os/mm/mmlibs/mmfw/src/utils/audioutils/rateconvert.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/mm/mmlibs/mmfw/src/utils/audioutils/rateconvert.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,486 @@
     1.4 +// Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +// include\mmf\utils\rateconvert.cpp
    1.18 +// Note this code used to be in mmfutilities.cpp but split off here to allow
    1.19 +// scaling of descriptors instead of just CMMFBuffers.
    1.20 +// 
    1.21 +//
    1.22 +
    1.23 +#include "rateconvertimpl.h" // includes rateconvert.h itself
    1.24 +#include <e32const.h>
    1.25 +
    1.26 +const TInt KMaxInt16Bit = 65536 ; 
    1.27 +
    1.28 +/*
    1.29 +The rate conversion algorithms used here are extremely basic, using nearest neighbour, not
    1.30 +even interpolation. An increment is created - initially a real, but converted to 16.16 fixed
    1.31 +point notation for efficiency purposes. For example, from 8000 to 11025 this increment is set
    1.32 +at 8000/11025 (~ 0.73). Each increment to the destination buffer conceptually increments the
    1.33 +src pointer by this value (0.73). On each iteration the nearest src sample is used.
    1.34 +
    1.35 +The idea is that successive buffers run on from each other. The index is adjusted so at the end
    1.36 +of the run it is correct for the next buffer, and this is saved from one iteration to the next.
    1.37 +If the client wants to convert separate buffers, it should call Reset(), where the index is reset
    1.38 +to 0. 
    1.39 +
    1.40 +Note the algorithm is even then not ideal, as it effectively truncates and not rounds the 
    1.41 +fixed-point index. However, a feature of this is that the nearest src sample is always behind the
    1.42 +conceptual fixed-point index. This makes it easy to ensure that processing of the next buffer
    1.43 +never needs data from the previous cycle - except this index value.
    1.44 +
    1.45 +*/
    1.46 +
    1.47 +enum TPanicCodes
    1.48 +	{
    1.49 +	EPanicNoDestinationBuffer=1,
    1.50 +	EPanicNoSourceConsumed
    1.51 +	};
    1.52 +
    1.53 +#ifdef _DEBUG
    1.54 +
    1.55 +static void Panic(TInt aPanicCode)
    1.56 +	{
    1.57 +	_LIT(KRateConvert,"RateConvert");
    1.58 +	User::Panic(KRateConvert, aPanicCode);
    1.59 +	}
    1.60 +	
    1.61 +#endif // _DEBUG
    1.62 +
    1.63 +//
    1.64 +// CChannelAndSampleRateConverter 
    1.65 +//
    1.66 +
    1.67 +CChannelAndSampleRateConverter::CChannelAndSampleRateConverter()
    1.68 +	{
    1.69 +	// constructor does nothing but ensures can't derive from outside dll
    1.70 +	}
    1.71 +
    1.72 +// Factory function
    1.73 +EXPORT_C CChannelAndSampleRateConverter* CChannelAndSampleRateConverter::CreateL(TInt aFromRate,
    1.74 +																				 TInt aFromChannels,
    1.75 +										 										 TInt aToRate,
    1.76 +										 										 TInt aToChannels)
    1.77 +	{
    1.78 +	// check that the params in range so we can assume OK later on
    1.79 +	if (aFromChannels <= 0 || aFromChannels > 2 ||
    1.80 +		aToChannels <= 0 || aToChannels > 2 ||
    1.81 +		aFromRate <= 0 || aToRate <= 0)
    1.82 +		{
    1.83 +		User::Leave(KErrArgument);
    1.84 +		}
    1.85 +		
    1.86 +	CChannelAndSampleRateConverterCommon* converter = NULL;
    1.87 +
    1.88 +	if (aFromChannels==aToChannels)
    1.89 +		{
    1.90 +		if (aFromChannels==1)
    1.91 +			{
    1.92 +			converter = new (ELeave) CMonoToMonoRateConverter;			
    1.93 +			}
    1.94 +		else
    1.95 +			{
    1.96 +			converter = new (ELeave) CStereoToStereoRateConverter;
    1.97 +			}
    1.98 +		}
    1.99 +	else
   1.100 +		{
   1.101 +		if (aFromChannels==1)
   1.102 +			{
   1.103 +			if (aFromRate!=aToRate)
   1.104 +				{
   1.105 +				converter = new (ELeave) CMonoToStereoRateConverter;				
   1.106 +				}
   1.107 +			else
   1.108 +				{
   1.109 +				converter = new (ELeave) CMonoToStereoConverter;				
   1.110 +				}
   1.111 +			}
   1.112 +		else
   1.113 +			{
   1.114 +            ASSERT(aFromChannels>1 && aToChannels==1);
   1.115 +			if (aFromRate!=aToRate)
   1.116 +				{
   1.117 +				converter = new (ELeave) CStereoToMonoRateConverter;				
   1.118 +				}
   1.119 +			else
   1.120 +				{
   1.121 + 				converter = new (ELeave) CStereoToMonoConverter;				
   1.122 +				}
   1.123 +			}
   1.124 +		}
   1.125 +	converter->SetRates(aFromRate,aToRate);
   1.126 +	return converter;
   1.127 +	}
   1.128 +	
   1.129 +//
   1.130 +// CChannelAndSampleRateConverterImpl
   1.131 +//
   1.132 +
   1.133 +CChannelAndSampleRateConverterCommon::CChannelAndSampleRateConverterCommon()
   1.134 +	{
   1.135 +	}
   1.136 +
   1.137 +void CChannelAndSampleRateConverterCommon::Reset()
   1.138 +	{
   1.139 +	// default does nothing
   1.140 +	}
   1.141 +	
   1.142 +void CChannelAndSampleRateConverterCommon::SetRates(TInt /*aFromRate*/, TInt /*aToRate*/)
   1.143 +	{
   1.144 +	// in default no need to know so don't cache
   1.145 +	}
   1.146 +
   1.147 +TInt CChannelAndSampleRateConverterCommon::MaxConvertBufferSize(TInt aSrcBufferSize, TBool aRoundUpToPower)
   1.148 +	{
   1.149 +	// assume aSrcBuffer takes channel change into account
   1.150 +	TInt rawValue = aSrcBufferSize;
   1.151 +	if (aRoundUpToPower)
   1.152 +		{
   1.153 +		return NextPowerUp(rawValue); 
   1.154 +		}
   1.155 +	else
   1.156 +		{
   1.157 +		return rawValue;
   1.158 +		}
   1.159 +	}
   1.160 +	
   1.161 +TInt CChannelAndSampleRateConverterCommon::NextPowerUp(TInt aValue)
   1.162 +	{
   1.163 +	TInt power = 128; // no need to start lower
   1.164 +	while (power<aValue)
   1.165 +		{
   1.166 +		power *= 2;
   1.167 +		}
   1.168 +	return power;
   1.169 +	}
   1.170 +	
   1.171 +//
   1.172 +// CChannelAndSampleRateConvert
   1.173 +//
   1.174 +
   1.175 +CChannelAndSampleRateConvert::CChannelAndSampleRateConvert()
   1.176 +	{
   1.177 +	}
   1.178 +
   1.179 +	
   1.180 +TInt CChannelAndSampleRateConvert::MaxConvertBufferSize(TInt aSrcBufferSize, TBool aRoundUpToPower)
   1.181 +	{
   1.182 +	// take rate conversion into account. Assumed channel mismatch handled by the child class.
   1.183 +	TInt rawValue = aSrcBufferSize;
   1.184 +	if (iFromRate < iToRate)
   1.185 +		{
   1.186 +		TInt result = SizeOfUpsampleBuffer(rawValue);
   1.187 +		return result; // always rounded up to next size
   1.188 +		}
   1.189 +	else
   1.190 +		{
   1.191 +		if (aRoundUpToPower)
   1.192 +			{
   1.193 +			return NextPowerUp(rawValue); 
   1.194 +			}
   1.195 +		else
   1.196 +			{
   1.197 +			return rawValue;
   1.198 +			}
   1.199 +		}
   1.200 +	}
   1.201 +	
   1.202 +void CChannelAndSampleRateConvert::SetRates(TInt aFromRate, TInt aToRate)
   1.203 +	{
   1.204 +	iFromRate=aFromRate;
   1.205 +	iToRate=aToRate;
   1.206 +
   1.207 +	TReal ratio = TReal(aFromRate) / TReal(aToRate);
   1.208 +	TInt quotient = TInt(ratio);
   1.209 +	TReal remainder = ratio - TReal(quotient);
   1.210 +	iFraction = (quotient << 16) + TInt32(remainder * KMaxInt16Bit);
   1.211 +
   1.212 +	Reset();
   1.213 +	}
   1.214 +	
   1.215 +void CChannelAndSampleRateConvert::Reset()
   1.216 +	{
   1.217 +	iIndex = 0;
   1.218 +	}
   1.219 +	
   1.220 +TInt CChannelAndSampleRateConvert::SizeOfUpsampleBuffer(TInt aBufferLength)
   1.221 +	{
   1.222 +	TInt rawValue = aBufferLength;
   1.223 +	ASSERT(iFromRate < iToRate); // should not be called otherwise
   1.224 +	// upsample - will generate more data. use floats to avoid extra round error
   1.225 +	rawValue = TInt(rawValue * TReal(iToRate) / TReal(iFromRate) + 0.5) + 4*sizeof(TInt16); // add some buffer extra buffer
   1.226 +	rawValue = NextPowerUp(rawValue); // when upscaling always give nice power
   1.227 +	return rawValue;	
   1.228 +	}
   1.229 +
   1.230 +//
   1.231 +// Specific converter code
   1.232 +//
   1.233 +
   1.234 +CStereoToStereoRateConverter::CStereoToStereoRateConverter()
   1.235 +	{
   1.236 +	}
   1.237 +
   1.238 +TInt CStereoToStereoRateConverter::Convert(const TDesC8& aSrcBuffer, TDes8& aDstBuffer)
   1.239 +	{
   1.240 +	const TInt32* srcPtr = reinterpret_cast<const TInt32*>(aSrcBuffer.Ptr());
   1.241 +	TInt32* dstPtr = const_cast<TInt32*>(reinterpret_cast<const TInt32*>(aDstBuffer.Ptr()));
   1.242 +	
   1.243 +	const TInt32* srcLimit=srcPtr+LengthBytesTo32Bit(aSrcBuffer.Length()); // ptr+n does *4 for TInt32* ptr
   1.244 +	TInt32* dstLimit=dstPtr+LengthBytesTo32Bit(aDstBuffer.MaxLength()); // ditto
   1.245 +
   1.246 +	// add left over from last buffer
   1.247 +	TUint index = iIndex;
   1.248 +	const TInt32* src = srcPtr + (index>>16);
   1.249 +	TInt32* dst = dstPtr;
   1.250 +
   1.251 +	if (dst>=dstLimit)
   1.252 +		{
   1.253 +		__ASSERT_DEBUG(EFalse,Panic(EPanicNoDestinationBuffer));
   1.254 +		return 0;
   1.255 +		}
   1.256 +
   1.257 +	while (src<srcLimit && dst<dstLimit)
   1.258 +		{
   1.259 +  		*dst++ = *src;
   1.260 +		index += iFraction;
   1.261 +		src = srcPtr + (index>>16); // truncate fix-point index
   1.262 +		}
   1.263 +
   1.264 +	// get amount by which index exceeded end of buffer
   1.265 +	// so that we can add it back to start of next buffer
   1.266 +	const TInt32* conceptualLastSrc = Min(src, srcLimit); // ptr to last src we have we'd _not_ used next iteration
   1.267 +	TInt srcSamplesCopied = conceptualLastSrc - srcPtr;
   1.268 +	__ASSERT_DEBUG(srcSamplesCopied>0, Panic(EPanicNoSourceConsumed)); // should always be ok if we have some destination space
   1.269 +	iIndex = index - (srcSamplesCopied << 16); 
   1.270 +
   1.271 +	// return sample byte count and setup output buffer
   1.272 +	TInt dstLength = Length32BitToBytes(dst-dstPtr);
   1.273 +	aDstBuffer.SetLength(dstLength); //adjust length of destination buffer
   1.274 +	return Length32BitToBytes(srcSamplesCopied);
   1.275 +	}
   1.276 +	
   1.277 +CMonoToStereoRateConverter::CMonoToStereoRateConverter()
   1.278 +	{
   1.279 +	}
   1.280 +
   1.281 +TInt CMonoToStereoRateConverter::Convert(const TDesC8& aSrcBuffer, TDes8& aDstBuffer)
   1.282 +	{
   1.283 +	const TInt16* srcPtr = reinterpret_cast<const TInt16*>(aSrcBuffer.Ptr());
   1.284 +	TInt32* dstPtr = const_cast<TInt32*>(reinterpret_cast<const TInt32*>(aDstBuffer.Ptr()));
   1.285 +	
   1.286 +	const TInt16* srcLimit=srcPtr+LengthBytesTo16Bit(aSrcBuffer.Length()); // as ptr+n does *2 for TInt16* ptr
   1.287 +	TInt32* dstLimit=dstPtr+LengthBytesTo32Bit(aDstBuffer.MaxLength()); // ditto but does *4 for TInt32*
   1.288 +
   1.289 +	// add left over from last buffer
   1.290 +	TUint index = iIndex;
   1.291 +	const TInt16* src = srcPtr + (index>>16);
   1.292 +	TInt32* dst = dstPtr;
   1.293 +
   1.294 +	if (dst>=dstLimit)
   1.295 +		{
   1.296 +		__ASSERT_DEBUG(EFalse,Panic(EPanicNoDestinationBuffer));
   1.297 +		return 0;
   1.298 +		}
   1.299 +
   1.300 +	while (src<srcLimit && dst<dstLimit-1)
   1.301 +		{
   1.302 +		TInt16 sample = *src;
   1.303 +		TInt32 stereoSample = MonoToStereo(sample);
   1.304 +		*dst++ = stereoSample;
   1.305 +		index += iFraction;
   1.306 +		src = srcPtr + (index>>16); // truncate fix-point index
   1.307 +		}
   1.308 +
   1.309 +	// get amount by which index exceeded end of buffer
   1.310 +	// so that we can add it back to start of next buffer
   1.311 +	const TInt16* conceptualLastSrc = Min(src, srcLimit); // ptr to last src we have we'd _not_ used next iteration
   1.312 +	TInt srcSamplesCopied = conceptualLastSrc - srcPtr;
   1.313 +	__ASSERT_DEBUG(srcSamplesCopied>0, Panic(EPanicNoSourceConsumed)); // should always be ok if we have some destination space
   1.314 +	iIndex = index - (srcSamplesCopied << 16); 
   1.315 +
   1.316 +	// return sample byte count and setup output buffer
   1.317 +	TInt dstLength = Length32BitToBytes(dst-dstPtr);			// size in bytes
   1.318 +	aDstBuffer.SetLength(dstLength); //adjust length of destination buffer
   1.319 +	return Length16BitToBytes(srcSamplesCopied);
   1.320 +	}	
   1.321 +	
   1.322 +
   1.323 +TInt CMonoToStereoRateConverter::MaxConvertBufferSize(TInt aSrcBufferSize, TBool aRoundUpToPower)
   1.324 +	{
   1.325 +	return CChannelAndSampleRateConvert::MaxConvertBufferSize(aSrcBufferSize*2, aRoundUpToPower);
   1.326 +	}
   1.327 +	
   1.328 +CMonoToMonoRateConverter::CMonoToMonoRateConverter()
   1.329 +	{
   1.330 +	}
   1.331 +
   1.332 +TInt CMonoToMonoRateConverter::Convert(const TDesC8& aSrcBuffer, TDes8& aDstBuffer)
   1.333 +	{
   1.334 +	const TInt16* srcPtr = reinterpret_cast<const TInt16*>(aSrcBuffer.Ptr());
   1.335 +	TInt16* dstPtr = const_cast<TInt16*>(reinterpret_cast<const TInt16*>(aDstBuffer.Ptr()));
   1.336 +	
   1.337 +	const TInt16* srcLimit=srcPtr+LengthBytesTo16Bit(aSrcBuffer.Length()); // ptr+n does *2 for TInt16* ptr
   1.338 +	TInt16* dstLimit=dstPtr+LengthBytesTo16Bit(aDstBuffer.MaxLength()); // ditto
   1.339 +
   1.340 +	// add left over from last buffer
   1.341 +	TUint index = iIndex;
   1.342 +	const TInt16* src = srcPtr + (index>>16);
   1.343 +	TInt16* dst = dstPtr;
   1.344 +
   1.345 +	if (dst>=dstLimit)
   1.346 +		{
   1.347 +		__ASSERT_DEBUG(EFalse,Panic(EPanicNoDestinationBuffer));
   1.348 +		return 0;
   1.349 +		}
   1.350 +
   1.351 +	while (src<srcLimit && dst<dstLimit)
   1.352 +		{
   1.353 +  		*dst++ = *src;
   1.354 +		index += iFraction;
   1.355 +		src = srcPtr + (index>>16); // truncate fix-point index
   1.356 +		}
   1.357 +
   1.358 +	// get amount by which index exceeded end of buffer
   1.359 +	// so that we can add it back to start of next buffer
   1.360 +	const TInt16* conceptualLastSrc = Min(src, srcLimit); // ptr to last src we have we'd _not_ used next iteration
   1.361 +	TInt srcSamplesCopied = conceptualLastSrc - srcPtr;
   1.362 +	__ASSERT_DEBUG(srcSamplesCopied>0, Panic(EPanicNoSourceConsumed)); // should always be ok if we have some destination space
   1.363 +	iIndex = index - (srcSamplesCopied << 16); 
   1.364 +
   1.365 +	// return sample byte count and setup output buffer
   1.366 +	TInt dstLength = Length16BitToBytes(dst-dstPtr);		// size in bytes
   1.367 +	aDstBuffer.SetLength(dstLength); //adjust length of destination buffer
   1.368 +	return Length16BitToBytes(srcSamplesCopied);
   1.369 +	}	
   1.370 +	
   1.371 +CStereoToMonoRateConverter::CStereoToMonoRateConverter()
   1.372 +	{
   1.373 +	}
   1.374 +
   1.375 +//This method takes the left and right sample of interleaved PCM and sums it, then divides by 2
   1.376 +TInt CStereoToMonoRateConverter::Convert(const TDesC8& aSrcBuffer, TDes8& aDstBuffer)
   1.377 +	{
   1.378 +	const TInt32* srcPtr = reinterpret_cast<const TInt32*>(aSrcBuffer.Ptr());
   1.379 +	TInt16* dstPtr = const_cast<TInt16*>(reinterpret_cast<const TInt16*>(aDstBuffer.Ptr()));
   1.380 +	
   1.381 +	const TInt32* srcLimit=srcPtr+LengthBytesTo32Bit(aSrcBuffer.Length()); // ptr+n does *4 for TInt32* ptr
   1.382 +	TInt16* dstLimit=dstPtr+LengthBytesTo16Bit(aDstBuffer.MaxLength()); // ditto but *2 for TInt16*
   1.383 +
   1.384 +	// add left over from last buffer
   1.385 +	TUint index = iIndex;
   1.386 +	const TInt32* src = srcPtr + (index>>16);
   1.387 +	TInt16* dst = dstPtr;
   1.388 +
   1.389 +	if (dst>=dstLimit)
   1.390 +		{
   1.391 +		__ASSERT_DEBUG(EFalse,Panic(EPanicNoDestinationBuffer));
   1.392 +		return 0;
   1.393 +		}
   1.394 +
   1.395 +	while (src<srcLimit && dst<dstLimit)
   1.396 +		{
   1.397 +		TInt32 sample = *src;
   1.398 +		TInt16 monoSample = StereoToMono(sample);
   1.399 +  		*dst++ =  monoSample;
   1.400 +		index += iFraction;
   1.401 +		src = srcPtr + (index>>16); // truncate fix-point index
   1.402 +		}
   1.403 +
   1.404 +	// get amount by which index exceeded end of buffer
   1.405 +	// so that we can add it back to start of next buffer
   1.406 +	const TInt32* conceptualLastSrc = Min(src, srcLimit); // ptr to last src we have we'd _not_ used next iteration
   1.407 +	TInt srcSamplesCopied = conceptualLastSrc - srcPtr;
   1.408 +	__ASSERT_DEBUG(srcSamplesCopied>0, Panic(EPanicNoSourceConsumed)); // should always be ok if we have some destination space
   1.409 +	iIndex = index - (srcSamplesCopied << 16); 
   1.410 +
   1.411 +	// return sample byte count and setup output buffer
   1.412 +	TInt dstLength = Length16BitToBytes(dst-dstPtr);			// size in bytes
   1.413 +	aDstBuffer.SetLength(dstLength); //adjust length of destination buffer
   1.414 +	return Length32BitToBytes(srcSamplesCopied);
   1.415 +	}
   1.416 +
   1.417 +
   1.418 +TInt CStereoToMonoRateConverter::MaxConvertBufferSize(TInt aSrcBufferSize, TBool aRoundUpToPower)
   1.419 +	{
   1.420 +	TUint size = aSrcBufferSize/2;
   1.421 +	size += aSrcBufferSize & 1; //avoid round down error
   1.422 +	return CChannelAndSampleRateConvert::MaxConvertBufferSize(size, aRoundUpToPower);
   1.423 +	}
   1.424 +	
   1.425 +CStereoToMonoConverter::CStereoToMonoConverter()
   1.426 +	{
   1.427 +	}
   1.428 +
   1.429 +//This method takes the left and right sample of interleaved PCM and sums it, then divides by 2
   1.430 +TInt CStereoToMonoConverter::Convert(const TDesC8& aSrcBuffer, TDes8& aDstBuffer)
   1.431 +	{
   1.432 +	const TInt32* src = reinterpret_cast<const TInt32*>(aSrcBuffer.Ptr());
   1.433 +	TInt16* dst = const_cast<TInt16*>(reinterpret_cast<const TInt16*>(aDstBuffer.Ptr()));
   1.434 +
   1.435 +	TInt srcCount = LengthBytesTo32Bit(aSrcBuffer.Length());
   1.436 +	TInt dstCount = LengthBytesTo16Bit(aDstBuffer.MaxLength());
   1.437 +	TInt count = Min(srcCount, dstCount); // if aDstBuffer is short, just copy that much
   1.438 +	
   1.439 +	for (TUint i=0;i<count;++i)
   1.440 +		{
   1.441 +		TInt32 sample = *src++;
   1.442 +		TInt16 monoSample = StereoToMono(sample);
   1.443 +  		*dst++ = monoSample;
   1.444 +		}
   1.445 +		
   1.446 +	aDstBuffer.SetLength(Length16BitToBytes(count)); // *2 because is mono
   1.447 +	return Length32BitToBytes(count); // *4 as is stereo
   1.448 +	}	
   1.449 +
   1.450 +TInt CStereoToMonoConverter::MaxConvertBufferSize(TInt aSrcBufferSize, TBool aRoundUpToPower)
   1.451 +	{
   1.452 +	TUint size = aSrcBufferSize/2;
   1.453 +	size += aSrcBufferSize & 1; //avoid round down error
   1.454 +	return CChannelAndSampleRateConverterCommon::MaxConvertBufferSize(size, aRoundUpToPower);
   1.455 +	}
   1.456 +	
   1.457 +CMonoToStereoConverter::CMonoToStereoConverter()
   1.458 +	{
   1.459 +	}
   1.460 +
   1.461 +TInt CMonoToStereoConverter::Convert(const TDesC8& aSrcBuffer, TDes8& aDstBuffer)
   1.462 +	{
   1.463 +	const TInt16* src = reinterpret_cast<const TInt16*>(aSrcBuffer.Ptr());
   1.464 +	TInt32* dst = const_cast<TInt32*>(reinterpret_cast<const TInt32*>(aDstBuffer.Ptr()));
   1.465 +
   1.466 +	TInt srcCount = LengthBytesTo16Bit(aSrcBuffer.Length());
   1.467 +	TInt dstCount = LengthBytesTo32Bit(aDstBuffer.MaxLength());
   1.468 +	TInt count = Min(srcCount, dstCount); // if aDstBuffer is short, just copy that much
   1.469 +	
   1.470 +	for (TUint i=0;i<count;i++)
   1.471 +		{
   1.472 +		TInt16 sample = *src++;
   1.473 +		TInt32 stereoSample = MonoToStereo(sample);
   1.474 +  		*dst++ =  stereoSample;
   1.475 +		}
   1.476 +		
   1.477 +	aDstBuffer.SetLength(Length32BitToBytes(count)); // *4 because is stereo
   1.478 +	return Length16BitToBytes(count); // *2 as is mono
   1.479 +	}	
   1.480 +
   1.481 +TInt CMonoToStereoConverter::MaxConvertBufferSize(TInt aSrcBufferSize, TBool aRoundUpToPower)
   1.482 +	{
   1.483 +	return CChannelAndSampleRateConverterCommon::MaxConvertBufferSize(aSrcBufferSize*2, aRoundUpToPower);
   1.484 +	}
   1.485 +
   1.486 +
   1.487 +
   1.488 +
   1.489 +