os/ossrv/compressionlibs/ziplib/test/oldezlib/EZLib/inftrees.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/compressionlibs/ziplib/test/oldezlib/EZLib/inftrees.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,456 @@
     1.4 +/* inftrees.c -- generate Huffman trees for efficient decoding
     1.5 + * Copyright (C) 1995-2002 Mark Adler
     1.6 + * For conditions of distribution and use, see copyright notice in zlib.h 
     1.7 + */
     1.8 +
     1.9 +#include "zutil.h"
    1.10 +#include "inftrees.h"
    1.11 +
    1.12 +#if !defined(BUILDFIXED) && !defined(STDC)
    1.13 +#  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
    1.14 +#endif
    1.15 +
    1.16 +const char inflate_copyright[] =
    1.17 +   " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
    1.18 +/*
    1.19 +  If you use the zlib library in a product, an acknowledgment is welcome
    1.20 +  in the documentation of your product. If for some reason you cannot
    1.21 +  include such an acknowledgment, I would appreciate that you keep this
    1.22 +  copyright string in the executable of your product.
    1.23 + */
    1.24 +struct internal_state  {int dummy;}; /* for buggy compilers */
    1.25 +
    1.26 +/* simplify the use of the inflate_huft type with some defines */
    1.27 +#define exop word.what.Exop
    1.28 +#define bits word.what.Bits
    1.29 +
    1.30 +
    1.31 +local int huft_build OF((
    1.32 +    uIntf *,            /* code lengths in bits */
    1.33 +    uInt,               /* number of codes */
    1.34 +    uInt,               /* number of "simple" codes */
    1.35 +    const uIntf *,      /* list of base values for non-simple codes */
    1.36 +    const uIntf *,      /* list of extra bits for non-simple codes */
    1.37 +    inflate_huft * FAR*,/* result: starting table */
    1.38 +    uIntf *,            /* maximum lookup bits (returns actual) */
    1.39 +    inflate_huft *,     /* space for trees */
    1.40 +    uInt *,             /* hufts used in space */
    1.41 +    uIntf * ));         /* space for values */
    1.42 +
    1.43 +/* Tables for deflate from PKZIP's appnote.txt. */
    1.44 +local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
    1.45 +        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
    1.46 +        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
    1.47 +        /* see note #13 above about 258 */
    1.48 +local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
    1.49 +        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
    1.50 +        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
    1.51 +local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
    1.52 +        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
    1.53 +        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
    1.54 +        8193, 12289, 16385, 24577};
    1.55 +local const uInt cpdext[30] = { /* Extra bits for distance codes */
    1.56 +        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
    1.57 +        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
    1.58 +        12, 12, 13, 13};
    1.59 +
    1.60 +/*
    1.61 +   Huffman code decoding is performed using a multi-level table lookup.
    1.62 +   The fastest way to decode is to simply build a lookup table whose
    1.63 +   size is determined by the longest code.  However, the time it takes
    1.64 +   to build this table can also be a factor if the data being decoded
    1.65 +   is not very long.  The most common codes are necessarily the
    1.66 +   shortest codes, so those codes dominate the decoding time, and hence
    1.67 +   the speed.  The idea is you can have a shorter table that decodes the
    1.68 +   shorter, more probable codes, and then point to subsidiary tables for
    1.69 +   the longer codes.  The time it costs to decode the longer codes is
    1.70 +   then traded against the time it takes to make longer tables.
    1.71 +
    1.72 +   This results of this trade are in the variables lbits and dbits
    1.73 +   below.  lbits is the number of bits the first level table for literal/
    1.74 +   length codes can decode in one step, and dbits is the same thing for
    1.75 +   the distance codes.  Subsequent tables are also less than or equal to
    1.76 +   those sizes.  These values may be adjusted either when all of the
    1.77 +   codes are shorter than that, in which case the longest code length in
    1.78 +   bits is used, or when the shortest code is *longer* than the requested
    1.79 +   table size, in which case the length of the shortest code in bits is
    1.80 +   used.
    1.81 +
    1.82 +   There are two different values for the two tables, since they code a
    1.83 +   different number of possibilities each.  The literal/length table
    1.84 +   codes 286 possible values, or in a flat code, a little over eight
    1.85 +   bits.  The distance table codes 30 possible values, or a little less
    1.86 +   than five bits, flat.  The optimum values for speed end up being
    1.87 +   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
    1.88 +   The optimum values may differ though from machine to machine, and
    1.89 +   possibly even between compilers.  Your mileage may vary.
    1.90 + */
    1.91 +
    1.92 +
    1.93 +/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
    1.94 +#define BMAX 15         /* maximum bit length of any code */
    1.95 +
    1.96 +local int huft_build(
    1.97 +uIntf *b,               /* code lengths in bits (all assumed <= BMAX) */
    1.98 +uInt n,                 /* number of codes (assumed <= 288) */
    1.99 +uInt s,                 /* number of simple-valued codes (0..s-1) */
   1.100 +const uIntf *d,         /* list of base values for non-simple codes */
   1.101 +const uIntf *e,         /* list of extra bits for non-simple codes */
   1.102 +inflate_huft * FAR *t,  /* result: starting table */
   1.103 +uIntf *m,               /* maximum lookup bits, returns actual */
   1.104 +inflate_huft *hp,       /* space for trees */
   1.105 +uInt *hn,               /* hufts used in space */
   1.106 +uIntf *v)               /* working area: values in order of bit length */
   1.107 +/* Given a list of code lengths and a maximum table size, make a set of
   1.108 +   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
   1.109 +   if the given code set is incomplete (the tables are still built in this
   1.110 +   case), or Z_DATA_ERROR if the input is invalid. */
   1.111 +{
   1.112 +  // Line to stop compiler warning about unused mandatory global variable
   1.113 +  char __z=inflate_copyright[0]; __z=__z;
   1.114 +
   1.115 +  uInt a;                       /* counter for codes of length k */
   1.116 +  uInt c[BMAX+1];               /* bit length count table */
   1.117 +  uInt f;                       /* i repeats in table every f entries */
   1.118 +  int g;                        /* maximum code length */
   1.119 +  int h;                        /* table level */
   1.120 +  register uInt i;              /* counter, current code */
   1.121 +  register uInt j;              /* counter */
   1.122 +  register int k;               /* number of bits in current code */
   1.123 +  int l;                        /* bits per table (returned in m) */
   1.124 +  uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
   1.125 +  register uIntf *p;            /* pointer into c[], b[], or v[] */
   1.126 +  inflate_huft *q;              /* points to current table */
   1.127 +  struct inflate_huft_s r;      /* table entry for structure assignment */
   1.128 +  inflate_huft *u[BMAX];        /* table stack */
   1.129 +  register int w;               /* bits before this table == (l * h) */
   1.130 +  uInt x[BMAX+1];               /* bit offsets, then code stack */
   1.131 +  uIntf *xp;                    /* pointer into x */
   1.132 +  int y;                        /* number of dummy codes added */
   1.133 +  uInt z;                       /* number of entries in current table */
   1.134 +
   1.135 +
   1.136 +  /* Generate counts for each bit length */
   1.137 +  p = c;
   1.138 +#define C0 *p++ = 0;
   1.139 +#define C2 C0 C0 C0 C0
   1.140 +#define C4 C2 C2 C2 C2
   1.141 +  C4                            /* clear c[]--assume BMAX+1 is 16 */
   1.142 +  p = b;  i = n;
   1.143 +  do {
   1.144 +    c[*p++]++;                  /* assume all entries <= BMAX */
   1.145 +  } while (--i);
   1.146 +  if (c[0] == n)                /* null input--all zero length codes */
   1.147 +  {
   1.148 +    *t = (inflate_huft *)Z_NULL;
   1.149 +    *m = 0;
   1.150 +    return Z_OK;
   1.151 +  }
   1.152 +
   1.153 +
   1.154 +  /* Find minimum and maximum length, bound *m by those */
   1.155 +  l = *m;
   1.156 +  for (j = 1; j <= BMAX; j++)
   1.157 +    if (c[j])
   1.158 +      break;
   1.159 +  k = j;                        /* minimum code length */
   1.160 +  if ((uInt)l < j)
   1.161 +    l = j;
   1.162 +  for (i = BMAX; i; i--)
   1.163 +    if (c[i])
   1.164 +      break;
   1.165 +  g = i;                        /* maximum code length */
   1.166 +  if ((uInt)l > i)
   1.167 +    l = i;
   1.168 +  *m = l;
   1.169 +
   1.170 +
   1.171 +  /* Adjust last length count to fill out codes, if needed */
   1.172 +  for (y = 1 << j; j < i; j++, y <<= 1)
   1.173 +    if ((y -= c[j]) < 0)
   1.174 +      return Z_DATA_ERROR;
   1.175 +  if ((y -= c[i]) < 0)
   1.176 +    return Z_DATA_ERROR;
   1.177 +  c[i] += y;
   1.178 +
   1.179 +
   1.180 +  /* Generate starting offsets into the value table for each length */
   1.181 +  x[1] = j = 0;
   1.182 +  p = c + 1;  xp = x + 2;
   1.183 +  while (--i) {                 /* note that i == g from above */
   1.184 +    *xp++ = (j += *p++);
   1.185 +  }
   1.186 +
   1.187 +
   1.188 +  /* Make a table of values in order of bit lengths */
   1.189 +  p = b;  i = 0;
   1.190 +  do {
   1.191 +    if ((j = *p++) != 0)
   1.192 +      v[x[j]++] = i;
   1.193 +  } while (++i < n);
   1.194 +  n = x[g];                     /* set n to length of v */
   1.195 +
   1.196 +
   1.197 +  /* Generate the Huffman codes and for each, make the table entries */
   1.198 +  x[0] = i = 0;                 /* first Huffman code is zero */
   1.199 +  p = v;                        /* grab values in bit order */
   1.200 +  h = -1;                       /* no tables yet--level -1 */
   1.201 +  w = -l;                       /* bits decoded == (l * h) */
   1.202 +  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
   1.203 +  q = (inflate_huft *)Z_NULL;   /* ditto */
   1.204 +  z = 0;                        /* ditto */
   1.205 +
   1.206 +  /* go through the bit lengths (k already is bits in shortest code) */
   1.207 +  for (; k <= g; k++)
   1.208 +  {
   1.209 +    a = c[k];
   1.210 +    while (a--)
   1.211 +    {
   1.212 +      /* here i is the Huffman code of length k bits for value *p */
   1.213 +      /* make tables up to required level */
   1.214 +      while (k > w + l)
   1.215 +      {
   1.216 +        h++;
   1.217 +        w += l;                 /* previous table always l bits */
   1.218 +
   1.219 +        /* compute minimum size table less than or equal to l bits */
   1.220 +        z = g - w;
   1.221 +        z = z > (uInt)l ? l : z;        /* table size upper limit */
   1.222 +        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
   1.223 +        {                       /* too few codes for k-w bit table */
   1.224 +          f -= a + 1;           /* deduct codes from patterns left */
   1.225 +          xp = c + k;
   1.226 +          if (j < z)
   1.227 +            while (++j < z)     /* try smaller tables up to z bits */
   1.228 +            {
   1.229 +              if ((f <<= 1) <= *++xp)
   1.230 +                break;          /* enough codes to use up j bits */
   1.231 +              f -= *xp;         /* else deduct codes from patterns */
   1.232 +            }
   1.233 +        }
   1.234 +        z = 1 << j;             /* table entries for j-bit table */
   1.235 +
   1.236 +        /* allocate new table */
   1.237 +        if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
   1.238 +          return Z_DATA_ERROR;  /* overflow of MANY */
   1.239 +        u[h] = q = hp + *hn;
   1.240 +        *hn += z;
   1.241 +
   1.242 +        /* connect to last table, if there is one */
   1.243 +        if (h)
   1.244 +        {
   1.245 +          x[h] = i;             /* save pattern for backing up */
   1.246 +          r.bits = (Byte)l;     /* bits to dump before this table */
   1.247 +          r.exop = (Byte)j;     /* bits in this table */
   1.248 +          j = i >> (w - l);
   1.249 +          r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
   1.250 +          u[h-1][j] = r;        /* connect to last table */
   1.251 +        }
   1.252 +        else
   1.253 +          *t = q;               /* first table is returned result */
   1.254 +      }
   1.255 +
   1.256 +      /* set up table entry in r */
   1.257 +      r.bits = (Byte)(k - w);
   1.258 +      if (p >= v + n)
   1.259 +        r.exop = 128 + 64;      /* out of values--invalid code */
   1.260 +      else if (*p < s)
   1.261 +      {
   1.262 +        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
   1.263 +        r.base = *p++;          /* simple code is just the value */
   1.264 +      }
   1.265 +      else
   1.266 +      {
   1.267 +        r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
   1.268 +        r.base = d[*p++ - s];
   1.269 +      }
   1.270 +
   1.271 +      /* fill code-like entries with r */
   1.272 +      f = 1 << (k - w);
   1.273 +      for (j = i >> w; j < z; j += f)
   1.274 +        q[j] = r;
   1.275 +
   1.276 +      /* backwards increment the k-bit code i */
   1.277 +      for (j = 1 << (k - 1); i & j; j >>= 1)
   1.278 +        i ^= j;
   1.279 +      i ^= j;
   1.280 +
   1.281 +      /* backup over finished tables */
   1.282 +      mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
   1.283 +      while ((i & mask) != x[h])
   1.284 +      {
   1.285 +        h--;                    /* don't need to update q */
   1.286 +        w -= l;
   1.287 +        mask = (1 << w) - 1;
   1.288 +      }
   1.289 +    }
   1.290 +  }
   1.291 +
   1.292 +
   1.293 +  /* Return Z_BUF_ERROR if we were given an incomplete table */
   1.294 +  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
   1.295 +}
   1.296 +
   1.297 +
   1.298 +int inflate_trees_bits(
   1.299 +uIntf *c,               /* 19 code lengths */
   1.300 +uIntf *bb,              /* bits tree desired/actual depth */
   1.301 +inflate_huft * FAR *tb, /* bits tree result */
   1.302 +inflate_huft *hp,       /* space for trees */
   1.303 +z_streamp z)            /* for messages */
   1.304 +{
   1.305 +  int r;
   1.306 +  uInt hn = 0;          /* hufts used in space */
   1.307 +  uIntf *v;             /* work area for huft_build */
   1.308 +
   1.309 +  if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
   1.310 +    return Z_MEM_ERROR;
   1.311 +  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
   1.312 +                 tb, bb, hp, &hn, v);
   1.313 +  if (r == Z_DATA_ERROR)
   1.314 +    z->msg = (char*)"oversubscribed dynamic bit lengths tree";
   1.315 +  else if (r == Z_BUF_ERROR || *bb == 0)
   1.316 +  {
   1.317 +    z->msg = (char*)"incomplete dynamic bit lengths tree";
   1.318 +    r = Z_DATA_ERROR;
   1.319 +  }
   1.320 +  ZFREE(z, v);
   1.321 +  return r;
   1.322 +}
   1.323 +
   1.324 +
   1.325 +int inflate_trees_dynamic(
   1.326 +uInt nl,                /* number of literal/length codes */
   1.327 +uInt nd,                /* number of distance codes */
   1.328 +uIntf *c,               /* that many (total) code lengths */
   1.329 +uIntf *bl,              /* literal desired/actual bit depth */
   1.330 +uIntf *bd,              /* distance desired/actual bit depth */
   1.331 +inflate_huft * FAR *tl, /* literal/length tree result */
   1.332 +inflate_huft * FAR *td, /* distance tree result */
   1.333 +inflate_huft *hp,       /* space for trees */
   1.334 +z_streamp z)            /* for messages */
   1.335 +{
   1.336 +  int r;
   1.337 +  uInt hn = 0;          /* hufts used in space */
   1.338 +  uIntf *v;             /* work area for huft_build */
   1.339 +
   1.340 +  /* allocate work area */
   1.341 +  if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   1.342 +    return Z_MEM_ERROR;
   1.343 +
   1.344 +  /* build literal/length tree */
   1.345 +  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
   1.346 +  if (r != Z_OK || *bl == 0)
   1.347 +  {
   1.348 +    if (r == Z_DATA_ERROR)
   1.349 +      z->msg = (char*)"oversubscribed literal/length tree";
   1.350 +    else if (r != Z_MEM_ERROR)
   1.351 +    {
   1.352 +      z->msg = (char*)"incomplete literal/length tree";
   1.353 +      r = Z_DATA_ERROR;
   1.354 +    }
   1.355 +    ZFREE(z, v);
   1.356 +    return r;
   1.357 +  }
   1.358 +
   1.359 +  /* build distance tree */
   1.360 +  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
   1.361 +  if (r != Z_OK || (*bd == 0 && nl > 257))
   1.362 +  {
   1.363 +    if (r == Z_DATA_ERROR)
   1.364 +      z->msg = (char*)"oversubscribed distance tree";
   1.365 +    else if (r == Z_BUF_ERROR) {
   1.366 +#ifdef PKZIP_BUG_WORKAROUND
   1.367 +      r = Z_OK;
   1.368 +    }
   1.369 +#else
   1.370 +      z->msg = (char*)"incomplete distance tree";
   1.371 +      r = Z_DATA_ERROR;
   1.372 +    }
   1.373 +    else if (r != Z_MEM_ERROR)
   1.374 +    {
   1.375 +      z->msg = (char*)"empty distance tree with lengths";
   1.376 +      r = Z_DATA_ERROR;
   1.377 +    }
   1.378 +    ZFREE(z, v);
   1.379 +    return r;
   1.380 +#endif
   1.381 +  }
   1.382 +
   1.383 +  /* done */
   1.384 +  ZFREE(z, v);
   1.385 +  return Z_OK;
   1.386 +}
   1.387 +
   1.388 +
   1.389 +/* build fixed tables only once--keep them here */
   1.390 +#ifdef BUILDFIXED
   1.391 +local int fixed_built = 0;
   1.392 +#define FIXEDH 544      /* number of hufts used by fixed tables */
   1.393 +local inflate_huft fixed_mem[FIXEDH];
   1.394 +local uInt fixed_bl;
   1.395 +local uInt fixed_bd;
   1.396 +local inflate_huft *fixed_tl;
   1.397 +local inflate_huft *fixed_td;
   1.398 +#else
   1.399 +#include "inffixed.h"
   1.400 +#endif
   1.401 +
   1.402 +
   1.403 +int inflate_trees_fixed(
   1.404 +uIntf *bl,               /* literal desired/actual bit depth */
   1.405 +uIntf *bd,               /* distance desired/actual bit depth */
   1.406 +const inflate_huft * FAR *tl,  /* literal/length tree result */
   1.407 +const inflate_huft * FAR *td,  /* distance tree result */
   1.408 +z_streamp /*z*/)             /* for memory allocation */
   1.409 +{
   1.410 +#ifdef BUILDFIXED
   1.411 +  /* build fixed tables if not already */
   1.412 +  if (!fixed_built)
   1.413 +  {
   1.414 +    int k;              /* temporary variable */
   1.415 +    uInt f = 0;         /* number of hufts used in fixed_mem */
   1.416 +    uIntf *c;           /* length list for huft_build */
   1.417 +    uIntf *v;           /* work area for huft_build */
   1.418 +
   1.419 +    /* allocate memory */
   1.420 +    if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   1.421 +      return Z_MEM_ERROR;
   1.422 +    if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   1.423 +    {
   1.424 +      ZFREE(z, c);
   1.425 +      return Z_MEM_ERROR;
   1.426 +    }
   1.427 +
   1.428 +    /* literal table */
   1.429 +    for (k = 0; k < 144; k++)
   1.430 +      c[k] = 8;
   1.431 +    for (; k < 256; k++)
   1.432 +      c[k] = 9;
   1.433 +    for (; k < 280; k++)
   1.434 +      c[k] = 7;
   1.435 +    for (; k < 288; k++)
   1.436 +      c[k] = 8;
   1.437 +    fixed_bl = 9;
   1.438 +    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
   1.439 +               fixed_mem, &f, v);
   1.440 +
   1.441 +    /* distance table */
   1.442 +    for (k = 0; k < 30; k++)
   1.443 +      c[k] = 5;
   1.444 +    fixed_bd = 5;
   1.445 +    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
   1.446 +               fixed_mem, &f, v);
   1.447 +
   1.448 +    /* done */
   1.449 +    ZFREE(z, v);
   1.450 +    ZFREE(z, c);
   1.451 +    fixed_built = 1;
   1.452 +  }
   1.453 +#endif
   1.454 +  *bl = fixed_bl;
   1.455 +  *bd = fixed_bd;
   1.456 +  *tl = fixed_tl;
   1.457 +  *td = fixed_td;
   1.458 +  return Z_OK;
   1.459 +}