os/ossrv/compressionlibs/ziplib/src/zlib/adler32.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/ossrv/compressionlibs/ziplib/src/zlib/adler32.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,164 @@
     1.4 +/* Portions Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 + * All rights reserved.
     1.6 + */
     1.7 +
     1.8 +/* adler32.cpp -- compute the Adler-32 checksum of a data stream
     1.9 + * Copyright (C) 1995-2004 Mark Adler
    1.10 + * For conditions of distribution and use, see copyright notice in zlib.h
    1.11 + */
    1.12 +
    1.13 +/* @(#) $Id$ */
    1.14 +
    1.15 +#define ZLIB_INTERNAL
    1.16 +#include "libzcore.h"
    1.17 +
    1.18 +#define BASE 65521UL    /* largest prime smaller than 65536 */
    1.19 +#define NMAX 5552
    1.20 +/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
    1.21 +
    1.22 +#define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
    1.23 +#define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
    1.24 +#define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
    1.25 +#define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
    1.26 +#define DO16(buf)   DO8(buf,0); DO8(buf,8);
    1.27 +
    1.28 +/* use NO_DIVIDE if your processor does not do division in hardware */
    1.29 +#ifdef NO_DIVIDE
    1.30 +#  define MOD(a) \
    1.31 +    do { \
    1.32 +        if (a >= (BASE << 16)) a -= (BASE << 16); \
    1.33 +        if (a >= (BASE << 15)) a -= (BASE << 15); \
    1.34 +        if (a >= (BASE << 14)) a -= (BASE << 14); \
    1.35 +        if (a >= (BASE << 13)) a -= (BASE << 13); \
    1.36 +        if (a >= (BASE << 12)) a -= (BASE << 12); \
    1.37 +        if (a >= (BASE << 11)) a -= (BASE << 11); \
    1.38 +        if (a >= (BASE << 10)) a -= (BASE << 10); \
    1.39 +        if (a >= (BASE << 9)) a -= (BASE << 9); \
    1.40 +        if (a >= (BASE << 8)) a -= (BASE << 8); \
    1.41 +        if (a >= (BASE << 7)) a -= (BASE << 7); \
    1.42 +        if (a >= (BASE << 6)) a -= (BASE << 6); \
    1.43 +        if (a >= (BASE << 5)) a -= (BASE << 5); \
    1.44 +        if (a >= (BASE << 4)) a -= (BASE << 4); \
    1.45 +        if (a >= (BASE << 3)) a -= (BASE << 3); \
    1.46 +        if (a >= (BASE << 2)) a -= (BASE << 2); \
    1.47 +        if (a >= (BASE << 1)) a -= (BASE << 1); \
    1.48 +        if (a >= BASE) a -= BASE; \
    1.49 +    } while (0)
    1.50 +#  define MOD4(a) \
    1.51 +    do { \
    1.52 +        if (a >= (BASE << 4)) a -= (BASE << 4); \
    1.53 +        if (a >= (BASE << 3)) a -= (BASE << 3); \
    1.54 +        if (a >= (BASE << 2)) a -= (BASE << 2); \
    1.55 +        if (a >= (BASE << 1)) a -= (BASE << 1); \
    1.56 +        if (a >= BASE) a -= BASE; \
    1.57 +    } while (0)
    1.58 +#else
    1.59 +#  define MOD(a) a %= BASE
    1.60 +#  define MOD4(a) a %= BASE
    1.61 +#endif
    1.62 +
    1.63 +/* ========================================================================= */
    1.64 +
    1.65 +
    1.66 +#ifdef __SYMBIAN32__
    1.67 +EXPORT_C uLong  adler32_r(uLong adler,const Bytef *  buf,uInt len)
    1.68 +#else
    1.69 +uLong ZEXPORT adler32(adler, buf, len)
    1.70 +    uLong adler;
    1.71 +    const Bytef *buf;
    1.72 +    uInt len;
    1.73 +#endif /* __SYMBIAN32__ */
    1.74 +{
    1.75 +    unsigned long sum2;
    1.76 +    unsigned n;
    1.77 +
    1.78 +    /* split Adler-32 into component sums */
    1.79 +    sum2 = (adler >> 16) & 0xffff;
    1.80 +    adler &= 0xffff;
    1.81 +
    1.82 +    /* in case user likes doing a byte at a time, keep it fast */
    1.83 +    if (len == 1) {
    1.84 +        adler += buf[0];
    1.85 +        if (adler >= BASE)
    1.86 +            adler -= BASE;
    1.87 +        sum2 += adler;
    1.88 +        if (sum2 >= BASE)
    1.89 +            sum2 -= BASE;
    1.90 +        return adler | (sum2 << 16);
    1.91 +    }
    1.92 +
    1.93 +    /* initial Adler-32 value (deferred check for len == 1 speed) */
    1.94 +    if (buf == Z_NULL)
    1.95 +        return 1L;
    1.96 +
    1.97 +    /* in case short lengths are provided, keep it somewhat fast */
    1.98 +    if (len < 16) {
    1.99 +        while (len--) {
   1.100 +            adler += *buf++;
   1.101 +            sum2 += adler;
   1.102 +        }
   1.103 +        if (adler >= BASE)
   1.104 +            adler -= BASE;
   1.105 +        MOD4(sum2);             /* only added so many BASE's */
   1.106 +        return adler | (sum2 << 16);
   1.107 +    }
   1.108 +
   1.109 +    /* do length NMAX blocks -- requires just one modulo operation */
   1.110 +    while (len >= NMAX) {
   1.111 +        len -= NMAX;
   1.112 +        n = NMAX / 16;          /* NMAX is divisible by 16 */
   1.113 +        do {
   1.114 +            DO16(buf);          /* 16 sums unrolled */
   1.115 +            buf += 16;
   1.116 +        } while (--n);
   1.117 +        MOD(adler);
   1.118 +        MOD(sum2);
   1.119 +    }
   1.120 +
   1.121 +    /* do remaining bytes (less than NMAX, still just one modulo) */
   1.122 +    if (len) {                  /* avoid modulos if none remaining */
   1.123 +        while (len >= 16) {
   1.124 +            len -= 16;
   1.125 +            DO16(buf);
   1.126 +            buf += 16;
   1.127 +        }
   1.128 +        while (len--) {
   1.129 +            adler += *buf++;
   1.130 +            sum2 += adler;
   1.131 +        }
   1.132 +        MOD(adler);
   1.133 +        MOD(sum2);
   1.134 +    }
   1.135 +
   1.136 +    /* return recombined sums */
   1.137 +    return adler | (sum2 << 16);
   1.138 +}
   1.139 +
   1.140 +/* ========================================================================= */
   1.141 +
   1.142 +#ifdef __SYMBIAN32__
   1.143 +EXPORT_C uLong adler32_combine_r(uLong adler1, uLong adler2, z_off_t len2)
   1.144 +#else
   1.145 +uLong ZEXPORT adler32_combine(adler1, adler2, len2)
   1.146 +    uLong adler1;
   1.147 +    uLong adler2;
   1.148 +    z_off_t len2;
   1.149 +#endif /* __SYMBIAN32__ */
   1.150 +{
   1.151 +    unsigned long sum1;
   1.152 +    unsigned long sum2;
   1.153 +    unsigned rem;
   1.154 +
   1.155 +    /* the derivation of this formula is left as an exercise for the reader */
   1.156 +    rem = (unsigned)(len2 % BASE);
   1.157 +    sum1 = adler1 & 0xffff;
   1.158 +    sum2 = rem * sum1;
   1.159 +    MOD(sum2);
   1.160 +    sum1 += (adler2 & 0xffff) + BASE - 1;
   1.161 +    sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
   1.162 +    if (sum1 > BASE) sum1 -= BASE;
   1.163 +    if (sum1 > BASE) sum1 -= BASE;
   1.164 +    if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
   1.165 +    if (sum2 > BASE) sum2 -= BASE;
   1.166 +    return sum1 | (sum2 << 16);
   1.167 +}