below for
  1.1449 +   an explanation and links to management classes suitable for use in
  1.1450 +   that context.
  1.1451 +
  1.1452 +   @par
  1.1453 +
  1.1454 +   @note This class can only be used with raw arrays, which are used
  1.1455 +   only rarely on Symbian OS.  Instances of Symbian array container
  1.1456 +   classes (e.g. RArray, RPointerArray) should be managed using the
  1.1457 +   automatic management template classes appropriate for the array's
  1.1458 +   type (LManagedHandle template classes for Symbian R arrays or
  1.1459 +   LManagedPtr template classes for Symbian C arrays).
  1.1460 +
  1.1461 +   This class template can be used to protect a heap-allocated array
  1.1462 +   of objects of type T such that the managed array is automatically
  1.1463 +   deallocated when the management object is destroyed.
  1.1464 +
  1.1465 +   The default cleanup strategy is to deallocate the managed array
  1.1466 +   using arrray delete (delete[]), assuming that the array is
  1.1467 +   heap-allocated.	An alternative cleanup strategy can be selected by
  1.1468 +   specifying a cleanup strategy template class as the optional second
  1.1469 +   template argument (corresponding to the CleanupStrategy template
  1.1470 +   parameter).
  1.1471 +
  1.1472 +   The constructors of this class never leave, so data members defined with
  1.1473 +   this type may be initialized safely during any phase of
  1.1474 +   construction of the owning class.
  1.1475 +
  1.1476 +   As a convenience, the elements of the managed array may be accessed
  1.1477 +   via "[]" notation directly on the management object.
  1.1478 +
  1.1479 +   Automatic cleanup may be disabled at any time by calling
  1.1480 +   Unmanage(), while cleanup may be forced at any time by calling
  1.1481 +   ReleaseResource().
  1.1482 +
  1.1483 +
  1.1484 +   Example:
  1.1485 +   @code
  1.1486 +   class CComposite : public CBase
  1.1487 +	   {
  1.1488 +	 public:
  1.1489 +	   CONSTRUCTORS_MAY_LEAVE
  1.1490 +
  1.1491 +	   CComposite()
  1.1492 +		   : iComponents(new(ELeave) CComponent[KNumComponents])
  1.1493 +		   {
  1.1494 +		   //...
  1.1495 +		   }
  1.1496 +
  1.1497 +	   ~CComposite()
  1.1498 +		   {
  1.1499 +		   // the array is automatically deleted
  1.1500 +		   }
  1.1501 +
  1.1502 +	 private:
  1.1503 +	   LManagedArray<CComponent> iComponents;
  1.1504 +	   };
  1.1505 +   @endcode
  1.1506 +
  1.1507 +
  1.1508 +   Behind the scenes, this class template simply relies on reliable
  1.1509 +   execution of its destructor. If used for a local variable rather
  1.1510 +   than a data member, cleanup will occur but out-of-order compared to
  1.1511 +   objects protected using the LCleanupXxx variants or the
  1.1512 +   CleanupStack directly. Therefore it is not recommended for use in
  1.1513 +   that context.
  1.1514 +
  1.1515 +   These management classes may be used as the basis for implementing
  1.1516 +   leave-safe single-phase construction, since fully initialized
  1.1517 +   data members protected in this way will get destroyed (so reliably
  1.1518 +   triggering cleanup) if their containing classes leave during
  1.1519 +   execution of their constructors. Note, however, that single-phase
  1.1520 +   construction must be explicitly enabled in the containing class
  1.1521 +   using the CONSTRUCTORS_MAY_LEAVE macro.
  1.1522 +
  1.1523 +   This class template together with the cleanup strategy class
  1.1524 +   templates provide a template-based implementation of the Strategy
  1.1525 +   design pattern (See also: Policy-based design).
  1.1526 +
  1.1527 +   @see LCleanedupArray which has the same interface, but uses the cleanup
  1.1528 +   stack and is suitable for protecting locals
  1.1529 +   @see CONSTRUCTORS_MAY_LEAVE
  1.1530 +*/
  1.1531 +template<typename T,
  1.1532 +		 class CleanupStrategyType = TArrayDelete>
  1.1533 +class LManagedArray: protected LAutoPtrBase<T>
  1.1534 +	{
  1.1535 +	typedef LAutoPtrBase<T> LAutoPtrBase;
  1.1536 +
  1.1537 +  public:
  1.1538 +	typedef T ManagedType;
  1.1539 +	typedef CleanupStrategyType CleanupStrategy;
  1.1540 +
  1.1541 +/**
  1.1542 +   Default constructor.	 Constructs an empty LManagedArray object.
  1.1543 +
  1.1544 +   @post Get() == NULL
  1.1545 + */
  1.1546 +	LManagedArray()
  1.1547 +		{
  1.1548 +		}
  1.1549 +
  1.1550 +/**
  1.1551 +   Explicit constructor.  Constructs a LManagedArray object that
  1.1552 +   manages an array of objects of type T that can be cleaned up using
  1.1553 +   the cleanup strategy of the LManagedArray class.	 The default
  1.1554 +   cleanup strategy is to deallocate the managed array by using array
  1.1555 +   delete (delete[]), assuming that the array is heap-allocated.
  1.1556 +   Alternative cleanup strategies can be specified by using the
  1.1557 +   CleanupStrategy template parameter of the LManagedArray class
  1.1558 +   template.
  1.1559 +
  1.1560 +   @param aPtr A pointer to the first element of an array of objects
  1.1561 +   of type T - array that can be cleaned up using the cleanup strategy
  1.1562 +   of the the LManagedArray class.
  1.1563 +
  1.1564 +   @pre The array can be cleaned up using the cleanup strategy.
  1.1565 +
  1.1566 +   @post Get() == aPtr
  1.1567 + */
  1.1568 +	explicit LManagedArray(T* aPtr)
  1.1569 +		: LAutoPtrBase(aPtr)
  1.1570 +		{
  1.1571 +		}
  1.1572 +
  1.1573 +/**
  1.1574 +   Destructor.	When automatic resource management is enabled, the
  1.1575 +   destructor invokes the specified cleanup strategy for the managed
  1.1576 +   pointer.
  1.1577 + */
  1.1578 +	~LManagedArray()
  1.1579 +		{
  1.1580 +		if (LAutoPtrBase::IsEnabled())
  1.1581 +			{
  1.1582 +			CleanupStrategy::Cleanup(iPtr);
  1.1583 +			}
  1.1584 +		}
  1.1585 +
  1.1586 +/**
  1.1587 +   Assigns a new array of objects of type T to be managed.	It needs
  1.1588 +   to be possible use the cleanup strategy of the LManagedArray object
  1.1589 +   for the cleanup of the new managed array.  The default cleanup
  1.1590 +   strategy is to delete the heap-allocated array by using array
  1.1591 +   delete (delete[]). If the LManagedArray object already manages an
  1.1592 +   array, then the cleanup strategy is invoked with the managed array
  1.1593 +   before assigning the new managed array.
  1.1594 +
  1.1595 +   @param aPtr A pointer to the first element of the array of objects
  1.1596 +   of type T - array that can be cleaned up using the cleanup
  1.1597 +   strategy.
  1.1598 +
  1.1599 +   @pre The new array to be managed can be cleaned up using the
  1.1600 +   cleanup strategy.
  1.1601 +
  1.1602 +   @post Get() == aPtr
  1.1603 + */
  1.1604 +	LManagedArray& operator=(T* aPtr)
  1.1605 +		{
  1.1606 +		ReleaseResource();
  1.1607 +		LAutoPtrBase::operator=(aPtr);
  1.1608 +		return *this;
  1.1609 +		}
  1.1610 +
  1.1611 +/**
  1.1612 +   If automatic resource management is enabled, the specified cleanup
  1.1613 +   strategy is invoked for the managed pointer and the automatic
  1.1614 +   resource management is then disabled.  The underlying pointer is
  1.1615 +   reset to NULL.
  1.1616 +
  1.1617 +   @post Get() == NULL
  1.1618 +*/
  1.1619 +	void ReleaseResource()
  1.1620 +		{
  1.1621 +		if (!LAutoPtrBase::IsEnabled())
  1.1622 +			return;
  1.1623 +
  1.1624 +		CleanupStrategy::Cleanup(iPtr);
  1.1625 +		LAutoPtrBase::Disable();
  1.1626 +		}
  1.1627 +
  1.1628 +/**
  1.1629 +   Disables the automatic resource management for this object and
  1.1630 +   returns a pointer to the first element of the array of objects of
  1.1631 +   type T.
  1.1632 +
  1.1633 +   @return A pointer to the first element of the array of objects of
  1.1634 +   type T.
  1.1635 +*/
  1.1636 +	T* Unmanage()
  1.1637 +		{
  1.1638 +		return static_cast<T*>(LAutoPtrBase::Unmanage());
  1.1639 +		}
  1.1640 +
  1.1641 +/**
  1.1642 +   Returns ETrue if automatic resource management is enabled; EFalse
  1.1643 +   otherwise.
  1.1644 +
  1.1645 +   @return ETrue if automatic resource management is enabled; EFalse
  1.1646 +   otherwise.
  1.1647 +*/
  1.1648 +	using LAutoPtrBase::IsEnabled;
  1.1649 +
  1.1650 +/**
  1.1651 +   Returns a pointer to the first element of the managed array of
  1.1652 +   objects of type T.
  1.1653 +
  1.1654 +   @return A pointer to the first element of the managed array of
  1.1655 +   objects of type T.
  1.1656 +*/
  1.1657 +	using LAutoPtrBase::Get;
  1.1658 +
  1.1659 +/**
  1.1660 +   Overloaded subscript operator.
  1.1661 +
  1.1662 +   @return A reference to the object of type T at the position aIndex.
  1.1663 + */
  1.1664 +	T& operator[](TInt aIndex) const
  1.1665 +		{
  1.1666 +		return iPtr[aIndex];
  1.1667 +		}
  1.1668 +
  1.1669 +	using LAutoPtrBase::Disable;
  1.1670 +
  1.1671 +	void Swap(LManagedArray& aArray)
  1.1672 +		{
  1.1673 +		LAutoPtrBase::Swap(aArray);
  1.1674 +		}
  1.1675 +
  1.1676 +  private:
  1.1677 +	using LAutoPtrBase::iPtr;
  1.1678 +	};
  1.1679 +
  1.1680 +
  1.1681 +/**
  1.1682 +   Implementation base class - not designed for public inheritance or
  1.1683 +   direct use.
  1.1684 +   
  1.1685 +   @internalComponent
  1.1686 +*/
  1.1687 +// Not for Client Use , Only to be used Internally.
  1.1688 +template<typename T>
  1.1689 +class LAutoRefBase
  1.1690 +	{
  1.1691 +  protected:
  1.1692 +	template<typename U>
  1.1693 +	explicit LAutoRefBase(U& aRef)
  1.1694 +		: iPtr(&aRef)
  1.1695 +		{
  1.1696 +		}
  1.1697 +
  1.1698 +	template<typename U>
  1.1699 +	LAutoRefBase& operator=(U& aRef)
  1.1700 +		{
  1.1701 +		iPtr = &aRef;
  1.1702 +		return *this;
  1.1703 +		}
  1.1704 +
  1.1705 +	T& Unmanage()
  1.1706 +		{
  1.1707 +		T* ptr = iPtr;
  1.1708 +		iPtr = NULL;
  1.1709 +		return *ptr;
  1.1710 +		}
  1.1711 +
  1.1712 +	TBool IsEnabled() const
  1.1713 +		{
  1.1714 +		return iPtr != NULL;
  1.1715 +		}
  1.1716 +
  1.1717 +	T& Get() const
  1.1718 +		{
  1.1719 +		return *iPtr;
  1.1720 +		}
  1.1721 +
  1.1722 +	T& operator*() const
  1.1723 +		{
  1.1724 +		return *iPtr;
  1.1725 +		}
  1.1726 +
  1.1727 +	T* operator->() const
  1.1728 +		{
  1.1729 +		return iPtr;
  1.1730 +		}
  1.1731 +
  1.1732 +	void Disable()
  1.1733 +		{
  1.1734 +		iPtr = NULL;
  1.1735 +		}
  1.1736 +
  1.1737 +	void Swap(LAutoRefBase& aAutoRef)
  1.1738 +		{
  1.1739 +		::Swap(iPtr, aAutoRef.iPtr);
  1.1740 +		}
  1.1741 +
  1.1742 +  protected:
  1.1743 +	T* iPtr;
  1.1744 +
  1.1745 +  private:
  1.1746 +	LAutoRefBase(const LAutoRefBase&);
  1.1747 +	LAutoRefBase& operator=(const LAutoRefBase&);
  1.1748 +	};
  1.1749 +
  1.1750 +
  1.1751 +/**
  1.1752 +   A class template that provides automatic management of references
  1.1753 +   to resource handles (often R-class instances) held in the data
  1.1754 +   members of objects.
  1.1755 +
  1.1756 +   @note This class should not used to define locals. See below for
  1.1757 +   an explanation and links to management classes suitable for use in
  1.1758 +   that context.
  1.1759 +
  1.1760 +   Unlike LManagedHandle which creates a fresh instance of its managed
  1.1761 +   type, this class template can be used to protect an existing
  1.1762 +   resource handle of type T (typically an R-class instance). The
  1.1763 +   instance of T referred to has a cleanup operation run on it
  1.1764 +   automatically when the management object is destroyed; typically
  1.1765 +   when the object containing it is deleted.
  1.1766 +
  1.1767 +   By default, the cleanup action is to call the Close() member
  1.1768 +   function of the referenced handle. An alternative cleanup strategy may
  1.1769 +   be selected by specifying a cleanup strategy template class in the
  1.1770 +   optional second template parameter position. The most common
  1.1771 +   alternative cleanup strategies are predefined. It is also possible
  1.1772 +   to specialize the default cleanup action for a given class using
  1.1773 +   the DEFINE_CLEANUP_FUNCTION macro.
  1.1774 +
  1.1775 +   The constructors of this class never leave, so data members defined with
  1.1776 +   this type may be initialized safely during any phase of
  1.1777 +   construction of the owning class.
  1.1778 +
  1.1779 +   As a convenience, the methods of the managed pointer may be
  1.1780 +   accessed via "->" notation directly on the management object, while
  1.1781 +   "." notation is used to access the interface of the management
  1.1782 +   object itself. Using "*" to dereference the management object
  1.1783 +   yields a T&, and is often useful when passing the managed object as
  1.1784 +   an argument.
  1.1785 +
  1.1786 +   Automatic cleanup may be disabled at any time by calling
  1.1787 +   Unmanage(), while cleanup may be forced at any time by calling
  1.1788 +   ReleaseResource().
  1.1789 +
  1.1790 +   Example:
  1.1791 +   @code
  1.1792 +   class CComposite : public CBase
  1.1793 +	   {
  1.1794 +	 public:
  1.1795 +	   CONSTRUCTORS_MAY_LEAVE
  1.1796 +
  1.1797 +	   // An existing RFs instance is given to us to reuse, but
  1.1798 +	   // we are responsible for calling Close() when we're done
  1.1799 +	   CComposite(RFs& aFs)
  1.1800 +		   : iFileServ(aFs)
  1.1801 +		   {
  1.1802 +		   iFileServ->Connect() OR_LEAVE;
  1.1803 +		   iFile->Open(*iFileServ, ...);
  1.1804 +		   }
  1.1805 +
  1.1806 +	   ~CComposite()
  1.1807 +		   {
  1.1808 +		   // the handles are automatically closed
  1.1809 +		   }
  1.1810 +
  1.1811 +	 private:
  1.1812 +
  1.1813 +	   LManagedRef<RFs> iFileServ;
  1.1814 +	   LManagedHandle<RFile> iFile;
  1.1815 +	   };
  1.1816 +   @endcode
  1.1817 +
  1.1818 +   Behind the scenes, this class template simply relies on reliable
  1.1819 +   execution of its destructor. If used for a local variable rather
  1.1820 +   than a data member, cleanup will occur but out-of-order compared to
  1.1821 +   objects protected using the LCleanupXxx variants or the
  1.1822 +   CleanupStack directly. Therefore it is not recommended for use in
  1.1823 +   that context.
  1.1824 +
  1.1825 +   These management classes may be used as the basis for implementing
  1.1826 +   leave-safe single-phase construction, since fully initialized
  1.1827 +   data members protected in this way will get destroyed (so reliably
  1.1828 +   triggering cleanup) if their containing classes leave during
  1.1829 +   execution of their constructors. Note, however, that single-phase
  1.1830 +   construction must be explicitly enabled in the containing class
  1.1831 +   using the CONSTRUCTORS_MAY_LEAVE macro.
  1.1832 +
  1.1833 +   This class template together with the cleanup strategy class
  1.1834 +   templates provide a template-based implementation of the Strategy
  1.1835 +   design pattern (See also: Policy-based design).
  1.1836 +
  1.1837 +   @see TClose which implements the default Close() calling cleanup strategy
  1.1838 +   @see TResetAndDestroy which implements an alternative
  1.1839 +   ResetAndDestroy() calling cleanup strategy
  1.1840 +   @see TFree which implements an alternative Free() calling cleanup
  1.1841 +   strategy
  1.1842 +   @see TDestroy which implements an alternative Destroy() calling
  1.1843 +   cleanup strategy
  1.1844 +   @see TRelease which implements an alternative Release() calling
  1.1845 +   cleanup strategy
  1.1846 +   @see LCleanedupRef which has the same interface, but uses the cleanup
  1.1847 +   stack and is suitable for protecting locals
  1.1848 +   @see LManagedHandle which has a similar interface but creates a fresh
  1.1849 +   local instance of T
  1.1850 +   @see CONSTRUCTORS_MAY_LEAVE
  1.1851 +*/
  1.1852 +template<typename T,
  1.1853 +		 class CleanupStrategyType = TResourceCleanupStrategy>
  1.1854 +class LManagedRef: protected LAutoRefBase<T>
  1.1855 +	{
  1.1856 +	typedef LAutoRefBase<T> LAutoRefBase;
  1.1857 +
  1.1858 +  public:
  1.1859 +	typedef T ManagedType;
  1.1860 +	typedef CleanupStrategyType CleanupStrategy;
  1.1861 +
  1.1862 +/**
  1.1863 +   Explicit constructor.
  1.1864 + */
  1.1865 +	template<typename U>
  1.1866 +	explicit LManagedRef(U& aRef)
  1.1867 +		: LAutoRefBase(aRef)
  1.1868 +		{
  1.1869 +		}
  1.1870 +
  1.1871 +/**
  1.1872 +   Destructor.	When automatic resource management is enabled, the
  1.1873 +   destructor invokes the specified cleanup strategy for the managed
  1.1874 +   reference.
  1.1875 + */
  1.1876 +	~LManagedRef()
  1.1877 +		{
  1.1878 +		if (LAutoRefBase::IsEnabled())
  1.1879 +			{
  1.1880 +			CleanupStrategy::Cleanup(iPtr);
  1.1881 +			}
  1.1882 +		}
  1.1883 +
  1.1884 +/**
  1.1885 +   Assigns a new reference to be managed.  If the LManagedRef
  1.1886 +   object already contains a managed reference, then the specified
  1.1887 +   cleanup strategy is invoked for the managed reference before
  1.1888 +   assigning the new managed reference.
  1.1889 + */
  1.1890 +	template<typename U>
  1.1891 +	LManagedRef& operator=(U& aRef)
  1.1892 +		{
  1.1893 +		ReleaseResource();
  1.1894 +		LAutoRefBase::operator=(aRef);
  1.1895 +		return *this;
  1.1896 +		}
  1.1897 +
  1.1898 +/**
  1.1899 +   If automatic resource management is enabled, the specified cleanup
  1.1900 +   strategy is invoked for the managed reference and the automatic
  1.1901 +   resource management is then disabled for this object.
  1.1902 +*/
  1.1903 +	void ReleaseResource()
  1.1904 +		{
  1.1905 +		if (!LAutoRefBase::IsEnabled())
  1.1906 +			return;
  1.1907 +
  1.1908 +		CleanupStrategy::Cleanup(iPtr);
  1.1909 +		LAutoRefBase::Disable();
  1.1910 +		}
  1.1911 +
  1.1912 +/**
  1.1913 +   Disables the automatic resource management for this object and
  1.1914 +   returns a reference to the object of type T.
  1.1915 +
  1.1916 +   @return A reference to the object of type T.
  1.1917 +*/
  1.1918 +	using LAutoRefBase::Unmanage;
  1.1919 +
  1.1920 +/**
  1.1921 +   Returns ETrue if automatic resource management is enabled; EFalse
  1.1922 +   otherwise.
  1.1923 +
  1.1924 +   @return ETrue if automatic resource management is enabled; EFalse
  1.1925 +   otherwise.
  1.1926 +*/
  1.1927 +	using LAutoRefBase::IsEnabled;
  1.1928 +
  1.1929 +/**
  1.1930 +   Returns a reference to the managed object of type T.
  1.1931 +
  1.1932 +   @return A reference to the managed object of type T.
  1.1933 +*/
  1.1934 +	using LAutoRefBase::Get;
  1.1935 +
  1.1936 +/**
  1.1937 +   Overloaded indirection operator function.
  1.1938 +
  1.1939 +   @return A reference to the managed object of type T.
  1.1940 +*/
  1.1941 +	using LAutoRefBase::operator*;
  1.1942 +
  1.1943 +/**
  1.1944 +   Overloaded class member access operator function.
  1.1945 +
  1.1946 +   @return A pointer to the managed object of type T.
  1.1947 +*/
  1.1948 +	using LAutoRefBase::operator->;
  1.1949 +
  1.1950 +	using LAutoRefBase::Disable;
  1.1951 +
  1.1952 +	void Swap(LManagedRef& aRef)
  1.1953 +		{
  1.1954 +		LAutoRefBase::Swap(aRef);
  1.1955 +		}
  1.1956 +
  1.1957 +  private:
  1.1958 +	using LAutoRefBase::iPtr;
  1.1959 +	};
  1.1960 +
  1.1961 +
  1.1962 +/**
  1.1963 +   A class template for the creation and CleanupStack-based
  1.1964 +   local-scope automatic management of resource handles (typically
  1.1965 +   instances of R-classes).
  1.1966 +
  1.1967 +   @note This class can only be used to define locals, never
  1.1968 +   data members. See below for an explanation and links to management
  1.1969 +   classes suitable for use in different contexts. It should never be
  1.1970 +   used in the same function as code that uses the CleanupStack API
  1.1971 +   directly.
  1.1972 +
  1.1973 +   This class template can be used to create and protect a resource
  1.1974 +   handle of type T (typically a R-class) such that the instance of T
  1.1975 +   referred to is automatically cleaned up when either of the
  1.1976 +   following occur:
  1.1977 +
  1.1978 +   - The referring local variable goes out of scope normally
  1.1979 +   - The referring local variable goes out of scope due to an
  1.1980 +	 untrapped leave causing the scope to be exited non-locally
  1.1981 +
  1.1982 +   By default, the cleanup action is to call the Close() member
  1.1983 +   function of the managed handle. An alternative cleanup strategy may
  1.1984 +   be selected by specifying a cleanup strategy template class in the
  1.1985 +   optional second template parameter position. The most common
  1.1986 +   alternative cleanup strategies are predefined. It is also possible
  1.1987 +   to specialize the default cleanup action for a given class using
  1.1988 +   the DEFINE_CLEANUP_FUNCTION macro.
  1.1989 +
  1.1990 +   The constructors of this class may leave.
  1.1991 +
  1.1992 +   Any arguments supplied when initializing an instance of this class
  1.1993 +   are automatically passed through to T's constructors.
  1.1994 +
  1.1995 +   As a convenience, the methods of the managed handle may be
  1.1996 +   accessed via "->" notation directly on the management object, while
  1.1997 +   "." notation is used to access the interface of the management
  1.1998 +   object itself. Using "*" to dereference the management object
  1.1999 +   yields a T&, and is often useful when passing the managed object as
  1.2000 +   an argument.
  1.2001 +
  1.2002 +   Automatic cleanup may be disabled at any time by calling
  1.2003 +   Unmanage(), while cleanup may be forced at any time by calling
  1.2004 +   ReleaseResource().
  1.2005 +
  1.2006 +   Example:
  1.2007 +   @code
  1.2008 +	// block scope example
  1.2009 +	{
  1.2010 +	LCleanedupHandle<RClosable> obj;
  1.2011 +	obj->DoSomethingL(); // leave-safe
  1.2012 +	if (obj->Finished())
  1.2013 +		return; // RClosable::Close is invoked automatically
  1.2014 +	obj->DoSomethingElseL(); // leave-safe
  1.2015 +	// RClosable::Close is invoked automatically
  1.2016 +	}
  1.2017 +   @endcode
  1.2018 +
  1.2019 +   Behind the scenes, this class template is implemented in terms of
  1.2020 +   the thread-local CleanupStack, restricting its use to locals on the
  1.2021 +   stack. This use of the CleanupStack ensures a consistent cleanup
  1.2022 +   order between functions that call one another, even if they use
  1.2023 +   different cleanup idioms.
  1.2024 +
  1.2025 +   This class template together with the cleanup strategy class
  1.2026 +   templates provide a template-based implementation of the Strategy
  1.2027 +   design pattern (See also: Policy-based design).
  1.2028 +
  1.2029 +   @see TClose which implements the default Close() calling cleanup strategy
  1.2030 +   @see TResetAndDestroy which implements an alternative
  1.2031 +   ResetAndDestroy() calling cleanup strategy
  1.2032 +   @see TFree which implements an alternative Free() calling cleanup
  1.2033 +   strategy
  1.2034 +   @see TDestroy which implements an alternative Destroy() calling
  1.2035 +   cleanup strategy
  1.2036 +   @see TRelease which implements an alternative Release() calling cleanup strategy
  1.2037 +   @see LManagedHandle which has the same interface, but does not use the cleanup
  1.2038 +   stack and is suitable for protecting the data members of classes
  1.2039 +*/
  1.2040 +template<typename T,
  1.2041 +		 class CleanupStrategyType = TResourceCleanupStrategy>
  1.2042 +class LCleanedupHandle: protected LAutoHandleBase<T, IS_HANDLE_SPECIAL(T)>
  1.2043 +	{
  1.2044 +	typedef LAutoHandleBase<T, IS_HANDLE_SPECIAL(T)> LAutoHandleBase;
  1.2045 +
  1.2046 +  public:
  1.2047 +	typedef T ManagedType;
  1.2048 +	typedef CleanupStrategyType CleanupStrategy;
  1.2049 +
  1.2050 +
  1.2051 +/**
  1.2052 +   Default constructor.
  1.2053 +*/
  1.2054 +	LCleanedupHandle()
  1.2055 +		{
  1.2056 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2057 +		}
  1.2058 +
  1.2059 +	template<typename Param1>
  1.2060 +	explicit LCleanedupHandle(const Param1& aParam1)
  1.2061 +		: LAutoHandleBase(aParam1)
  1.2062 +		{
  1.2063 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2064 +		}
  1.2065 +
  1.2066 +	template<typename Param1>
  1.2067 +	explicit LCleanedupHandle(Param1& aParam1)
  1.2068 +		: LAutoHandleBase(aParam1)
  1.2069 +		{
  1.2070 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2071 +		}
  1.2072 +
  1.2073 +	template<typename Param1,
  1.2074 +			 typename Param2>
  1.2075 +	LCleanedupHandle(const Param1& aParam1,
  1.2076 +					 const Param2& aParam2)
  1.2077 +		: LAutoHandleBase(aParam1,
  1.2078 +					   aParam2)
  1.2079 +		{
  1.2080 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2081 +		}
  1.2082 +
  1.2083 +	template<typename Param1,
  1.2084 +			 typename Param2>
  1.2085 +	LCleanedupHandle(const Param1& aParam1,
  1.2086 +					 Param2& aParam2)
  1.2087 +		: LAutoHandleBase(aParam1,
  1.2088 +					   aParam2)
  1.2089 +		{
  1.2090 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2091 +		}
  1.2092 +
  1.2093 +	template<typename Param1,
  1.2094 +			 typename Param2>
  1.2095 +	LCleanedupHandle(Param1& aParam1,
  1.2096 +					 const Param2& aParam2)
  1.2097 +		: LAutoHandleBase(aParam1,
  1.2098 +					   aParam2)
  1.2099 +		{
  1.2100 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2101 +		}
  1.2102 +
  1.2103 +	template<typename Param1,
  1.2104 +			 typename Param2>
  1.2105 +	LCleanedupHandle(Param1& aParam1,
  1.2106 +					 Param2& aParam2)
  1.2107 +		: LAutoHandleBase(aParam1,
  1.2108 +					   aParam2)
  1.2109 +		{
  1.2110 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2111 +		}
  1.2112 +
  1.2113 +
  1.2114 +	~LCleanedupHandle()
  1.2115 +		{
  1.2116 +		ManagedPopCleanupStackItem(IsEnabled());
  1.2117 +		}
  1.2118 +
  1.2119 +/**
  1.2120 +   Assigns a new resource to be managed.  If the LCleanedupHandle
  1.2121 +   object already contains a managed resource handle, then the managed
  1.2122 +   resource is released using the specified cleanup strategy before
  1.2123 +   assigning the new managed resource.
  1.2124 + */
  1.2125 +	template<typename U>
  1.2126 +	LCleanedupHandle& operator=(const U& aHandle)
  1.2127 +		{
  1.2128 +		ReleaseResource();
  1.2129 +		LAutoHandleBase::operator=(aHandle);
  1.2130 +		return *this;
  1.2131 +		}
  1.2132 +
  1.2133 +
  1.2134 +/**
  1.2135 +   If automatic resource management is enabled, calls the cleanup
  1.2136 +   function defined by the cleanup strategy with the managed resource
  1.2137 +   handle object and then disables the automatic resource management
  1.2138 +   for this object.	 The cleanup strategy is specified by the
  1.2139 +   CleanupStrategy template template parameter.	 The default cleanup
  1.2140 +   strategy is to call the cleanup member function on the contained
  1.2141 +   resource handle object. which is a member function named Close(),
  1.2142 +   unless explicitly defined otherwise for the class of the object,
  1.2143 +   for example by using the provided DEFINE_CLEANUP_FUNCTION macro.
  1.2144 +*/
  1.2145 +	void ReleaseResource()
  1.2146 +		{
  1.2147 +		if (!IsEnabled())
  1.2148 +			return;
  1.2149 +
  1.2150 +		CleanupStrategy::Cleanup(&Get());
  1.2151 +		LAutoHandleBase::Disable();
  1.2152 +		}
  1.2153 +
  1.2154 +/**
  1.2155 +   Disables the automatic resource management for this obkect and
  1.2156 +   returns a copy of the resource handle.
  1.2157 +
  1.2158 +   @return A copy of the resource handle.
  1.2159 +*/
  1.2160 +	using LAutoHandleBase::Unmanage;
  1.2161 +
  1.2162 +/**
  1.2163 +   Returns ETrue if automatic resource management is enabled; EFalse
  1.2164 +   otherwise.
  1.2165 +
  1.2166 +   @return ETrue if automatic resource management is enabled; EFalse
  1.2167 +   otherwise.
  1.2168 +*/
  1.2169 +	using LAutoHandleBase::IsEnabled;
  1.2170 +
  1.2171 +
  1.2172 +/**
  1.2173 +   Returns a reference to the resource handle.
  1.2174 +
  1.2175 +   @return A reference to the resource handle.
  1.2176 +*/
  1.2177 +	using LAutoHandleBase::Get;
  1.2178 +
  1.2179 +
  1.2180 +/**
  1.2181 +   Overloaded indirection operator function.
  1.2182 +
  1.2183 +   @return A reference to the resource handle.
  1.2184 +*/
  1.2185 +	using LAutoHandleBase::operator*;
  1.2186 +
  1.2187 +/**
  1.2188 +   Overloaded class member access operator function.
  1.2189 +
  1.2190 +   @return A pointer to the resource handle.
  1.2191 +*/
  1.2192 +	using LAutoHandleBase::operator->;
  1.2193 +
  1.2194 +	static void Cleanup(TAny* aPtr)
  1.2195 +		{
  1.2196 +		LCleanedupHandle* autoh = static_cast<LCleanedupHandle*>(aPtr);
  1.2197 +
  1.2198 +		if (autoh->IsEnabled())
  1.2199 +			{
  1.2200 +			CleanupStrategy::Cleanup(&autoh->Get());
  1.2201 +			}
  1.2202 +		}
  1.2203 +
  1.2204 +	using LAutoHandleBase::Disable;
  1.2205 +
  1.2206 +	void Swap(LCleanedupHandle& aCleanedupHandle)
  1.2207 +		{
  1.2208 +		LAutoHandleBase::Swap(aCleanedupHandle);
  1.2209 +		}
  1.2210 +	};
  1.2211 +
  1.2212 +
  1.2213 +/**
  1.2214 +   Implementation base class - not designed for public inheritance or
  1.2215 +   direct use.
  1.2216 +   
  1.2217 +   @internalComponent
  1.2218 +*/
  1.2219 +// Not for Client Use , Only to be used Internally.
  1.2220 +template<typename T,
  1.2221 +		 class CleanupStrategyType>
  1.2222 +class LCleanedupPtrBase: protected LAutoPtrBase<typename TPtrCleanupTraits<T, CleanupStrategyType>::BaseManagedType>
  1.2223 +	{
  1.2224 +	typedef LAutoPtrBase<typename TPtrCleanupTraits<T, CleanupStrategyType>::BaseManagedType> LAutoPtrBase;
  1.2225 +
  1.2226 +  protected:
  1.2227 +	typedef typename TPtrCleanupTraits<T, CleanupStrategyType>::ManagedType ManagedType;
  1.2228 +	typedef typename TPtrCleanupTraits<T, CleanupStrategyType>::BaseManagedType BaseManagedType;
  1.2229 +	typedef typename TPtrCleanupTraits<T, CleanupStrategyType>::CleanupStrategy CleanupStrategy;
  1.2230 +
  1.2231 +	LCleanedupPtrBase()
  1.2232 +		{
  1.2233 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2234 +		}
  1.2235 +
  1.2236 +	template<typename U>
  1.2237 +	explicit LCleanedupPtrBase(U* aPtr)
  1.2238 +		: LAutoPtrBase(aPtr)
  1.2239 +		{
  1.2240 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2241 +		}
  1.2242 +
  1.2243 +	~LCleanedupPtrBase()
  1.2244 +		{
  1.2245 +		ManagedPopCleanupStackItem(LAutoPtrBase::IsEnabled());
  1.2246 +		}
  1.2247 +
  1.2248 +	template<typename U>
  1.2249 +	LCleanedupPtrBase& operator=(U* aPtr)
  1.2250 +		{
  1.2251 +		ReleaseResource();
  1.2252 +		LAutoPtrBase::operator=(aPtr);
  1.2253 +		return *this;
  1.2254 +		}
  1.2255 +
  1.2256 +	void ReleaseResource()
  1.2257 +		{
  1.2258 +		if (!LAutoPtrBase::IsEnabled())
  1.2259 +			return;
  1.2260 +
  1.2261 +		CleanupStrategy::Cleanup(static_cast<ManagedType*>(iPtr));
  1.2262 +		LAutoPtrBase::Disable();
  1.2263 +		}
  1.2264 +
  1.2265 +	using LAutoPtrBase::Unmanage;
  1.2266 +
  1.2267 +	using LAutoPtrBase::IsEnabled;
  1.2268 +
  1.2269 +	using LAutoPtrBase::Get;
  1.2270 +
  1.2271 +	using LAutoPtrBase::operator->;
  1.2272 +
  1.2273 +	static void Cleanup(TAny* aPtr)
  1.2274 +		{
  1.2275 +		LCleanedupPtrBase* cleanupPtr = static_cast<LCleanedupPtrBase*>(aPtr);
  1.2276 +
  1.2277 +		if (cleanupPtr->IsEnabled())
  1.2278 +			{
  1.2279 +			CleanupStrategy::Cleanup(static_cast<ManagedType*>(cleanupPtr->iPtr));
  1.2280 +			}
  1.2281 +		}
  1.2282 +
  1.2283 +	using LAutoPtrBase::iPtr;
  1.2284 +
  1.2285 +	void Swap(LCleanedupPtrBase& aCleanedupPtr)
  1.2286 +		{
  1.2287 +		LAutoPtrBase::Swap(aCleanedupPtr);
  1.2288 +		}
  1.2289 +	};
  1.2290 +
  1.2291 +
  1.2292 +/**
  1.2293 +   A class template that provides CleanupStack-based local-scope
  1.2294 +   automatic management of pointers.
  1.2295 +
  1.2296 +   @note This class can only be used to define locals, never
  1.2297 +   data members. See below for an explanation and links to management
  1.2298 +   classes suitable for use in different contexts. It should never be
  1.2299 +   used in the same function as code that uses the CleanupStack API
  1.2300 +   directly
  1.2301 +
  1.2302 +   This class template can be used to protect a pointer to type T such
  1.2303 +   that the instance of T referred to is automatically cleaned up
  1.2304 +   when either of the following occur:
  1.2305 +
  1.2306 +   - The referring local variable goes out of scope normally
  1.2307 +   - The referring local variable goes out of scope due to an
  1.2308 +	 untrapped leave causing the scope to be exited non-locally
  1.2309 +
  1.2310 +   By default, the cleanup action is to delete the managed pointer
  1.2311 +   using non-array delete. An alternative cleanup strategy may be
  1.2312 +   selected by specifying a cleanup strategy template class in the
  1.2313 +   optional second template parameter position. The most common
  1.2314 +   alternative cleanup strategies are predefined.
  1.2315 +
  1.2316 +   The constructors of this class may leave.
  1.2317 +
  1.2318 +   As a convenience, the methods of the managed pointer may be
  1.2319 +   accessed via "->" notation directly on the management object, while
  1.2320 +   "." notation is used to access the interface of the management
  1.2321 +   object itself. Using "*" to dereference the management object
  1.2322 +   yields a T&, and is often useful when passing the managed object as
  1.2323 +   an argument.
  1.2324 +
  1.2325 +   Automatic cleanup may be disabled at any time by calling
  1.2326 +   Unmanage(), while cleanup may be forced at any time by calling
  1.2327 +   ReleaseResource().
  1.2328 +
  1.2329 +   Example:
  1.2330 +   @code
  1.2331 +	// block scope example
  1.2332 +	{
  1.2333 +	LCleanedupPtr<CDynamic> autop(new(ELeave) CDynamic);
  1.2334 +	autop->DoSomethingL(); // leave-safe
  1.2335 +	if (autop->Finished())
  1.2336 +		return; //	the pointer is deleted automatically when exiting from scope
  1.2337 +	autop->DoSomethingElseL(); // leave-safe
  1.2338 +	//	the pointer is deleted automatically when exiting from scope
  1.2339 +	}
  1.2340 +   @endcode
  1.2341 +
  1.2342 +   Behind the scenes, this class template is implemented in terms of
  1.2343 +   the thread-local CleanupStack, restricting its use to locals on the
  1.2344 +   stack. This use of the CleanupStack ensures a consistent cleanup
  1.2345 +   order between functions that call one another, even if they use
  1.2346 +   different cleanup idioms.
  1.2347 +
  1.2348 +   This class template together with the cleanup strategy class
  1.2349 +   templates provide a template-based implementation of the Strategy
  1.2350 +   design pattern (See also: Policy-based design).
  1.2351 +
  1.2352 +   @see TPointerDelete which implements the default deleting cleanup strategy
  1.2353 +   @see TPointerFree which implements the alternative User::Free() cleanup strategy
  1.2354 +   @see LManagedPtr which has the same interface, but does not use the cleanup
  1.2355 +   stack and is suitable for protecting the data members of classes
  1.2356 +*/
  1.2357 +template<typename T,
  1.2358 +		 class CleanupStrategyType = TPtrCleanupStrategy>
  1.2359 +class LCleanedupPtr: protected LCleanedupPtrBase<T, CleanupStrategyType>
  1.2360 +	{
  1.2361 +	typedef LCleanedupPtrBase<T, CleanupStrategyType> LCleanedupPtrBase;
  1.2362 +
  1.2363 +  public:
  1.2364 +	typedef T ManagedType;
  1.2365 +	typedef CleanupStrategyType CleanupStrategy;
  1.2366 +
  1.2367 +
  1.2368 +/**
  1.2369 +   Default constructor.	 Constructs an empty LCleanedupPtr object.
  1.2370 +
  1.2371 +   @post Get() == NULL
  1.2372 +*/
  1.2373 +	LCleanedupPtr()
  1.2374 +		{
  1.2375 +		}
  1.2376 +
  1.2377 +/**
  1.2378 +   Explicit constructor template.  Constructs a LCleanedupPtr object
  1.2379 +   that manages the pointer aPtr of a type convertible to T* that can
  1.2380 +   be cleaned up using the cleanup strategy of the LCleanedupPtr
  1.2381 +   class.  The default cleanup strategy is to delete the pointer to a
  1.2382 +   heap-allocated object by using non-array delete.	 Alternative
  1.2383 +   cleanup strategies can be specified by using the CleanupStrategy
  1.2384 +   template parameter of the LCleanedupPtr class template.
  1.2385 +
  1.2386 +   @param aPtr A pointer of a type that is convertible to T* that can
  1.2387 +   be cleaned up using the cleanup strategy.
  1.2388 +
  1.2389 +   @pre aPtr is of a type convertible to T* and can be cleaned up
  1.2390 +   using the cleanup strategy.
  1.2391 +
  1.2392 +   @post Get() == aPtr
  1.2393 +*/
  1.2394 +	explicit LCleanedupPtr(T* aPtr)
  1.2395 +		: LCleanedupPtrBase(aPtr)
  1.2396 +		{
  1.2397 +		}
  1.2398 +
  1.2399 +/**
  1.2400 +   Assigns a new pointer to be managed.	 The new pointer must be of a
  1.2401 +   type convertible to T* and it must be possible to use the cleanup
  1.2402 +   strategy of the LCleanedupPtr object for the cleanup of the new
  1.2403 +   managed pointer.	 If the LCleanedupPtr object already contains a
  1.2404 +   managed pointer, then the cleanup strategy is invoked with the
  1.2405 +   managed pointer before assigning the new managed pointer.
  1.2406 +
  1.2407 +   @param aPtr A pointer of a type that is convertible to T* that can
  1.2408 +   be cleaned up using the cleanup strategy.
  1.2409 +
  1.2410 +   @pre aPtr is a pointer of a type that is convertible to T* and can
  1.2411 +   be cleaned up using the cleanup strategy.
  1.2412 +
  1.2413 +   @post Get() == aPtr
  1.2414 + */
  1.2415 +	LCleanedupPtr& operator=(T* aPtr)
  1.2416 +		{
  1.2417 +		LCleanedupPtrBase::operator=(aPtr);
  1.2418 +		return *this;
  1.2419 +		}
  1.2420 +
  1.2421 +/**
  1.2422 +   Assigns a new pointer to be managed.	 The new pointer must be of a
  1.2423 +   type convertible to T* and it must be possible to use the cleanup
  1.2424 +   strategy of the LCleanedupPtr object for the cleanup of the new
  1.2425 +   managed pointer.	 If the LCleanedupPtr object already contains a
  1.2426 +   managed pointer, then the cleanup strategy is invoked with the
  1.2427 +   managed pointer before assigning the new managed pointer.
  1.2428 +
  1.2429 +   @param aPtr A pointer of a type that is convertible to T* that can
  1.2430 +   be cleaned up using the cleanup strategy.
  1.2431 +
  1.2432 +   @pre aPtr is a pointer of a type that is convertible to T* and can
  1.2433 +   be cleaned up using the cleanup strategy.
  1.2434 +
  1.2435 +   @post Get() == aPtr
  1.2436 + */
  1.2437 +	template<typename U>
  1.2438 +	LCleanedupPtr& operator=(U* aPtr)
  1.2439 +		{
  1.2440 +		LCleanedupPtrBase::operator=(aPtr);
  1.2441 +		return *this;
  1.2442 +		}
  1.2443 +
  1.2444 +
  1.2445 +/**
  1.2446 +   If automatic resource management is enabled, the specified cleanup
  1.2447 +   strategy is invoked with the managed pointer and the automatic
  1.2448 +   resource management is then disabled.  The underlying pointer is
  1.2449 +   reset to NULL.
  1.2450 +
  1.2451 +   @post Get() == NULL
  1.2452 +*/
  1.2453 +	using LCleanedupPtrBase::ReleaseResource;
  1.2454 +
  1.2455 +/**
  1.2456 +   Disables the automatic resource management for this object and
  1.2457 +   returns a pointer to the object of type T.
  1.2458 +
  1.2459 +   @return A pointer to the object of type T.
  1.2460 +*/
  1.2461 +	T* Unmanage()
  1.2462 +		{
  1.2463 +		return static_cast<T*>(LCleanedupPtrBase::Unmanage());
  1.2464 +		}
  1.2465 +
  1.2466 +/**
  1.2467 +   Returns ETrue if automatic resource management is enabled; EFalse
  1.2468 +   otherwise.
  1.2469 +
  1.2470 +   @return ETrue if automatic resource management is enabled; EFalse
  1.2471 +   otherwise.
  1.2472 +*/
  1.2473 +	using LCleanedupPtrBase::IsEnabled;
  1.2474 +
  1.2475 +/**
  1.2476 +   Returns a pointer to the managed object of type T.
  1.2477 +
  1.2478 +   @return A pointer to the managed object of type T.
  1.2479 +*/
  1.2480 +	T* Get() const
  1.2481 +		{
  1.2482 +		return static_cast<T*>(iPtr);
  1.2483 +		}
  1.2484 +
  1.2485 +/**
  1.2486 +   Overloaded indirection operator function.
  1.2487 +
  1.2488 +   @return A reference to the managed object of type T.
  1.2489 +*/
  1.2490 +	T& operator*() const
  1.2491 +		{
  1.2492 +		return *(static_cast<T*>(iPtr));
  1.2493 +		}
  1.2494 +
  1.2495 +/**
  1.2496 +   Overloaded class member access operator function.
  1.2497 +
  1.2498 +   @return A pointer to the managed object of type T.
  1.2499 +*/
  1.2500 +	T* operator->() const
  1.2501 +		{
  1.2502 +		return static_cast<T*>(iPtr);
  1.2503 +		}
  1.2504 +
  1.2505 +// Implementation type - do not use
  1.2506 +	typedef typename LCleanedupPtrBase::BaseManagedType* LCleanedupPtr<T, CleanupStrategy>::*TUnspecifiedBoolType;
  1.2507 +
  1.2508 +/**
  1.2509 +   Conversion operator that enables LCleanedupPtr objects to be used
  1.2510 +   in boolean contexts.
  1.2511 +
  1.2512 +   @return An unspecified value of an unspecified type convertible to
  1.2513 +   boolean, which has a boolean value equal to Get() != NULL
  1.2514 + */
  1.2515 +	operator TUnspecifiedBoolType()
  1.2516 +		{
  1.2517 +		return iPtr ? &LCleanedupPtr::iPtr : NULL;
  1.2518 +		}
  1.2519 +
  1.2520 +	using LCleanedupPtrBase::Disable;
  1.2521 +
  1.2522 +	void Swap(LCleanedupPtr& aCleanedupPtr)
  1.2523 +		{
  1.2524 +		LCleanedupPtrBase::Swap(aCleanedupPtr);
  1.2525 +		}
  1.2526 +
  1.2527 +  private:
  1.2528 +	using LCleanedupPtrBase::iPtr;
  1.2529 +	};
  1.2530 +
  1.2531 +
  1.2532 +// function template used for comparing two LCleanedupPtr-managed
  1.2533 +// pointers for equality
  1.2534 +template<typename T, typename U>
  1.2535 +TBool operator==(const LCleanedupPtr<T>& aPtr1, const LCleanedupPtr<U>& aPtr2)
  1.2536 +	{
  1.2537 +	return aPtr1.Get() == aPtr2.Get();
  1.2538 +	}
  1.2539 +
  1.2540 +// function template used for comparing two LCleanedupPtr-managed
  1.2541 +// pointers for inequality
  1.2542 +template<typename T, typename U>
  1.2543 +TBool operator!=(const LCleanedupPtr<T>& aPtr1, const LCleanedupPtr<U>& aPtr2)
  1.2544 +	{
  1.2545 +	return aPtr1.Get() != aPtr2.Get();
  1.2546 +	}
  1.2547 +
  1.2548 +// function template used for testing the ordering of two
  1.2549 +// LCleanedupPtr-managed pointers
  1.2550 +template<typename T, typename U>
  1.2551 +TBool operator<(const LCleanedupPtr<T>& aPtr1, const LCleanedupPtr<U>& aPtr2)
  1.2552 +	{
  1.2553 +	return aPtr1.Get() < aPtr2.Get();
  1.2554 +	}
  1.2555 +
  1.2556 +
  1.2557 +/**
  1.2558 +   A class template that provides CleanupStack-based local-scope
  1.2559 +   automatic management of arrays.
  1.2560 +
  1.2561 +   @note This class can only be used to define locals, never
  1.2562 +   data members. See below for an explanation and links to management
  1.2563 +   classes suitable for use in different contexts. It should never be
  1.2564 +   used in the same function as code that uses the CleanupStack API
  1.2565 +   directly
  1.2566 +
  1.2567 +   @par
  1.2568 +
  1.2569 +   @note This class can only be used with raw arrays, which are used
  1.2570 +   only rarely on Symbian OS.  Instances of Symbian array container
  1.2571 +   classes (e.g. RArray, RPointerArray) should be managed using the
  1.2572 +   automatic management template classes appropriate for the array's
  1.2573 +   type (LCleanedupHandle template classes for Symbian R arrays or
  1.2574 +   LCleanedupPtr template classes for Symbian C arrays).
  1.2575 +
  1.2576 +   This class template can be used to protect a heap-allocated array
  1.2577 +   of objects of type T such that the array of T referred to is
  1.2578 +   automatically cleaned up when either of the following occur:
  1.2579 +
  1.2580 +   - The referring local variable goes out of scope normally
  1.2581 +   - The referring local variable goes out of scope due to an
  1.2582 +	 untrapped leave causing the scope to be exited non-locally
  1.2583 +
  1.2584 +   The default cleanup strategy is to deallocate the managed array
  1.2585 +   using arrray delete (delete[]), assuming that the array is
  1.2586 +   heap-allocated.	An alternative cleanup strategy can be selected by
  1.2587 +   specifying a cleanup strategy template class as the optional second
  1.2588 +   template argument (corresponding to the CleanupStrategy template
  1.2589 +   parameter).
  1.2590 +
  1.2591 +   The constructors of this class may leave.
  1.2592 +
  1.2593 +   As a convenience, the elements of the managed array may be accessed
  1.2594 +   via "[]" notation directly on the management object.
  1.2595 +
  1.2596 +   Automatic cleanup may be disabled at any time by calling
  1.2597 +   Unmanage(), while cleanup may be forced at any time by calling
  1.2598 +   ReleaseResource().
  1.2599 +
  1.2600 +   @code
  1.2601 +	// block scope example
  1.2602 +	{
  1.2603 +	LCleanedupArray<TValue> arrayp(new(ELeave) TValue[KArraySize]);
  1.2604 +	arrayp[0].DoSomethingL(); // leave-safe
  1.2605 +	if (arrayp[0].Finished())
  1.2606 +		return; //	the array is deleted automatically when exiting from scope
  1.2607 +	arrayp[1].DoSomethingElseL(); // leave-safe
  1.2608 +	//	the array is deleted automatically when exiting from scope
  1.2609 +	}
  1.2610 +   @endcode
  1.2611 +
  1.2612 +   Behind the scenes, this class template is implemented in terms of
  1.2613 +   the thread-local CleanupStack, restricting its use to locals on the
  1.2614 +   stack. This use of the CleanupStack ensures a consistent cleanup
  1.2615 +   order between functions that call one another, even if they use
  1.2616 +   different cleanup idioms.
  1.2617 +
  1.2618 +   This class template together with the cleanup strategy class
  1.2619 +   templates provide a template-based implementation of the Strategy
  1.2620 +   design pattern (See also: Policy-based design).
  1.2621 +
  1.2622 +   @see LManagedArray which has the same interface, but does not use
  1.2623 +   the cleanup stack and is suitable for protecting the data members
  1.2624 +   of classes
  1.2625 +*/
  1.2626 +template<typename T,
  1.2627 +		 class CleanupStrategyType = TArrayDelete>
  1.2628 +class LCleanedupArray: protected LAutoPtrBase<T>
  1.2629 +	{
  1.2630 +	typedef LAutoPtrBase<T> LAutoPtrBase;
  1.2631 +
  1.2632 +  public:
  1.2633 +	typedef T ManagedType;
  1.2634 +	typedef CleanupStrategyType CleanupStrategy;
  1.2635 +
  1.2636 +/**
  1.2637 +   Default constructor.	 Constructs an empty LCleanedupArray object.
  1.2638 +
  1.2639 +   @post Get() == NULL
  1.2640 + */
  1.2641 +	LCleanedupArray()
  1.2642 +		{
  1.2643 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2644 +		}
  1.2645 +
  1.2646 +/**
  1.2647 +   Explicit constructor.  Constructs a LCleanedupArray object that
  1.2648 +   manages an array of objects of type T that can be cleaned up using
  1.2649 +   the cleanup strategy of the LCleanedupArray class.  The default
  1.2650 +   cleanup strategy is to deallocate the heap-allocated array by using
  1.2651 +   array delete.  An alternative cleanup strategy can be selected by
  1.2652 +   specifying a cleanup strategy template class as the optional second
  1.2653 +   template argument (corresponding to the CleanupStrategy template
  1.2654 +   parameter).
  1.2655 +
  1.2656 +   @param aPtr A pointer to the first element of an array of objects
  1.2657 +   of type T, array that can be cleaned up using the cleanup strategy
  1.2658 +   of the the LCleanedupArray class.
  1.2659 +
  1.2660 +   @pre The array can be cleaned up using the cleanup strategy.
  1.2661 +
  1.2662 +   @post Get() == aPtr
  1.2663 + */
  1.2664 +	explicit LCleanedupArray(T* aPtr)
  1.2665 +		: LAutoPtrBase(aPtr)
  1.2666 +		{
  1.2667 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2668 +		}
  1.2669 +
  1.2670 +
  1.2671 +/**
  1.2672 +   Destructor.	When automatic resource management is enabled, the
  1.2673 +   destructor invokes the specified cleanup strategy for the managed
  1.2674 +   pointer.
  1.2675 + */
  1.2676 +	~LCleanedupArray()
  1.2677 +		{
  1.2678 +		ManagedPopCleanupStackItem(LAutoPtrBase::IsEnabled());
  1.2679 +		}
  1.2680 +
  1.2681 +/**
  1.2682 +   Assigns a new array of objects of type T to be managed.	It needs
  1.2683 +   to be be possible to use the cleanup strategy of the
  1.2684 +   LCleanedupArray object for the cleanup of the new managed array.
  1.2685 +   The default cleanup strategy is to delete the heap-allocated array
  1.2686 +   by using array delete (delete[]).  If the LCleanedupArray object
  1.2687 +   already manages an array, then the cleanup strategy is invoked with
  1.2688 +   the managed array before assigning the new managed array.
  1.2689 +
  1.2690 +   @param aPtr A pointer to the first element of the array of objects
  1.2691 +   of type T - array that can be cleaned up using the cleanup
  1.2692 +   strategy.
  1.2693 +
  1.2694 +   @pre The new array to be managed can be cleaned up using the
  1.2695 +   cleanup strategy.
  1.2696 +
  1.2697 +   @post Get() == aPtr
  1.2698 + */
  1.2699 +	LCleanedupArray& operator=(T* aPtr)
  1.2700 +		{
  1.2701 +		ReleaseResource();
  1.2702 +		LAutoPtrBase::operator=(aPtr);
  1.2703 +		return *this;
  1.2704 +		}
  1.2705 +
  1.2706 +/**
  1.2707 +   If automatic resource management is enabled, the specified cleanup
  1.2708 +   strategy is invoked for the managed pointer and the automatic
  1.2709 +   resource management is then disabled.  The underlying pointer is
  1.2710 +   reset to NULL.
  1.2711 +
  1.2712 +   @post Get() == NULL
  1.2713 +*/
  1.2714 +	void ReleaseResource()
  1.2715 +		{
  1.2716 +		if (!LAutoPtrBase::IsEnabled())
  1.2717 +			return;
  1.2718 +
  1.2719 +		CleanupStrategy::Cleanup(iPtr);
  1.2720 +		iPtr = NULL;
  1.2721 +		}
  1.2722 +
  1.2723 +
  1.2724 +/**
  1.2725 +   Disables the automatic resource management for this object and
  1.2726 +   returns a pointer to the first element of the array of objects of
  1.2727 +   type T.
  1.2728 +
  1.2729 +   @return A pointer to the first element of the array of objects of
  1.2730 +   type T.
  1.2731 +*/
  1.2732 +	using LAutoPtrBase::Unmanage;
  1.2733 +
  1.2734 +/**
  1.2735 +   Returns ETrue if automatic resource management is enabled; EFalse
  1.2736 +   otherwise.
  1.2737 +
  1.2738 +   @return ETrue if automatic resource management is enabled; EFalse
  1.2739 +   otherwise.
  1.2740 +*/
  1.2741 +	using LAutoPtrBase::IsEnabled;
  1.2742 +
  1.2743 +/**
  1.2744 +   Returns a pointer to the first element of the managed array of
  1.2745 +   objects of type T.
  1.2746 +
  1.2747 +   @return A pointer to the first element of the managed array of
  1.2748 +   objects of type T.
  1.2749 +*/
  1.2750 +	using LAutoPtrBase::Get;
  1.2751 +
  1.2752 +/**
  1.2753 +   Overloaded subscript operator.
  1.2754 +
  1.2755 +   @return A reference to the object of type T at the position aIndex.
  1.2756 + */
  1.2757 +	T& operator[](TInt aIndex) const
  1.2758 +		{
  1.2759 +		return iPtr[aIndex];
  1.2760 +		}
  1.2761 +
  1.2762 +	static void Cleanup(TAny* aPtr)
  1.2763 +		{
  1.2764 +		LCleanedupArray* cleanupPtr = static_cast<LCleanedupArray*>(aPtr);
  1.2765 +
  1.2766 +		if (cleanupPtr->IsEnabled())
  1.2767 +			{
  1.2768 +			CleanupStrategy::Cleanup(cleanupPtr->iPtr);
  1.2769 +			}
  1.2770 +		}
  1.2771 +
  1.2772 +	using LAutoPtrBase::Disable;
  1.2773 +
  1.2774 +	void Swap(LCleanedupArray& aArray)
  1.2775 +		{
  1.2776 +		LAutoPtrBase::Swap(aArray);
  1.2777 +		}
  1.2778 +
  1.2779 +  private:
  1.2780 +	using LAutoPtrBase::iPtr;
  1.2781 +	};
  1.2782 +
  1.2783 +
  1.2784 +/**
  1.2785 +   A class template that provides CleanupStack-based local-scope
  1.2786 +   automatic management of references to resource handles (often
  1.2787 +   instances of R-classes).
  1.2788 +
  1.2789 +   @note This class can only be used to define locals, never
  1.2790 +   data members. See below for an explanation and links to management
  1.2791 +   classes suitable for use in different contexts. It should never be
  1.2792 +   used in the same function as code that uses the CleanupStack API
  1.2793 +   directly.
  1.2794 +
  1.2795 +   Unlike LCleanedupHandle which creates a fresh instance of its
  1.2796 +   managed type, this class template can be used to reference and
  1.2797 +   protect an existing resource handle of type T (typically an
  1.2798 +   R-class). The instance of T referred to has a cleanup operation run
  1.2799 +   on it automatically when either of the following occur:
  1.2800 +
  1.2801 +   - The referring local variable goes out of scope normally
  1.2802 +   - The referring local variable goes out of scope due to an
  1.2803 +	 untrapped leave causing the scope to be exited non-locally
  1.2804 +
  1.2805 +   By default, the cleanup action is to call the Close() member
  1.2806 +   function of the referenced handle. An alternative cleanup strategy
  1.2807 +   may be selected by specifying a cleanup strategy template class in
  1.2808 +   the optional second template parameter position. The most common
  1.2809 +   alternative cleanup strategies are predefined. It is also possible
  1.2810 +   to specialize the default cleanup action for a given class using
  1.2811 +   the DEFINE_CLEANUP_FUNCTION macro.
  1.2812 +
  1.2813 +   The constructors of this class may leave.
  1.2814 +
  1.2815 +   As a convenience, the methods of the managed handle may be
  1.2816 +   accessed via "->" notation directly on the management object, while
  1.2817 +   "." notation is used to access the interface of the management
  1.2818 +   object itself. Using "*" to dereference the management object
  1.2819 +   yields a T&, and is often useful when passing the managed object as
  1.2820 +   an argument.
  1.2821 +
  1.2822 +   Automatic cleanup may be disabled at any time by calling
  1.2823 +   Unmanage(), while cleanup may be forced at any time by calling
  1.2824 +   ReleaseResource().
  1.2825 +
  1.2826 +   Example:
  1.2827 +   @code
  1.2828 +	// block scope example
  1.2829 +	void DoWithClosable(RClosable& aObj)
  1.2830 +	  {
  1.2831 +	  LCleanedupRef<RClosable> obj(aObj);
  1.2832 +	  obj->DoSomethingL(); // leave-safe
  1.2833 +	  if (obj->Finished())
  1.2834 +		return; // RClosable::Close is invoked automatically
  1.2835 +	  obj->DoSomethingElseL(); // leave-safe
  1.2836 +	  // RClosable::Close is invoked automatically
  1.2837 +	  }
  1.2838 +   @endcode
  1.2839 +
  1.2840 +   Behind the scenes, this class template is implemented in terms of
  1.2841 +   the thread-local CleanupStack, restricting its use to locals on the
  1.2842 +   stack. This use of the CleanupStack ensures a consistent cleanup
  1.2843 +   order between functions that call one another, even if they use
  1.2844 +   different cleanup idioms.
  1.2845 +
  1.2846 +   This class template together with the cleanup strategy class
  1.2847 +   templates provide a template-based implementation of the Strategy
  1.2848 +   design pattern (See also: Policy-based design).
  1.2849 +
  1.2850 +   @see TClose which implements the default Close() calling cleanup strategy
  1.2851 +   @see TResetAndDestroy which implements an alternative
  1.2852 +   ResetAndDestroy() calling cleanup strategy
  1.2853 +   @see TFree which implements an alternative Free() calling cleanup
  1.2854 +   strategy
  1.2855 +   @see TDestroy which implements an alternative Destroy() calling
  1.2856 +   cleanup strategy
  1.2857 +   @see TRelease which implements an alternative Release() calling
  1.2858 +   cleanup strategy
  1.2859 +   @see LManagedRef which has the same interface, but does not use
  1.2860 +   the cleanup stack and is suitable for protecting the data members of
  1.2861 +   classes
  1.2862 +   @see LCleanedupHandle which has a similar interface but creates a
  1.2863 +   fresh local instance of T
  1.2864 +*/
  1.2865 +template<typename T,
  1.2866 +		 class CleanupStrategyType = TResourceCleanupStrategy>
  1.2867 +class LCleanedupRef: protected LAutoRefBase<T>
  1.2868 +	{
  1.2869 +	typedef LAutoRefBase<T> LAutoRefBase;
  1.2870 +
  1.2871 +  public:
  1.2872 +	typedef T ManagedType;
  1.2873 +	typedef CleanupStrategyType CleanupStrategy;
  1.2874 +
  1.2875 +/**
  1.2876 +   Explicit constructor.
  1.2877 + */
  1.2878 +	template<typename U>
  1.2879 +	explicit LCleanedupRef(U& aRef)
  1.2880 +		: LAutoRefBase(aRef)
  1.2881 +		{
  1.2882 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.2883 +		}
  1.2884 +
  1.2885 +/**
  1.2886 +   Destructor.	When automatic resource management is enabled, the
  1.2887 +   destructor invokes the specified cleanup strategy for the managed
  1.2888 +   reference.
  1.2889 + */
  1.2890 +	~LCleanedupRef()
  1.2891 +		{
  1.2892 +		ManagedPopCleanupStackItem(LAutoRefBase::IsEnabled());
  1.2893 +		}
  1.2894 +
  1.2895 +/**
  1.2896 +   Assigns a new reference to be managed.  If the LCleanedupRef
  1.2897 +   object already contains a managed reference, then the specified
  1.2898 +   cleanup strategy is invoked for the managed reference before
  1.2899 +   assigning the new managed reference.
  1.2900 + */
  1.2901 +	template<typename U>
  1.2902 +	LCleanedupRef& operator=(U& aRef)
  1.2903 +		{
  1.2904 +		ReleaseResource();
  1.2905 +		LAutoRefBase::operator=(aRef);
  1.2906 +		return *this;
  1.2907 +		}
  1.2908 +
  1.2909 +/**
  1.2910 +   If automatic resource management is enabled, the specified cleanup
  1.2911 +   strategy is invoked for the managed reference and the automatic
  1.2912 +   resource management is then disabled.
  1.2913 +*/
  1.2914 +	void ReleaseResource()
  1.2915 +		{
  1.2916 +		if (!LAutoRefBase::IsEnabled())
  1.2917 +			return;
  1.2918 +
  1.2919 +		CleanupStrategy::Cleanup(iPtr);
  1.2920 +		iPtr = NULL;
  1.2921 +		}
  1.2922 +
  1.2923 +/**
  1.2924 +   Disables the automatic resource management for this object and
  1.2925 +   returns a reference to the object of type T.
  1.2926 +
  1.2927 +   @return A reference to the object of type T.
  1.2928 +*/
  1.2929 +	using LAutoRefBase::Unmanage;
  1.2930 +
  1.2931 +/**
  1.2932 +   Returns ETrue if automatic resource management is enabled; EFalse
  1.2933 +   otherwise.
  1.2934 +
  1.2935 +   @return ETrue if automatic resource management is enabled; EFalse
  1.2936 +   otherwise.
  1.2937 +*/
  1.2938 +	using LAutoRefBase::IsEnabled;
  1.2939 +
  1.2940 +/**
  1.2941 +   Returns a reference to the managed object of type T.
  1.2942 +
  1.2943 +   @return A reference to the managed object of type T.
  1.2944 +*/
  1.2945 +	using LAutoRefBase::Get;
  1.2946 +
  1.2947 +/**
  1.2948 +   Overloaded indirection operator function.
  1.2949 +
  1.2950 +   @return A reference to the managed object of type T.
  1.2951 +*/
  1.2952 +	using LAutoRefBase::operator*;
  1.2953 +
  1.2954 +/**
  1.2955 +   Overloaded class member access operator function.
  1.2956 +
  1.2957 +   @return A pointer to the managed object of type T.
  1.2958 +*/
  1.2959 +	using LAutoRefBase::operator->;
  1.2960 +
  1.2961 +
  1.2962 +	static void Cleanup(TAny* aPtr)
  1.2963 +		{
  1.2964 +		LCleanedupRef* cleanupRef = static_cast<LCleanedupRef*>(aPtr);
  1.2965 +
  1.2966 +		if (cleanupRef->IsEnabled())
  1.2967 +			{
  1.2968 +			CleanupStrategy::Cleanup(cleanupRef->iPtr);
  1.2969 +			}
  1.2970 +		}
  1.2971 +
  1.2972 +	using LAutoRefBase::Disable;
  1.2973 +
  1.2974 +	void Swap(LCleanedupRef& aRef)
  1.2975 +		{
  1.2976 +		LAutoRefBase::Swap(aRef);
  1.2977 +		}
  1.2978 +
  1.2979 +  private:
  1.2980 +	using LAutoRefBase::iPtr;
  1.2981 +	};
  1.2982 +
  1.2983 +
  1.2984 +/**
  1.2985 +   A class that provides automatic cleanup using a TCleanupOperation
  1.2986 +   on the destruction of the LManagedGuard object.
  1.2987 +
  1.2988 +   @note This class can only be used to define object scoped cleanup
  1.2989 +   to guard object destruction, never local stack scoped cleanup. See
  1.2990 +   below for an explanation and links to management classes suitable
  1.2991 +   for use in different contexts.
  1.2992 +
  1.2993 +   This class can be used to manage a TCleanupOperation in such a way
  1.2994 +   that the specified cleanup operation is guaranteed to be called
  1.2995 +   when the guarding object is destroyed; typically when the object
  1.2996 +   containing it is deleted.
  1.2997 +
  1.2998 +   The constructors of this class never leave, so data members defined with
  1.2999 +   this type may be initialized safely during any phase of
  1.3000 +   construction of the owning class.
  1.3001 +
  1.3002 +   Automatic cleanup may be disabled at any time by calling
  1.3003 +   Dismiss(), while cleanup may be forced at any time by calling
  1.3004 +   Execute().
  1.3005 +
  1.3006 +   @code
  1.3007 +   class CComposite : public CBase
  1.3008 +	   {
  1.3009 +	 public:
  1.3010 +	   CONSTRUCTORS_MAY_LEAVE
  1.3011 +
  1.3012 +	   CComposite(RCleanable* aObj)
  1.3013 +		   : iObj(RCleanable::Cleanup, aObj)
  1.3014 +		   {
  1.3015 +		   }
  1.3016 +
  1.3017 +	   ~CComposite()
  1.3018 +		   {
  1.3019 +		   // RCleanable::Cleanup(iObj) is automatically invoked
  1.3020 +		   }
  1.3021 +
  1.3022 +	 private:
  1.3023 +	   LManagedGuard<RCleanable> iObj;
  1.3024 +	   };
  1.3025 +   @endcode
  1.3026 +
  1.3027 +   Behind the scenes, this class template simply relies on reliable
  1.3028 +   execution of its destructor. If used for a local variable rather
  1.3029 +   than a data member, cleanup will occur but out-of-order compared to
  1.3030 +   objects protected using the LCleanupXxx variants or the
  1.3031 +   CleanupStack directly. Therefore it is not recommended for use in
  1.3032 +   that context.
  1.3033 +
  1.3034 +   These management classes may be used as the basis for implementing
  1.3035 +   leave-safe single-phase construction, since fully initialized
  1.3036 +   data members protected in this way will get destroyed (so reliably
  1.3037 +   triggering cleanup) if their containing classes leave during
  1.3038 +   execution of their constructors. Note, however, that single-phase
  1.3039 +   construction must be explicitly enabled in the containing class
  1.3040 +   using the CONSTRUCTORS_MAY_LEAVE macro.
  1.3041 +
  1.3042 +   @see LCleanedupGuard which has the same interface, but uses the cleanup
  1.3043 +   stack and is suitable for use as a local to guard local scope exit
  1.3044 +   @see CONSTRUCTORS_MAY_LEAVE
  1.3045 +*/
  1.3046 +class LManagedGuard
  1.3047 +	{
  1.3048 +  public:
  1.3049 +/**
  1.3050 +   Constructor.	 Creates a LCleanedupGuard object that, when enabled,
  1.3051 +   automatically invokes upon destruction a cleanup operation
  1.3052 +   specified by the aCleanupOperation parameter with the pointer to
  1.3053 +   data specified by the aData parameter.
  1.3054 +
  1.3055 +   @param aCleanupOperation A cleanup operation.
  1.3056 +   @param aData Pointer to data to be passed to the cleanup operation
  1.3057 + */
  1.3058 +	LManagedGuard(TCleanupOperation aCleanupOperation, TAny* aData = 0)
  1.3059 +		: iCleanupOperation(aCleanupOperation),
  1.3060 +		  iData(aData)
  1.3061 +		{
  1.3062 +		}
  1.3063 +
  1.3064 +/**
  1.3065 +   Destructor.
  1.3066 + */
  1.3067 +	~LManagedGuard()
  1.3068 +		{
  1.3069 +		Execute();
  1.3070 +		}
  1.3071 +
  1.3072 +/**
  1.3073 +   Executes the guard cleanup operation.
  1.3074 +*/
  1.3075 +	void Execute()
  1.3076 +		{
  1.3077 +		if (iCleanupOperation)
  1.3078 +			{
  1.3079 +			iCleanupOperation(iData);
  1.3080 +			}
  1.3081 +		}
  1.3082 +
  1.3083 +/**
  1.3084 +   Disables the guard.
  1.3085 +*/
  1.3086 +	void Dismiss()
  1.3087 +		{
  1.3088 +		iCleanupOperation = NULL;
  1.3089 +		}
  1.3090 +
  1.3091 +  private:
  1.3092 +	LManagedGuard(const LManagedGuard&);
  1.3093 +	LManagedGuard& operator=(const LManagedGuard&);
  1.3094 +
  1.3095 +	TCleanupOperation iCleanupOperation;
  1.3096 +	TAny* iData;
  1.3097 +	};
  1.3098 +
  1.3099 +
  1.3100 +/**
  1.3101 +   A class that provides CleanupStack-based local-scope automatic
  1.3102 +   cleanup using a TCleanupOperation on the destruction of the
  1.3103 +   LManagedGuard object.
  1.3104 +
  1.3105 +   @note This class can only be used to define a local stack scoped
  1.3106 +   cleanup, never an object scoped cleanup to guard object
  1.3107 +   destruction. See below for an explanation and links to management
  1.3108 +   classes suitable for use in different contexts.
  1.3109 +
  1.3110 +   This class can be used to manage a TCleanupOperation in such a way
  1.3111 +   that the specified cleanup operation is guaranteed to be called
  1.3112 +   when either of the following occur:
  1.3113 +
  1.3114 +   - The guarding local variable goes out of scope normally
  1.3115 +   - The guarding local variable goes out of scope due to an
  1.3116 +	 untrapped leave causing the scope to be exited non-locally
  1.3117 +
  1.3118 +   The constructors of this class may leave.
  1.3119 +
  1.3120 +   Automatic cleanup may be disabled at any time by calling
  1.3121 +   Dismiss(), while cleanup may be forced at any time by calling
  1.3122 +   Execute().
  1.3123 +
  1.3124 +   @code
  1.3125 +	// block scope example
  1.3126 +	{
  1.3127 +	RCleanable obj;
  1.3128 +	LCleanedupGuard cleanGuard(RCleanable::Cleanup, &obj);
  1.3129 +
  1.3130 +	obj.DoSomethingL(); // leave-safe
  1.3131 +	if (Finished())
  1.3132 +		return; // RCleanable::Cleanup is invoked automatically when exiting from scope
  1.3133 +	obj.DoSomethingElseL(); // leave-safe
  1.3134 +	//	RCleanable::Cleanup is invoked automatically when exiting from scope
  1.3135 +	}
  1.3136 +   @endcode
  1.3137 +
  1.3138 +   Behind the scenes, this class template is implemented in terms of
  1.3139 +   the thread-local CleanupStack, restricting its use to local stack
  1.3140 +   scope. This use of the CleanupStack ensures a consistent cleanup
  1.3141 +   order between functions that call one another, even if they use
  1.3142 +   different cleanup idioms.
  1.3143 +
  1.3144 +   @see LManagedGuard which has the same interface, but does not use the cleanup
  1.3145 +   stack and is suitable for use as the data member of a class to guard
  1.3146 +   object destruction.
  1.3147 +*/
  1.3148 +class LCleanedupGuard
  1.3149 +	{
  1.3150 +  public:
  1.3151 +/**
  1.3152 +   Constructor.	 Creates a LCleanedupGuard object that, when enabled,
  1.3153 +   automatically invokes upon destruction a cleanup operation
  1.3154 +   specified by the aCleanupOperation parameter with the pointer to
  1.3155 +   data specified by the aData parameter.
  1.3156 +
  1.3157 +   @param aCleanupOperation A cleanup operation.
  1.3158 +   @param aData Pointer to data to be passed to the cleanup operation
  1.3159 + */
  1.3160 +	LCleanedupGuard(TCleanupOperation aCleanupOperation, TAny* aData = 0)
  1.3161 +		: iCleanupOperation(aCleanupOperation),
  1.3162 +		  iData(aData)
  1.3163 +		{
  1.3164 +		CleanupStack::PushL(TCleanupItem(Cleanup, this));
  1.3165 +		}
  1.3166 +
  1.3167 +/**
  1.3168 +   Destructor.
  1.3169 + */
  1.3170 +	~LCleanedupGuard()
  1.3171 +		{
  1.3172 +		ManagedPopCleanupStackItem(iCleanupOperation);
  1.3173 +		}
  1.3174 +
  1.3175 +/**
  1.3176 +   Executes the guard cleanup operation.
  1.3177 +*/
  1.3178 +	void Execute()
  1.3179 +		{
  1.3180 +		if (iCleanupOperation)
  1.3181 +			{
  1.3182 +			iCleanupOperation(iData);
  1.3183 +			}
  1.3184 +		}
  1.3185 +
  1.3186 +/**
  1.3187 +   Disables the guard.
  1.3188 +*/
  1.3189 +	void Dismiss()
  1.3190 +		{
  1.3191 +		iCleanupOperation = NULL;
  1.3192 +		}
  1.3193 +
  1.3194 +	static void Cleanup(TAny* aPtr)
  1.3195 +		{
  1.3196 +		LCleanedupGuard* guard = static_cast<LCleanedupGuard*>(aPtr);
  1.3197 +		guard->Execute();
  1.3198 +		}
  1.3199 +
  1.3200 +  private:
  1.3201 +	LCleanedupGuard(const LCleanedupGuard&);
  1.3202 +	LCleanedupGuard& operator=(const LCleanedupGuard&);
  1.3203 +
  1.3204 +
  1.3205 +	TCleanupOperation iCleanupOperation;
  1.3206 +	TAny* iData;
  1.3207 +	};
  1.3208 +
  1.3209 +#endif // !EMANAGED_H
  1.3210 +