1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/os/kernelhwsrv/kerneltest/e32test/video/t_videomemory.cpp Fri Jun 15 03:10:57 2012 +0200
1.3 @@ -0,0 +1,279 @@
1.4 +// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
1.5 +// All rights reserved.
1.6 +// This component and the accompanying materials are made available
1.7 +// under the terms of the License "Eclipse Public License v1.0"
1.8 +// which accompanies this distribution, and is available
1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
1.10 +//
1.11 +// Initial Contributors:
1.12 +// Nokia Corporation - initial contribution.
1.13 +//
1.14 +// Contributors:
1.15 +//
1.16 +// Description:
1.17 +// Overview:
1.18 +// Test the video driver kernel extension that provides chunk handle to access video memory.
1.19 +// API Information:
1.20 +// HAL, UserSvr
1.21 +// Details:
1.22 +// - Check that the "old" GetMemoryAddress function still works, for legacy compatibility.
1.23 +// - Check that we can get a chunk and that we can read/write the memory belonging to that chunk.
1.24 +// - Check that asking for a DisplayMemoryHandle twice gives the same piece of memory.
1.25 +// - Test that the same memory is available to a second process, by starting second process and
1.26 +// the second process can write to memory. Validate by confirming that the value in the second process
1.27 +// is changed.
1.28 +// Platforms/Drives/Compatibility:
1.29 +// All.
1.30 +// Assumptions/Requirement/Pre-requisites:
1.31 +// Failures and causes:
1.32 +// Base Port information:
1.33 +//
1.34 +//
1.35 +
1.36 +#include <e32test.h>
1.37 +#include <videodriver.h>
1.38 +#include <hal.h>
1.39 +#include <e32svr.h>
1.40 +#include <dispchannel.h>
1.41 +#include "t_videomemory.h"
1.42 +
1.43 +LOCAL_D RTest test(_L("T_VIDEOMEMORY"));
1.44 +
1.45 +#ifndef __WINS__
1.46 +#define DUMP(x) test.Printf(_L(#x"= %d =0x%08x\n"), x, x)
1.47 +#endif
1.48 +
1.49 +
1.50 +LOCAL_C void RunTestsForScreen(TInt aScreenID)
1.51 + {
1.52 +
1.53 + TInt ret = KErrNone;
1.54 +
1.55 +#ifdef __WINS__
1.56 + RDisplayChannel displayChannel;
1.57 +
1.58 + test.Next(_L("Open Display Driver"));
1.59 +
1.60 + _LIT(KDisplayDriver, "display0");
1.61 + ret = User::LoadLogicalDevice(KDisplayDriver);
1.62 + test(KErrNone == ret || KErrAlreadyExists == ret);
1.63 +
1.64 + ret = displayChannel.Open(aScreenID);
1.65 + test(KErrNone == ret);
1.66 +
1.67 +#endif
1.68 +
1.69 + test.Next(_L("Checking Display Memory Address"));
1.70 +
1.71 + // This is the real basic form of test:
1.72 + // Get the display memory address from the HAL.
1.73 + // Check that it's not zero - that would be invalid memory.
1.74 + // Try to write to the memory - it should not give a page-fault/crash.
1.75 + // Try to read the memory - we should get the same value as we wrote.
1.76 +
1.77 + TInt memoryAddress=0;
1.78 + volatile TUint32 *pMemory = 0;
1.79 + ret = HAL::Get(aScreenID, HAL::EDisplayMemoryAddress, memoryAddress);
1.80 + test (KErrNone == ret || KErrNotSupported == ret);
1.81 +
1.82 + if (KErrNone == ret)
1.83 + {
1.84 + test.Printf(_L("Display Memory Address = %08x\n"), memoryAddress);
1.85 + // Now check that we can write to memoryAddress:
1.86 + test (memoryAddress != 0);
1.87 + pMemory = reinterpret_cast<TUint32 *>(memoryAddress);
1.88 + *pMemory = KTestValue1;
1.89 + test(KTestValue1 == *pMemory);
1.90 + }
1.91 + else
1.92 + {
1.93 + test.Printf(_L("Memory Address not available from HAL\n"));
1.94 + }
1.95 +
1.96 + // Second basic test. Use the HAL to fetch a handle
1.97 + // to the display memory.
1.98 + // Check that the handle is not zero.
1.99 + // Get the base-address of the chunk.
1.100 + // Write this base address with a new value.
1.101 + // Read with the chunk base address to see that teh new value is there.
1.102 + // Read the memory address from the above test and check that it changed
1.103 + // to the new value.
1.104 + // Note that the memory address from above test MAY NOT BE SET - so
1.105 + // check to see if it's non-zero first.
1.106 +
1.107 + test.Next(_L("Checking Display Handle"));
1.108 + TInt handle = 0;
1.109 + volatile TUint32 *pChunkBase = 0;
1.110 + RChunk chunk;
1.111 + ret = HAL::Get(aScreenID, HALData::EDisplayMemoryHandle, handle);
1.112 + test ((KErrNone == ret || KErrNotSupported == ret));
1.113 + if (KErrNone == ret)
1.114 + {
1.115 + // Handle should not be zero.
1.116 + test(0 != handle);
1.117 + ret = chunk.SetReturnedHandle(handle);
1.118 + test(KErrNone == ret);
1.119 +
1.120 + pChunkBase = reinterpret_cast<TUint32 *>(chunk.Base());
1.121 + test.Printf(_L("Display Memory Address = %08x\n"), reinterpret_cast<TUint>(pChunkBase));
1.122 + *pChunkBase = KTestValue2;
1.123 + test(KTestValue2 == *pChunkBase);
1.124 + // We should see the new value through the pMemory pointer!
1.125 + if (pMemory)
1.126 + {
1.127 + test(KTestValue2 == *pMemory);
1.128 + }
1.129 +
1.130 + }
1.131 + else
1.132 + {
1.133 + test.Printf(_L("Memory Handle not available from HAL - no point in further testing\n"));
1.134 + return;
1.135 + }
1.136 +
1.137 +
1.138 + // Check that we can write to more than the first bit of memory.
1.139 + test.Next(_L("Check that we can write to \"all\" of the memory"));
1.140 + // First, find the mode with the biggest number of bits per pixel:
1.141 + TInt totalModes;
1.142 + ret = HAL::Get(aScreenID, HAL::EDisplayNumModes, totalModes);
1.143 + test (KErrNone == ret);
1.144 + TInt biggestMode = 0;
1.145 + TInt maxBitsPerPixel = 0;
1.146 + for(TInt mode = 0; mode < totalModes; mode++)
1.147 + {
1.148 + TInt bitsPerPixel = mode;
1.149 + ret = HAL::Get(aScreenID, HAL::EDisplayBitsPerPixel, bitsPerPixel);
1.150 + test (KErrNone == ret);
1.151 + if (bitsPerPixel > maxBitsPerPixel)
1.152 + {
1.153 + maxBitsPerPixel = bitsPerPixel;
1.154 + biggestMode = mode;
1.155 + }
1.156 + }
1.157 +
1.158 + TInt offsetToFirstPixel = biggestMode;
1.159 + ret = HAL::Get(aScreenID, HALData::EDisplayOffsetToFirstPixel, offsetToFirstPixel);
1.160 + test(KErrNone == ret);
1.161 +
1.162 + TInt stride = biggestMode;
1.163 + ret = HAL::Get(aScreenID, HALData::EDisplayOffsetBetweenLines, stride);
1.164 + test(KErrNone == ret);
1.165 +
1.166 + TInt yPixels = biggestMode;
1.167 + ret = HAL::Get(aScreenID, HALData::EDisplayYPixels, yPixels);
1.168 + test(KErrNone == ret);
1.169 +
1.170 + // Note this is no attempt to be precise. xPixels is not
1.171 + TUint maxByte = offsetToFirstPixel + stride * yPixels - sizeof(TUint32);
1.172 +
1.173 + volatile TUint32 *memPtr = reinterpret_cast<volatile TUint32 *>(reinterpret_cast<volatile TUint8 *>(pChunkBase) + maxByte);
1.174 + *memPtr = KTestValue1;
1.175 + test(KTestValue1 == *memPtr);
1.176 +
1.177 +
1.178 + // Ask for a second handle and see that this also points to the same bit of memory.
1.179 + test.Next(_L("Checking Display Handle second time"));
1.180 + volatile TUint32 *pChunkBase2 = 0;
1.181 + ret = HAL::Get(aScreenID, HALData::EDisplayMemoryHandle, handle);
1.182 + test ((KErrNone == ret || KErrNotSupported == ret));
1.183 + if (KErrNone == ret)
1.184 + {
1.185 + // Handle should not be zero!
1.186 + test(0 != handle);
1.187 + RChunk chunk2;
1.188 + ret = chunk2.SetReturnedHandle(handle);
1.189 + test(KErrNone == ret);
1.190 +
1.191 + pChunkBase2 = reinterpret_cast<TUint32 *>(chunk2.Base());
1.192 + test.Printf(_L("Display Memory Address = %08x\n"), reinterpret_cast<TUint>(pChunkBase));
1.193 + test(KTestValue2 == *pChunkBase2);
1.194 + *pChunkBase2 = KTestValue3;
1.195 + test(KTestValue3 == *pChunkBase2);
1.196 + chunk2.Close();
1.197 + }
1.198 +
1.199 + test.Next(_L("Checking Display Handle using second process"));
1.200 +
1.201 + // Create a process, let it find the handle of the memory, then read it, and write it.
1.202 + // Check that the value we have is the new value: KTestValue3.
1.203 + _LIT(KProcName, "t_videomemprocess.exe");
1.204 + RProcess process;
1.205 +
1.206 + ret = process.Create(KProcName, KNullDesC);
1.207 + test(KErrNone == ret);
1.208 +
1.209 + TRequestStatus procStatus;
1.210 + process.Logon(procStatus);
1.211 + process.SetParameter(12, aScreenID);
1.212 + process.Resume();
1.213 + User::WaitForRequest(procStatus);
1.214 +
1.215 + test.Next(_L("Checking that second process updated video memory"));
1.216 + // Check that we got the new value.
1.217 + test(KTestValue4 == *pChunkBase);
1.218 +
1.219 + chunk.Close();
1.220 +
1.221 +#ifdef __WINS__
1.222 + displayChannel.Close();
1.223 +#endif
1.224 +
1.225 + // Now for some negative tests: Attempt to get a handle for a closes display.
1.226 + test.Next(_L("Negative test: Check that we CAN NOT use closed screen"));
1.227 + ret = HAL::Get(aScreenID, HALData::EDisplayMemoryHandle, handle);
1.228 + test (KErrNone != ret);
1.229 + }
1.230 +
1.231 +
1.232 +
1.233 +LOCAL_C void NegativeTests(TInt aMaxScreens)
1.234 + {
1.235 + TInt handle;
1.236 + TInt ret;
1.237 + // Another few negative tests: Try invalid screen numbers.
1.238 + test.Next(_L("Negative tests: Invalid screen ID's"));
1.239 + ret = HAL::Get(aMaxScreens, HALData::EDisplayMemoryHandle, handle);
1.240 + test (KErrNone != ret);
1.241 +
1.242 + ret = HAL::Get(aMaxScreens+1, HALData::EDisplayMemoryHandle, handle);
1.243 + test (KErrNone != ret);
1.244 +
1.245 + ret = HAL::Get(4718, HALData::EDisplayMemoryHandle, handle);
1.246 + test (KErrNone != ret);
1.247 +
1.248 + ret = HAL::Get(-1, HALData::EDisplayMemoryHandle, handle);
1.249 + test (KErrNone != ret);
1.250 + }
1.251 +
1.252 +
1.253 +
1.254 +GLDEF_C TInt E32Main()
1.255 +//
1.256 +//
1.257 + {
1.258 +
1.259 + test.Title();
1.260 +//
1.261 +#if defined(__EPOC32__) && defined(__CPU_X86)
1.262 + test.Printf(_L("Doesn't run on X86\n"));
1.263 +#else
1.264 +
1.265 + test.Start(_L("Testing Video Memory HAL interfaces"));
1.266 +
1.267 + TInt screens = 0;
1.268 + TInt ret=HAL::Get(HAL::EDisplayNumberOfScreens, screens);
1.269 + test((KErrNone == ret));
1.270 + // We expect that there is at least ONE screen.
1.271 + test((screens > 0));
1.272 +
1.273 + for(TInt i=0;i<screens;i++)
1.274 + {
1.275 + RunTestsForScreen(i);
1.276 + }
1.277 +
1.278 + NegativeTests(screens);
1.279 +#endif
1.280 +
1.281 + return KErrNone;
1.282 +}