os/ossrv/lowlevellibsandfws/genericusabilitylib/example/src/euserhl_walkthrough.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/lowlevellibsandfws/genericusabilitylib/example/src/euserhl_walkthrough.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,1314 @@
     1.4 +// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +//
    1.18 +
    1.19 +#include <e32std.h>
    1.20 +#include <f32file.h>
    1.21 +#include <e32test.h>
    1.22 +#include <euserhl.h>
    1.23 +
    1.24 +
    1.25 +
    1.26 +// Note: Methods are defined inline within classes here simply to make
    1.27 +// the code shorter, keep related code closer together, and hopefully
    1.28 +// make things easier to follow.
    1.29 +
    1.30 +RTest test(_L("EuserHl Walkthrough"));
    1.31 +
    1.32 +// Some dummy methods and data used in the walkthroughs below
    1.33 +_LIT(KFill, "XXX");
    1.34 +_LIT(KPath, "c:\\a\\b\\c");
    1.35 +_LIT(KOne, "One ");
    1.36 +_LIT(KTwo, "Two ");
    1.37 +_LIT(KTesting, "Testing ");
    1.38 +
    1.39 +void MaybeLeaveL()
    1.40 +	{
    1.41 +	// Some code that may leave
    1.42 +	}
    1.43 +
    1.44 +HBufC* AllocateNameL(const TDesC& aDes)
    1.45 +	{
    1.46 +	return aDes.AllocL();
    1.47 +	}
    1.48 +
    1.49 +void ReadToMax(TDes& aDes)
    1.50 +	{
    1.51 +	aDes.SetMax();
    1.52 +	aDes.Repeat(KFill);
    1.53 +	}
    1.54 +
    1.55 +void GetCurrentPath(TDes& aDes)
    1.56 +	{
    1.57 +	aDes = KPath;
    1.58 +	}
    1.59 +
    1.60 +void GetCurrentPathStringL(LString& aString)
    1.61 +	{
    1.62 +	aString = L"c:\\a\\b\\c"; // Will auto-grow if necessary, may leave
    1.63 +	}
    1.64 +
    1.65 +LString AppendCurrentPathStringL(LString aString)
    1.66 +	{
    1.67 +	return aString+= L"c:\\a\\b\\c";
    1.68 +	}
    1.69 +
    1.70 +class CTicker : public CBase
    1.71 +	{
    1.72 +public:
    1.73 +	void Tick() { ++iTicks; }
    1.74 +	void Tock() { ++iTocks; }
    1.75 +
    1.76 +	void Zap() { delete this; }
    1.77 +
    1.78 +public:
    1.79 +	TInt iTicks;
    1.80 +	TInt iTocks;
    1.81 +	};
    1.82 +
    1.83 +// Defines a custom pointer cleanup policy that calls the Zap member
    1.84 +class TTickerZapStrategy
    1.85 +	{
    1.86 +public:
    1.87 +	static void Cleanup(CTicker* aPtr)
    1.88 +		{
    1.89 +		// The general template/class scaffolding remains the same
    1.90 +		// for all custom cleanups, just this cleanup body varies
    1.91 +		aPtr->Zap();
    1.92 +		test.Printf(_L("Zapped CTicker\n"));
    1.93 +		}
    1.94 +	};
    1.95 +
    1.96 +void RegisterTicker(CTicker& aTicker)
    1.97 +	{
    1.98 +	(void)aTicker;
    1.99 +	}
   1.100 +
   1.101 +void RegisterTickerPtr(CTicker* aTicker)
   1.102 +	{
   1.103 +	(void)aTicker;
   1.104 +	}
   1.105 +
   1.106 +void TakeTickerOwnership(CTicker* aTicker)
   1.107 +	{
   1.108 +	delete aTicker;
   1.109 +	}
   1.110 +
   1.111 +void RegisterTimer(RTimer& aTimer)
   1.112 +	{
   1.113 +	(void)aTimer;
   1.114 +	}
   1.115 +
   1.116 +// Defines a custom handle cleanup policy that calls Cancel then Close
   1.117 +class TCancelClose
   1.118 +	{
   1.119 +public:
   1.120 +	template <class T>
   1.121 +	static void Cleanup(T* aHandle)
   1.122 +		{
   1.123 +		// The general template/class scaffolding remains the same
   1.124 +		// for all custom cleanups, just this cleanup body varies
   1.125 +		aHandle->Cancel();
   1.126 +		aHandle->Close();
   1.127 +		test.Printf(_L("Cancel Closed RTimer\n"));
   1.128 +		}
   1.129 +	};
   1.130 +
   1.131 +void BespokeCleanupFunction(TAny* aData)
   1.132 +	{
   1.133 +	(void)aData;
   1.134 +	test.Printf(_L("BespokeCleanupFunction\n"));
   1.135 +	}
   1.136 +
   1.137 +// The walkthroughs themselves
   1.138 +
   1.139 +// This class demonstrates the use of an embedded LString in the
   1.140 +// conventional Symbian two-phase construction pattern. We've chosen
   1.141 +// to implement the temporary leave protection in NewL in terms of
   1.142 +// LCleanedupPtr instead of the the CleanupStack API in this example.
   1.143 +class CStringUserTwoPhase : public CBase
   1.144 +	{
   1.145 +public:
   1.146 +	static CStringUserTwoPhase* NewL(const TDesC& aName)
   1.147 +		{
   1.148 +		// We can use the resource management utility classes in
   1.149 +		// two-phase if we want to
   1.150 +		LCleanedupPtr<CStringUserTwoPhase> self(new(ELeave) CStringUserTwoPhase);
   1.151 +		self->ConstructL(aName);
   1.152 +		// Calling Unmanage() disables cleanup and yields the
   1.153 +		// previously managed pointer so that it can be safely
   1.154 +		// returned
   1.155 +		return self.Unmanage(); 
   1.156 +		}
   1.157 +
   1.158 +	virtual void ConstructL(const TDesC& aName)
   1.159 +		{
   1.160 +		// This assignment may leave if LString fails to allocate a
   1.161 +		// heap buffer large enough to hold the data in aName
   1.162 +		iName = aName; 
   1.163 +		}
   1.164 +
   1.165 +	~CStringUserTwoPhase()
   1.166 +		{
   1.167 +		// The iName LString cleans up after itself automatically 
   1.168 +		}
   1.169 +
   1.170 +	const TDesC& Name() 
   1.171 +		{
   1.172 +		// We can just return an LString directly as a const TDesC
   1.173 +		return iName; 
   1.174 +		}
   1.175 +
   1.176 +protected:
   1.177 +	CStringUserTwoPhase()
   1.178 +		{
   1.179 +		// Everything interesting happens in ConstructL in this
   1.180 +		// version. 
   1.181 +
   1.182 +		// Default initialization of the iName LString does not
   1.183 +		// allocate a heap buffer, and so cannot leave. As long as
   1.184 +		// initialization is deferred to ConstructL, LStrings can be
   1.185 +		// used safely with two-phase construction.
   1.186 +		}
   1.187 +
   1.188 +protected:
   1.189 +	LString iName;
   1.190 +	};
   1.191 +
   1.192 +// This class demonstrates the use of an embedded LString in the
   1.193 +// single-phase construction pattern, where a leave-safe constructor
   1.194 +// fully initializes the object. 
   1.195 +//
   1.196 +// Note that where a class's constructor forms part of its exported
   1.197 +// public or protected contract, switching from a non-leaving to a
   1.198 +// potentially leaving constructor would be a BC break. On the other
   1.199 +// hand, if instantiation is entirely encapsulated within factory
   1.200 +// functions like NewL, there is no such BC restriction.
   1.201 +class CStringUserSinglePhase : public CBase
   1.202 +	{
   1.203 +public:
   1.204 +	// This macro is necessary to ensure cleanup is correctly handled
   1.205 +	// in the event that a constructor may leave beneath a call to
   1.206 +	// new(ELeave)
   1.207 +	CONSTRUCTORS_MAY_LEAVE
   1.208 +
   1.209 +	static CStringUserSinglePhase* NewL(const TDesC& aName)
   1.210 +		{
   1.211 +		return new(ELeave) CStringUserSinglePhase(aName);
   1.212 +		}
   1.213 +
   1.214 +	~CStringUserSinglePhase()
   1.215 +		{
   1.216 +		// The iName LString cleans up after itself automatically
   1.217 +		}
   1.218 +
   1.219 +	const TDesC& Name() 
   1.220 +		{
   1.221 +		// We can just return an LString directly as a const TDesC
   1.222 +		return iName;
   1.223 +		}
   1.224 +
   1.225 +protected:
   1.226 +	CStringUserSinglePhase(const TDesC& aName)
   1.227 +		// This initialization of iName may leave because LString
   1.228 +		// needs to allocate a heap buffer to copy the aName string
   1.229 +		// data into
   1.230 +		: iName(aName) 
   1.231 +		{
   1.232 +		// If iName initialization is successful but the constructor
   1.233 +		// then goes on to leave later, iName (like all fields fully
   1.234 +		// constructed at the point of a leave in a constructor) will
   1.235 +		// be destructed, and so clean up after itself
   1.236 +		MaybeLeaveL();
   1.237 +		}
   1.238 +
   1.239 +protected:
   1.240 +	LString iName;
   1.241 +	};
   1.242 +
   1.243 +
   1.244 +void WalkthroughStringsL()
   1.245 +	{
   1.246 +
   1.247 +		{
   1.248 +		// Trivially exercise the LString using classes defined above
   1.249 +
   1.250 +		LCleanedupPtr<CStringUserTwoPhase> one(CStringUserTwoPhase::NewL(KOne));
   1.251 +		test.Printf(_L("Single phase name: %S\n"), &one->Name());
   1.252 +
   1.253 +		LCleanedupPtr<CStringUserSinglePhase> two(CStringUserSinglePhase::NewL(KTwo));
   1.254 +		test.Printf(_L("Two phase name: %S\n"), &two->Name());
   1.255 +
   1.256 +		// Both instances are automatically deleted as we go out of scope
   1.257 +		}
   1.258 +
   1.259 +		{
   1.260 +		// A default constructed LString starts empty, doesn't
   1.261 +		// allocate any memory on the heap, and therefore the
   1.262 +		// following cannot leave
   1.263 +		LString s;
   1.264 +
   1.265 +		// But it will grow on demand if you assign to it, so it has
   1.266 +		// enough space to hold the copied string data, and so
   1.267 +		// assignment may leave
   1.268 +		s = L"One ";
   1.269 +
   1.270 +		// Similarly if you append to it with the leaving variant of
   1.271 +		// Append, AppendL, if may grow on demand
   1.272 +		s.AppendL(L"Two ");
   1.273 +
   1.274 +		// The += operator for LString also maps to AppendL
   1.275 +		s += L"Three ";
   1.276 +
   1.277 +		// You can also use new leaving format methods that also grow
   1.278 +		// on demand
   1.279 +		s.AppendFormatL(KTesting);
   1.280 +
   1.281 +		// This general style of use of LString may be preferable to
   1.282 +		// typical descriptor use for a number of reasons e.g. it
   1.283 +		// avoids the common temptation to set an artificial maximum
   1.284 +		// buffer size; it avoids massive conservative over-allocation
   1.285 +		// when the average case length of a string is far less than
   1.286 +		// the worst-case maximum; it will not surprise you (compared
   1.287 +		// to the alternative of a large stack-allocated TBuf) by
   1.288 +		// triggering stack overflow.
   1.289 +
   1.290 +		// An LString can be printed the same way as any descriptor
   1.291 +		test.Printf(_L("Value: %S\n"), &s);
   1.292 +
   1.293 +		// An LString supports all TDesC and TDes methods
   1.294 +		// LString findToken(L"Two ");
   1.295 +		test(s.Find(L"Two ") == 4);
   1.296 +		
   1.297 +		// LString matchPattern(L"*Two* ");
   1.298 +		test(s.Match(L"*Two*") == 4);
   1.299 +		test(s.Match(L"*T?o*") == 4);
   1.300 +		
   1.301 +		// LString compare(L"some string");
   1.302 +		test(s.Compare(L"One Two Three Testing ") == 0);
   1.303 +		test(s.Compare(L"One Two Three Testing! ") < 0);
   1.304 +		test(s.Compare(L"One Two Testing ") > 0);
   1.305 +		
   1.306 +		// also LString ==,!=,>,<,<=,>=(L"some string");
   1.307 +		test(s == L"One Two Three Testing ");
   1.308 +		test(s < L"One Two Three Testing! ");
   1.309 +		test(s > L"One Two Testing ");
   1.310 +		test(s != L"not equal");
   1.311 +		
   1.312 +		// An LString supports all TDesC and TDes operators
   1.313 +		test(s[4] == TChar('T'));
   1.314 +
   1.315 +		TInt untrimmed = s.Length();
   1.316 +		s.Trim();
   1.317 +		test(s.Length() == untrimmed - 1);
   1.318 +
   1.319 +		s.UpperCase();
   1.320 +		test.Printf(_L("UpperCase: %S\n"), &s);
   1.321 +		s.LowerCase();
   1.322 +		test.Printf(_L("LowerCase: %S\n"), &s);
   1.323 +
   1.324 +		// The underlying heap allocated buffer is released
   1.325 +		// automatically when the LString goes out of scope, either
   1.326 +		// normally or through a leave
   1.327 +		}
   1.328 +		{
   1.329 +		// Copy, Append,Insert,Replace,Justify the same way as TDesC and TDes
   1.330 +		
   1.331 +		LString s;
   1.332 +		// Copies data into this 8-bit string descriptor, replacing any existing
   1.333 +		// data, and expanding its heap buffer to accommodate if necessary.
   1.334 +		// leaves on not being able to accomodate the new content
   1.335 +		// both AssignL and += use CopyL internally
   1.336 +		s.CopyL(L"new way of dealing with strings");
   1.337 +		s.CopyUCL(L"new way of dealing with strings");
   1.338 +		test(s == L"NEW WAY OF DEALING WITH STRINGS");
   1.339 +		
   1.340 +		// Insert data into this descriptor.
   1.341 +		// The length of this descriptor is changed to reflect the extra data.
   1.342 +		// This leaving variant of the standard, non-leaving descriptor method
   1.343 +		// differs in that this operation may cause the string descriptor's heap
   1.344 +		// buffer to be reallocated in order to accommodate the new data. As a
   1.345 +		// result, MaxLength() and Ptr() may return different values afterwards,
   1.346 +		// and any existing raw pointers to into the descriptor data may be
   1.347 +		// invalidated.
   1.348 +		s.CopyL(L"Some Content Can Be Into This String");
   1.349 +		s.InsertL(20,L"Inserted ");
   1.350 +		test(s == L"Some Content Can Be Inserted Into This String");
   1.351 +		
   1.352 +		// Replace data in this descriptor.
   1.353 +		// The specified length can be different to the length of the replacement data.
   1.354 +		// The length of this descriptor changes to reflect the change of data.
   1.355 +		// This leaving variant of the standard, non-leaving descriptor method
   1.356 +		// differs in that this operation may cause the string descriptor's heap
   1.357 +		// buffer to be reallocated in order to accommodate the new data. As a
   1.358 +		// result, MaxLength() and Ptr() may return different values afterwards,
   1.359 +		// and any existing raw pointers to into the descriptor data may be
   1.360 +		// invalidated.
   1.361 +		s.CopyL(L"Some Content Can Be Decalper");
   1.362 +		s.ReplaceL(20,8,L"Replaced");
   1.363 +		test(s == L"Some Content Can Be Replaced");
   1.364 +		
   1.365 +		// Append data onto the end of this descriptor's data.
   1.366 +		// The length of this descriptor is incremented to reflect the new content.
   1.367 +		// This leaving variant of the standard, non-leaving descriptor method
   1.368 +		// differs in that this operation may cause the string descriptor's heap
   1.369 +		// buffer to be reallocated in order to accommodate the new data. As a
   1.370 +		// result, MaxLength() and Ptr() may return different values afterwards,
   1.371 +		// and any existing raw pointers to into the descriptor data may be
   1.372 +		// invalidated.
   1.373 +		s.CopyL(L"Try appending ");
   1.374 +		s.AppendL(L"Try appending some more",3);
   1.375 +		test(s == L"Try appending Try");
   1.376 +		
   1.377 +		// Copy data into this descriptor and justifies it, replacing any existing data.
   1.378 +		// The length of this descriptor is set to reflect the new data.
   1.379 +		// The target area is considered to be an area of specified width positioned at
   1.380 +		// the beginning of this descriptor's data area. Source data is copied into, and
   1.381 +		// aligned within this target area according to the specified alignment
   1.382 +		// instruction.
   1.383 +		// If the length of the target area is larger than the length of the source, then
   1.384 +		// spare space within the target area is padded with the fill character.
   1.385 +		// This leaving variant of the standard, non-leaving descriptor method
   1.386 +		// differs in that this operation may cause the string descriptor's heap
   1.387 +		// buffer to be reallocated in order to accommodate the new data. As a
   1.388 +		// result, MaxLength() and Ptr() may return different values afterwards,
   1.389 +		// and any existing raw pointers to into the descriptor data may be
   1.390 +		// invalidated.
   1.391 +		s.CopyL(L"Justified");
   1.392 +		s.JustifyL(L"Just",9,ERight,'x');
   1.393 +		test(s == L"xxxxxJust");
   1.394 +		
   1.395 +		// Append data onto the end of this descriptor's data and justifies it.
   1.396 +		// The source of the appended data is a memory location.
   1.397 +		// The target area is considered to be an area of specified width, immediately 
   1.398 +		// following this descriptor's existing data. Source data is copied into, and 
   1.399 +		// aligned within, this target area according to the specified alignment instruction.
   1.400 +		// If the length of the target area is larger than the length of the source, 
   1.401 +		// then spare space within the target area is padded with the fill character.
   1.402 +		// This leaving variant of the standard, non-leaving descriptor method
   1.403 +		// differs in that this operation may cause the string descriptor's heap
   1.404 +		// buffer to be reallocated in order to accommodate the new data. As a
   1.405 +		// result, MaxLength() and Ptr() may return different values afterwards,
   1.406 +		// and any existing raw pointers to into the descriptor data may be
   1.407 +		// invalidated.
   1.408 +		s.CopyL(L"One ");
   1.409 +		s.AppendJustifyL(L"Two Three",3,7,ERight,'x');
   1.410 +		test(s == L"One xxxxTwo" );
   1.411 +		
   1.412 +		}
   1.413 +		{
   1.414 +		// You can initialize with a MaxLength value
   1.415 +		LString s(KMaxFileName); // This operation may leave
   1.416 +		test(s.MaxLength() == KMaxFileName);
   1.417 +
   1.418 +		// And you can dynamically adjust MaxLength later using 
   1.419 +		// SetMaxLengthL if you want an exact allocated size
   1.420 +		// Setting MaxLength on construction or via SetMaxLengthL is
   1.421 +		// exact; calling MaxLength() immediately afterwards is
   1.422 +		// guaranteed to return exactly the value you specified
   1.423 +		s.SetMaxLengthL(2 * KMaxFileName);
   1.424 +		test(s.MaxLength() == 2 * KMaxFileName);
   1.425 +
   1.426 +		// Pre-setting MaxLength is important when passing an LString
   1.427 +		// as a TDes to a library function, because the LString can't
   1.428 +		// be auto-grown via the TDes API
   1.429 +
   1.430 +		}
   1.431 +
   1.432 +		{
   1.433 +		// You can initialize from any descriptor/literal/[wide]character string and the
   1.434 +		// string data is copied into the LString
   1.435 +		LString s(L"One "); // From a character string
   1.436 +		s += L"Two ";
   1.437 +		LString half(s.Left(s.Length() / 2)); // Left returns a TPtrC
   1.438 +		test.Printf(_L("All: %S, Half: %S\n"), &s, &half);
   1.439 +
   1.440 +		// On the other hand, you can initialize from a returned
   1.441 +		// HBufC* and the LString automatically takes ownership
   1.442 +		LString own(AllocateNameL(KTesting));
   1.443 +		test.Printf(_L("What I own: %S\n"), &own);
   1.444 +
   1.445 +		// Following that you can re-assign an HBufC to an existing
   1.446 +		// string using the assignment operator 
   1.447 +		// taking ownership of the new content. 
   1.448 +		own = AllocateNameL(KTesting);
   1.449 +		
   1.450 +		// Following that you can re-assign an HBufC to an existing
   1.451 +		// string. The string destroys its original content before
   1.452 +		// taking ownership of the new content. 
   1.453 +		own.Assign(AllocateNameL(KTesting));
   1.454 +		
   1.455 +		// The content of one string can similarly be assigned
   1.456 +		// to another to avoid copying. In this example, the content 
   1.457 +		// is detached from 's' and transfered to 'own'.  
   1.458 +		own.Assign(s);
   1.459 +		
   1.460 +		// The same content transfer can be achieved from an RBuf to a
   1.461 +		// string. You may need to do this if a legacy method returns
   1.462 +		// you an RBuf. The RBuf is emptied of its content.
   1.463 +		RBuf16 buf;
   1.464 +		buf.CreateL(KOne);
   1.465 +		own.Assign(buf);
   1.466 +	
   1.467 +		// You can also assign a simple text array to a string as its
   1.468 +		// new buffer. This method initialises the length to zero.   
   1.469 +		own.Assign((TText*)User::Alloc(24*(TInt)sizeof(TText)), 24);
   1.470 +		
   1.471 +		// If the buffer has already been filled with some characters
   1.472 +		// then you supply the length in this alternative Assign method.   
   1.473 +		own.Assign((TText*)User::Alloc(24*(TInt)sizeof(TText)), 12,24);
   1.474 +
   1.475 +		// Each Assign destroys the old content before assuming ownership
   1.476 +		// of the new.
   1.477 +		// As usual the last content of the string is destroyed when the 
   1.478 +		// LString goes out of scope
   1.479 +		}
   1.480 +
   1.481 +		{
   1.482 +		// You can reserve extra free space in preparation for an 
   1.483 +		// operation that adds characters to the string. You may
   1.484 +		// need to do this when you cannot use any of the auto-buffer
   1.485 +		// extending LString methods to achieve your objective.
   1.486 +		LString s(L"One ");
   1.487 +		s.ReserveFreeCapacityL(4);
   1.488 +		test(s.Length() == 4);
   1.489 +		test(s.MaxLength() >= 8);
   1.490 +
   1.491 +		// Almost all the methods that may extended the string buffer,
   1.492 +		// including the explicit ReserveFreeCapacityL, but excluding
   1.493 +		// SetMaxLengthL, attempt to grow the size exponentially. 
   1.494 +		// The Exponential growth pattern is expected to give better 
   1.495 +		// performance at an amortised complexity of O(n) when adding n characters.
   1.496 +		// If the exponential growth is less than the supplied extra size
   1.497 +		// then the supplied size is used instead to save time.
   1.498 +		// The exponential growth is used in anticipation of further additions
   1.499 +		// to a string. This trades-off speed efficiency for space efficiency.
   1.500 +		// If required you may be able to swap the oversized buffer for 
   1.501 +		// a more compact one using:
   1.502 +		s.Compress();
   1.503 +		test(s.MaxLength() >= 4);	//note indefinite test
   1.504 +		    
   1.505 +		// Resize attempts to re-allocate a smaller buffer to copy
   1.506 +		// the content into. If the new memory cannot be allocated then the
   1.507 +		// original string is left unaffected. 
   1.508 +		
   1.509 +		// When you have finished using the content of a string you can
   1.510 +		// get its buffer released without destroying the string itself. 
   1.511 +		// You may want to do this when using member declared strings.
   1.512 +		// Automatic strings are destroyed when they go out of scope.
   1.513 +		s.Reset();
   1.514 +		test(s.Length() == 0);
   1.515 +		test(s.MaxLength() == 0);
   1.516 +		
   1.517 +		}
   1.518 +
   1.519 +		{
   1.520 +		// An LString can be passed directly to any function requiring
   1.521 +		// a const TDesC&
   1.522 +		TInt year = 2009;
   1.523 +
   1.524 +		LString s;
   1.525 +		s.FormatL(_L("Happy New Year %d"), year);
   1.526 +		// InfoPrint takes a const TDesC&
   1.527 +		User::InfoPrint(s);
   1.528 +
   1.529 +		LString pattern;
   1.530 +		pattern.FormatL(_L("*Year %d"), year);
   1.531 +		// Match takes a const TDesC& as a pattern
   1.532 +		TInt loc = s.Match(pattern);
   1.533 +		test(loc == 10);
   1.534 +		}
   1.535 +
   1.536 +		{
   1.537 +		// An LString can be passed directly to any function requiring
   1.538 +		// a TDes& but care must always be taken to pre-set MaxLength
   1.539 +		// since LStrings can't be automatically grown via the TDes
   1.540 +		// interface
   1.541 +
   1.542 +		LString s;
   1.543 +		// Calling GetCurrentPath(s) now would panic because LStrings
   1.544 +		// are initialized by default to MaxLength 0.  Although s is
   1.545 +		// an LString GetCurrentPath takes a TDes& and so inside the function
   1.546 +		// s behaves as a TDes and would panic with USER 11 if the resulting 
   1.547 +		// new length of s is greater than its maximum length.
   1.548 +		test(s.MaxLength() == 0);
   1.549 +
   1.550 +		// Calling SetMaxLengthL will automatically realloc the
   1.551 +		// underlying buffer if required, and is guaranteed to leave
   1.552 +		// MaxLength() equal to the specified value
   1.553 +		s.SetMaxLengthL(KMaxFileName);
   1.554 +		GetCurrentPath(s);
   1.555 +		//LString pathString(L"c:\\a\\b\\c");
   1.556 +		test.Printf(_L("Path: %S\n"), &s);
   1.557 +		test(s == L"c:\\a\\b\\c");
   1.558 +
   1.559 +		// If SetMaxLengthL adjusts MaxLength lower than the current
   1.560 +		// Length, the data is truncated to the new MaxLength and
   1.561 +		// Length set to the new MaxLength
   1.562 +		s.SetMaxLengthL(s.Length() / 2);
   1.563 +		test.Printf(_L("Truncated path: %S\n"), &s);
   1.564 +		test(s.Length() == s.MaxLength());
   1.565 +
   1.566 +		// An initial MaxLength can be specified when constructing an
   1.567 +		// LString. Note that unlike the default constructor, this
   1.568 +		// variant allocates and may leave.
   1.569 +		LString s2(KMaxFileName);
   1.570 +		GetCurrentPath(s2);
   1.571 +		test.Printf(_L("Path: %S\n"), &s2);
   1.572 +		test(s2 == L"c:\\a\\b\\c");
   1.573 +
   1.574 +		// Your code and APIs can benefit from LString's auto-growth
   1.575 +		// behaviour by accepting an LString to fill in as an output
   1.576 +		// parameter. Using LString rather than TDes parameters means 
   1.577 +		// that the function is able to safely increase the size of the 
   1.578 +		// string as the LString will re-allocate as necessary
   1.579 +		LString s3;
   1.580 +		// GetCurrentPathStringL takes an LString&
   1.581 +		GetCurrentPathStringL(s3);
   1.582 +		test.Printf(_L("Path: %S\n"), &s3);
   1.583 +		test(s3 == L"c:\\a\\b\\c");
   1.584 +
   1.585 +		// As a well-defined value class, if you want to, LStrings can
   1.586 +		// be passed and returned by value. This is relatively
   1.587 +		// inefficient however due to the amount of copying and heap
   1.588 +		// reallocation involved. 
   1.589 +		LString s4(AppendCurrentPathStringL(s3));
   1.590 +		test.Printf(_L("Appended path: %S\n"), &s4);
   1.591 +		test(s4.Length() == s3.Length() * 2);
   1.592 +		}
   1.593 +
   1.594 +		{
   1.595 +		// LStrings can be allocated on the heap if necessary. 
   1.596 +		// Then it can managed as part of an array of string pointers
   1.597 +		TInt n = 5;
   1.598 +		LCleanedupHandle<RPointerArray<LString>, TResetAndDestroy> sarray;
   1.599 +
   1.600 +		for (TInt i = 0; i < n; ++i) 
   1.601 +			{
   1.602 +			LString* s = new(ELeave) LString;
   1.603 +			s->FormatL(_L("String %d"), i);
   1.604 +			sarray->Append(s);
   1.605 +			}
   1.606 +
   1.607 +		for (TInt i = 0, n = sarray->Count(); i < n; ++i) 
   1.608 +			{
   1.609 +			LString tmp;
   1.610 +			tmp.FormatL(_L("String %d"), i);
   1.611 +			test(tmp == *(*sarray)[i]);
   1.612 +			test.Printf(_L("String %d = %S\n"), i, (*sarray)[i]);
   1.613 +			}
   1.614 +
   1.615 +		}
   1.616 +
   1.617 +		{
   1.618 +		// Any allocation failure in new(ELeave)LString throws
   1.619 +		// KErrNoMemory and cleans up after itself fully
   1.620 +
   1.621 +		__UHEAP_MARK;
   1.622 +		//coverity[resource_leak]
   1.623 +		//As mentioned in the comment above any allocation failure is taken care of
   1.624 +		TRAPD(status, new(ELeave) LString(100 * 1024 * 1024));
   1.625 +		test(status == KErrNoMemory);
   1.626 +		__UHEAP_MARKEND;
   1.627 +		}
   1.628 +
   1.629 +		{
   1.630 +		// Native C arrays (both heap and stack allocated) of LStrings
   1.631 +		// also work, although their use is not recommended
   1.632 +
   1.633 +		TInt n = 5;
   1.634 +		LCleanedupArray<LString> sarray(new(ELeave) LString[n]);
   1.635 +
   1.636 +		for (TInt i = 0; i < n; ++i) 
   1.637 +			{
   1.638 +			sarray[i].FormatL(_L("String %d"), i);
   1.639 +			}
   1.640 +
   1.641 +		for (TInt i = 0; i < n; ++i) 
   1.642 +			{
   1.643 +			LString tmp;
   1.644 +			tmp.FormatL(_L("String %d"), i);
   1.645 +			test(tmp == sarray[i]);
   1.646 +			test.Printf(_L("String %d = %S\n"), i, &sarray[i]);
   1.647 +			}
   1.648 +
   1.649 +		}
   1.650 +		{
   1.651 +		// 8-bit wide null terminated character string support
   1.652 +		
   1.653 +		// A default constructed LString8 starts empty, doesn't
   1.654 +		// allocate any memory on the heap, and therefore the
   1.655 +		// following cannot leave
   1.656 +		LString8 s;
   1.657 +
   1.658 +		// But it will grow on demand if you assign to it, so it has
   1.659 +		// enough space to hold the copied string data, and so
   1.660 +		// assignment may leave
   1.661 +		s ="One ";
   1.662 +
   1.663 +		// Similarly if you append to it with the leaving variant of
   1.664 +		// Append, AppendL, if may grow on demand
   1.665 +		s.AppendL("Two ");
   1.666 +
   1.667 +		// The += operator for LString8 also maps to AppendL
   1.668 +		s +="Three ";
   1.669 +		s +="Testing ";
   1.670 +
   1.671 +		// An LString8 can be printed the same way as any descriptor
   1.672 +		test.Printf(_L("Value: %S \n"), &s);
   1.673 +
   1.674 +		// An LString8 can be compared the same way as any descriptor
   1.675 +		test(s == "One Two Three Testing ");
   1.676 +
   1.677 +		// An LString8 supports all TDesC and TDes methods
   1.678 +		// LString findToken("Two ");
   1.679 +		test(s.Find("Two ") == 4);
   1.680 +		
   1.681 +		// LString8 matchPattern("*Two* ");
   1.682 +		test(s.Match("*Two*") == 4);
   1.683 +		test(s.Match("*T?o*") == 4);
   1.684 +		
   1.685 +		// LString8 compare("some string");
   1.686 +		test(s.Compare("One Two Three Testing ") == 0);
   1.687 +		test(s.Compare("One Two Three Testing! ") < 0);
   1.688 +		test(s.Compare("One Two Testing ") > 0);
   1.689 +		
   1.690 +		// also LString8 ==,!=,>,<,<=,>=(L"some string");
   1.691 +		test(s == "One Two Three Testing ");
   1.692 +		test(s < "One Two Three Testing! ");
   1.693 +		test(s > "One Two Testing ");
   1.694 +		test(s != "not equal");
   1.695 +		
   1.696 +		// Copies data into this 8-bit string descriptor, replacing any existing
   1.697 +		// data, and expanding its heap buffer to accommodate if necessary.
   1.698 +		// leaves on not being able to accomodate the new content
   1.699 +		// both AssignL and += use CopyL internally
   1.700 +		s.CopyL("new way of dealing with strings");
   1.701 +		
   1.702 +
   1.703 +		// Copy, Append,Insert,Replace,Justify the same way as TDesC8 and TDes8
   1.704 +
   1.705 +		// Copies data into this 8-bit string descriptor, replacing any existing
   1.706 +		// data, and expanding its heap buffer to accommodate if necessary.
   1.707 +		// leaves on not being able to accomodate the new content
   1.708 +		// both AssignL and += use CopyL internally
   1.709 +		s.CopyL("new way of dealing with strings");
   1.710 +		s.CopyUCL("new way of dealing with strings");
   1.711 +		test(s == "NEW WAY OF DEALING WITH STRINGS");
   1.712 +		
   1.713 +		// Insert data into this descriptor.
   1.714 +		// The length of this descriptor is changed to reflect the extra data.
   1.715 +		// This leaving variant of the standard, non-leaving descriptor method
   1.716 +		// differs in that this operation may cause the string descriptor's heap
   1.717 +		// buffer to be reallocated in order to accommodate the new data. As a
   1.718 +		// result, MaxLength() and Ptr() may return different values afterwards,
   1.719 +		// and any existing raw pointers to into the descriptor data may be
   1.720 +		// invalidated.
   1.721 +		s.CopyL("Some Content Can Be Into This String");
   1.722 +		s.InsertL(20,"Inserted ");
   1.723 +		test(s == "Some Content Can Be Inserted Into This String");
   1.724 +		
   1.725 +		// Replace data in this descriptor.
   1.726 +		// The specified length can be different to the length of the replacement data.
   1.727 +		// The length of this descriptor changes to reflect the change of data.
   1.728 +		// This leaving variant of the standard, non-leaving descriptor method
   1.729 +		// differs in that this operation may cause the string descriptor's heap
   1.730 +		// buffer to be reallocated in order to accommodate the new data. As a
   1.731 +		// result, MaxLength() and Ptr() may return different values afterwards,
   1.732 +		// and any existing raw pointers to into the descriptor data may be
   1.733 +		// invalidated.
   1.734 +		s.CopyL("Some Content Can Be Decalper");
   1.735 +		s.ReplaceL(20,8,"Replaced");
   1.736 +		test(s == "Some Content Can Be Replaced");
   1.737 +		
   1.738 +		// Append data onto the end of this descriptor's data.
   1.739 +		// The length of this descriptor is incremented to reflect the new content.
   1.740 +		// This leaving variant of the standard, non-leaving descriptor method
   1.741 +		// differs in that this operation may cause the string descriptor's heap
   1.742 +		// buffer to be reallocated in order to accommodate the new data. As a
   1.743 +		// result, MaxLength() and Ptr() may return different values afterwards,
   1.744 +		// and any existing raw pointers to into the descriptor data may be
   1.745 +		// invalidated.
   1.746 +		s.CopyL("Try appending ");
   1.747 +		s.AppendL("Try appending some more",3);
   1.748 +		test(s == "Try appending Try");
   1.749 +		
   1.750 +		// Copy data into this descriptor and justifies it, replacing any existing data.
   1.751 +		// The length of this descriptor is set to reflect the new data.
   1.752 +		// The target area is considered to be an area of specified width positioned at
   1.753 +		// the beginning of this descriptor's data area. Source data is copied into, and
   1.754 +		// aligned within this target area according to the specified alignment
   1.755 +		// instruction.
   1.756 +		// If the length of the target area is larger than the length of the source, then
   1.757 +		// spare space within the target area is padded with the fill character.
   1.758 +		// This leaving variant of the standard, non-leaving descriptor method
   1.759 +		// differs in that this operation may cause the string descriptor's heap
   1.760 +		// buffer to be reallocated in order to accommodate the new data. As a
   1.761 +		// result, MaxLength() and Ptr() may return different values afterwards,
   1.762 +		// and any existing raw pointers to into the descriptor data may be
   1.763 +		// invalidated.
   1.764 +		s.CopyL("Justified");
   1.765 +		s.JustifyL("Just",9,ERight,'x');
   1.766 +		test(s == "xxxxxJust");
   1.767 +		
   1.768 +		// Append data onto the end of this descriptor's data and justifies it.
   1.769 +		// The source of the appended data is a memory location.
   1.770 +		// The target area is considered to be an area of specified width, immediately 
   1.771 +		// following this descriptor's existing data. Source data is copied into, and 
   1.772 +		// aligned within, this target area according to the specified alignment instruction.
   1.773 +		// If the length of the target area is larger than the length of the source, 
   1.774 +		// then spare space within the target area is padded with the fill character.
   1.775 +		// This leaving variant of the standard, non-leaving descriptor method
   1.776 +		// differs in that this operation may cause the string descriptor's heap
   1.777 +		// buffer to be reallocated in order to accommodate the new data. As a
   1.778 +		// result, MaxLength() and Ptr() may return different values afterwards,
   1.779 +		// and any existing raw pointers to into the descriptor data may be
   1.780 +		// invalidated.
   1.781 +		s.CopyL("One ");
   1.782 +		s.AppendJustifyL("Two Three",3,7,ERight,'x');
   1.783 +		test(s == "One xxxxTwo" );
   1.784 +		
   1.785 +		}
   1.786 +		
   1.787 +	}
   1.788 +
   1.789 +// This class demonstrates the use of the embeddable management
   1.790 +// classes in a conventional Symbian two-phase construction
   1.791 +// pattern. 
   1.792 +class CManagedUserTwoPhase : public CBase
   1.793 +	{
   1.794 +public:
   1.795 +	static CManagedUserTwoPhase* NewL(CTicker* aTicker)
   1.796 +		{
   1.797 +		// We can use the resource management utility classes in
   1.798 +		// two-phase if we want to
   1.799 +		LCleanedupPtr<CManagedUserTwoPhase> self(new(ELeave) CManagedUserTwoPhase);
   1.800 +		self->ConstructL(aTicker);
   1.801 +		// Calling Unmanage() disables cleanup and yields the
   1.802 +		// previously managed pointer so that it can be safely
   1.803 +		// returned
   1.804 +		return self.Unmanage(); 
   1.805 +		}
   1.806 +
   1.807 +	~CManagedUserTwoPhase()
   1.808 +		{
   1.809 +		// The iTicker manager will automatically delete the CTicker
   1.810 +		// The iTimer manager will automatically Close() the RTimer
   1.811 +		}
   1.812 +
   1.813 +	CTicker& Ticker()
   1.814 +		{
   1.815 +		// If we dereference the management object we get a CTicker&
   1.816 +		return *iTicker;
   1.817 +		}
   1.818 +
   1.819 +	RTimer& Timer()
   1.820 +		{
   1.821 +		// If we dereference the management object we get an RTimer&
   1.822 +		return *iTimer;
   1.823 +		}
   1.824 +
   1.825 +private:
   1.826 +	
   1.827 +	virtual void ConstructL(CTicker* aTicker)
   1.828 +		{
   1.829 +		// Take ownership and manage aTicker 
   1.830 +		iTicker = aTicker; 
   1.831 +
   1.832 +		// Note use of -> to indirect through the management wrapper
   1.833 +		iTimer->CreateLocal() OR_LEAVE; 
   1.834 +		}
   1.835 +	
   1.836 +	CManagedUserTwoPhase()
   1.837 +		{
   1.838 +		// Everything interesting happens in ConstructL in this
   1.839 +		// version. 
   1.840 +
   1.841 +		// Default initialization of the iName LString does not
   1.842 +		// allocate a heap buffer, and so cannot leave. As long as
   1.843 +		// initialization is deferred to ConstructL, LStrings can be
   1.844 +		// used safely with two-phase construction.
   1.845 +		}
   1.846 +
   1.847 +private:
   1.848 +	// We have to use LManagedXxx for fields, not LCleanedupXxx
   1.849 +	LManagedPtr<CTicker> iTicker;
   1.850 +	LManagedHandle<RTimer> iTimer;
   1.851 +	};
   1.852 +
   1.853 +// This class demonstrates the use of embedded management classes in
   1.854 +// the single-phase construction pattern, where a leave-safe
   1.855 +// constructor fully initializes the object.
   1.856 +//
   1.857 +// Note that where a class's constructor forms part of its exported
   1.858 +// public or protected contract, switching from a non-leaving to a
   1.859 +// potentially leaving constructor would be a BC break. On the other
   1.860 +// hand, if instantiation is entirely encapsulated within factory
   1.861 +// functions like NewL, there is no such BC restriction.
   1.862 +
   1.863 +class CManagedUserSinglePhase : public CBase
   1.864 +	{
   1.865 +public:
   1.866 +	// This macro is necessary to ensure cleanup is correctly handled
   1.867 +	// in the event that a constructor may leave beneath a call to
   1.868 +	// new(ELeave)
   1.869 +	CONSTRUCTORS_MAY_LEAVE
   1.870 +
   1.871 +	static CManagedUserSinglePhase* NewL(CTicker* aTicker)
   1.872 +		{
   1.873 +		return new(ELeave) CManagedUserSinglePhase(aTicker);
   1.874 +		}
   1.875 +
   1.876 +	~CManagedUserSinglePhase()
   1.877 +		{
   1.878 +		// The iTicker manager destructor will automatically Zap() the CTicker
   1.879 +		// The iTimer manager destructor will automatically Close() the RTimer
   1.880 +		}
   1.881 +
   1.882 +	CTicker& Ticker()
   1.883 +		{
   1.884 +		// If we dereference the management object we get a CTicker&
   1.885 +		return *iTicker;
   1.886 +		}
   1.887 +
   1.888 +	RTimer& Timer()
   1.889 +		{
   1.890 +		// If we dereference the management object we get an RTimer&
   1.891 +		return *iTimer;
   1.892 +		}
   1.893 +
   1.894 +private:
   1.895 +	CManagedUserSinglePhase(CTicker* aTicker)
   1.896 +		// Take ownership and manage aTicker. Note that initialization
   1.897 +		// of the LManagedXxx classes does not actually leave, but
   1.898 +		// initialization of the LCleanedupXxx classes can.
   1.899 +		: iTicker(aTicker)
   1.900 +		{
   1.901 +		// If iTicker initialization is successful but the constructor
   1.902 +		// then goes on to leave later, iTicker (like all fields fully
   1.903 +		// constructed at the point of a leave in a constructor) will
   1.904 +		// be destructed, and the manager will cleanup the CTicker
   1.905 +
   1.906 +		// Note use of -> to indirect through the management wrapper
   1.907 +		iTimer->CreateLocal() OR_LEAVE; 
   1.908 +
   1.909 +		// Likewise if we leave here, both iTicker and iTimer will
   1.910 +		// undergo managed cleanup
   1.911 +		MaybeLeaveL();
   1.912 +		}
   1.913 +
   1.914 +private:
   1.915 +	// We have to use LManagedXxx for fields, not LCleanedupXxx
   1.916 +	LManagedPtr<CTicker, TTickerZapStrategy> iTicker;
   1.917 +	LManagedHandle<RTimer> iTimer;
   1.918 +	};
   1.919 +
   1.920 +//Class definition of trivial R-Class
   1.921 +class RSimple
   1.922 +	{
   1.923 +public:
   1.924 +	
   1.925 +	RSimple(){iData = NULL;}
   1.926 +	
   1.927 +	//Open function sets value
   1.928 +	void OpenL(TInt aValue)
   1.929 +		{
   1.930 +		iData = new(ELeave) TInt(aValue);
   1.931 +		}
   1.932 +	
   1.933 +	//Cleanup function – frees resource
   1.934 +	void Close()
   1.935 +		{
   1.936 +		delete iData;
   1.937 +		iData = NULL;
   1.938 +		}
   1.939 +
   1.940 +	//Cleanup function – frees resource
   1.941 +	void Free()
   1.942 +		{
   1.943 +		delete iData;
   1.944 +		iData = NULL;
   1.945 +		}
   1.946 +
   1.947 +	//Cleanup function – frees resource
   1.948 +	void ReleaseData()
   1.949 +		{
   1.950 +		delete iData;
   1.951 +		iData = NULL;
   1.952 +		}
   1.953 +	
   1.954 +	//static cleanup function – frees aRSimple resources
   1.955 +	static void Cleanup(TAny* aRSimple)
   1.956 +		{
   1.957 +		static_cast<RSimple*>(aRSimple)->Close();
   1.958 +		}
   1.959 +
   1.960 +
   1.961 +private:
   1.962 +	TInt* iData;
   1.963 +
   1.964 +	};
   1.965 +
   1.966 +
   1.967 +//This sets the default cleanup behaviour for the RSimple class to 
   1.968 +//be RSimple::ReleaseData.
   1.969 +//If this Macro is not used then the default cleanup behaviour
   1.970 +//would be to call RSimple::Close().
   1.971 +DEFINE_CLEANUP_FUNCTION(RSimple, ReleaseData);
   1.972 +
   1.973 +
   1.974 +void WalkthroughManagedL()
   1.975 +	{
   1.976 +		{
   1.977 +		// Trivially exercise the manager-using classes defined above
   1.978 +		CTicker* ticker1 = new(ELeave) CTicker;
   1.979 +		LCleanedupPtr<CManagedUserTwoPhase> one(CManagedUserTwoPhase::NewL(ticker1));
   1.980 +		test(&one->Ticker() == ticker1);
   1.981 +		one->Timer().Cancel(); // Just to check we can get at it
   1.982 +
   1.983 +		CTicker* ticker2 = new(ELeave) CTicker;
   1.984 +		LCleanedupPtr<CManagedUserSinglePhase> two(CManagedUserSinglePhase::NewL(ticker2));
   1.985 +		test(&two->Ticker() == ticker2);
   1.986 +		two->Timer().Cancel(); // Just to check we can get at it
   1.987 +
   1.988 +		// Both instances are automatically deleted as we go out of scope
   1.989 +		}
   1.990 +
   1.991 +		// Always use LCleanedupXxx for locals, not LManagedXxx
   1.992 +
   1.993 +		{
   1.994 +		// Begin the scenes the LCleanedupXxx constructors push a
   1.995 +		// cleanup item onto the cleanup stack and so may leave. If
   1.996 +		// there is a leave during construction, the supplied pointer
   1.997 +		// will still get cleaned up.
   1.998 +		LCleanedupPtr<CTicker> t(new(ELeave) CTicker);
   1.999 +
  1.1000 +		// We can access CTicker's members via the management object
  1.1001 +		// using ->
  1.1002 +		t->Tick();
  1.1003 +		t->Tock();
  1.1004 +		test(t->iTicks == t->iTocks);
  1.1005 +
  1.1006 +		// We can get at a reference to the managed object using *
  1.1007 +		// when we need to, e.g. if we need to pass it to a function
  1.1008 +		RegisterTicker(*t); // Takes a CTicker&
  1.1009 +
  1.1010 +		// If some unfriendly interface needs a pointer rather than a
  1.1011 +		// ref, we have a couple of options
  1.1012 +		RegisterTickerPtr(&*t); // Takes a CTicker*
  1.1013 +		RegisterTickerPtr(t.Get()); // Takes a CTicker*
  1.1014 +
  1.1015 +		// Note the use of . in t.Get() above; this distinguishes
  1.1016 +		// operations on the managing type from operations on the
  1.1017 +		// managed object
  1.1018 +		
  1.1019 +		// When the management object goes out of scope, either
  1.1020 +		// normally or as the result of a leave, the managed object is
  1.1021 +		// automatically deleted
  1.1022 +		}
  1.1023 +
  1.1024 +		{
  1.1025 +		// Sometimes you need to protect something temporarily before
  1.1026 +		// transferring ownership e.g. by returning the pointer or
  1.1027 +		// passing it to a function that takes ownership.
  1.1028 +
  1.1029 +		LCleanedupPtr<CTicker> t(new(ELeave) CTicker);
  1.1030 +
  1.1031 +		// Protected while we do this
  1.1032 +		MaybeLeaveL(); 
  1.1033 +
  1.1034 +		// But now we want to hand it off, so we use Unmanage() to
  1.1035 +		// both return a pointer and break the management link
  1.1036 +		TakeTickerOwnership(t.Unmanage());
  1.1037 +		
  1.1038 +		// Now when it goes out of scope, no cleanup action is
  1.1039 +		// performed
  1.1040 +		}
  1.1041 +
  1.1042 +		{
  1.1043 +		// If needed, it is possible to reuse a manager by using = to
  1.1044 +		// assign it a new managed object.
  1.1045 +
  1.1046 +		// Not managing anything to start with
  1.1047 +		LCleanedupPtr<CTicker> t;
  1.1048 +		test(t.Get() == NULL);
  1.1049 +		test(&*t == NULL);
  1.1050 +
  1.1051 +		for (TInt i = 0; i < 10; ++i)
  1.1052 +			{
  1.1053 +			// If an object is already being managed, it is cleaned up
  1.1054 +			// before taking ownership of the new object
  1.1055 +			t = new(ELeave) CTicker;
  1.1056 +			}
  1.1057 +		// We're left owning the final ticker instance, all prior
  1.1058 +		// instances having been automatically deleted
  1.1059 +		}
  1.1060 +
  1.1061 +		{
  1.1062 +		// If you have stateful code where a pointer can sometimes be
  1.1063 +		// NULL, as a convenience you can test the managing object
  1.1064 +		// itself as a shortcut test for NULL
  1.1065 +		LCleanedupPtr<CTicker> t(new(ELeave) CTicker);
  1.1066 +
  1.1067 +		// Does t refer to NULL?
  1.1068 +		if (!t)
  1.1069 +			{
  1.1070 +			test(EFalse);
  1.1071 +			}
  1.1072 +
  1.1073 +		t = NULL; // Also releases the currently managed CTicker 
  1.1074 +
  1.1075 +		// Does t refer to a non-NULL pointer?
  1.1076 +		if (t)
  1.1077 +			{
  1.1078 +			test(EFalse);
  1.1079 +			}
  1.1080 +		}
  1.1081 +
  1.1082 +		{
  1.1083 +		// LCleanedupPtr uses delete to cleanup by default, but
  1.1084 +		// alternative cleanups can be specified
  1.1085 +
  1.1086 +		// We just want to free this one and not invoke the destructor
  1.1087 +		LCleanedupPtr<CTicker, TPointerFree> t(static_cast<CTicker*>(User::AllocL(sizeof(CTicker))));
  1.1088 +
  1.1089 +		// Now User::Free() is called when t goes out of scope
  1.1090 +		}
  1.1091 +
  1.1092 +		{
  1.1093 +		// As well as the stock options, custom cleanup policies can
  1.1094 +		// also be defined. See above for the definition of
  1.1095 +		// TTickerZap.
  1.1096 +		LCleanedupPtr<CTicker, TTickerZapStrategy> t(new(ELeave) CTicker);
  1.1097 +
  1.1098 +		// Now Zap() is called on the CTicker instance when t goes out of scope
  1.1099 +		}
  1.1100 +
  1.1101 +		{
  1.1102 +		// LCleanedupHandle is very similar in behaviour to
  1.1103 +		// LCleanedupPtr, the main difference being that it can define
  1.1104 +		// and contain its own instance of a handle rather than
  1.1105 +		// being supplied one
  1.1106 +		LCleanedupHandle<RTimer> t;
  1.1107 +
  1.1108 +		// Again, access to managed handle members is via ->
  1.1109 +		t->CreateLocal() OR_LEAVE;
  1.1110 +		t->Cancel();
  1.1111 +
  1.1112 +		// We can get a reference to the handle for passing to
  1.1113 +		// functions using *
  1.1114 +		RegisterTimer(*t);
  1.1115 +
  1.1116 +		// When the management object goes out of scope, either
  1.1117 +		// normally or as the result of a leave, the managed object is
  1.1118 +		// automatically cleanup by calling Close() on it
  1.1119 +		}
  1.1120 +
  1.1121 +		{
  1.1122 +		// LCleanedupHandle calls Close() by default, but alternative
  1.1123 +		// cleanups can be specified
  1.1124 +		
  1.1125 +		// We want this RPointerArray cleanup with with
  1.1126 +		// ResetAndDestroy instead of Close()
  1.1127 +		LCleanedupHandle<RPointerArray<HBufC>, TResetAndDestroy> array;
  1.1128 +		for (TInt i = 0; i < 10; ++i) 
  1.1129 +			{
  1.1130 +			array->AppendL(HBufC::NewL(5));
  1.1131 +			}
  1.1132 +
  1.1133 +		// Now when array goes out of scope, ResetAndDestroy is called
  1.1134 +		// to clean it up
  1.1135 +		}
  1.1136 +
  1.1137 +		{
  1.1138 +		// As well as the stock options, custom cleanup policies can
  1.1139 +		// also be defined. See above for the definition of
  1.1140 +		// TCancelClose.
  1.1141 +		LCleanedupHandle<RTimer, TCancelClose> t;
  1.1142 +		t->CreateLocal();
  1.1143 +
  1.1144 +		// Now Cancel() followed by Close() are called when t goes out
  1.1145 +		// of scope
  1.1146 +		}
  1.1147 +
  1.1148 +
  1.1149 +		{
  1.1150 +		// LCleanedupHandleRef calls Close() by default, but alternative
  1.1151 +		// cleanups can be specified
  1.1152 +		
  1.1153 +		// We want this RPointerArray cleanup with with
  1.1154 +		// ResetAndDestroy instead of Close()
  1.1155 +		RPointerArray<HBufC> rar;
  1.1156 +		// calls to functions that cannot leave here
  1.1157 +		rar.Append(HBufC::NewL(5));
  1.1158 +		rar.Append(HBufC::NewL(5));
  1.1159 +
  1.1160 +
  1.1161 +		LCleanedupRef<RPointerArray<HBufC>, TResetAndDestroy> array(rar);
  1.1162 +		// calls to functions that could leave here
  1.1163 +		for (TInt i = 0; i < 10; ++i) 
  1.1164 +			{
  1.1165 +			array->AppendL(HBufC::NewL(5));
  1.1166 +			}
  1.1167 +
  1.1168 +		// Now when array goes out of scope, ResetAndDestroy is called
  1.1169 +		// to clean it up
  1.1170 +		}
  1.1171 +
  1.1172 +		{
  1.1173 +		// Never mix direct cleanup stack API calls with management
  1.1174 +		// class use within the same function, because their
  1.1175 +		// interaction can be confusing and counter intuitive. Avoid
  1.1176 +		// the use of LC methods that leave objects on the cleanup
  1.1177 +		// stack, and use L methods instead.
  1.1178 +
  1.1179 +		// If a badly-behaved API were to offer only an LC variant,
  1.1180 +		// you would have to use it as follows
  1.1181 +		HBufC* raw = HBufC::NewLC(5);
  1.1182 +		// Must pop immediately to balance the cleanup stack, before
  1.1183 +		// instantiating the manager
  1.1184 +		CleanupStack::Pop(); 
  1.1185 +		LCleanedupPtr<HBufC> wrapped(raw);
  1.1186 +
  1.1187 +		// Never do this:
  1.1188 +		//LCleanedupPtr<HBufC> buf(HBufC::NewLC(5));
  1.1189 +		//CleanupStack::Pop();
  1.1190 +		// because the manager will be popped (having been pushed
  1.1191 +		// last), not the raw buf pointer as you might have hoped
  1.1192 +
  1.1193 +		// A cleaner alternative may be to write your own L function
  1.1194 +		// wrapper around the LC function supplied.
  1.1195 +
  1.1196 +		// Luckily this situation (an LC method without a
  1.1197 +		// corresponding L method) is rare in practice.
  1.1198 +		}
  1.1199 +
  1.1200 +		{
  1.1201 +		// Although rarely used on Symbian OS, C++ arrays are
  1.1202 +		// supported with a custom management class
  1.1203 +		LCleanedupArray<CTicker> array(new CTicker[5]);
  1.1204 +
  1.1205 +		// The array is cleaned up with delete[] on scope exit
  1.1206 +		}
  1.1207 +
  1.1208 +		{
  1.1209 +		// Although most cases are best covered by applying custom
  1.1210 +		// cleanup policies to the management classes already
  1.1211 +		// described, there is also a general TCleanupItem style
  1.1212 +		// cleanup option
  1.1213 +		TAny* data = NULL; // But could be anything
  1.1214 +		LCleanedupGuard guard1(BespokeCleanupFunction, data);
  1.1215 +		// On scope exit BespokeCleanupFunction is called on data
  1.1216 +
  1.1217 +		LCleanedupGuard guard2(BespokeCleanupFunction, data);
  1.1218 +		// But cleanup can also be disabled in this case, as follows
  1.1219 +		guard2.Dismiss();
  1.1220 +		}
  1.1221 +		
  1.1222 +		{
  1.1223 +		TInt r =KErrNone;	
  1.1224 +		LCleanedupHandle<RFs> managedFs;
  1.1225 +		r = managedFs->Connect();
  1.1226 +		if (r != KErrNone)
  1.1227 +		 {
  1.1228 +			User::Leave(r);
  1.1229 +		 }
  1.1230 +		//default cleanup strategy is to call RFs::Close() on scope exit
  1.1231 +		}
  1.1232 +		
  1.1233 +		{
  1.1234 +		LCleanedupHandle<RSimple, TFree> simple;
  1.1235 +		simple->OpenL(23);
  1.1236 +		//Specified cleanup strategy is to call RSimple::Free() on scope exit
  1.1237 +		}
  1.1238 +	
  1.1239 +		//Because the DEFINE_CLEANUP_FUNCTION is defined above, the default
  1.1240 +		//cleanup function for RSimple is RSimple::ReleaseData() rather than
  1.1241 +		//RSimple::Close()
  1.1242 +		{
  1.1243 +		LCleanedupHandle<RSimple> simple;
  1.1244 +		simple->OpenL(23);
  1.1245 +		//Custom cleanup strategy is to call RSimple::ReleaseData() on scope exit
  1.1246 +		}
  1.1247 +		
  1.1248 +		{
  1.1249 +		RSimple simple;
  1.1250 +		
  1.1251 +		//The RSimple class above defines a static cleanup function
  1.1252 +		//RSimple::Cleanup.
  1.1253 +		LCleanedupGuard guard(RSimple::Cleanup, &simple);
  1.1254 +
  1.1255 +		simple.OpenL(10);
  1.1256 +		
  1.1257 +		//On scope exit RSimple::Cleanup() is called passing &simple
  1.1258 +		}
  1.1259 +	}
  1.1260 +
  1.1261 +void WalkthroughUsageL()
  1.1262 +	{
  1.1263 +	RFile file;
  1.1264 +	
  1.1265 +	test.Printf(_L("Size of RFile = %d"), sizeof(file));
  1.1266 +	
  1.1267 +	LCleanedupHandle<RFile> cFile;
  1.1268 +	
  1.1269 +	test.Printf(_L("Size of LCleanedupHandle<RFile> = %d"), sizeof(cFile));
  1.1270 +	
  1.1271 +	LCleanedupRef<RFile> crFile(file);
  1.1272 +	
  1.1273 +	test.Printf(_L("Size of LCleanedupRef<RFile> = %d"), sizeof(crFile));
  1.1274 +	
  1.1275 +	CTicker* tracker = new(ELeave) CTicker;
  1.1276 +	//coverity[resource_leak]
  1.1277 +	//As mentioned in the comment above any allocation failure is taken care of
  1.1278 +	test.Printf(_L("Size of CTracker* = %d"), sizeof(tracker));
  1.1279 +	
  1.1280 +	LCleanedupPtr<CTicker> cTracker(tracker);
  1.1281 +	
  1.1282 +	test.Printf(_L("Size of LCleanedupHandle<RFile> = %d"), sizeof(LCleanedupPtr<CTicker>));
  1.1283 +	}
  1.1284 +
  1.1285 +TInt TestL()
  1.1286 +	{
  1.1287 +	WalkthroughStringsL();
  1.1288 +	WalkthroughManagedL();
  1.1289 +	WalkthroughUsageL();
  1.1290 +
  1.1291 +	return KErrNone;
  1.1292 +	}
  1.1293 +
  1.1294 +TInt E32Main()
  1.1295 +	{
  1.1296 +
  1.1297 +	test.Start(_L("EUserHl Walkthrough"));
  1.1298 +	test.Title();
  1.1299 +
  1.1300 +	CTrapCleanup* trapHandler=CTrapCleanup::New();
  1.1301 +	test(trapHandler!=NULL);
  1.1302 +	
  1.1303 +	__UHEAP_MARK;
  1.1304 +	
  1.1305 +	TRAPD(status, TestL());
  1.1306 +	
  1.1307 +	__UHEAP_MARKEND;
  1.1308 +
  1.1309 +	if (status != KErrNone) test.Printf(_L("Error: %d\n"), status);
  1.1310 +	
  1.1311 +	test.Printf(_L("Test Completed with Error: %d"),status);
  1.1312 +	
  1.1313 +	return status;
  1.1314 +	}
  1.1315 +
  1.1316 +
  1.1317 +// eof