os/ossrv/genericopenlibs/cstdlib/LMATH/S_EXPM1.C
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/genericopenlibs/cstdlib/LMATH/S_EXPM1.C	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,271 @@
     1.4 +/* S_EXPM1.C
     1.5 + * 
     1.6 + * Portions Copyright (c) 1993-2005 Nokia Corporation and/or its subsidiary(-ies).
     1.7 + * All rights reserved.
     1.8 + */
     1.9 +
    1.10 +
    1.11 +/* @(#)s_expm1.c 5.1 93/09/24 */
    1.12 +/*
    1.13 + * ====================================================
    1.14 + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
    1.15 + *
    1.16 + * Developed at SunPro, a Sun Microsystems, Inc. business.
    1.17 + * Permission to use, copy, modify, and distribute this
    1.18 + * software is freely granted, provided that this notice 
    1.19 + * is preserved.
    1.20 + * ====================================================
    1.21 + */
    1.22 +
    1.23 +/*
    1.24 +FUNCTION
    1.25 +	<<expm1>>, <<expm1f>>---exponential minus 1
    1.26 +INDEX
    1.27 +	expm1
    1.28 +INDEX
    1.29 +	expm1f
    1.30 +
    1.31 +ANSI_SYNOPSIS
    1.32 +	#include <math.h>
    1.33 +	double expm1(double <[x]>);
    1.34 +	float expm1f(float <[x]>);
    1.35 +
    1.36 +TRAD_SYNOPSIS
    1.37 +	#include <math.h>
    1.38 +	double expm1(<[x]>);
    1.39 +	double <[x]>;
    1.40 +
    1.41 +	float expm1f(<[x]>);
    1.42 +	float <[x]>;
    1.43 +
    1.44 +DESCRIPTION
    1.45 +	<<expm1>> and <<expm1f>> calculate the exponential of <[x]>
    1.46 +	and subtract 1, that is,
    1.47 +	@ifinfo
    1.48 +	e raised to the power <[x]> minus 1 (where e
    1.49 +	@end ifinfo
    1.50 +	@tex
    1.51 +	$e^x - 1$ (where $e$
    1.52 +	@end tex
    1.53 +	is the base of the natural system of logarithms, approximately
    1.54 +	2.71828).  The result is accurate even for small values of
    1.55 +	<[x]>, where using <<exp(<[x]>)-1>> would lose many
    1.56 +	significant digits.
    1.57 +
    1.58 +RETURNS
    1.59 +	e raised to the power <[x]>, minus 1.
    1.60 +
    1.61 +PORTABILITY
    1.62 +	Neither <<expm1>> nor <<expm1f>> is required by ANSI C or by
    1.63 +	the System V Interface Definition (Issue 2).
    1.64 +*/
    1.65 +
    1.66 +/* expm1(x)
    1.67 + * Returns exp(x)-1, the exponential of x minus 1.
    1.68 + *
    1.69 + * Method
    1.70 + *   1. Argument reduction:
    1.71 + *	Given x, find r and integer k such that
    1.72 + *
    1.73 + *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658  
    1.74 + *
    1.75 + *      Here a correction term c will be computed to compensate 
    1.76 + *	the error in r when rounded to a floating-point number.
    1.77 + *
    1.78 + *   2. Approximating expm1(r) by a special rational function on
    1.79 + *	the interval [0,0.34658]:
    1.80 + *	Since
    1.81 + *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
    1.82 + *	we define R1(r*r) by
    1.83 + *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
    1.84 + *	That is,
    1.85 + *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
    1.86 + *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
    1.87 + *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
    1.88 + *      We use a special Reme algorithm on [0,0.347] to generate 
    1.89 + * 	a polynomial of degree 5 in r*r to approximate R1. The 
    1.90 + *	maximum error of this polynomial approximation is bounded 
    1.91 + *	by 2**-61. In other words,
    1.92 + *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
    1.93 + *	where 	Q1  =  -1.6666666666666567384E-2,
    1.94 + * 		Q2  =   3.9682539681370365873E-4,
    1.95 + * 		Q3  =  -9.9206344733435987357E-6,
    1.96 + * 		Q4  =   2.5051361420808517002E-7,
    1.97 + * 		Q5  =  -6.2843505682382617102E-9;
    1.98 + *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
    1.99 + *	with error bounded by
   1.100 + *	    |                  5           |     -61
   1.101 + *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2 
   1.102 + *	    |                              |
   1.103 + *	
   1.104 + *	expm1(r) = exp(r)-1 is then computed by the following 
   1.105 + * 	specific way which minimize the accumulation rounding error: 
   1.106 + *			       2     3
   1.107 + *			      r     r    [ 3 - (R1 + R1*r/2)  ]
   1.108 + *	      expm1(r) = r + --- + --- * [--------------------]
   1.109 + *		              2     2    [ 6 - r*(3 - R1*r/2) ]
   1.110 + *	
   1.111 + *	To compensate the error in the argument reduction, we use
   1.112 + *		expm1(r+c) = expm1(r) + c + expm1(r)*c 
   1.113 + *			   ~ expm1(r) + c + r*c 
   1.114 + *	Thus c+r*c will be added in as the correction terms for
   1.115 + *	expm1(r+c). Now rearrange the term to avoid optimization 
   1.116 + * 	screw up:
   1.117 + *		        (      2                                    2 )
   1.118 + *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
   1.119 + *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
   1.120 + *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
   1.121 + *                      (                                             )
   1.122 + *    	
   1.123 + *		   = r - E
   1.124 + *   3. Scale back to obtain expm1(x):
   1.125 + *	From step 1, we have
   1.126 + *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
   1.127 + *		    = or     2^k*[expm1(r) + (1-2^-k)]
   1.128 + *   4. Implementation notes:
   1.129 + *	(A). To save one multiplication, we scale the coefficient Qi
   1.130 + *	     to Qi*2^i, and replace z by (x^2)/2.
   1.131 + *	(B). To achieve maximum accuracy, we compute expm1(x) by
   1.132 + *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
   1.133 + *	  (ii)  if k=0, return r-E
   1.134 + *	  (iii) if k=-1, return 0.5*(r-E)-0.5
   1.135 + *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
   1.136 + *	       	       else	     return  1.0+2.0*(r-E);
   1.137 + *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
   1.138 + *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
   1.139 + *	  (vii) return 2^k(1-((E+2^-k)-r)) 
   1.140 + *
   1.141 + * Special cases:
   1.142 + *	expm1(INF) is INF, expm1(NaN) is NaN;
   1.143 + *	expm1(-INF) is -1, and
   1.144 + *	for finite argument, only expm1(0)=0 is exact.
   1.145 + *
   1.146 + * Accuracy:
   1.147 + *	according to an error analysis, the error is always less than
   1.148 + *	1 ulp (unit in the last place).
   1.149 + *
   1.150 + * Misc. info.
   1.151 + *	For IEEE double 
   1.152 + *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
   1.153 + *
   1.154 + * Constants:
   1.155 + * The hexadecimal values are the intended ones for the following 
   1.156 + * constants. The decimal values may be used, provided that the 
   1.157 + * compiler will convert from decimal to binary accurately enough
   1.158 + * to produce the hexadecimal values shown.
   1.159 + */
   1.160 +
   1.161 +#include "FDLIBM.H"
   1.162 +
   1.163 +static const double
   1.164 +one		= 1.0,
   1.165 +huge		= 1.0e+300,
   1.166 +tiny		= 1.0e-300,
   1.167 +o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
   1.168 +ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
   1.169 +ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
   1.170 +invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
   1.171 +	/* scaled coefficients related to expm1 */
   1.172 +Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
   1.173 +Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
   1.174 +Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
   1.175 +Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
   1.176 +Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
   1.177 +
   1.178 +/**
   1.179 +Calculate the exponential of x and subtract 1 
   1.180 +that is raised to the power x minus 1
   1.181 +@return e raised to the power x, minus 1.
   1.182 +@param x e's power.
   1.183 +*/	
   1.184 +EXPORT_C double expm1(double x) __SOFTFP
   1.185 +{
   1.186 +	double y,hi,lo,c = 0.0,t,e,hxs,hfx,r1;
   1.187 +	__int32_t k,xsb;
   1.188 +	__uint32_t hx;
   1.189 +
   1.190 +	GET_HIGH_WORD(hx,x);
   1.191 +	xsb = hx&0x80000000;		/* sign bit of x */
   1.192 +	if(xsb==0) y=x; else y= -x;	/* y = |x| */
   1.193 +	hx &= 0x7fffffff;		/* high word of |x| */
   1.194 +
   1.195 +    /* filter out huge and non-finite argument */
   1.196 +	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
   1.197 +	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
   1.198 +                if(hx>=0x7ff00000) {
   1.199 +		    __uint32_t low;
   1.200 +		    GET_LOW_WORD(low,x);
   1.201 +		    if(((hx&0xfffff)|low)!=0) 
   1.202 +		         return x+x; 	 /* NaN */
   1.203 +		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
   1.204 +	        }
   1.205 +	        if(x > o_threshold) return huge*huge; /* overflow */
   1.206 +	    }
   1.207 +	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
   1.208 +		if(x+tiny<0.0)		/* raise inexact */
   1.209 +		return tiny-one;	/* return -1 */
   1.210 +	    }
   1.211 +	}
   1.212 +
   1.213 +    /* argument reduction */
   1.214 +	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */ 
   1.215 +	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
   1.216 +		if(xsb==0)
   1.217 +		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
   1.218 +		else
   1.219 +		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
   1.220 +	    } else {
   1.221 +		k  = invln2*x+((xsb==0)?0.5:-0.5);
   1.222 +		t  = k;
   1.223 +		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
   1.224 +		lo = t*ln2_lo;
   1.225 +	    }
   1.226 +	    x  = hi - lo;
   1.227 +	    c  = (hi-x)-lo;
   1.228 +	} 
   1.229 +	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
   1.230 +	    t = huge+x;	/* return x with inexact flags when x!=0 */
   1.231 +	    return x - (t-(huge+x));	
   1.232 +	}
   1.233 +	else k = 0;
   1.234 +
   1.235 +    /* x is now in primary range */
   1.236 +	hfx = 0.5*x;
   1.237 +	hxs = x*hfx;
   1.238 +	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
   1.239 +	t  = 3.0-r1*hfx;
   1.240 +	e  = hxs*((r1-t)/(6.0 - x*t));
   1.241 +	if(k==0) return x - (x*e-hxs);		/* c is 0 */
   1.242 +	else {
   1.243 +	    e  = (x*(e-c)-c);
   1.244 +	    e -= hxs;
   1.245 +	    if(k== -1) return 0.5*(x-e)-0.5;
   1.246 +	    if(k==1) {
   1.247 +	       	if(x < -0.25) return -2.0*(e-(x+0.5));
   1.248 +	       	else 	      return  one+2.0*(x-e);
   1.249 +		}
   1.250 +	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
   1.251 +	        __uint32_t high;
   1.252 +	        y = one-(e-x);
   1.253 +		GET_HIGH_WORD(high,y);
   1.254 +		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
   1.255 +	        return y-one;
   1.256 +	    }
   1.257 +	    t = one;
   1.258 +	    if(k<20) {
   1.259 +	        __uint32_t high;
   1.260 +	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
   1.261 +	       	y = t-(e-x);
   1.262 +		GET_HIGH_WORD(high,y);
   1.263 +		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
   1.264 +	   } else {
   1.265 +	        __uint32_t high;
   1.266 +		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
   1.267 +	       	y = x-(e+t);
   1.268 +	       	y += one;
   1.269 +		GET_HIGH_WORD(high,y);
   1.270 +		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
   1.271 +	    }
   1.272 +	}
   1.273 +	return y;
   1.274 +}