1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/os/ossrv/compressionlibs/ziplib/src/zlib/trees.cpp Fri Jun 15 03:10:57 2012 +0200
1.3 @@ -0,0 +1,1322 @@
1.4 +/* Portions Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
1.5 + * All rights reserved.
1.6 + */
1.7 +
1.8 +/* trees.cpp -- output deflated data using Huffman coding
1.9 + * Copyright (C) 1995-2005 Jean-loup Gailly
1.10 + * For conditions of distribution and use, see copyright notice in zlib.h
1.11 + */
1.12 +
1.13 +/*
1.14 + * ALGORITHM
1.15 + *
1.16 + * The "deflation" process uses several Huffman trees. The more
1.17 + * common source values are represented by shorter bit sequences.
1.18 + *
1.19 + * Each code tree is stored in a compressed form which is itself
1.20 + * a Huffman encoding of the lengths of all the code strings (in
1.21 + * ascending order by source values). The actual code strings are
1.22 + * reconstructed from the lengths in the inflate process, as described
1.23 + * in the deflate specification.
1.24 + *
1.25 + * REFERENCES
1.26 + *
1.27 + * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1.28 + * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1.29 + *
1.30 + * Storer, James A.
1.31 + * Data Compression: Methods and Theory, pp. 49-50.
1.32 + * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1.33 + *
1.34 + * Sedgewick, R.
1.35 + * Algorithms, p290.
1.36 + * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1.37 + */
1.38 +
1.39 +/* @(#) $Id$ */
1.40 +
1.41 +/* #define GEN_TREES_H */
1.42 +
1.43 +#include "deflate.h"
1.44 +
1.45 +#ifdef DEBUG
1.46 +# include <ctype.h>
1.47 +#endif
1.48 +
1.49 +/* ===========================================================================
1.50 + * Constants
1.51 + */
1.52 +
1.53 +#define MAX_BL_BITS 7
1.54 +/* Bit length codes must not exceed MAX_BL_BITS bits */
1.55 +
1.56 +#define END_BLOCK 256
1.57 +/* end of block literal code */
1.58 +
1.59 +#define REP_3_6 16
1.60 +/* repeat previous bit length 3-6 times (2 bits of repeat count) */
1.61 +
1.62 +#define REPZ_3_10 17
1.63 +/* repeat a zero length 3-10 times (3 bits of repeat count) */
1.64 +
1.65 +#define REPZ_11_138 18
1.66 +/* repeat a zero length 11-138 times (7 bits of repeat count) */
1.67 +
1.68 +local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1.69 + = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1.70 +
1.71 +local const int extra_dbits[D_CODES] /* extra bits for each distance code */
1.72 + = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1.73 +
1.74 +local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1.75 + = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1.76 +
1.77 +local const uch bl_order[BL_CODES]
1.78 + = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1.79 +/* The lengths of the bit length codes are sent in order of decreasing
1.80 + * probability, to avoid transmitting the lengths for unused bit length codes.
1.81 + */
1.82 +
1.83 +#define Buf_size (8 * 2*sizeof(char))
1.84 +/* Number of bits used within bi_buf. (bi_buf might be implemented on
1.85 + * more than 16 bits on some systems.)
1.86 + */
1.87 +
1.88 +/* ===========================================================================
1.89 + * Local data. These are initialized only once.
1.90 + */
1.91 +
1.92 +#define DIST_CODE_LEN 512 /* see definition of array dist_code below */
1.93 +
1.94 +#if defined(GEN_TREES_H) || !defined(STDC)
1.95 +/* non ANSI compilers may not accept trees.h */
1.96 +
1.97 +local ct_data static_ltree[L_CODES+2];
1.98 +/* The static literal tree. Since the bit lengths are imposed, there is no
1.99 + * need for the L_CODES extra codes used during heap construction. However
1.100 + * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1.101 + * below).
1.102 + */
1.103 +
1.104 +local ct_data static_dtree[D_CODES];
1.105 +/* The static distance tree. (Actually a trivial tree since all codes use
1.106 + * 5 bits.)
1.107 + */
1.108 +
1.109 +uch _dist_code[DIST_CODE_LEN];
1.110 +/* Distance codes. The first 256 values correspond to the distances
1.111 + * 3 .. 258, the last 256 values correspond to the top 8 bits of
1.112 + * the 15 bit distances.
1.113 + */
1.114 +
1.115 +uch _length_code[MAX_MATCH-MIN_MATCH+1];
1.116 +/* length code for each normalized match length (0 == MIN_MATCH) */
1.117 +
1.118 +local int base_length[LENGTH_CODES];
1.119 +/* First normalized length for each code (0 = MIN_MATCH) */
1.120 +
1.121 +local int base_dist[D_CODES];
1.122 +/* First normalized distance for each code (0 = distance of 1) */
1.123 +
1.124 +#else
1.125 +# include "trees.h"
1.126 +#endif /* GEN_TREES_H */
1.127 +
1.128 +struct static_tree_desc_s {
1.129 + const ct_data *static_tree; /* static tree or NULL */
1.130 + const intf *extra_bits; /* extra bits for each code or NULL */
1.131 + int extra_base; /* base index for extra_bits */
1.132 + int elems; /* max number of elements in the tree */
1.133 + int max_length; /* max bit length for the codes */
1.134 +};
1.135 +#ifndef SYMBIAN_EZLIB_DEVICE
1.136 +local static_tree_desc static_l_desc =
1.137 +{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1.138 +
1.139 +local static_tree_desc static_d_desc =
1.140 +{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1.141 +
1.142 +local static_tree_desc static_bl_desc =
1.143 +{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1.144 +
1.145 +#else
1.146 +
1.147 +local const static_tree_desc static_l_desc =
1.148 +{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1.149 +
1.150 +local const static_tree_desc static_d_desc =
1.151 +{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1.152 +
1.153 +local const static_tree_desc static_bl_desc =
1.154 +{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1.155 +
1.156 +#endif //SYMBIAN_EZLIB_DEVICE
1.157 +
1.158 +
1.159 +/* ===========================================================================
1.160 + * Local (static) routines in this file.
1.161 + */
1.162 +
1.163 +local void tr_static_init OF((void));
1.164 +local void init_block OF((deflate_state *s));
1.165 +local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1.166 +local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1.167 +local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1.168 +local void build_tree OF((deflate_state *s, tree_desc *desc));
1.169 +local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1.170 +local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1.171 +local int build_bl_tree OF((deflate_state *s));
1.172 +local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1.173 + int blcodes));
1.174 +local void compress_block OF((deflate_state *s, ct_data *ltree,
1.175 + ct_data *dtree));
1.176 +local void set_data_type OF((deflate_state *s));
1.177 +local unsigned bi_reverse OF((unsigned value, int length));
1.178 +local void bi_windup OF((deflate_state *s));
1.179 +local void bi_flush OF((deflate_state *s));
1.180 +local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1.181 + int header));
1.182 +
1.183 +#ifdef GEN_TREES_H
1.184 +local void gen_trees_header OF((void));
1.185 +#endif
1.186 +
1.187 +#ifndef DEBUG
1.188 +# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1.189 + /* Send a code of the given tree. c and tree must not have side effects */
1.190 +
1.191 +#else /* DEBUG */
1.192 +# define send_code(s, c, tree) \
1.193 + { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1.194 + send_bits(s, tree[c].Code, tree[c].Len); }
1.195 +#endif
1.196 +
1.197 +/* ===========================================================================
1.198 + * Output a short LSB first on the stream.
1.199 + * IN assertion: there is enough room in pendingBuf.
1.200 + */
1.201 +#define put_short(s, w) { \
1.202 + put_byte(s, (uch)((w) & 0xff)); \
1.203 + put_byte(s, (uch)((ush)(w) >> 8)); \
1.204 +}
1.205 +
1.206 +/* ===========================================================================
1.207 + * Send a value on a given number of bits.
1.208 + * IN assertion: length <= 16 and value fits in length bits.
1.209 + */
1.210 +#ifdef DEBUG
1.211 +local void send_bits OF((deflate_state *s, int value, int length));
1.212 +
1.213 +#ifdef __SYMBIAN32__
1.214 +local void send_bits(deflate_state * s, int value,int length)
1.215 +#else
1.216 +local void send_bits(s, value, length)
1.217 + deflate_state *s;
1.218 + int value; /* value to send */
1.219 + int length; /* number of bits */
1.220 +#endif //__SYMBIAN32__
1.221 +{
1.222 + Tracevv((stderr," l %2d v %4x ", length, value));
1.223 + Assert(length > 0 && length <= 15, "invalid length");
1.224 + s->bits_sent += (ulg)length;
1.225 +
1.226 + /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1.227 + * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1.228 + * unused bits in value.
1.229 + */
1.230 + if (s->bi_valid > (int)Buf_size - length) {
1.231 + s->bi_buf |= (value << s->bi_valid);
1.232 + put_short(s, s->bi_buf);
1.233 + s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1.234 + s->bi_valid += length - Buf_size;
1.235 + } else {
1.236 + s->bi_buf |= value << s->bi_valid;
1.237 + s->bi_valid += length;
1.238 + }
1.239 +}
1.240 +#else /* !DEBUG */
1.241 +
1.242 +#define send_bits(s, value, length) \
1.243 +{ int len = length;\
1.244 + if (s->bi_valid > (int)Buf_size - len) {\
1.245 + int val = value;\
1.246 + s->bi_buf |= (val << s->bi_valid);\
1.247 + put_short(s, s->bi_buf);\
1.248 + s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1.249 + s->bi_valid += len - Buf_size;\
1.250 + } else {\
1.251 + s->bi_buf |= (value) << s->bi_valid;\
1.252 + s->bi_valid += len;\
1.253 + }\
1.254 +}
1.255 +#endif /* DEBUG */
1.256 +
1.257 +
1.258 +/* the arguments must not have side effects */
1.259 +
1.260 +/* ===========================================================================
1.261 + * Initialize the various 'constant' tables.
1.262 + */
1.263 +local void tr_static_init()
1.264 +{
1.265 +#if defined(GEN_TREES_H) || !defined(STDC)
1.266 + static int static_init_done = 0;
1.267 + int n; /* iterates over tree elements */
1.268 + int bits; /* bit counter */
1.269 + int length; /* length value */
1.270 + int code; /* code value */
1.271 + int dist; /* distance index */
1.272 + ush bl_count[MAX_BITS+1];
1.273 + /* number of codes at each bit length for an optimal tree */
1.274 +
1.275 + if (static_init_done) return;
1.276 +
1.277 + /* For some embedded targets, global variables are not initialized: */
1.278 + static_l_desc.static_tree = static_ltree;
1.279 + static_l_desc.extra_bits = extra_lbits;
1.280 + static_d_desc.static_tree = static_dtree;
1.281 + static_d_desc.extra_bits = extra_dbits;
1.282 + static_bl_desc.extra_bits = extra_blbits;
1.283 +
1.284 + /* Initialize the mapping length (0..255) -> length code (0..28) */
1.285 + length = 0;
1.286 + for (code = 0; code < LENGTH_CODES-1; code++) {
1.287 + base_length[code] = length;
1.288 + for (n = 0; n < (1<<extra_lbits[code]); n++) {
1.289 + _length_code[length++] = (uch)code;
1.290 + }
1.291 + }
1.292 + Assert (length == 256, "tr_static_init: length != 256");
1.293 + /* Note that the length 255 (match length 258) can be represented
1.294 + * in two different ways: code 284 + 5 bits or code 285, so we
1.295 + * overwrite length_code[255] to use the best encoding:
1.296 + */
1.297 + _length_code[length-1] = (uch)code;
1.298 +
1.299 + /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1.300 + dist = 0;
1.301 + for (code = 0 ; code < 16; code++) {
1.302 + base_dist[code] = dist;
1.303 + for (n = 0; n < (1<<extra_dbits[code]); n++) {
1.304 + _dist_code[dist++] = (uch)code;
1.305 + }
1.306 + }
1.307 + Assert (dist == 256, "tr_static_init: dist != 256");
1.308 + dist >>= 7; /* from now on, all distances are divided by 128 */
1.309 + for ( ; code < D_CODES; code++) {
1.310 + base_dist[code] = dist << 7;
1.311 + for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1.312 + _dist_code[256 + dist++] = (uch)code;
1.313 + }
1.314 + }
1.315 + Assert (dist == 256, "tr_static_init: 256+dist != 512");
1.316 +
1.317 + /* Construct the codes of the static literal tree */
1.318 + for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1.319 + n = 0;
1.320 + while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1.321 + while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1.322 + while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1.323 + while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1.324 + /* Codes 286 and 287 do not exist, but we must include them in the
1.325 + * tree construction to get a canonical Huffman tree (longest code
1.326 + * all ones)
1.327 + */
1.328 + gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1.329 +
1.330 + /* The static distance tree is trivial: */
1.331 + for (n = 0; n < D_CODES; n++) {
1.332 + static_dtree[n].Len = 5;
1.333 + static_dtree[n].Code = bi_reverse((unsigned)n, 5);
1.334 + }
1.335 + static_init_done = 1;
1.336 +
1.337 +# ifdef GEN_TREES_H
1.338 + gen_trees_header();
1.339 +# endif
1.340 +#endif /* defined(GEN_TREES_H) || !defined(STDC) */
1.341 +}
1.342 +/* ===========================================================================
1.343 + * Genererate the file trees.h describing the static trees.
1.344 + */
1.345 +#ifdef GEN_TREES_H
1.346 +# ifndef DEBUG
1.347 +# include <stdio.h>
1.348 +# endif
1.349 +
1.350 +# define SEPARATOR(i, last, width) \
1.351 + ((i) == (last)? "\n};\n\n" : \
1.352 + ((i) % (width) == (width)-1 ? ",\n" : ", "))
1.353 +
1.354 +void gen_trees_header()
1.355 +{
1.356 + FILE *header = fopen("trees.h", "w");
1.357 + int i;
1.358 +
1.359 + Assert (header != NULL, "Can't open trees.h");
1.360 + fprintf(header,
1.361 + "/* header created automatically with -DGEN_TREES_H */\n\n");
1.362 +
1.363 + fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
1.364 + for (i = 0; i < L_CODES+2; i++) {
1.365 + fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
1.366 + static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
1.367 + }
1.368 +
1.369 + fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
1.370 + for (i = 0; i < D_CODES; i++) {
1.371 + fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
1.372 + static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
1.373 + }
1.374 +
1.375 + fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
1.376 + for (i = 0; i < DIST_CODE_LEN; i++) {
1.377 + fprintf(header, "%2u%s", _dist_code[i],
1.378 + SEPARATOR(i, DIST_CODE_LEN-1, 20));
1.379 + }
1.380 +
1.381 + fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
1.382 + for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
1.383 + fprintf(header, "%2u%s", _length_code[i],
1.384 + SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
1.385 + }
1.386 +
1.387 + fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
1.388 + for (i = 0; i < LENGTH_CODES; i++) {
1.389 + fprintf(header, "%1u%s", base_length[i],
1.390 + SEPARATOR(i, LENGTH_CODES-1, 20));
1.391 + }
1.392 +
1.393 + fprintf(header, "local const int base_dist[D_CODES] = {\n");
1.394 + for (i = 0; i < D_CODES; i++) {
1.395 + fprintf(header, "%5u%s", base_dist[i],
1.396 + SEPARATOR(i, D_CODES-1, 10));
1.397 + }
1.398 +
1.399 + fclose(header);
1.400 +}
1.401 +#endif /* GEN_TREES_H */
1.402 +
1.403 +/* ===========================================================================
1.404 + * Initialize the tree data structures for a new zlib stream.
1.405 + */
1.406 +#ifdef __SYMBIAN32__
1.407 +void _tr_init( deflate_state * s)
1.408 +#else
1.409 +void _tr_init(s)
1.410 + deflate_state *s;
1.411 +#endif //__SYMBIAN32__
1.412 +{
1.413 + tr_static_init();
1.414 +
1.415 + s->l_desc.dyn_tree = s->dyn_ltree;
1.416 + s->l_desc.stat_desc = &static_l_desc;
1.417 +
1.418 + s->d_desc.dyn_tree = s->dyn_dtree;
1.419 + s->d_desc.stat_desc = &static_d_desc;
1.420 +
1.421 + s->bl_desc.dyn_tree = s->bl_tree;
1.422 + s->bl_desc.stat_desc = &static_bl_desc;
1.423 +
1.424 + s->bi_buf = 0;
1.425 + s->bi_valid = 0;
1.426 + s->last_eob_len = 8; /* enough lookahead for inflate */
1.427 +#ifdef DEBUG
1.428 + s->compressed_len = 0L;
1.429 + s->bits_sent = 0L;
1.430 +#endif
1.431 +
1.432 + /* Initialize the first block of the first file: */
1.433 + init_block(s);
1.434 +}
1.435 +
1.436 +/* ===========================================================================
1.437 + * Initialize a new block.
1.438 + */
1.439 +#ifdef __SYMBIAN32__
1.440 +local void init_block( deflate_state * s)
1.441 +#else
1.442 +local void init_block(s)
1.443 + deflate_state *s;
1.444 +#endif //__SYMBIAN32__
1.445 +{
1.446 + int n; /* iterates over tree elements */
1.447 +
1.448 + /* Initialize the trees. */
1.449 + for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
1.450 + for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
1.451 + for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1.452 +
1.453 + s->dyn_ltree[END_BLOCK].Freq = 1;
1.454 + s->opt_len = s->static_len = 0L;
1.455 + s->last_lit = s->matches = 0;
1.456 +}
1.457 +
1.458 +#define SMALLEST 1
1.459 +/* Index within the heap array of least frequent node in the Huffman tree */
1.460 +
1.461 +
1.462 +/* ===========================================================================
1.463 + * Remove the smallest element from the heap and recreate the heap with
1.464 + * one less element. Updates heap and heap_len.
1.465 + */
1.466 +#define pqremove(s, tree, top) \
1.467 +{\
1.468 + top = s->heap[SMALLEST]; \
1.469 + s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1.470 + pqdownheap(s, tree, SMALLEST); \
1.471 +}
1.472 +
1.473 +/* ===========================================================================
1.474 + * Compares to subtrees, using the tree depth as tie breaker when
1.475 + * the subtrees have equal frequency. This minimizes the worst case length.
1.476 + */
1.477 +#define smaller(tree, n, m, depth) \
1.478 + (tree[n].Freq < tree[m].Freq || \
1.479 + (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1.480 +
1.481 +/* ===========================================================================
1.482 + * Restore the heap property by moving down the tree starting at node k,
1.483 + * exchanging a node with the smallest of its two sons if necessary, stopping
1.484 + * when the heap property is re-established (each father smaller than its
1.485 + * two sons).
1.486 + */
1.487 +#ifdef __SYMBIAN32__
1.488 +local void pqdownheap( deflate_state * s,ct_data * tree,int k)
1.489 +#else
1.490 +local void pqdownheap(s, tree, k)
1.491 + deflate_state *s;
1.492 + ct_data *tree; /* the tree to restore */
1.493 + int k; /* node to move down */
1.494 +#endif //__SYMBIAN32__
1.495 +{
1.496 + int v = s->heap[k];
1.497 + int j = k << 1; /* left son of k */
1.498 + while (j <= s->heap_len) {
1.499 + /* Set j to the smallest of the two sons: */
1.500 + if (j < s->heap_len &&
1.501 + smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1.502 + j++;
1.503 + }
1.504 + /* Exit if v is smaller than both sons */
1.505 + if (smaller(tree, v, s->heap[j], s->depth)) break;
1.506 +
1.507 + /* Exchange v with the smallest son */
1.508 + s->heap[k] = s->heap[j]; k = j;
1.509 +
1.510 + /* And continue down the tree, setting j to the left son of k */
1.511 + j <<= 1;
1.512 + }
1.513 + s->heap[k] = v;
1.514 +}
1.515 +
1.516 +/* ===========================================================================
1.517 + * Compute the optimal bit lengths for a tree and update the total bit length
1.518 + * for the current block.
1.519 + * IN assertion: the fields freq and dad are set, heap[heap_max] and
1.520 + * above are the tree nodes sorted by increasing frequency.
1.521 + * OUT assertions: the field len is set to the optimal bit length, the
1.522 + * array bl_count contains the frequencies for each bit length.
1.523 + * The length opt_len is updated; static_len is also updated if stree is
1.524 + * not null.
1.525 + */
1.526 +#ifdef __SYMBIAN32__
1.527 +local void gen_bitlen( deflate_state * s, tree_desc * desc)
1.528 +#else
1.529 +local void gen_bitlen(s, desc)
1.530 + deflate_state *s;
1.531 + tree_desc *desc; /* the tree descriptor */
1.532 +#endif //__SYMBIAN32__
1.533 +{
1.534 + ct_data *tree = desc->dyn_tree;
1.535 + int max_code = desc->max_code;
1.536 + const ct_data *stree = desc->stat_desc->static_tree;
1.537 + const intf *extra = desc->stat_desc->extra_bits;
1.538 + int base = desc->stat_desc->extra_base;
1.539 + int max_length = desc->stat_desc->max_length;
1.540 + int h; /* heap index */
1.541 + int n, m; /* iterate over the tree elements */
1.542 + int bits; /* bit length */
1.543 + int xbits; /* extra bits */
1.544 + ush f; /* frequency */
1.545 + int overflow = 0; /* number of elements with bit length too large */
1.546 +
1.547 + for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1.548 +
1.549 + /* In a first pass, compute the optimal bit lengths (which may
1.550 + * overflow in the case of the bit length tree).
1.551 + */
1.552 + tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1.553 +
1.554 + for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1.555 + n = s->heap[h];
1.556 + bits = tree[tree[n].Dad].Len + 1;
1.557 + if (bits > max_length) bits = max_length, overflow++;
1.558 + tree[n].Len = (ush)bits;
1.559 + /* We overwrite tree[n].Dad which is no longer needed */
1.560 +
1.561 + if (n > max_code) continue; /* not a leaf node */
1.562 +
1.563 + s->bl_count[bits]++;
1.564 + xbits = 0;
1.565 + if (n >= base) xbits = extra[n-base];
1.566 + f = tree[n].Freq;
1.567 + s->opt_len += (ulg)f * (bits + xbits);
1.568 + if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1.569 + }
1.570 + if (overflow == 0) return;
1.571 +
1.572 + Trace((stderr,"\nbit length overflow\n"));
1.573 + /* This happens for example on obj2 and pic of the Calgary corpus */
1.574 +
1.575 + /* Find the first bit length which could increase: */
1.576 + do {
1.577 + bits = max_length-1;
1.578 + while (s->bl_count[bits] == 0) bits--;
1.579 + s->bl_count[bits]--; /* move one leaf down the tree */
1.580 + s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1.581 + s->bl_count[max_length]--;
1.582 + /* The brother of the overflow item also moves one step up,
1.583 + * but this does not affect bl_count[max_length]
1.584 + */
1.585 + overflow -= 2;
1.586 + } while (overflow > 0);
1.587 +
1.588 + /* Now recompute all bit lengths, scanning in increasing frequency.
1.589 + * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1.590 + * lengths instead of fixing only the wrong ones. This idea is taken
1.591 + * from 'ar' written by Haruhiko Okumura.)
1.592 + */
1.593 + for (bits = max_length; bits != 0; bits--) {
1.594 + n = s->bl_count[bits];
1.595 + while (n != 0) {
1.596 + m = s->heap[--h];
1.597 + if (m > max_code) continue;
1.598 + if ((unsigned) tree[m].Len != (unsigned) bits) {
1.599 + Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
1.600 + s->opt_len += ((long)bits - (long)tree[m].Len)
1.601 + *(long)tree[m].Freq;
1.602 + tree[m].Len = (ush)bits;
1.603 + }
1.604 + n--;
1.605 + }
1.606 + }
1.607 +}
1.608 +
1.609 +/* ===========================================================================
1.610 + * Generate the codes for a given tree and bit counts (which need not be
1.611 + * optimal).
1.612 + * IN assertion: the array bl_count contains the bit length statistics for
1.613 + * the given tree and the field len is set for all tree elements.
1.614 + * OUT assertion: the field code is set for all tree elements of non
1.615 + * zero code length.
1.616 + */
1.617 +#ifdef __SYMBIAN32__
1.618 +local void gen_codes ( ct_data * tree, int max_code, ushf * bl_count)
1.619 +#else
1.620 +local void gen_codes (tree, max_code, bl_count)
1.621 + ct_data *tree; /* the tree to decorate */
1.622 + int max_code; /* largest code with non zero frequency */
1.623 + ushf *bl_count; /* number of codes at each bit length */
1.624 +#endif //__SYMBIAN32__
1.625 +{
1.626 + ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1.627 + ush code = 0; /* running code value */
1.628 + int bits; /* bit index */
1.629 + int n; /* code index */
1.630 +
1.631 + /* The distribution counts are first used to generate the code values
1.632 + * without bit reversal.
1.633 + */
1.634 + for (bits = 1; bits <= MAX_BITS; bits++) {
1.635 + next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1.636 + }
1.637 + /* Check that the bit counts in bl_count are consistent. The last code
1.638 + * must be all ones.
1.639 + */
1.640 + Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1.641 + "inconsistent bit counts");
1.642 + Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1.643 +
1.644 + for (n = 0; n <= max_code; n++) {
1.645 + int len = tree[n].Len;
1.646 + if (len == 0) continue;
1.647 + /* Now reverse the bits */
1.648 + tree[n].Code = bi_reverse(next_code[len]++, len);
1.649 +
1.650 + Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1.651 + n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1.652 + }
1.653 +}
1.654 +
1.655 +/* ===========================================================================
1.656 + * Construct one Huffman tree and assigns the code bit strings and lengths.
1.657 + * Update the total bit length for the current block.
1.658 + * IN assertion: the field freq is set for all tree elements.
1.659 + * OUT assertions: the fields len and code are set to the optimal bit length
1.660 + * and corresponding code. The length opt_len is updated; static_len is
1.661 + * also updated if stree is not null. The field max_code is set.
1.662 + */
1.663 +#ifdef __SYMBIAN32__
1.664 +local void build_tree( deflate_state * s, tree_desc * desc)
1.665 +#else
1.666 +local void build_tree(s, desc)
1.667 + deflate_state *s;
1.668 + tree_desc *desc; /* the tree descriptor */
1.669 +#endif //__SYMBIAN32__
1.670 +{
1.671 + ct_data *tree = desc->dyn_tree;
1.672 + const ct_data *stree = desc->stat_desc->static_tree;
1.673 + int elems = desc->stat_desc->elems;
1.674 + int n, m; /* iterate over heap elements */
1.675 + int max_code = -1; /* largest code with non zero frequency */
1.676 + int node; /* new node being created */
1.677 +
1.678 + /* Construct the initial heap, with least frequent element in
1.679 + * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1.680 + * heap[0] is not used.
1.681 + */
1.682 + s->heap_len = 0, s->heap_max = HEAP_SIZE;
1.683 +
1.684 + for (n = 0; n < elems; n++) {
1.685 + if (tree[n].Freq != 0) {
1.686 + s->heap[++(s->heap_len)] = max_code = n;
1.687 + s->depth[n] = 0;
1.688 + } else {
1.689 + tree[n].Len = 0;
1.690 + }
1.691 + }
1.692 +
1.693 + /* The pkzip format requires that at least one distance code exists,
1.694 + * and that at least one bit should be sent even if there is only one
1.695 + * possible code. So to avoid special checks later on we force at least
1.696 + * two codes of non zero frequency.
1.697 + */
1.698 + while (s->heap_len < 2) {
1.699 + node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
1.700 + tree[node].Freq = 1;
1.701 + s->depth[node] = 0;
1.702 + s->opt_len--; if (stree) s->static_len -= stree[node].Len;
1.703 + /* node is 0 or 1 so it does not have extra bits */
1.704 + }
1.705 + desc->max_code = max_code;
1.706 +
1.707 + /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1.708 + * establish sub-heaps of increasing lengths:
1.709 + */
1.710 + for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
1.711 +
1.712 + /* Construct the Huffman tree by repeatedly combining the least two
1.713 + * frequent nodes.
1.714 + */
1.715 + node = elems; /* next internal node of the tree */
1.716 + do {
1.717 + pqremove(s, tree, n); /* n = node of least frequency */
1.718 + m = s->heap[SMALLEST]; /* m = node of next least frequency */
1.719 +
1.720 + s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
1.721 + s->heap[--(s->heap_max)] = m;
1.722 +
1.723 + /* Create a new node father of n and m */
1.724 + tree[node].Freq = tree[n].Freq + tree[m].Freq;
1.725 + s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
1.726 + s->depth[n] : s->depth[m]) + 1);
1.727 + tree[n].Dad = tree[m].Dad = (ush)node;
1.728 +#ifdef DUMP_BL_TREE
1.729 + if (tree == s->bl_tree) {
1.730 + fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
1.731 + node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1.732 + }
1.733 +#endif
1.734 + /* and insert the new node in the heap */
1.735 + s->heap[SMALLEST] = node++;
1.736 + pqdownheap(s, tree, SMALLEST);
1.737 +
1.738 + } while (s->heap_len >= 2);
1.739 +
1.740 + s->heap[--(s->heap_max)] = s->heap[SMALLEST];
1.741 +
1.742 + /* At this point, the fields freq and dad are set. We can now
1.743 + * generate the bit lengths.
1.744 + */
1.745 + gen_bitlen(s, (tree_desc *)desc);
1.746 +
1.747 + /* The field len is now set, we can generate the bit codes */
1.748 + gen_codes ((ct_data *)tree, max_code, s->bl_count);
1.749 +}
1.750 +
1.751 +/* ===========================================================================
1.752 + * Scan a literal or distance tree to determine the frequencies of the codes
1.753 + * in the bit length tree.
1.754 + */
1.755 + #ifdef __SYMBIAN32__
1.756 + local void scan_tree ( deflate_state * s, ct_data * tree,int max_code)
1.757 + #else
1.758 +local void scan_tree (s, tree, max_code)
1.759 + deflate_state *s;
1.760 + ct_data *tree; /* the tree to be scanned */
1.761 + int max_code; /* and its largest code of non zero frequency */
1.762 +#endif //__SYMBIAN32__
1.763 +{
1.764 + int n; /* iterates over all tree elements */
1.765 + int prevlen = -1; /* last emitted length */
1.766 + int curlen; /* length of current code */
1.767 + int nextlen = tree[0].Len; /* length of next code */
1.768 + int count = 0; /* repeat count of the current code */
1.769 + int max_count = 7; /* max repeat count */
1.770 + int min_count = 4; /* min repeat count */
1.771 +
1.772 + if (nextlen == 0) max_count = 138, min_count = 3;
1.773 + tree[max_code+1].Len = (ush)0xffff; /* guard */
1.774 +
1.775 + for (n = 0; n <= max_code; n++) {
1.776 + curlen = nextlen; nextlen = tree[n+1].Len;
1.777 + if (++count < max_count && curlen == nextlen) {
1.778 + continue;
1.779 + } else if (count < min_count) {
1.780 + s->bl_tree[curlen].Freq += count;
1.781 + } else if (curlen != 0) {
1.782 + if (curlen != prevlen) s->bl_tree[curlen].Freq++;
1.783 + s->bl_tree[REP_3_6].Freq++;
1.784 + } else if (count <= 10) {
1.785 + s->bl_tree[REPZ_3_10].Freq++;
1.786 + } else {
1.787 + s->bl_tree[REPZ_11_138].Freq++;
1.788 + }
1.789 + count = 0; prevlen = curlen;
1.790 + if (nextlen == 0) {
1.791 + max_count = 138, min_count = 3;
1.792 + } else if (curlen == nextlen) {
1.793 + max_count = 6, min_count = 3;
1.794 + } else {
1.795 + max_count = 7, min_count = 4;
1.796 + }
1.797 + }
1.798 +}
1.799 +
1.800 +/* ===========================================================================
1.801 + * Send a literal or distance tree in compressed form, using the codes in
1.802 + * bl_tree.
1.803 + */
1.804 +#ifdef __SYMBIAN32__
1.805 +local void send_tree ( deflate_state * s, ct_data * tree, int max_code)
1.806 +#else
1.807 +local void send_tree (s, tree, max_code)
1.808 + deflate_state *s;
1.809 + ct_data *tree; /* the tree to be scanned */
1.810 + int max_code; /* and its largest code of non zero frequency */
1.811 +#endif //__SYMBIAN32__
1.812 +{
1.813 + int n; /* iterates over all tree elements */
1.814 + int prevlen = -1; /* last emitted length */
1.815 + int curlen; /* length of current code */
1.816 + int nextlen = tree[0].Len; /* length of next code */
1.817 + int count = 0; /* repeat count of the current code */
1.818 + int max_count = 7; /* max repeat count */
1.819 + int min_count = 4; /* min repeat count */
1.820 +
1.821 + /* tree[max_code+1].Len = -1; */ /* guard already set */
1.822 + if (nextlen == 0) max_count = 138, min_count = 3;
1.823 +
1.824 + for (n = 0; n <= max_code; n++) {
1.825 + curlen = nextlen; nextlen = tree[n+1].Len;
1.826 + if (++count < max_count && curlen == nextlen) {
1.827 + continue;
1.828 + } else if (count < min_count) {
1.829 + do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
1.830 +
1.831 + } else if (curlen != 0) {
1.832 + if (curlen != prevlen) {
1.833 + send_code(s, curlen, s->bl_tree); count--;
1.834 + }
1.835 + Assert(count >= 3 && count <= 6, " 3_6?");
1.836 + send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
1.837 +
1.838 + } else if (count <= 10) {
1.839 + send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
1.840 +
1.841 + } else {
1.842 + send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
1.843 + }
1.844 + count = 0; prevlen = curlen;
1.845 + if (nextlen == 0) {
1.846 + max_count = 138, min_count = 3;
1.847 + } else if (curlen == nextlen) {
1.848 + max_count = 6, min_count = 3;
1.849 + } else {
1.850 + max_count = 7, min_count = 4;
1.851 + }
1.852 + }
1.853 +}
1.854 +
1.855 +/* ===========================================================================
1.856 + * Construct the Huffman tree for the bit lengths and return the index in
1.857 + * bl_order of the last bit length code to send.
1.858 + */
1.859 +#ifdef __SYMBIAN32__
1.860 +local int build_bl_tree( deflate_state * s)
1.861 +#else
1.862 +local int build_bl_tree(s)
1.863 + deflate_state *s;
1.864 +#endif //__SYMBIAN32__
1.865 +{
1.866 + int max_blindex; /* index of last bit length code of non zero freq */
1.867 +
1.868 + /* Determine the bit length frequencies for literal and distance trees */
1.869 + scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
1.870 + scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
1.871 +
1.872 + /* Build the bit length tree: */
1.873 + build_tree(s, (tree_desc *)(&(s->bl_desc)));
1.874 + /* opt_len now includes the length of the tree representations, except
1.875 + * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1.876 + */
1.877 +
1.878 + /* Determine the number of bit length codes to send. The pkzip format
1.879 + * requires that at least 4 bit length codes be sent. (appnote.txt says
1.880 + * 3 but the actual value used is 4.)
1.881 + */
1.882 + for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
1.883 + if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
1.884 + }
1.885 + /* Update opt_len to include the bit length tree and counts */
1.886 + s->opt_len += 3*(max_blindex+1) + 5+5+4;
1.887 + Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
1.888 + s->opt_len, s->static_len));
1.889 +
1.890 + return max_blindex;
1.891 +}
1.892 +
1.893 +/* ===========================================================================
1.894 + * Send the header for a block using dynamic Huffman trees: the counts, the
1.895 + * lengths of the bit length codes, the literal tree and the distance tree.
1.896 + * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1.897 + */
1.898 +#ifdef __SYMBIAN32__
1.899 +local void send_all_trees( deflate_state * s, int lcodes, int dcodes, int blcodes)
1.900 +#else
1.901 +local void send_all_trees(s, lcodes, dcodes, blcodes)
1.902 + deflate_state *s;
1.903 + int lcodes, dcodes, blcodes; /* number of codes for each tree */
1.904 +#endif //__SYMBIAN32__
1.905 +{
1.906 + int rank; /* index in bl_order */
1.907 +
1.908 + Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1.909 + Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
1.910 + "too many codes");
1.911 + Tracev((stderr, "\nbl counts: "));
1.912 + send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
1.913 + send_bits(s, dcodes-1, 5);
1.914 + send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
1.915 + for (rank = 0; rank < blcodes; rank++) {
1.916 + Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1.917 + send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
1.918 + }
1.919 + Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
1.920 +
1.921 + send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
1.922 + Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
1.923 +
1.924 + send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
1.925 + Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
1.926 +}
1.927 +
1.928 +/* ===========================================================================
1.929 + * Send a stored block
1.930 + */
1.931 +#ifdef __SYMBIAN32__
1.932 +void _tr_stored_block( deflate_state * s, charf * buf,ulg stored_len, int eof)
1.933 +#else
1.934 +void _tr_stored_block(s, buf, stored_len, eof)
1.935 + deflate_state *s;
1.936 + charf *buf; /* input block */
1.937 + ulg stored_len; /* length of input block */
1.938 + int eof; /* true if this is the last block for a file */
1.939 +#endif //__SYMBIAN32__
1.940 +{
1.941 + send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
1.942 +#ifdef DEBUG
1.943 + s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
1.944 + s->compressed_len += (stored_len + 4) << 3;
1.945 +#endif
1.946 + copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
1.947 +}
1.948 +
1.949 +/* ===========================================================================
1.950 + * Send one empty static block to give enough lookahead for inflate.
1.951 + * This takes 10 bits, of which 7 may remain in the bit buffer.
1.952 + * The current inflate code requires 9 bits of lookahead. If the
1.953 + * last two codes for the previous block (real code plus EOB) were coded
1.954 + * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
1.955 + * the last real code. In this case we send two empty static blocks instead
1.956 + * of one. (There are no problems if the previous block is stored or fixed.)
1.957 + * To simplify the code, we assume the worst case of last real code encoded
1.958 + * on one bit only.
1.959 + */
1.960 +#ifdef __SYMBIAN32__
1.961 +void _tr_align( deflate_state * s)
1.962 +#else
1.963 +void _tr_align(s)
1.964 + deflate_state *s;
1.965 +#endif //__SYMBIAN32__
1.966 +{
1.967 + send_bits(s, STATIC_TREES<<1, 3);
1.968 + send_code(s, END_BLOCK, static_ltree);
1.969 +#ifdef DEBUG
1.970 + s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
1.971 +#endif
1.972 + bi_flush(s);
1.973 + /* Of the 10 bits for the empty block, we have already sent
1.974 + * (10 - bi_valid) bits. The lookahead for the last real code (before
1.975 + * the EOB of the previous block) was thus at least one plus the length
1.976 + * of the EOB plus what we have just sent of the empty static block.
1.977 + */
1.978 + if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
1.979 + send_bits(s, STATIC_TREES<<1, 3);
1.980 + send_code(s, END_BLOCK, static_ltree);
1.981 +#ifdef DEBUG
1.982 + s->compressed_len += 10L;
1.983 +#endif
1.984 + bi_flush(s);
1.985 + }
1.986 + s->last_eob_len = 7;
1.987 +}
1.988 +
1.989 +/* ===========================================================================
1.990 + * Determine the best encoding for the current block: dynamic trees, static
1.991 + * trees or store, and output the encoded block to the zip file.
1.992 + */
1.993 +#ifdef __SYMBIAN32__
1.994 +void _tr_flush_block( deflate_state * s, charf * buf,ulg stored_len,int eof)
1.995 +#else
1.996 +void _tr_flush_block(s, buf, stored_len, eof)
1.997 + deflate_state *s;
1.998 + charf *buf; /* input block, or NULL if too old */
1.999 + ulg stored_len; /* length of input block */
1.1000 + int eof; /* true if this is the last block for a file */
1.1001 +#endif //__SYMBIAN32__
1.1002 +{
1.1003 + ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1.1004 + int max_blindex = 0; /* index of last bit length code of non zero freq */
1.1005 +
1.1006 + /* Build the Huffman trees unless a stored block is forced */
1.1007 + if (s->level > 0) {
1.1008 +
1.1009 + /* Check if the file is binary or text */
1.1010 + if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
1.1011 + set_data_type(s);
1.1012 +
1.1013 + /* Construct the literal and distance trees */
1.1014 + build_tree(s, (tree_desc *)(&(s->l_desc)));
1.1015 + Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1.1016 + s->static_len));
1.1017 +
1.1018 + build_tree(s, (tree_desc *)(&(s->d_desc)));
1.1019 + Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1.1020 + s->static_len));
1.1021 + /* At this point, opt_len and static_len are the total bit lengths of
1.1022 + * the compressed block data, excluding the tree representations.
1.1023 + */
1.1024 +
1.1025 + /* Build the bit length tree for the above two trees, and get the index
1.1026 + * in bl_order of the last bit length code to send.
1.1027 + */
1.1028 + max_blindex = build_bl_tree(s);
1.1029 +
1.1030 + /* Determine the best encoding. Compute the block lengths in bytes. */
1.1031 + opt_lenb = (s->opt_len+3+7)>>3;
1.1032 + static_lenb = (s->static_len+3+7)>>3;
1.1033 +
1.1034 + Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1.1035 + opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1.1036 + s->last_lit));
1.1037 +
1.1038 + if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
1.1039 +
1.1040 + } else {
1.1041 + Assert(buf != (char*)0, "lost buf");
1.1042 + opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1.1043 + }
1.1044 +
1.1045 +#ifdef FORCE_STORED
1.1046 + if (buf != (char*)0) { /* force stored block */
1.1047 +#else
1.1048 + if (stored_len+4 <= opt_lenb && buf != (char*)0) {
1.1049 + /* 4: two words for the lengths */
1.1050 +#endif
1.1051 + /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1.1052 + * Otherwise we can't have processed more than WSIZE input bytes since
1.1053 + * the last block flush, because compression would have been
1.1054 + * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1.1055 + * transform a block into a stored block.
1.1056 + */
1.1057 + _tr_stored_block(s, buf, stored_len, eof);
1.1058 +
1.1059 +#ifdef FORCE_STATIC
1.1060 + } else if (static_lenb >= 0) { /* force static trees */
1.1061 +#else
1.1062 + } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
1.1063 +#endif
1.1064 + send_bits(s, (STATIC_TREES<<1)+eof, 3);
1.1065 + compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
1.1066 +#ifdef DEBUG
1.1067 + s->compressed_len += 3 + s->static_len;
1.1068 +#endif
1.1069 + } else {
1.1070 + send_bits(s, (DYN_TREES<<1)+eof, 3);
1.1071 + send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1.1072 + max_blindex+1);
1.1073 + compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1.1074 +#ifdef DEBUG
1.1075 + s->compressed_len += 3 + s->opt_len;
1.1076 +#endif
1.1077 + }
1.1078 + Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1.1079 + /* The above check is made mod 2^32, for files larger than 512 MB
1.1080 + * and uLong implemented on 32 bits.
1.1081 + */
1.1082 + init_block(s);
1.1083 +
1.1084 + if (eof) {
1.1085 + bi_windup(s);
1.1086 +#ifdef DEBUG
1.1087 + s->compressed_len += 7; /* align on byte boundary */
1.1088 +#endif
1.1089 + }
1.1090 + Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1.1091 + s->compressed_len-7*eof));
1.1092 +}
1.1093 +
1.1094 +/* ===========================================================================
1.1095 + * Save the match info and tally the frequency counts. Return true if
1.1096 + * the current block must be flushed.
1.1097 + */
1.1098 +#ifndef SYMBIAN_EZLIB_DEVICE
1.1099 +
1.1100 +#ifdef __SYMBIAN32__
1.1101 +int _tr_tally ( deflate_state * s,unsigned dist,unsigned lc)
1.1102 +#else
1.1103 +int _tr_tally (s, dist, lc)
1.1104 + deflate_state *s;
1.1105 + unsigned dist; /* distance of matched string */
1.1106 + unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1.1107 +#endif //__SYMBIAN32__
1.1108 +{
1.1109 + s->d_buf[s->last_lit] = (ush)dist;
1.1110 + s->l_buf[s->last_lit++] = (uch)lc;
1.1111 + if (dist == 0) {
1.1112 + /* lc is the unmatched char */
1.1113 + s->dyn_ltree[lc].Freq++;
1.1114 + } else {
1.1115 + s->matches++;
1.1116 + /* Here, lc is the match length - MIN_MATCH */
1.1117 + dist--; /* dist = match distance - 1 */
1.1118 + Assert((ush)dist < (ush)MAX_DIST(s) &&
1.1119 + (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1.1120 + (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1.1121 +
1.1122 + s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1.1123 + s->dyn_dtree[d_code(dist)].Freq++;
1.1124 + }
1.1125 +
1.1126 +#ifdef TRUNCATE_BLOCK
1.1127 + /* Try to guess if it is profitable to stop the current block here */
1.1128 + if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1.1129 + /* Compute an upper bound for the compressed length */
1.1130 + ulg out_length = (ulg)s->last_lit*8L;
1.1131 + ulg in_length = (ulg)((long)s->strstart - s->block_start);
1.1132 + int dcode;
1.1133 + for (dcode = 0; dcode < D_CODES; dcode++) {
1.1134 + out_length += (ulg)s->dyn_dtree[dcode].Freq *
1.1135 + (5L+extra_dbits[dcode]);
1.1136 + }
1.1137 + out_length >>= 3;
1.1138 + Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1.1139 + s->last_lit, in_length, out_length,
1.1140 + 100L - out_length*100L/in_length));
1.1141 + if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1.1142 + }
1.1143 +#endif
1.1144 + return (s->last_lit == s->lit_bufsize-1);
1.1145 + /* We avoid equality with lit_bufsize because of wraparound at 64K
1.1146 + * on 16 bit machines and because stored blocks are restricted to
1.1147 + * 64K-1 bytes.
1.1148 + */
1.1149 +}
1.1150 +#endif //SYMBIAN_EZLIB_DEVICE
1.1151 +/* ===========================================================================
1.1152 + * Send the block data compressed using the given Huffman trees
1.1153 + */
1.1154 +#ifdef __SYMBIAN32__
1.1155 +local void compress_block( deflate_state * s, ct_data * ltree, ct_data * dtree)
1.1156 +#else
1.1157 +local void compress_block(s, ltree, dtree)
1.1158 + deflate_state *s;
1.1159 + ct_data *ltree; /* literal tree */
1.1160 + ct_data *dtree; /* distance tree */
1.1161 +#endif //__SYMBIAN32__
1.1162 +{
1.1163 + unsigned dist; /* distance of matched string */
1.1164 + int lc; /* match length or unmatched char (if dist == 0) */
1.1165 + unsigned lx = 0; /* running index in l_buf */
1.1166 + unsigned code; /* the code to send */
1.1167 + int extra; /* number of extra bits to send */
1.1168 +
1.1169 + if (s->last_lit != 0) do {
1.1170 + dist = s->d_buf[lx];
1.1171 + lc = s->l_buf[lx++];
1.1172 + if (dist == 0) {
1.1173 + send_code(s, lc, ltree); /* send a literal byte */
1.1174 + Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1.1175 + } else {
1.1176 + /* Here, lc is the match length - MIN_MATCH */
1.1177 + code = _length_code[lc];
1.1178 + send_code(s, code+LITERALS+1, ltree); /* send the length code */
1.1179 + extra = extra_lbits[code];
1.1180 + if (extra != 0) {
1.1181 + lc -= base_length[code];
1.1182 + send_bits(s, lc, extra); /* send the extra length bits */
1.1183 + }
1.1184 + dist--; /* dist is now the match distance - 1 */
1.1185 + code = d_code(dist);
1.1186 + Assert (code < D_CODES, "bad d_code");
1.1187 +
1.1188 + send_code(s, code, dtree); /* send the distance code */
1.1189 + extra = extra_dbits[code];
1.1190 + if (extra != 0) {
1.1191 + dist -= base_dist[code];
1.1192 + send_bits(s, dist, extra); /* send the extra distance bits */
1.1193 + }
1.1194 + } /* literal or match pair ? */
1.1195 +
1.1196 + /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1.1197 + Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1.1198 + "pendingBuf overflow");
1.1199 +
1.1200 + } while (lx < s->last_lit);
1.1201 +
1.1202 + send_code(s, END_BLOCK, ltree);
1.1203 + s->last_eob_len = ltree[END_BLOCK].Len;
1.1204 +}
1.1205 +
1.1206 +/* ===========================================================================
1.1207 + * Set the data type to BINARY or TEXT, using a crude approximation:
1.1208 + * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1.1209 + * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1.1210 + * IN assertion: the fields Freq of dyn_ltree are set.
1.1211 + */
1.1212 +#ifdef __SYMBIAN32__
1.1213 +local void set_data_type( deflate_state * s)
1.1214 +#else
1.1215 +local void set_data_type(s)
1.1216 + deflate_state *s;
1.1217 +#endif //__SYMBIAN32__
1.1218 +{
1.1219 + int n;
1.1220 +
1.1221 + for (n = 0; n < 9; n++)
1.1222 + if (s->dyn_ltree[n].Freq != 0)
1.1223 + break;
1.1224 + if (n == 9)
1.1225 + for (n = 14; n < 32; n++)
1.1226 + if (s->dyn_ltree[n].Freq != 0)
1.1227 + break;
1.1228 + s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
1.1229 +}
1.1230 +
1.1231 +/* ===========================================================================
1.1232 + * Reverse the first len bits of a code, using straightforward code (a faster
1.1233 + * method would use a table)
1.1234 + * IN assertion: 1 <= len <= 15
1.1235 + */
1.1236 +#ifdef __SYMBIAN32__
1.1237 +local unsigned bi_reverse(unsigned code,int len)
1.1238 +#else
1.1239 +local unsigned bi_reverse(code, len)
1.1240 + unsigned code; /* the value to invert */
1.1241 + int len; /* its bit length */
1.1242 +#endif //__SYMBIAN32__
1.1243 +{
1.1244 + register unsigned res = 0;
1.1245 + do {
1.1246 + res |= code & 1;
1.1247 + code >>= 1, res <<= 1;
1.1248 + } while (--len > 0);
1.1249 + return res >> 1;
1.1250 +}
1.1251 +
1.1252 +/* ===========================================================================
1.1253 + * Flush the bit buffer, keeping at most 7 bits in it.
1.1254 + */
1.1255 +#ifdef __SYMBIAN32__
1.1256 +local void bi_flush( deflate_state * s)
1.1257 +#else
1.1258 +local void bi_flush(s)
1.1259 + deflate_state *s;
1.1260 +#endif //__SYMBIAN32__
1.1261 +{
1.1262 + if (s->bi_valid == 16) {
1.1263 + put_short(s, s->bi_buf);
1.1264 + s->bi_buf = 0;
1.1265 + s->bi_valid = 0;
1.1266 + } else if (s->bi_valid >= 8) {
1.1267 + put_byte(s, (Byte)s->bi_buf);
1.1268 + s->bi_buf >>= 8;
1.1269 + s->bi_valid -= 8;
1.1270 + }
1.1271 +}
1.1272 +
1.1273 +/* ===========================================================================
1.1274 + * Flush the bit buffer and align the output on a byte boundary
1.1275 + */
1.1276 +#ifdef __SYMBIAN32__
1.1277 +local void bi_windup( deflate_state * s)
1.1278 +#else
1.1279 +local void bi_windup(s)
1.1280 + deflate_state *s;
1.1281 +#endif //__SYMBIAN32__
1.1282 +{
1.1283 + if (s->bi_valid > 8) {
1.1284 + put_short(s, s->bi_buf);
1.1285 + } else if (s->bi_valid > 0) {
1.1286 + put_byte(s, (Byte)s->bi_buf);
1.1287 + }
1.1288 + s->bi_buf = 0;
1.1289 + s->bi_valid = 0;
1.1290 +#ifdef DEBUG
1.1291 + s->bits_sent = (s->bits_sent+7) & ~7;
1.1292 +#endif
1.1293 +}
1.1294 +
1.1295 +/* ===========================================================================
1.1296 + * Copy a stored block, storing first the length and its
1.1297 + * one's complement if requested.
1.1298 + */
1.1299 +#ifdef __SYMBIAN32__
1.1300 +local void copy_block( deflate_state * s, charf * buf,unsigned len,int header)
1.1301 +#else
1.1302 +local void copy_block(s, buf, len, header)
1.1303 + deflate_state *s;
1.1304 + charf *buf; /* the input data */
1.1305 + unsigned len; /* its length */
1.1306 + int header; /* true if block header must be written */
1.1307 +#endif //__SYMBIAN32__
1.1308 +{
1.1309 + bi_windup(s); /* align on byte boundary */
1.1310 + s->last_eob_len = 8; /* enough lookahead for inflate */
1.1311 +
1.1312 + if (header) {
1.1313 + put_short(s, (ush)len);
1.1314 + put_short(s, (ush)~len);
1.1315 +#ifdef DEBUG
1.1316 + s->bits_sent += 2*16;
1.1317 +#endif
1.1318 + }
1.1319 +#ifdef DEBUG
1.1320 + s->bits_sent += (ulg)len<<3;
1.1321 +#endif
1.1322 + while (len--) {
1.1323 + put_byte(s, *buf++);
1.1324 + }
1.1325 +}