os/kernelhwsrv/kerneltest/e32test/mmu/t_shbuf.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/kerneltest/e32test/mmu/t_shbuf.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,3455 @@
     1.4 +// Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of the License "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +// e32test/mmu/t_shbuf.cpp
    1.18 +//
    1.19 +
    1.20 +#define __E32TEST_EXTENSION__
    1.21 +
    1.22 +#include <e32test.h>
    1.23 +#include <hal.h>
    1.24 +#include <e32svr.h>
    1.25 +#include <u32hal.h>
    1.26 +#include "d_shbuf.h"
    1.27 +#include <e32shbuf.h>
    1.28 +#include <e32def.h>
    1.29 +#include <e32def_private.h>
    1.30 +
    1.31 +#ifdef TEST_CLIENT_THREAD
    1.32 +RTest test(_L("T_SHBUF_CLIENT"));
    1.33 +#else
    1.34 +RTest test(_L("T_SHBUF_OWN"));
    1.35 +#endif
    1.36 +
    1.37 +RShPool P1; // User-side pool
    1.38 +RShPool P2; // Kernel-side pool
    1.39 +
    1.40 +const TInt KTestPoolSizeInBytes = 1 << 20; // 1MB
    1.41 +const TInt BufferSize[] = {128, 853, 4096, 5051, 131072, 1, 0}; // Last element must be 0
    1.42 +
    1.43 +const TInt* PtrBufSize;
    1.44 +
    1.45 +RShBufTestChannel Ldd;
    1.46 +
    1.47 +_LIT(KTestSlave, "SLAVE");
    1.48 +_LIT(KTestLowSpaceSemaphore, "LowSpaceSemaphore");
    1.49 +
    1.50 +enum TTestSlave
    1.51 +	{
    1.52 +	ETestSlaveError,
    1.53 +	ETestSlaveNoDeallocation,
    1.54 +	};
    1.55 +
    1.56 +enum TTestPoolType
    1.57 +	{
    1.58 +	ETestNonPageAligned,
    1.59 +	ETestPageAligned,
    1.60 +	ETestPageAlignedGrowing,
    1.61 +	};
    1.62 +
    1.63 +TInt Log2(TInt aNum)
    1.64 +	{
    1.65 +	TInt res = -1;
    1.66 +	while(aNum)
    1.67 +		{
    1.68 +		res++;
    1.69 +		aNum >>= 1;
    1.70 +		}
    1.71 +	return res;
    1.72 +	}
    1.73 +
    1.74 +TInt RoundUp(TInt aNum, TInt aAlignmentLog2)
    1.75 +	{
    1.76 +	if (aNum % (1 << aAlignmentLog2) == 0)
    1.77 +		{
    1.78 +		return aNum;
    1.79 +		}
    1.80 +	return (aNum & ~((1 << aAlignmentLog2) - 1)) + (1 << aAlignmentLog2);
    1.81 +	}
    1.82 +
    1.83 +void LoadDeviceDrivers()
    1.84 +	{
    1.85 +	TInt r;
    1.86 +	#ifdef TEST_CLIENT_THREAD
    1.87 +	r= User::LoadLogicalDevice(_L("D_SHBUF_CLIENT.LDD"));
    1.88 +	if (r != KErrAlreadyExists)
    1.89 +		{
    1.90 +		test_KErrNone(r);
    1.91 +		}
    1.92 +	#else
    1.93 +	r = User::LoadLogicalDevice(_L("D_SHBUF_OWN.LDD"));
    1.94 +	if (r != KErrAlreadyExists)
    1.95 +		{
    1.96 +		test_KErrNone(r);
    1.97 +		}
    1.98 +	#endif
    1.99 +	}
   1.100 +
   1.101 +void FreeDeviceDrivers()
   1.102 +	{
   1.103 +	TInt r = User::FreeLogicalDevice(KTestShBufClient);
   1.104 +	test_KErrNone(r);
   1.105 +	r = User::FreeLogicalDevice(KTestShBufOwn);
   1.106 +	test_KErrNone(r);
   1.107 +	}
   1.108 +
   1.109 +void FillShBuf(RShBuf& aBuffer, TUint8 aValue)
   1.110 +	{
   1.111 +	TUint size = aBuffer.Size();
   1.112 +	TUint8* base = aBuffer.Ptr();
   1.113 +	test(size!=0);
   1.114 +	test(base!=0);
   1.115 +	memset(base,aValue,size);
   1.116 +	}
   1.117 +
   1.118 +TBool CheckFillShBuf(RShBuf& aBuffer, TUint8 aValue)
   1.119 +	{
   1.120 +	TUint size = aBuffer.Size();
   1.121 +	TUint8* base = aBuffer.Ptr();
   1.122 +	test(size!=0);
   1.123 +	test(base!=0);
   1.124 +	TUint8* ptr = base;
   1.125 +	TUint8* end = ptr+size;
   1.126 +	while(ptr<end)
   1.127 +		{
   1.128 +		TUint8 b = *ptr++;
   1.129 +		if(b!=aValue)
   1.130 +			{
   1.131 +			RDebug::Printf("CheckFillShBuf failed at offset 0x%x, expected 0x%02x but got 0x%02x ",ptr-base-1,aValue,b);
   1.132 +			return EFalse;
   1.133 +			}
   1.134 +		}
   1.135 +	return ETrue;
   1.136 +	}
   1.137 +
   1.138 +TBool CheckNotFillShBuf(RShBuf& aBuffer, TUint8 aValue)
   1.139 +	{
   1.140 +	TUint size = aBuffer.Size();
   1.141 +	TUint8* base = aBuffer.Ptr();
   1.142 +	test(size!=0);
   1.143 +	test(base!=0);
   1.144 +	TUint8* ptr = base;
   1.145 +	TUint8* end = ptr+size;
   1.146 +	while(ptr<end)
   1.147 +		{
   1.148 +		TUint8 b = *ptr++;
   1.149 +		if(b==aValue)
   1.150 +			{
   1.151 +			RDebug::Printf("CheckNotFillShBuf failed at offset 0x%x, expected not 0x%02x",ptr-base-1,aValue);
   1.152 +			return EFalse;
   1.153 +			}
   1.154 +		}
   1.155 +	return ETrue;
   1.156 +	}
   1.157 +
   1.158 +/*
   1.159 +@SYMTestCaseID				1
   1.160 +@SYMTestCaseDesc			Create pool from user-side
   1.161 +@SYMREQ						REQ11423
   1.162 +@SYMTestActions
   1.163 +	1. Test Thread creates a pool (P1) and passes handle to device driver.
   1.164 +	2. Device driver opens pool and checks its attributes.
   1.165 +@SYMTestExpectedResults
   1.166 +	All OK.
   1.167 +@SYMTestPriority			Critical
   1.168 +*/
   1.169 +
   1.170 +void CreateUserPool(TTestPoolType aPoolType)
   1.171 +	{
   1.172 +	test.Next(_L("Create user-side pool"));
   1.173 +	TInt r;
   1.174 +	TInt pagesize;
   1.175 +	r = HAL::Get(HAL::EMemoryPageSize, pagesize);
   1.176 +	test_KErrNone(r);
   1.177 +
   1.178 +	switch (aPoolType)
   1.179 +		{
   1.180 +		case ETestNonPageAligned:
   1.181 +		// Non-page-aligned pool
   1.182 +			{
   1.183 +			test.Printf(_L("Non-page-aligned\n"));
   1.184 +			test_Equal(0, P1.Handle());
   1.185 +			TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize, KTestPoolSizeInBufs, 8);
   1.186 +			r = P1.Create(inf,KDefaultPoolHandleFlags);
   1.187 +			test_KErrNone(r);
   1.188 +
   1.189 +			r = P1.SetBufferWindow(-1, ETrue);
   1.190 +			test_Equal(KErrNotSupported, r);
   1.191 +
   1.192 +			TShPoolInfo poolinfotokernel;
   1.193 +			poolinfotokernel.iBufSize = *PtrBufSize;
   1.194 +			poolinfotokernel.iInitialBufs = KTestPoolSizeInBufs;
   1.195 +			poolinfotokernel.iMaxBufs = KTestPoolSizeInBufs;
   1.196 +			poolinfotokernel.iGrowTriggerRatio = 0;
   1.197 +			poolinfotokernel.iGrowByRatio = 0;
   1.198 +			poolinfotokernel.iShrinkHysteresisRatio = 0;
   1.199 +			poolinfotokernel.iAlignment = 8;
   1.200 +			poolinfotokernel.iFlags = EShPoolNonPageAlignedBuffer;
   1.201 +			r = Ldd.OpenUserPool(P1.Handle(), poolinfotokernel);
   1.202 +			test_KErrNone(r);
   1.203 +
   1.204 +			TShPoolInfo poolinfo;
   1.205 +			P1.GetInfo(poolinfo);
   1.206 +			test_Equal(*PtrBufSize, poolinfo.iBufSize);
   1.207 +			test_Equal(KTestPoolSizeInBufs, poolinfo.iInitialBufs);
   1.208 +			test_Equal(KTestPoolSizeInBufs, poolinfo.iMaxBufs);
   1.209 +			test_Equal(0, poolinfo.iGrowTriggerRatio);
   1.210 +			test_Equal(0, poolinfo.iGrowByRatio);
   1.211 +			test_Equal(0, poolinfo.iShrinkHysteresisRatio);
   1.212 +			test_Equal(8, poolinfo.iAlignment);
   1.213 +			test(poolinfo.iFlags & EShPoolNonPageAlignedBuffer);
   1.214 +			test(!(poolinfo.iFlags & EShPoolPageAlignedBuffer));
   1.215 +			break;
   1.216 +			}
   1.217 +		case ETestPageAligned:
   1.218 +		// Page-aligned pool
   1.219 +			{
   1.220 +			test.Printf(_L("Page-aligned\n"));
   1.221 +			test_Equal(0, P1.Handle());
   1.222 +
   1.223 +			TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, KTestPoolSizeInBufs);
   1.224 +			r = P1.Create(inf,KDefaultPoolHandleFlags);
   1.225 +			test_KErrNone(r);
   1.226 +
   1.227 +			r = P1.SetBufferWindow(-1, ETrue);
   1.228 +			test_KErrNone(r);
   1.229 +
   1.230 +			TShPoolInfo poolinfo;
   1.231 +			P1.GetInfo(poolinfo);
   1.232 +			test_Equal(*PtrBufSize, poolinfo.iBufSize);
   1.233 +			test_Equal(KTestPoolSizeInBufs, poolinfo.iInitialBufs);
   1.234 +			test_Equal(KTestPoolSizeInBufs, poolinfo.iMaxBufs);
   1.235 +			test_Equal(0, poolinfo.iGrowTriggerRatio);
   1.236 +			test_Equal(0, poolinfo.iGrowByRatio);
   1.237 +			test_Equal(0, poolinfo.iShrinkHysteresisRatio);
   1.238 +			test_Equal(Log2(pagesize), poolinfo.iAlignment);
   1.239 +			test(poolinfo.iFlags & EShPoolPageAlignedBuffer);
   1.240 +			test(!(poolinfo.iFlags & EShPoolNonPageAlignedBuffer));
   1.241 +
   1.242 +			r = Ldd.OpenUserPool(P1.Handle(), poolinfo);
   1.243 +			test_KErrNone(r);
   1.244 +			break;
   1.245 +			}
   1.246 +		case ETestPageAlignedGrowing:
   1.247 +		// Page-aligned growing pool
   1.248 +			{
   1.249 +			test.Printf(_L("Page-aligned growing\n"));
   1.250 +			test_Equal(0, P1.Handle());
   1.251 +
   1.252 +			TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, KTestPoolSizeInBufs / 2);
   1.253 +			// Set shrink hysteresis high so pool can't shrink
   1.254 +			r = inf.SetSizingAttributes(KTestPoolSizeInBufs, 25, 26, 25600);
   1.255 +			test_KErrNone(r);
   1.256 +			r = P1.Create(inf,KDefaultPoolHandleFlags);
   1.257 +			test_KErrNone(r);
   1.258 +
   1.259 +			r = P1.SetBufferWindow(-1, ETrue);
   1.260 +			test_KErrNone(r);
   1.261 +
   1.262 +			TShPoolInfo poolinfo;
   1.263 +			P1.GetInfo(poolinfo);
   1.264 +			test_Equal(*PtrBufSize, poolinfo.iBufSize);
   1.265 +			test_Equal(KTestPoolSizeInBufs / 2, poolinfo.iInitialBufs);
   1.266 +			test_Equal(KTestPoolSizeInBufs, poolinfo.iMaxBufs);
   1.267 +			test_Equal(25, poolinfo.iGrowTriggerRatio);
   1.268 +			test_Equal(26, poolinfo.iGrowByRatio);
   1.269 +			test_Equal(25600, poolinfo.iShrinkHysteresisRatio);
   1.270 +			test_Equal(Log2(pagesize), poolinfo.iAlignment);
   1.271 +			test(poolinfo.iFlags & EShPoolPageAlignedBuffer);
   1.272 +			test(!(poolinfo.iFlags & EShPoolNonPageAlignedBuffer));
   1.273 +
   1.274 +			r = Ldd.OpenUserPool(P1.Handle(), poolinfo);
   1.275 +			test_KErrNone(r);
   1.276 +			break;
   1.277 +			}
   1.278 +		default:
   1.279 +			test(EFalse);
   1.280 +		}
   1.281 +	}
   1.282 +
   1.283 +/*
   1.284 +@SYMTestCaseID				2
   1.285 +@SYMTestCaseDesc			Create pool from kernel-side
   1.286 +@SYMREQ						REQ11423
   1.287 +@SYMTestActions
   1.288 +	1. Device Driver creates a pool (P2) and passes handle to this thread.
   1.289 +	2. Test Thread opens pool and checks its attributes.
   1.290 +@SYMTestExpectedResults
   1.291 +	1. Ok.
   1.292 +	2. Ok.
   1.293 +@SYMTestPriority			Critical
   1.294 +*/
   1.295 +
   1.296 +void CreateKernelPool(TTestPoolType aPoolType)
   1.297 +	{
   1.298 +	test.Next(_L("Create kernel-side pool"));
   1.299 +	TInt r;
   1.300 +	TInt pagesize;
   1.301 +	r = HAL::Get(HAL::EMemoryPageSize, pagesize);
   1.302 +	test_KErrNone(r);
   1.303 +	TInt handle;
   1.304 +
   1.305 +	switch (aPoolType)
   1.306 +		{
   1.307 +		case ETestNonPageAligned:
   1.308 +		// Non-page-aligned pool
   1.309 +			{
   1.310 +			test.Printf(_L("Non-page-aligned\n"));
   1.311 +			test_Equal(0, P2.Handle());
   1.312 +
   1.313 +			TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize, KTestPoolSizeInBufs, 8);
   1.314 +			r = Ldd.OpenKernelPool(inf, handle);
   1.315 +			test_KErrNone(r);
   1.316 +			P2.SetHandle(handle);
   1.317 +
   1.318 +			TShPoolInfo poolinfo;
   1.319 +			P2.GetInfo(poolinfo);
   1.320 +			test_Equal(*PtrBufSize, poolinfo.iBufSize);
   1.321 +			test_Equal(KTestPoolSizeInBufs, poolinfo.iInitialBufs);
   1.322 +			test_Equal(KTestPoolSizeInBufs, poolinfo.iMaxBufs);
   1.323 +			test_Equal(0, poolinfo.iGrowTriggerRatio);
   1.324 +			test_Equal(0, poolinfo.iGrowByRatio);
   1.325 +			test_Equal(0, poolinfo.iShrinkHysteresisRatio);
   1.326 +			test_Equal(8, poolinfo.iAlignment);
   1.327 +			test(poolinfo.iFlags & EShPoolNonPageAlignedBuffer);
   1.328 +			test(!(poolinfo.iFlags & EShPoolPageAlignedBuffer));
   1.329 +			break;
   1.330 +			}
   1.331 +		case ETestPageAligned:
   1.332 +		// Page-aligned pool
   1.333 +			{
   1.334 +			test.Printf(_L("Page-aligned\n"));
   1.335 +			test_Equal(0, P2.Handle());
   1.336 +
   1.337 +			TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, KTestPoolSizeInBufs);
   1.338 +			r = Ldd.OpenKernelPool(inf, handle);
   1.339 +			test_KErrNone(r);
   1.340 +			P2.SetHandle(handle);
   1.341 +
   1.342 +			r = P2.SetBufferWindow(-1, ETrue);
   1.343 +			test_KErrNone(r);
   1.344 +
   1.345 +			TShPoolInfo poolinfo;
   1.346 +			P2.GetInfo(poolinfo);
   1.347 +			test_Equal(*PtrBufSize, poolinfo.iBufSize);
   1.348 +			test_Equal(KTestPoolSizeInBufs, poolinfo.iInitialBufs);
   1.349 +			test_Equal(KTestPoolSizeInBufs, poolinfo.iMaxBufs);
   1.350 +			test_Equal(0, poolinfo.iGrowTriggerRatio);
   1.351 +			test_Equal(0, poolinfo.iGrowByRatio);
   1.352 +			test_Equal(0, poolinfo.iShrinkHysteresisRatio);
   1.353 +			test_Equal(Log2(pagesize), poolinfo.iAlignment);
   1.354 +			test(poolinfo.iFlags & EShPoolPageAlignedBuffer);
   1.355 +			test(!(poolinfo.iFlags & EShPoolNonPageAlignedBuffer));
   1.356 +			break;
   1.357 +			}
   1.358 +		case ETestPageAlignedGrowing:
   1.359 +		// Page-aligned pool growing
   1.360 +			{
   1.361 +			test.Printf(_L("Page-aligned growing\n"));
   1.362 +			test_Equal(0, P2.Handle());
   1.363 +
   1.364 +			TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, KTestPoolSizeInBufs / 2);
   1.365 +			// Set shrink hysteresis high so pool can't shrink
   1.366 +			r = inf.SetSizingAttributes(KTestPoolSizeInBufs, 25, 26, 25600);
   1.367 +			test_KErrNone(r);
   1.368 +			r = Ldd.OpenKernelPool(inf, handle);
   1.369 +			test_KErrNone(r);
   1.370 +			P2.SetHandle(handle);
   1.371 +
   1.372 +			r = P2.SetBufferWindow(-1, ETrue);
   1.373 +			test_KErrNone(r);
   1.374 +
   1.375 +			TShPoolInfo poolinfo;
   1.376 +			P2.GetInfo(poolinfo);
   1.377 +			test_Equal(*PtrBufSize, poolinfo.iBufSize);
   1.378 +			test_Equal(KTestPoolSizeInBufs / 2, poolinfo.iInitialBufs);
   1.379 +			test_Equal(KTestPoolSizeInBufs, poolinfo.iMaxBufs);
   1.380 +			test_Equal(25, poolinfo.iGrowTriggerRatio);
   1.381 +			test_Equal(26, poolinfo.iGrowByRatio);
   1.382 +			test_Equal(25600, poolinfo.iShrinkHysteresisRatio);
   1.383 +			test_Equal(Log2(pagesize), poolinfo.iAlignment);
   1.384 +			test(poolinfo.iFlags & EShPoolPageAlignedBuffer);
   1.385 +			test(!(poolinfo.iFlags & EShPoolNonPageAlignedBuffer));
   1.386 +			break;
   1.387 +			}
   1.388 +		default:
   1.389 +			test(EFalse);
   1.390 +		}
   1.391 +	}
   1.392 +
   1.393 +/*
   1.394 +@SYMTestCaseID				20
   1.395 +@SYMTestCaseDesc			Close pool from kernel-side
   1.396 +@SYMREQ						REQ11423
   1.397 +@SYMTestActions
   1.398 +	1. Device Driver closes P2.
   1.399 +	2. Test Thread closes P2.
   1.400 +@SYMTestExpectedResults
   1.401 +	1. OK and Access Count is now 1.
   1.402 +	2. OK
   1.403 +@SYMTestPriority			Critical
   1.404 +*/
   1.405 +
   1.406 +void CloseKernelPool()
   1.407 +	{
   1.408 +	test.Next(_L("Close kernel-side pool"));
   1.409 +	TInt r;
   1.410 +
   1.411 +	r = Ldd.CloseKernelPool();
   1.412 +	test_KErrNone(r);
   1.413 +
   1.414 +	P2.Close();
   1.415 +
   1.416 +	// wait for memory to be freed
   1.417 +	r = UserSvr::HalFunction(EHalGroupKernel, EKernelHalSupervisorBarrier, (TAny*)5000, 0);
   1.418 +	test_KErrNone(r);
   1.419 +
   1.420 +	}
   1.421 +
   1.422 +/*
   1.423 +@SYMTestCaseID				21
   1.424 +@SYMTestCaseDesc			Close pool from user-side
   1.425 +@SYMREQ						REQ11423
   1.426 +@SYMTestActions
   1.427 +	1. Test Thread closes P1.
   1.428 +	2. Device Driver closes P1.
   1.429 +@SYMTestExpectedResults
   1.430 +	1. OK and Access Count is now 1.
   1.431 +	2. OK.
   1.432 +@SYMTestPriority			Critical
   1.433 +*/
   1.434 +
   1.435 +void CloseUserPool()
   1.436 +	{
   1.437 +	test.Next(_L("Close user-side pool"));
   1.438 +	TInt r;
   1.439 +
   1.440 +	P1.Close();
   1.441 +
   1.442 +	r = Ldd.CloseUserPool();
   1.443 +	test_KErrNone(r);
   1.444 +
   1.445 +	// wait for memory to be freed
   1.446 +	r = UserSvr::HalFunction(EHalGroupKernel, EKernelHalSupervisorBarrier, (TAny*)5000, 0);
   1.447 +	test_KErrNone(r);
   1.448 +	}
   1.449 +
   1.450 +/*
   1.451 +@SYMTestCaseID				3
   1.452 +@SYMTestCaseDesc			Buffer allocation from user-side
   1.453 +@SYMREQ						REQ11423
   1.454 +@SYMTestActions
   1.455 +	1. Test Thread creates a shared buffer on P1.
   1.456 +	2. Test Thread passes buffer to Device Driver.
   1.457 +	3. Device Driver obtains buffer and manipulates its contents.
   1.458 +	4. Device Driver releases buffer.
   1.459 +	5. Test Thread releases buffer.
   1.460 +@SYMTestExpectedResults
   1.461 +	1. Ok.
   1.462 +	2. Ok.
   1.463 +	3. Ok.
   1.464 +	4. Ok.
   1.465 +	5. Ok. Buffer de-allocated.
   1.466 +@SYMTestPriority			Critical
   1.467 +*/
   1.468 +
   1.469 +void AllocateUserBuffer()
   1.470 +	{
   1.471 +	test.Next(_L("Allocate user-side buffer"));
   1.472 +	TInt r;
   1.473 +	RShBuf buf;
   1.474 +
   1.475 +	// Allocate buffer on POOL 1
   1.476 +	__KHEAP_MARK;
   1.477 +	r = buf.Alloc(P1);
   1.478 +	test_KErrNone(r);
   1.479 +	__KHEAP_CHECK(0);
   1.480 +
   1.481 +	TInt i;
   1.482 +	TShPoolInfo poolinfo1;
   1.483 +	P1.GetInfo(poolinfo1);
   1.484 +	TInt blocks = poolinfo1.iBufSize / KTestData1().Length();
   1.485 +
   1.486 +	for (i = 0; i < blocks; i++)
   1.487 +		{
   1.488 +		TPtr8(buf.Ptr() + (i * KTestData1().Length()), KTestData1().Length(),KTestData1().Length()).Copy(KTestData1());
   1.489 +		}
   1.490 +	r = Ldd.ManipulateUserBuffer(buf.Handle());
   1.491 +
   1.492 +	test_KErrNone(r);
   1.493 +
   1.494 +	TBuf8<64> tmp;
   1.495 +
   1.496 +	P1.GetInfo(poolinfo1);
   1.497 +	blocks = poolinfo1.iBufSize / tmp.MaxSize();
   1.498 +
   1.499 +	for (i = 0 ; i < blocks; i++)
   1.500 +		{
   1.501 +		tmp.Fill(i);
   1.502 +		TPtrC8 ptrc(buf.Ptr() + (i * tmp.Length()), tmp.Length());
   1.503 +		r = tmp.Compare(ptrc);
   1.504 +		test_Equal(0, r);
   1.505 +		}
   1.506 +	buf.Close();
   1.507 +	__KHEAP_MARKEND;
   1.508 +
   1.509 +	// Allocate buffer on POOL 2
   1.510 +	__KHEAP_MARK;
   1.511 +	r = buf.Alloc(P2);
   1.512 +	test_KErrNone(r);
   1.513 +	__KHEAP_CHECK(0);
   1.514 +
   1.515 +	TShPoolInfo poolinfo2;
   1.516 +	P2.GetInfo(poolinfo2);
   1.517 +	blocks = poolinfo2.iBufSize / KTestData1().Length(); // PC REMOVE
   1.518 +
   1.519 +	for (i = 0; i < blocks; i++)
   1.520 +		{
   1.521 +		TPtr8(buf.Ptr() + (i * KTestData1().Length()), KTestData1().Length(),KTestData1().Length()).Copy(KTestData1());
   1.522 +		}
   1.523 +
   1.524 +	r = Ldd.ManipulateUserBuffer(buf.Handle());
   1.525 +	test_KErrNone(r);
   1.526 +
   1.527 +	P2.GetInfo(poolinfo2);
   1.528 +	blocks = poolinfo2.iBufSize / tmp.MaxSize(); // PC REMOVE
   1.529 +
   1.530 +	for (i = 0 ; i < blocks; i++)
   1.531 +		{
   1.532 +		tmp.Fill(i);
   1.533 +		r = tmp.Compare(TPtr8(buf.Ptr() + (i * tmp.Length()), tmp.Length(), tmp.Length()));
   1.534 +		test_Equal(0, r);
   1.535 +		}
   1.536 +	buf.Close();
   1.537 +	__KHEAP_MARKEND;
   1.538 +	}
   1.539 +
   1.540 +/*
   1.541 +@SYMTestCaseID				4
   1.542 +@SYMTestCaseDesc			Buffer allocation from kernel-side
   1.543 +@SYMREQ						REQ11423
   1.544 +@SYMTestActions
   1.545 +	1. Device Driver creates a buffer on P2.
   1.546 +	2. Device Driver manipulates buffer and passes it to Test Thread.
   1.547 +	3. Test Thread manipulates buffer and send it back to Device Driver.
   1.548 +	4. Device Driver check buffer's contents and releases it.
   1.549 +@SYMTestExpectedResults
   1.550 +	1. Ok.
   1.551 +	2. Ok.
   1.552 +	3. Ok.
   1.553 +	4. Ok. Buffer de-allocated.
   1.554 +@SYMTestPriority			Critical
   1.555 +*/
   1.556 +
   1.557 +void AllocateKernelBuffer()
   1.558 +	{
   1.559 +	test.Next(_L("Allocate kernel-side buffer"));
   1.560 +	TInt r;
   1.561 +	TInt handle;
   1.562 +	RShBuf kbuf0, kbuf1;
   1.563 +
   1.564 +	// Allocate buffer on POOL 1
   1.565 +	r = Ldd.AllocateKernelBuffer(0, handle);
   1.566 +	test_KErrNone(r);
   1.567 +	kbuf0.SetHandle(handle);
   1.568 +
   1.569 +	TInt i;
   1.570 +	TShPoolInfo poolinfo1;
   1.571 +	P1.GetInfo(poolinfo1);
   1.572 +	TInt blocks = poolinfo1.iBufSize / KTestData2().Length();
   1.573 +	for (i = 0; i < blocks; i++)
   1.574 +		{
   1.575 +		r = KTestData2().Compare(TPtr8(kbuf0.Ptr() + (i * KTestData2().Length()), KTestData2().Length(), KTestData2().Length()));
   1.576 +
   1.577 +		test_Equal(0, r);
   1.578 +		}
   1.579 +	kbuf0.Close();
   1.580 +
   1.581 +	// Allocate buffer on POOL 2
   1.582 +	r = Ldd.AllocateKernelBuffer(1, handle);
   1.583 +	test_KErrNone(r);
   1.584 +	kbuf1.SetHandle(handle);
   1.585 +
   1.586 +	TShPoolInfo poolinfo2;
   1.587 +	P2.GetInfo(poolinfo2);
   1.588 +	blocks = poolinfo2.iBufSize / KTestData2().Length();
   1.589 +
   1.590 +	for (i = 0; i < blocks; i++)
   1.591 +		{
   1.592 +		r = KTestData2().Compare(TPtr8(kbuf1.Ptr() + (i * KTestData2().Length()), KTestData2().Length(), KTestData2().Length()));
   1.593 +
   1.594 +		test_Equal(0, r);
   1.595 +		}
   1.596 +	kbuf1.Close();
   1.597 +	}
   1.598 +
   1.599 +
   1.600 +/*
   1.601 +@SYMTestCaseID				X1
   1.602 +@SYMTestCaseDesc			Allocate maximum number of buffers in a pool (user/kernel)
   1.603 +@SYMREQ						REQ11423
   1.604 +@SYMTestActions
   1.605 +	Allocate as many buffers on a pool as possible.
   1.606 +	Free them all and re-allocate them again.
   1.607 +	Free them all.
   1.608 +@SYMTestExpectedResults
   1.609 +	Ok.
   1.610 +@SYMTestPriority			High
   1.611 +*/
   1.612 +
   1.613 +void AllocateUserMax(RShPool& aPool)
   1.614 +	{
   1.615 +	test.Next(_L("Exhaust pool memory from user-side"));
   1.616 +	TInt r;
   1.617 +
   1.618 +	TShPoolInfo poolinfo;
   1.619 +	aPool.GetInfo(poolinfo);
   1.620 +	TBool aligned = (poolinfo.iFlags & EShPoolPageAlignedBuffer);
   1.621 +	RDebug::Printf("aligned=%d",aligned);
   1.622 +
   1.623 +	RArray<RShBuf> bufarray;
   1.624 +	do
   1.625 +		{
   1.626 +		RShBuf buf;
   1.627 +		r = buf.Alloc(aPool);
   1.628 +		if (r==KErrNoMemory && KTestPoolSizeInBufs>bufarray.Count())
   1.629 +			{
   1.630 +			// try again after a delay, to allow for background resource allocation
   1.631 +			
   1.632 +			User::After(1000000);
   1.633 +			r = buf.Alloc(aPool);
   1.634 +			}
   1.635 +		if (!r)
   1.636 +			{
   1.637 +			r = bufarray.Append(buf);
   1.638 +			test_KErrNone(r);
   1.639 +			FillShBuf(buf,0x99);
   1.640 +			}
   1.641 +		}
   1.642 +	while (r == KErrNone);
   1.643 +	test_Equal(KErrNoMemory, r);
   1.644 +	test_Compare(KTestPoolSizeInBufs, <=, bufarray.Count());
   1.645 +
   1.646 +	TInt n = bufarray.Count();
   1.647 +	while (n)
   1.648 +		{
   1.649 +		bufarray[--n].Close();
   1.650 +		}
   1.651 +
   1.652 +	User::After(500000);
   1.653 +
   1.654 +	// Do it once more
   1.655 +	n = 0;
   1.656 +	while (n<bufarray.Count())
   1.657 +		{
   1.658 +		r = bufarray[n].Alloc(aPool);
   1.659 +		if (r==KErrNoMemory)
   1.660 +			{
   1.661 +			// try again after a delay, to allow for background resource allocation
   1.662 +			User::After(1000000);
   1.663 +			r = bufarray[n].Alloc(aPool);
   1.664 +			}
   1.665 +		test_Assert(r == KErrNone, test.Printf(_L("n=%d r=%d\n"), n, r));
   1.666 +		if(aligned)
   1.667 +			test(CheckNotFillShBuf(bufarray[n],0x99));
   1.668 +		++n;
   1.669 +		}
   1.670 +
   1.671 +	RShBuf extrabuf;
   1.672 +	r = extrabuf.Alloc(aPool);
   1.673 +	test_Equal(KErrNoMemory, r);
   1.674 +
   1.675 +	while (n)
   1.676 +		{
   1.677 +		bufarray[--n].Close();
   1.678 +		}
   1.679 +
   1.680 +	bufarray.Close();
   1.681 +	}
   1.682 +
   1.683 +void AllocateKernelMax()
   1.684 +	{
   1.685 +	test.Next(_L("Exhaust pool memory from kernel-side"));
   1.686 +	TInt r;
   1.687 +	TInt allocated;
   1.688 +	r = Ldd.AllocateMax(0, allocated); // P1
   1.689 +	test_KErrNone(r);
   1.690 +	test_Equal(KTestPoolSizeInBufs, allocated);
   1.691 +	r = Ldd.AllocateMax(1, allocated); // P2
   1.692 +	test_KErrNone(r);
   1.693 +	test_Equal(KTestPoolSizeInBufs, allocated);
   1.694 +	}
   1.695 +
   1.696 +
   1.697 +/*
   1.698 +@SYMTestCaseID				11
   1.699 +@SYMTestCaseDesc			Buffer alignment (kernel/user)
   1.700 +@SYMREQ						REQ11423
   1.701 +@SYMTestActions
   1.702 +	1. Test Thread creates several pools with different buffer alignment
   1.703 +	   requirements:
   1.704 +	2. Test Thread allocates buffers on all pools.
   1.705 +	3. Test Thread frees all buffers and close pools.
   1.706 +@SYMTestExpectedResults
   1.707 +	1. Ok.
   1.708 +	2. Buffers are aligned to the desired boundary.
   1.709 +	3. Ok.
   1.710 +@SYMTestPriority			High
   1.711 +*/
   1.712 +
   1.713 +void BufferAlignmentUser()
   1.714 +	{
   1.715 +	test.Next(_L("Buffer alignment (User)"));
   1.716 +	TInt pagesize;
   1.717 +	TInt r;
   1.718 +	r = HAL::Get(HAL::EMemoryPageSize, pagesize);
   1.719 +	test_KErrNone(r);
   1.720 +
   1.721 +	// Non page aligned buffers
   1.722 +	TInt i;
   1.723 +	for (i = 0; i <= Log2(pagesize); i++)
   1.724 +		{
   1.725 +		test.Printf(_L("."));
   1.726 +		TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize, 20, i); // TODO: Change minbufs back to 8 when the pool growing code works
   1.727 +		RShPool pool;
   1.728 +		r = pool.Create(inf,KDefaultPoolHandleFlags);
   1.729 +		test_KErrNone(r);
   1.730 +
   1.731 +		TInt j;
   1.732 +		RShBuf buf[20];
   1.733 +		for (j = 0; j < 20; j++)
   1.734 +			{
   1.735 +			r = buf[j].Alloc(pool);
   1.736 +			test_KErrNone(r);
   1.737 +			}
   1.738 +
   1.739 +		TInt alignment = i;
   1.740 +		if (alignment < KTestMinimumAlignmentLog2)
   1.741 +			{
   1.742 +			alignment = KTestMinimumAlignmentLog2;
   1.743 +			}
   1.744 +		for (j = 0; j < 20; j++)
   1.745 +			{
   1.746 +			test_Assert(!((TUint32) buf[j].Ptr() & ((1 << alignment) - 1)),
   1.747 +				test.Printf(_L("Pool%d buf[%d].Base() == 0x%08x"), i, j, buf[j].Ptr()));
   1.748 +			}
   1.749 +
   1.750 +		for (j = 0; j < 20; j++)
   1.751 +			{
   1.752 +			buf[j].Close();
   1.753 +			}
   1.754 +		pool.Close();
   1.755 +		// delay to allow the management dfc to run and close pool
   1.756 +		User::After(100000);
   1.757 +		}
   1.758 +	test.Printf(_L("\n"));
   1.759 +
   1.760 +	// Page aligned buffers
   1.761 +	TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, 20); // TODO: Change minbufs back to 8 when the pool growing code works
   1.762 +	RShPool pool;
   1.763 +	r = pool.Create(inf,KDefaultPoolHandleFlags);
   1.764 +	test_KErrNone(r);
   1.765 +
   1.766 +	r = pool.SetBufferWindow(-1, ETrue);
   1.767 +	test_KErrNone(r);
   1.768 +
   1.769 +	TInt j;
   1.770 +	RShBuf buf[20];
   1.771 +	for (j = 0; j < 20; j++)
   1.772 +		{
   1.773 +		r = buf[j].Alloc(pool);
   1.774 +		test_KErrNone(r);
   1.775 +		}
   1.776 +
   1.777 +	for (j = 0; j < 20; j++)
   1.778 +		{
   1.779 +		test_Assert(!((TUint32) buf[j].Ptr() & (pagesize - 1)),
   1.780 +					test.Printf(_L("buf[%d].Base() == 0x%08x"), j, buf[j].Ptr()));
   1.781 +		}
   1.782 +	for (j = 0; j < 20; j++)
   1.783 +		{
   1.784 +		buf[j].Close();
   1.785 +		}
   1.786 +	pool.Close();
   1.787 +	}
   1.788 +
   1.789 +void BufferAlignmentKernel()
   1.790 +	{
   1.791 +	test.Next(_L("Buffer alignment (Kernel)"));
   1.792 +	TInt r;
   1.793 +
   1.794 +	TInt pagesize;
   1.795 +	r = HAL::Get(HAL::EMemoryPageSize, pagesize);
   1.796 +	test_KErrNone(r);
   1.797 +
   1.798 +	for (TInt i = 0; i < Log2(pagesize); i++)
   1.799 +		{
   1.800 +		test.Printf(_L("."));
   1.801 +		r = Ldd.BufferAlignmentKernel(*PtrBufSize, i);
   1.802 +		test_KErrNone(r);
   1.803 +		// delay to allow the management dfc to run
   1.804 +		User::After(100000);
   1.805 +		}
   1.806 +	test.Printf(_L("\n"));
   1.807 +	}
   1.808 +
   1.809 +/*
   1.810 +@SYMTestCaseID				6
   1.811 +@SYMTestCaseDesc			Create pool at specific physical address
   1.812 +@SYMREQ						REQ11423
   1.813 +@SYMTestActions
   1.814 +	1. Device Driver allocates memory chunk.
   1.815 +	2. Device Driver requests physical address of this memory chunk.
   1.816 +	3. Device Driver creates pool at physical address of the memory chunk.
   1.817 +	3. Device Driver allocate buffers on pool, free them and close pool.
   1.818 +@SYMTestExpectedResults
   1.819 +	1. Ok.
   1.820 +	2. Ok.
   1.821 +	3. Ok.
   1.822 +	4. Ok
   1.823 +@SYMTestPriority			High
   1.824 +*/
   1.825 +
   1.826 +void CreateKernelPoolPhysAddr()
   1.827 +	{
   1.828 +	test.Next(_L("Create pool at specific physical address"));
   1.829 +	TInt r;
   1.830 +	test.Start(_L("Contiguous physical memory"));
   1.831 +	r = Ldd.CreatePoolPhysAddrCont(*PtrBufSize);
   1.832 +	test_KErrNone(r);
   1.833 +	test.Next(_L("Discontiguous physical memory"));
   1.834 +	r = Ldd.CreatePoolPhysAddrNonCont(*PtrBufSize);
   1.835 +	test_KErrNone(r);
   1.836 +	test.End();
   1.837 +	}
   1.838 +
   1.839 +/*
   1.840 +@SYMTestCaseID				14
   1.841 +@SYMTestCaseDesc			Buffer separation and overwrites
   1.842 +@SYMREQ						REQ11423
   1.843 +@SYMTestActions
   1.844 +	1. Test Thread creates two pools:
   1.845 +		- A pool with no guard pages.
   1.846 +		- A pool with guard pages.
   1.847 +	2. Allocate two buffers on each pool.
   1.848 +	3. Test Thread creates Secondary Thread.
   1.849 +	4. Secondary Thread starts reading contents of the first buffer and keep
   1.850 +	   reading beyond its limits (using a pointer, not a descriptor).
   1.851 +	5. Secondary Thread starts writing on the first buffer and keep writing beyond
   1.852 +	   its limits (using a pointer, not a descriptor).
   1.853 +	6. Free buffers and close pools.
   1.854 +@SYMTestExpectedResults
   1.855 +	1. Ok.
   1.856 +	2. Ok.
   1.857 +	3. Ok.
   1.858 +	4. Secondary Thread panics when it attempts to read the guard page, if there
   1.859 +	   is one. Otherwise, it moves on to the second buffer. (Secondary Thread will
   1.860 +	   have to be restarted).
   1.861 +	5. Secondary Thread panics when it attempts to write on the guard page if
   1.862 +	   there is one. Otherwise, it carries on writing on to the second buffer.
   1.863 +	6. Ok.
   1.864 +@SYMTestPriority			High
   1.865 +*/
   1.866 +
   1.867 +TInt ThreadGuardPagesRead(TAny* aArg)
   1.868 +	{
   1.869 +	TUint8* ptr = (TUint8*) aArg;
   1.870 +	if (ptr == NULL)
   1.871 +		{
   1.872 +		return KErrArgument;
   1.873 +		}
   1.874 +	TInt bufsize = *PtrBufSize;
   1.875 +	TInt i;
   1.876 +	TUint8 val = '$';
   1.877 +	TBool isok = ETrue;
   1.878 +	for (i = 0; i < bufsize; i++)
   1.879 +		{
   1.880 +		if (*(ptr + i) != val)
   1.881 +			{
   1.882 +			isok = EFalse;
   1.883 +			}
   1.884 +		}
   1.885 +	if (!isok)
   1.886 +		{
   1.887 +		return KErrUnknown;
   1.888 +		}
   1.889 +	return KErrNone;
   1.890 +	}
   1.891 +
   1.892 +TInt ThreadGuardPagesWrite(TAny* aArg)
   1.893 +	{
   1.894 +	TUint8* ptr = (TUint8*) aArg;
   1.895 +	if (ptr == NULL)
   1.896 +		{
   1.897 +		return KErrArgument;
   1.898 +		}
   1.899 +	TInt bufsize = *PtrBufSize;
   1.900 +	TInt i;
   1.901 +	for (i = 0; i < bufsize; i++)
   1.902 +		{
   1.903 +		*(ptr + i) = '#';
   1.904 +		}
   1.905 +	return KErrNone;
   1.906 +	}
   1.907 +
   1.908 +void GuardPages()
   1.909 +	{
   1.910 +	test.Next(_L("Guard pages"));
   1.911 +	TInt pagesize;
   1.912 +	TInt r;
   1.913 +	r = HAL::Get(HAL::EMemoryPageSize, pagesize);
   1.914 +	test_KErrNone(r);
   1.915 +
   1.916 +	// Create pools
   1.917 +	RShPool pool1;
   1.918 +	RShPool pool2;
   1.919 +	TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, KTestPoolSizeInBufs);
   1.920 +	r = pool1.Create(inf,KDefaultPoolHandleFlags);
   1.921 +	test_KErrNone(r);
   1.922 +
   1.923 +	r = pool1.SetBufferWindow(-1, ETrue);
   1.924 +	test_KErrNone(r);
   1.925 +
   1.926 +	r = inf.SetGuardPages();
   1.927 +	test_KErrNone(r);
   1.928 +	r = pool2.Create(inf,KDefaultPoolHandleFlags);
   1.929 +	test_KErrNone(r);
   1.930 +
   1.931 +	r = pool2.SetBufferWindow(-1, ETrue);
   1.932 +	test_KErrNone(r);
   1.933 +
   1.934 +	// Allocate buffers
   1.935 +	RShBuf bufs1[KTestPoolSizeInBufs];
   1.936 +	RShBuf bufs2[KTestPoolSizeInBufs];
   1.937 +	TInt i;
   1.938 +	for (i = 0; i < KTestPoolSizeInBufs; i++)
   1.939 +		{
   1.940 +		r = bufs1[i].Alloc(pool1);
   1.941 +		test_Assert(r == KErrNone, test.Printf(_L("Pool1: i=%d r=%d\n"), i, r));
   1.942 +		TPtr8 ptr(bufs1[i].Ptr(), bufs1[i].Size(),bufs1[i].Size());
   1.943 +		ptr.Fill('$');
   1.944 +		}
   1.945 +	for (i = 0; i < KTestPoolSizeInBufs; i++)
   1.946 +		{
   1.947 +		r = bufs2[i].Alloc(pool2);
   1.948 +		test_Assert(r == KErrNone, test.Printf(_L("Pool2: i=%d r=%d\n"), i, r));
   1.949 +		TPtr8 ptr(bufs2[i].Ptr(), bufs1[i].Size(),bufs1[i].Size());
   1.950 +		ptr.Fill('$');
   1.951 +		}
   1.952 +
   1.953 +	_LIT(KTestThreadRead, "GuardPagesReadTS%dP%dB%d");
   1.954 +	for (i = 0; i < KTestPoolSizeInBufs - 1; i++)
   1.955 +		{
   1.956 +		TBuf<40> threadname;
   1.957 +		RThread thread;
   1.958 +		TRequestStatus rs;
   1.959 +
   1.960 +		// 1. Simple read within buffer
   1.961 +		// Pool 1
   1.962 +		threadname.Format(KTestThreadRead, 1, 1, i);
   1.963 +		r = thread.Create(threadname, ThreadGuardPagesRead, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
   1.964 +			(TAny*) bufs1[i].Ptr());
   1.965 +		test_KErrNone(r);
   1.966 +		thread.Logon(rs);
   1.967 +		thread.Resume();
   1.968 +		User::WaitForRequest(rs);
   1.969 +		test_KErrNone(rs.Int());
   1.970 +		test_Equal(EExitKill, thread.ExitType());
   1.971 +		test_KErrNone(thread.ExitReason());
   1.972 +		thread.Close();
   1.973 +		// Pool 2
   1.974 +		threadname.Format(KTestThreadRead, 1, 2, i);
   1.975 +		r = thread.Create(threadname, ThreadGuardPagesRead, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
   1.976 +			(TAny*) bufs2[i].Ptr());
   1.977 +		test_KErrNone(r);
   1.978 +		thread.Logon(rs);
   1.979 +		thread.Resume();
   1.980 +		User::WaitForRequest(rs);
   1.981 +		test_KErrNone(rs.Int());
   1.982 +		test_Equal(EExitKill, thread.ExitType());
   1.983 +		test_KErrNone(thread.ExitReason());
   1.984 +		thread.Close();
   1.985 +
   1.986 +		// 2. If the buffer size is not a multiple of the MMU page size, it should be
   1.987 +		// possible to read after the buffer end until the page boundary
   1.988 +		if (*PtrBufSize % pagesize)
   1.989 +			{
   1.990 +			// Pool 1
   1.991 +			threadname.Format(KTestThreadRead, 2, 1, i);
   1.992 +			r = thread.Create(threadname, ThreadGuardPagesRead, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
   1.993 +				(TAny*) (bufs1[i].Ptr() + pagesize - *PtrBufSize % pagesize));
   1.994 +			test_KErrNone(r);
   1.995 +			thread.Logon(rs);
   1.996 +			thread.Resume();
   1.997 +			User::WaitForRequest(rs);
   1.998 +			if (rs.Int() != KErrNone)
   1.999 +				{
  1.1000 +				test_Equal(KErrUnknown, rs.Int());
  1.1001 +				test_Equal(KErrUnknown, thread.ExitReason());
  1.1002 +				}
  1.1003 +			test_Equal(EExitKill, thread.ExitType());
  1.1004 +			thread.Close();
  1.1005 +			// Pool 2
  1.1006 +			threadname.Format(KTestThreadRead, 2, 2, i);
  1.1007 +			r = thread.Create(threadname, ThreadGuardPagesRead, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
  1.1008 +				(TAny*) (bufs2[i].Ptr() + pagesize - *PtrBufSize % pagesize));
  1.1009 +			test_KErrNone(r);
  1.1010 +			thread.Logon(rs);
  1.1011 +			thread.Resume();
  1.1012 +			User::WaitForRequest(rs);
  1.1013 +			if (rs.Int() != KErrNone)
  1.1014 +				{
  1.1015 +				test_Equal(KErrUnknown, rs.Int());
  1.1016 +				test_Equal(KErrUnknown, thread.ExitReason());
  1.1017 +				}
  1.1018 +			test_Equal(EExitKill, thread.ExitType());
  1.1019 +			thread.Close();
  1.1020 +			}
  1.1021 +
  1.1022 +		// 3. Now we attempt to read the first byte on the next page after the end of
  1.1023 +		// our buffer.
  1.1024 +		TInt offset;
  1.1025 +		if (*PtrBufSize % pagesize)
  1.1026 +			{
  1.1027 +			offset = pagesize - *PtrBufSize % pagesize + 1;
  1.1028 +			}
  1.1029 +		else
  1.1030 +			{
  1.1031 +			offset = 1;
  1.1032 +			}
  1.1033 +		// Pool 1
  1.1034 +		if (bufs1[i + 1].Ptr() == bufs1[i].Ptr() + RoundUp(*PtrBufSize, Log2(pagesize)))
  1.1035 +			{
  1.1036 +			// Only perform this test if the next buffer comes immediately next to this
  1.1037 +			// one. This is not necessarily the case on the Flexible Memory Model.
  1.1038 +			threadname.Format(KTestThreadRead, 3, 1, i);
  1.1039 +			r = thread.Create(threadname, ThreadGuardPagesRead, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
  1.1040 +				(TAny*) (bufs1[i].Ptr() + offset));
  1.1041 +			test_KErrNone(r);
  1.1042 +			thread.Logon(rs);
  1.1043 +			thread.Resume();
  1.1044 +			User::WaitForRequest(rs);
  1.1045 +			if (rs.Int() != KErrNone) // No guard page, so it should be fine
  1.1046 +				{
  1.1047 +				test_Equal(KErrUnknown, rs.Int());
  1.1048 +				test_Equal(KErrUnknown, thread.ExitReason());
  1.1049 +				}
  1.1050 +			test_Equal(EExitKill, thread.ExitType());
  1.1051 +			thread.Close();
  1.1052 +			}
  1.1053 +		// Pool 2
  1.1054 +		TBool jit = User::JustInTime();
  1.1055 +		User::SetJustInTime(EFalse);
  1.1056 +		threadname.Format(KTestThreadRead, 3, 2, i);
  1.1057 +		r = thread.Create(threadname, ThreadGuardPagesRead, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
  1.1058 +			(TAny*) (bufs2[i].Ptr() + offset));
  1.1059 +		test_KErrNone(r);
  1.1060 +		thread.Logon(rs);
  1.1061 +		thread.Resume();
  1.1062 +		User::WaitForRequest(rs);
  1.1063 +		test_Equal(3, rs.Int());
  1.1064 +		test_Equal(EExitPanic, thread.ExitType());
  1.1065 +		test_Equal(3, thread.ExitReason()); // KERN-EXEC 3
  1.1066 +		thread.Close();
  1.1067 +		User::SetJustInTime(jit);
  1.1068 +		}
  1.1069 +
  1.1070 +	_LIT(KTestThreadWrite, "GuardPagesWriteTS%dP%dB%d");
  1.1071 +	for (i = 0; i < KTestPoolSizeInBufs - 1; i++)
  1.1072 +		{
  1.1073 +		TBuf<40> threadname;
  1.1074 +		RThread thread;
  1.1075 +		TRequestStatus rs;
  1.1076 +
  1.1077 +		// 1. Simple write within buffer
  1.1078 +		// Pool 1
  1.1079 +		threadname.Format(KTestThreadWrite, 1, 1, i);
  1.1080 +		r = thread.Create(threadname, ThreadGuardPagesWrite, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
  1.1081 +			(TAny*) bufs1[i].Ptr());
  1.1082 +		test_KErrNone(r);
  1.1083 +		thread.Logon(rs);
  1.1084 +		thread.Resume();
  1.1085 +		User::WaitForRequest(rs);
  1.1086 +		test_KErrNone(rs.Int());
  1.1087 +		test_Equal(EExitKill, thread.ExitType());
  1.1088 +		test_KErrNone(thread.ExitReason());
  1.1089 +		thread.Close();
  1.1090 +		// Pool 2
  1.1091 +		threadname.Format(KTestThreadWrite, 1, 2, i);
  1.1092 +		r = thread.Create(threadname, ThreadGuardPagesWrite, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
  1.1093 +			(TAny*) bufs2[i].Ptr());
  1.1094 +		test_KErrNone(r);
  1.1095 +		thread.Logon(rs);
  1.1096 +		thread.Resume();
  1.1097 +		User::WaitForRequest(rs);
  1.1098 +		test_KErrNone(rs.Int());
  1.1099 +		test_Equal(EExitKill, thread.ExitType());
  1.1100 +		test_KErrNone(thread.ExitReason());
  1.1101 +		thread.Close();
  1.1102 +
  1.1103 +		// 2. If the buffer size is not a multiple of the MMU page size, it should be
  1.1104 +		// possible to write after the buffer end until the page boundary
  1.1105 +		if (*PtrBufSize % pagesize)
  1.1106 +			{
  1.1107 +			// Pool 1
  1.1108 +			threadname.Format(KTestThreadWrite, 2, 1, i);
  1.1109 +			r = thread.Create(threadname, ThreadGuardPagesWrite, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
  1.1110 +				(TAny*) (bufs1[i].Ptr() + pagesize - *PtrBufSize % pagesize));
  1.1111 +			test_KErrNone(r);
  1.1112 +			thread.Logon(rs);
  1.1113 +			thread.Resume();
  1.1114 +			User::WaitForRequest(rs);
  1.1115 +			test_KErrNone(rs.Int());
  1.1116 +			test_Equal(EExitKill, thread.ExitType());
  1.1117 +			test_KErrNone(thread.ExitReason());
  1.1118 +			thread.Close();
  1.1119 +			// Pool 2
  1.1120 +			threadname.Format(KTestThreadWrite, 2, 2, i);
  1.1121 +			r = thread.Create(threadname, ThreadGuardPagesWrite, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
  1.1122 +				(TAny*) (bufs2[i].Ptr() + pagesize - *PtrBufSize % pagesize));
  1.1123 +			test_KErrNone(r);
  1.1124 +			thread.Logon(rs);
  1.1125 +			thread.Resume();
  1.1126 +			User::WaitForRequest(rs);
  1.1127 +			test_KErrNone(rs.Int());
  1.1128 +			test_Equal(EExitKill, thread.ExitType());
  1.1129 +			test_KErrNone(thread.ExitReason());
  1.1130 +			thread.Close();
  1.1131 +			}
  1.1132 +
  1.1133 +		// 3. Now we attempt to write on the first byte on the next page after the
  1.1134 +		// end of our buffer.
  1.1135 +		TInt offset;
  1.1136 +		if (*PtrBufSize % pagesize)
  1.1137 +			{
  1.1138 +			offset = pagesize - *PtrBufSize % pagesize + 1;
  1.1139 +			}
  1.1140 +		else
  1.1141 +			{
  1.1142 +			offset = 1;
  1.1143 +			}
  1.1144 +		// Pool 1
  1.1145 +		if (bufs1[i + 1].Ptr() == bufs1[i].Ptr() + RoundUp(*PtrBufSize, Log2(pagesize)))
  1.1146 +			{
  1.1147 +			// Only perform this test if the next buffer comes immediately next to this
  1.1148 +			// one. This is not necessarily the case on the Flexible Memory Model.
  1.1149 +			threadname.Format(KTestThreadWrite, 3, 1, i);
  1.1150 +			r = thread.Create(threadname, ThreadGuardPagesWrite, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
  1.1151 +				(TAny*) (bufs1[i].Ptr() + offset));
  1.1152 +			test_KErrNone(r);
  1.1153 +			thread.Logon(rs);
  1.1154 +			thread.Resume();
  1.1155 +			User::WaitForRequest(rs);
  1.1156 +			test_KErrNone(rs.Int());
  1.1157 +			test_Equal(EExitKill, thread.ExitType());
  1.1158 +			test_KErrNone(thread.ExitReason());
  1.1159 +			thread.Close();
  1.1160 +			}
  1.1161 +
  1.1162 +		// Pool 2
  1.1163 +		TBool jit = User::JustInTime();
  1.1164 +		User::SetJustInTime(EFalse);
  1.1165 +		threadname.Format(KTestThreadWrite, 3, 2, i);
  1.1166 +		r = thread.Create(threadname, ThreadGuardPagesWrite, KDefaultStackSize, KMinHeapSize, KMinHeapSize,
  1.1167 +			(TAny*) (bufs2[i].Ptr() + offset));
  1.1168 +		test_KErrNone(r);
  1.1169 +		thread.Logon(rs);
  1.1170 +		thread.Resume();
  1.1171 +		User::WaitForRequest(rs);
  1.1172 +		test_Equal(3, rs.Int());
  1.1173 +		test_Equal(EExitPanic, thread.ExitType());
  1.1174 +		test_Equal(3, thread.ExitReason()); // KERN-EXEC 3
  1.1175 +		thread.Close();
  1.1176 +		User::SetJustInTime(jit);
  1.1177 +		}
  1.1178 +
  1.1179 +	// Free buffers
  1.1180 +	for (i = 0; i < KTestPoolSizeInBufs; i++)
  1.1181 +		{
  1.1182 +		bufs1[i].Close();
  1.1183 +		bufs2[i].Close();
  1.1184 +		}
  1.1185 +	pool1.Close();
  1.1186 +	pool2.Close();
  1.1187 +	}
  1.1188 +
  1.1189 +/*
  1.1190 +@SYMTestCaseID				12
  1.1191 +@SYMTestCaseDesc			Buffer mapping
  1.1192 +@SYMREQ						REQ11423
  1.1193 +@SYMTestActions
  1.1194 +	1. Test Thread allocates buffer on a mappable pool.
  1.1195 +	2. Test Thread spawns Slave Process.
  1.1196 +	3. Test Thread passes buffer handle to Slave Process.
  1.1197 +	4. Slave Process attempts to read buffer then write to buffer.
  1.1198 +	5. Slave Process maps buffer.
  1.1199 +	6. Slave Process attempts to read buffer then write to buffer.
  1.1200 +	7. Slave Process unmaps buffer.
  1.1201 +	8. Slave Process attempts to read buffer then write to buffer.
  1.1202 +	9. Test Thread kills Slave Process and frees buffer.
  1.1203 +@SYMTestExpectedResults
  1.1204 +	1. Ok.
  1.1205 +	2. Ok.
  1.1206 +	3. Ok.
  1.1207 +	4. Slave Process panics. (and will have to be restarted)
  1.1208 +	5. Ok.
  1.1209 +	6. Ok.
  1.1210 +	7. Ok.
  1.1211 +	8. Slave Process panics.
  1.1212 +	9. Ok.
  1.1213 +@SYMTestPriority			High
  1.1214 +*/
  1.1215 +
  1.1216 +TInt ThreadBufferMappingRead(TAny* aArg)
  1.1217 +	{
  1.1218 +	if (!aArg)
  1.1219 +		{
  1.1220 +		return KErrArgument;
  1.1221 +		}
  1.1222 +	RShBuf* buf = (RShBuf*) aArg;
  1.1223 +	TUint x = 0;
  1.1224 +	TUint i;
  1.1225 +	volatile TUint8* ptr = buf->Ptr();
  1.1226 +
  1.1227 +	for (i = 0; i < buf->Size(); i++)
  1.1228 +		{
  1.1229 +		x += *(ptr + i);
  1.1230 +		}
  1.1231 +	return KErrNone;
  1.1232 +	}
  1.1233 +
  1.1234 +TInt ThreadBufferMappingWrite(TAny* aArg)
  1.1235 +	{
  1.1236 +	if (!aArg)
  1.1237 +		{
  1.1238 +		return KErrArgument;
  1.1239 +		}
  1.1240 +	RShBuf* buf = (RShBuf*) aArg;
  1.1241 +	TPtr8 ptr(buf->Ptr(), buf->Size(),buf->Size());
  1.1242 +	ptr.Fill('Q');
  1.1243 +	return KErrNone;
  1.1244 +	}
  1.1245 +
  1.1246 +const TInt KTestBufferMappingPoolTypes = 8;
  1.1247 +const TInt KTestBufferMappingTypes = 8;
  1.1248 +
  1.1249 +void BufferMapping()
  1.1250 +	{
  1.1251 +	test.Next(_L("Buffer Mapping"));
  1.1252 +#ifdef __WINS__
  1.1253 +	test.Printf(_L("Does not run on the emulator. Skipped\n"));
  1.1254 +#else
  1.1255 +	TInt r;
  1.1256 +	RShPool pool[KTestBufferMappingPoolTypes];
  1.1257 +	RShBuf buf[KTestBufferMappingTypes][KTestBufferMappingPoolTypes];
  1.1258 +	TUint poolflags[KTestBufferMappingPoolTypes];
  1.1259 +	TInt bufferwindow[KTestBufferMappingPoolTypes];
  1.1260 +	TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, KTestBufferMappingTypes);
  1.1261 +
  1.1262 +	// POOL TYPES
  1.1263 +	// ------------------------------------------
  1.1264 +	// Pool no.	AutoMap	Writeable	BufWindow
  1.1265 +	// 0			0			0			-1
  1.1266 +	// 1			1			0			-1
  1.1267 +	// 2			0			0			0
  1.1268 +	// 3			1			0			0
  1.1269 +	// 4			0			1			-1
  1.1270 +	// 5			1			1			-1
  1.1271 +	// 6			0			1			0
  1.1272 +	// 7			1			1			0
  1.1273 +
  1.1274 +	TInt i;
  1.1275 +	test.Printf(_L("Create pools:"));
  1.1276 +	for (i = 0; i < KTestBufferMappingPoolTypes; i++)
  1.1277 +		{
  1.1278 +		poolflags[i] = EShPoolAllocate;
  1.1279 +		bufferwindow[i] = 0;
  1.1280 +		if (i % 2)
  1.1281 +			{
  1.1282 +			poolflags[i] |= EShPoolAutoMapBuf;
  1.1283 +			}
  1.1284 +		if (i > 3)
  1.1285 +			{
  1.1286 +			poolflags[i] |= EShPoolWriteable;
  1.1287 +			}
  1.1288 +		if (i % 4 > 1)
  1.1289 +			{
  1.1290 +			bufferwindow[i] = -1;
  1.1291 +			}
  1.1292 +		r = pool[i].Create(inf, poolflags[i] & ~EShPoolAutoMapBuf);
  1.1293 +		test_KErrNone(r);
  1.1294 +		r = pool[i].SetBufferWindow(bufferwindow[i], poolflags[i] & EShPoolAutoMapBuf);
  1.1295 +		test_KErrNone(r);
  1.1296 +		test.Printf(_L("."));
  1.1297 +		}
  1.1298 +	test.Printf(_L("\n"));
  1.1299 +
  1.1300 +	// BUFFER TYPES
  1.1301 +	// Buffer no.	Actions
  1.1302 +	// 0			Alloc unmapped.
  1.1303 +	// 1			Alloc unmapped then unmap again.
  1.1304 +	// 2			Default Alloc. Unmap if it is a AutoMap pool.
  1.1305 +	// 3			Alloc unmapped. Map Read-Only.
  1.1306 +	// 4			Default Alloc. Unmap if it is a R/W pool and re-map Read-Only.
  1.1307 +	// 5			Alloc unmapped. Map R/W
  1.1308 +	// 6			Default Alloc. Unmap and re-map.
  1.1309 +	// 7            Default Alloc R/W. Map again with Read-Only setting.
  1.1310 +	// Depending on the pool type, the actions above might not always be possible.
  1.1311 +
  1.1312 +	// Buffer allocation
  1.1313 +	TInt j;
  1.1314 +	test.Printf(_L("Allocate buffers\n"));
  1.1315 +	for (j = 0; j < KTestBufferMappingPoolTypes; j++)
  1.1316 +		{
  1.1317 +		test.Printf(_L("\nPool %d:"), j);
  1.1318 +		for (i = 0; i < KTestBufferMappingTypes; i++)
  1.1319 +			{
  1.1320 +			switch (i % KTestBufferMappingTypes)
  1.1321 +				{
  1.1322 +				// Unmapped buffers
  1.1323 +				case 0:
  1.1324 +				case 1:
  1.1325 +					// This should always result in an unmapped buffer
  1.1326 +					r = buf[i][j].Alloc(pool[j], EShPoolAllocNoMap);
  1.1327 +					test_KErrNone(r);
  1.1328 +
  1.1329 +					if((i % KTestBufferMappingTypes) == 1)
  1.1330 +						{
  1.1331 +						// Alloc unmapped then unmap again.
  1.1332 +						r = buf[i][j].UnMap();
  1.1333 +						test_Equal(KErrNotFound, r);
  1.1334 +						}
  1.1335 +					break;
  1.1336 +				case 2:
  1.1337 +					r = buf[i][j].Alloc(pool[j]);
  1.1338 +					if (poolflags[j] & EShPoolAutoMapBuf)
  1.1339 +						{
  1.1340 +						if (bufferwindow[j] == 0)
  1.1341 +							{
  1.1342 +							// Can't ask for a mapped buffer when buffer window is not set
  1.1343 +							test_Equal(KErrNoMemory, r);
  1.1344 +							}
  1.1345 +						else
  1.1346 +							{
  1.1347 +							// Alloc'd buffer was mapped - unmap it
  1.1348 +							test_KErrNone(r);
  1.1349 +							r = buf[i][j].UnMap();
  1.1350 +							test_KErrNone(r);
  1.1351 +							}
  1.1352 +						}
  1.1353 +					else
  1.1354 +						{
  1.1355 +						// Buffer not mapped
  1.1356 +						test_KErrNone(r);
  1.1357 +						}
  1.1358 +					break;
  1.1359 +
  1.1360 +				// Read-Only buffers
  1.1361 +				case 3:
  1.1362 +					r = buf[i][j].Alloc(pool[j], EShPoolAllocNoMap);
  1.1363 +					test_KErrNone(r);
  1.1364 +					r = buf[i][j].Map(ETrue);
  1.1365 +					if (bufferwindow[j])
  1.1366 +						{
  1.1367 +						test_KErrNone(r);
  1.1368 +						}
  1.1369 +					else
  1.1370 +						{
  1.1371 +						test_Equal(KErrNoMemory, r);
  1.1372 +						}
  1.1373 +					break;
  1.1374 +				case 4:
  1.1375 +					r = buf[i][j].Alloc(pool[j]);
  1.1376 +					if (poolflags[j] & EShPoolAutoMapBuf)
  1.1377 +						{
  1.1378 +						if (bufferwindow[j] == 0)
  1.1379 +							{
  1.1380 +							// Can't ask for a mapped buffer when buffer window is not set
  1.1381 +							test_Equal(KErrNoMemory, r);
  1.1382 +							}
  1.1383 +						else if (poolflags[j] & EShPoolWriteable)
  1.1384 +							{
  1.1385 +							// Alloc'd buffer was mapped R/W - re-map it R/O
  1.1386 +							test_KErrNone(r);
  1.1387 +							r = buf[i][j].UnMap();
  1.1388 +							test_KErrNone(r);
  1.1389 +							r = buf[i][j].Map(ETrue);
  1.1390 +							test_KErrNone(r);
  1.1391 +							}
  1.1392 +						else
  1.1393 +							{
  1.1394 +							// Nothing to do
  1.1395 +							test_KErrNone(r);
  1.1396 +							}
  1.1397 +						}
  1.1398 +					else
  1.1399 +						{
  1.1400 +						// Buffer not mapped
  1.1401 +						test_KErrNone(r);
  1.1402 +						if (bufferwindow[j])
  1.1403 +							{
  1.1404 +							if (poolflags[j] & EShPoolWriteable)
  1.1405 +								{
  1.1406 +								// Explicitly map Read-Only
  1.1407 +								r = buf[i][j].Map(ETrue);
  1.1408 +								test_KErrNone(r);
  1.1409 +								}
  1.1410 +							else
  1.1411 +								{
  1.1412 +								// If Pool is RO, map default
  1.1413 +								r = buf[i][j].Map();
  1.1414 +								test_KErrNone(r);
  1.1415 +								}
  1.1416 +							}
  1.1417 +						else
  1.1418 +							{
  1.1419 +							// Can't map buffer
  1.1420 +							r = buf[i][j].Map(ETrue);
  1.1421 +							test_Equal(KErrNoMemory, r);
  1.1422 +							}
  1.1423 +						}
  1.1424 +					break;
  1.1425 +
  1.1426 +				// Mapped for Read-Write
  1.1427 +				case 5:
  1.1428 +					r = buf[i][j].Alloc(pool[j], EShPoolAllocNoMap);
  1.1429 +					test_KErrNone(r);
  1.1430 +					r = buf[i][j].Map();
  1.1431 +					if (bufferwindow[j] == 0)
  1.1432 +						{
  1.1433 +						test_Equal(KErrNoMemory, r);
  1.1434 +						}
  1.1435 +					else if (!(poolflags[j] & EShPoolWriteable))
  1.1436 +						{
  1.1437 +						test_KErrNone(r);
  1.1438 +						}
  1.1439 +					else
  1.1440 +						{
  1.1441 +						test_KErrNone(r);
  1.1442 +						}
  1.1443 +					break;
  1.1444 +				case 6:
  1.1445 +				case 7:
  1.1446 +					r = buf[i][j].Alloc(pool[j]);
  1.1447 +					if (poolflags[j] & EShPoolAutoMapBuf)
  1.1448 +						{
  1.1449 +						if (bufferwindow[j] == 0)
  1.1450 +							{
  1.1451 +							// Can't ask for a mapped buffer when buffer window is not set
  1.1452 +							test_Equal(KErrNoMemory, r);
  1.1453 +							}
  1.1454 +						else if (poolflags[j] & EShPoolWriteable)
  1.1455 +							{
  1.1456 +							// Alloc'd buffer was mapped R/W
  1.1457 +							test_KErrNone(r);
  1.1458 +
  1.1459 +                            if((i % KTestBufferMappingTypes) == 7)
  1.1460 +                                {
  1.1461 +                                // Mapped for Read-Write then remapped as Read-Only
  1.1462 +                                r = buf[i][j].Map(true);
  1.1463 +                                test_Equal(KErrAlreadyExists, r);
  1.1464 +                                }
  1.1465 +							}
  1.1466 +						}
  1.1467 +					else
  1.1468 +						{
  1.1469 +						// Buffer not mapped
  1.1470 +						test_KErrNone(r);
  1.1471 +						if (bufferwindow[j])
  1.1472 +							{
  1.1473 +							if (poolflags[j] & EShPoolWriteable)
  1.1474 +								{
  1.1475 +								// Default mapping
  1.1476 +								r = buf[i][j].Map();
  1.1477 +                                test_KErrNone(r);
  1.1478 +
  1.1479 +                                if((i % KTestBufferMappingTypes) == 7)
  1.1480 +                                    {
  1.1481 +                                    // Mapped for Read-Write then remapped as Read-Only
  1.1482 +                                    r = buf[i][j].Map(true);
  1.1483 +                                    test_Equal(KErrAlreadyExists, r);
  1.1484 +                                    }
  1.1485 +								}
  1.1486 +							}
  1.1487 +						else
  1.1488 +							{
  1.1489 +							// Can't map buffer
  1.1490 +							r = buf[i][j].Map(ETrue);
  1.1491 +							test_Equal(KErrNoMemory, r);
  1.1492 +							}
  1.1493 +						}
  1.1494 +					break;
  1.1495 +
  1.1496 +	            default: test(EFalse);
  1.1497 +				}
  1.1498 +			test.Printf(_L("."));
  1.1499 +			}
  1.1500 +		}
  1.1501 +	test.Printf(_L("\n"));
  1.1502 +
  1.1503 +	// Read and write tests
  1.1504 +	_LIT(KTestThreadName, "BufferMappingBuf%d(Test%d)");
  1.1505 +	test.Printf(_L("Read & Write tests\n"));
  1.1506 +	for (j = 0; j < KTestBufferMappingPoolTypes; j++)
  1.1507 +		{
  1.1508 +		for (i = 0; i < KTestBufferMappingTypes; i++)
  1.1509 +			{
  1.1510 +			if (buf[i][j].Handle())
  1.1511 +				{
  1.1512 +				switch (i % KTestBufferMappingTypes)
  1.1513 +					{
  1.1514 +					case 1:
  1.1515 +					case 2:
  1.1516 +					// Buffer not mapped - Read should fail
  1.1517 +					if (buf[i][j].Ptr() == NULL)
  1.1518 +						{
  1.1519 +						RThread thread;
  1.1520 +						TRequestStatus threadrs;
  1.1521 +						TBuf<40> threadname;
  1.1522 +						threadname.Format(KTestThreadName, i, (i % KTestBufferMappingTypes) + 1);
  1.1523 +						r = thread.Create(threadname, ThreadBufferMappingRead, KDefaultStackSize, KMinHeapSize, KMinHeapSize, (TAny*) &buf[i][j]);
  1.1524 +						test_KErrNone(r);
  1.1525 +						thread.Logon(threadrs);
  1.1526 +						thread.Resume();
  1.1527 +						User::WaitForRequest(threadrs);
  1.1528 +						test_Equal(3, threadrs.Int());
  1.1529 +						test_Equal(EExitPanic, thread.ExitType());
  1.1530 +						test_Equal(3, thread.ExitReason()); // KERN-EXEC 3
  1.1531 +						CLOSE_AND_WAIT(thread);
  1.1532 +						// Map buffer read-only for next test
  1.1533 +						r = buf[i][j].Map(ETrue);
  1.1534 +						if (bufferwindow[j])
  1.1535 +							{
  1.1536 +							test_KErrNone(r);
  1.1537 +							}
  1.1538 +						else
  1.1539 +							{
  1.1540 +							test_Equal(KErrNoMemory, r);
  1.1541 +							}
  1.1542 +						}
  1.1543 +					case 3:
  1.1544 +					case 4:
  1.1545 +					// Buffer mapped for R/O access - Read should not fail
  1.1546 +					if (bufferwindow[j] == 0)
  1.1547 +						{
  1.1548 +						break;
  1.1549 +						}
  1.1550 +					else
  1.1551 +						{
  1.1552 +						RThread thread;
  1.1553 +						TRequestStatus threadrs;
  1.1554 +						TBuf<40> threadname;
  1.1555 +						threadname.Format(KTestThreadName, i, (i % KTestBufferMappingTypes) + 1);
  1.1556 +						r = thread.Create(threadname, ThreadBufferMappingRead, KDefaultStackSize, KMinHeapSize, KMinHeapSize, (TAny*) &buf[i][j]);
  1.1557 +						test_KErrNone(r);
  1.1558 +						thread.Logon(threadrs);
  1.1559 +						thread.Resume();
  1.1560 +						User::WaitForRequest(threadrs);
  1.1561 +						test_KErrNone(threadrs.Int());
  1.1562 +						test_Equal(EExitKill, thread.ExitType());
  1.1563 +						test_KErrNone(thread.ExitReason());
  1.1564 +						CLOSE_AND_WAIT(thread);
  1.1565 +						}
  1.1566 +					// Write should fail
  1.1567 +					if (buf[i][j].Ptr())
  1.1568 +						{
  1.1569 +						RThread thread;
  1.1570 +						TRequestStatus threadrs;
  1.1571 +						TBuf<40> threadname;
  1.1572 +						threadname.Format(KTestThreadName, i, (i % KTestBufferMappingTypes) + 2);
  1.1573 +						r = thread.Create(threadname, ThreadBufferMappingWrite, KDefaultStackSize, KMinHeapSize, KMinHeapSize,(TAny*) &buf[i][j]);
  1.1574 +						test_KErrNone(r);
  1.1575 +						thread.Logon(threadrs);
  1.1576 +						thread.Resume();
  1.1577 +						User::WaitForRequest(threadrs);
  1.1578 +						test_Equal(3, threadrs.Int());
  1.1579 +						test_Equal(EExitPanic, thread.ExitType());
  1.1580 +						test_Equal(3, thread.ExitReason()); // KERN-EXEC 3
  1.1581 +						CLOSE_AND_WAIT(thread);
  1.1582 +						// Map buffer read-write for next test
  1.1583 +						r = buf[i][j].UnMap();
  1.1584 +						if(r != KErrNotFound)
  1.1585 +						    {
  1.1586 +						    test_KErrNone(r);
  1.1587 +						    }
  1.1588 +						r = buf[i][j].Map();
  1.1589 +			   			test_KErrNone(r);
  1.1590 +						}
  1.1591 +					case 5:
  1.1592 +					case 6:
  1.1593 +						// Buffer mapped for R/W access - Write should not fail
  1.1594 +					if (bufferwindow[j] == 0  || !(poolflags[j] & EShPoolWriteable))
  1.1595 +						{
  1.1596 +						break;
  1.1597 +						}
  1.1598 +					else
  1.1599 +						{
  1.1600 +						RThread thread;
  1.1601 +						TRequestStatus threadrs;
  1.1602 +						TBuf<40> threadname;
  1.1603 +						threadname.Format(KTestThreadName, i, (i % KTestBufferMappingTypes) + 1);
  1.1604 +						r = thread.Create(threadname, ThreadBufferMappingWrite, KDefaultStackSize, KMinHeapSize, KMinHeapSize,(TAny*) &buf[i][j]);
  1.1605 +						test_KErrNone(r);
  1.1606 +						thread.Logon(threadrs);
  1.1607 +						thread.Resume();
  1.1608 +						User::WaitForRequest(threadrs);
  1.1609 +						test_KErrNone(threadrs.Int());
  1.1610 +						test_Equal(EExitKill, thread.ExitType());
  1.1611 +						test_KErrNone(thread.ExitReason());
  1.1612 +						CLOSE_AND_WAIT(thread);
  1.1613 +						// Unmap buffer for next test
  1.1614 +						r = buf[i][j].UnMap();
  1.1615 +						test_KErrNone(r);
  1.1616 +						}
  1.1617 +					// Buffer not mapped - Read should fail
  1.1618 +					if (buf[i][j].Ptr())
  1.1619 +						{
  1.1620 +						RThread thread;
  1.1621 +						TRequestStatus threadrs;
  1.1622 +						TBuf<40> threadname;
  1.1623 +						threadname.Format(KTestThreadName, i, (i % KTestBufferMappingTypes) + 2);
  1.1624 +						r = thread.Create(threadname, ThreadBufferMappingRead, KDefaultStackSize, KMinHeapSize, KMinHeapSize,(TAny*) &buf[i][j]);
  1.1625 +						test_KErrNone(r);
  1.1626 +						thread.Logon(threadrs);
  1.1627 +						thread.Resume();
  1.1628 +						User::WaitForRequest(threadrs);
  1.1629 +						test_Equal(3, threadrs.Int());
  1.1630 +						test_Equal(EExitPanic, thread.ExitType());
  1.1631 +						test_Equal(3, thread.ExitReason()); // KERN-EXEC 3
  1.1632 +						CLOSE_AND_WAIT(thread);
  1.1633 +						}
  1.1634 +					}
  1.1635 +				}
  1.1636 +			buf[i][j].Close();
  1.1637 +			test.Printf(_L("."));
  1.1638 +			}
  1.1639 +		pool[j].Close();
  1.1640 +		test.Printf(_L("\n"));
  1.1641 +		}
  1.1642 +#endif
  1.1643 +	}
  1.1644 +
  1.1645 +void BufferWindow()
  1.1646 +	{
  1.1647 +	test.Next(_L("Buffer Window tests"));
  1.1648 +#ifdef __WINS__
  1.1649 +	test.Printf(_L("Does not run on the emulator. Skipped\n"));
  1.1650 +#else
  1.1651 +	TInt r;
  1.1652 +	RShPool pool;
  1.1653 +	RShBuf buf[KTestPoolSizeInBufs * 2 + 1];
  1.1654 +	TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, KTestPoolSizeInBufs * 2);
  1.1655 +	r = pool.Create(inf, KDefaultPoolHandleFlags);
  1.1656 +	test_KErrNone(r);
  1.1657 +
  1.1658 +	// Allocate buffer but don't map them to this process memory
  1.1659 +	TInt i;
  1.1660 +	for (i = 0; i < KTestPoolSizeInBufs * 2; i++)
  1.1661 +		{
  1.1662 +		r = buf[i].Alloc(pool, EShPoolAllocNoMap);
  1.1663 +		test_KErrNone(r);
  1.1664 +		}
  1.1665 +
  1.1666 +	// Pool is full
  1.1667 +	r = buf[KTestPoolSizeInBufs * 2].Alloc(pool, EShPoolAllocNoMap);
  1.1668 +	test_Equal(KErrNoMemory, r);
  1.1669 +	r = buf[0].Map();
  1.1670 +	test_Equal(KErrNoMemory, r);
  1.1671 +
  1.1672 +	// Open a one-buffer window
  1.1673 +	r = pool.SetBufferWindow(1, ETrue);
  1.1674 +	test_KErrNone(r);
  1.1675 +	r = buf[0].Map();
  1.1676 +	test_KErrNone(r);
  1.1677 +	TPtr8 ptr0(buf[0].Ptr(), buf[0].Size(),buf[0].Size());
  1.1678 +	ptr0.Fill('>');
  1.1679 +	r = buf[1].Map();
  1.1680 +	test_Equal(KErrNoMemory, r);
  1.1681 +	r = buf[0].UnMap();
  1.1682 +	test_KErrNone(r);
  1.1683 +	r = buf[1].Map();
  1.1684 +	test_KErrNone(r);
  1.1685 +	TPtr8 ptr1(buf[0].Ptr(), buf[0].Size(),buf[0].Size());
  1.1686 +	ptr1.Fill('<');
  1.1687 +	r = buf[2].Map();
  1.1688 +	test_Equal(KErrNoMemory, r);
  1.1689 +
  1.1690 +	// Enlarge window by one buffer
  1.1691 +	r = pool.SetBufferWindow(2, ETrue);
  1.1692 +	test_Equal(KErrAlreadyExists, r);
  1.1693 +
  1.1694 +	// Close All buffers
  1.1695 +	for (i = 0; i < KTestPoolSizeInBufs * 2; i++)
  1.1696 +		{
  1.1697 +		buf[i].Close();
  1.1698 +		}
  1.1699 +
  1.1700 +	pool.Close();
  1.1701 +	r = pool.Create(inf, KDefaultPoolHandleFlags);
  1.1702 +	test_KErrNone(r);
  1.1703 +
  1.1704 +	r = pool.SetBufferWindow(KTestPoolSizeInBufs, ETrue); // Half the pool size
  1.1705 +	test_KErrNone(r);
  1.1706 +	for (i = 0; i < KTestPoolSizeInBufs * 2 - 1; i++)
  1.1707 +		{
  1.1708 +		if (i < KTestPoolSizeInBufs)
  1.1709 +			{
  1.1710 +			r = buf[i].Alloc(pool, 0);
  1.1711 +			test_KErrNone(r);
  1.1712 +			TPtr8 ptr(buf[0].Ptr(), buf[0].Size(),buf[0].Size());
  1.1713 +			ptr.Fill('?');
  1.1714 +			}
  1.1715 +		else
  1.1716 +			{
  1.1717 +			r = buf[i].Alloc(pool, EShPoolAllocNoMap);
  1.1718 +			test_KErrNone(r);
  1.1719 +			}
  1.1720 +		}
  1.1721 +	r = buf[KTestPoolSizeInBufs * 2].Alloc(pool, 0);
  1.1722 +	test_Equal(KErrNoMemory, r);
  1.1723 +	r = buf[KTestPoolSizeInBufs].Map();
  1.1724 +	test_Equal(KErrNoMemory, r);
  1.1725 +	r = buf[KTestPoolSizeInBufs * 2].Alloc(pool, EShPoolAllocNoMap);
  1.1726 +	test_KErrNone(r);
  1.1727 +
  1.1728 +	// That's it
  1.1729 +	for (i = 0; i < (KTestPoolSizeInBufs * 2)  + 1; i++)
  1.1730 +		{
  1.1731 +		buf[i].Close();
  1.1732 +		}
  1.1733 +	pool.Close();
  1.1734 +
  1.1735 +	// Try again with automap set to false
  1.1736 +	RShPool pool2;
  1.1737 +	r = pool2.Create(inf, KDefaultPoolHandleFlags);
  1.1738 +	test_KErrNone(r);
  1.1739 +	for (i = 0; i < KTestPoolSizeInBufs * 2; i++)
  1.1740 +		{
  1.1741 +		r = buf[i].Alloc(pool2, 0);
  1.1742 +		test_KErrNone(r);
  1.1743 +		}
  1.1744 +	r = pool2.SetBufferWindow(-1, EFalse);
  1.1745 +	test_KErrNone(r);
  1.1746 +	for (i = 0; i < KTestPoolSizeInBufs * 2; i++)
  1.1747 +		{
  1.1748 +		r = buf[i].Map(ETrue);
  1.1749 +		test_KErrNone(r);
  1.1750 +		}
  1.1751 +	for (i = 0; i < KTestPoolSizeInBufs * 2; i++)
  1.1752 +		{
  1.1753 +		buf[i].Close();
  1.1754 +		}
  1.1755 +	pool2.Close();
  1.1756 +#endif
  1.1757 +	}
  1.1758 +
  1.1759 +/*
  1.1760 +@SYMTestCaseID				7
  1.1761 +@SYMTestCaseDesc			Trigger notifications
  1.1762 +@SYMREQ						REQ11423
  1.1763 +@SYMTestActions
  1.1764 +	Set Low Space Notifications on various thresholds.
  1.1765 +	In a separate thread, keep allocating buffers.
  1.1766 +@SYMTestExpectedResults
  1.1767 +	Notifications are completed when their respective levels are reached.
  1.1768 +@SYMTestPriority			Medium
  1.1769 +*/
  1.1770 +
  1.1771 +TInt ThreadNotifications(TAny* aArg)
  1.1772 +	{
  1.1773 +	if (!aArg)
  1.1774 +		{
  1.1775 +		return KErrArgument;
  1.1776 +		}
  1.1777 +	RShPool* pool = (RShPool*) aArg;
  1.1778 +	RArray<RShBuf> bufarray;
  1.1779 +	TInt r;
  1.1780 +	RSemaphore sem;
  1.1781 +	r = sem.OpenGlobal(KTestLowSpaceSemaphore);
  1.1782 +	if (r)
  1.1783 +		{
  1.1784 +		RDebug::Printf("Line %d: r=%d", __LINE__, r);
  1.1785 +		return r;
  1.1786 +		}
  1.1787 +	// Start allocating buffers
  1.1788 +	while (pool->FreeCount() > 1)
  1.1789 +		{
  1.1790 +		RShBuf buf;
  1.1791 +		r = buf.Alloc(*pool);
  1.1792 +		if (r)
  1.1793 +			{
  1.1794 +			RDebug::Printf("Line %d: count=%d r=%d", __LINE__, bufarray.Count(), r);
  1.1795 +			return r;
  1.1796 +			}
  1.1797 +		bufarray.Append(buf);
  1.1798 +		if ((bufarray.Count() == 1)								// wait for low3
  1.1799 +			|| (bufarray.Count() == KTestPoolSizeInBufs - 2)	// wait for low2
  1.1800 +			|| (bufarray.Count() == KTestPoolSizeInBufs - 1))	// wait for low1/low4
  1.1801 +				{
  1.1802 +				r = sem.Wait(5000000); // 5 second timeout
  1.1803 +				if (r)
  1.1804 +					{
  1.1805 +					RDebug::Printf("Line %d: count=%d r=%d", __LINE__, bufarray.Count(), r);
  1.1806 +					return r;
  1.1807 +					}
  1.1808 +				}
  1.1809 +		}
  1.1810 +
  1.1811 +	// Free all buffers
  1.1812 +	while (bufarray.Count())
  1.1813 +		{
  1.1814 +		bufarray[0].Close();
  1.1815 +		bufarray.Remove(0);
  1.1816 +		if ((bufarray.Count() == KTestPoolSizeInBufs - 2)		// wait for free3
  1.1817 +			|| (bufarray.Count() == 1)							// wait for free2
  1.1818 +			|| (bufarray.Count() == 0))							// wait for free1/free4
  1.1819 +				{
  1.1820 +				r = sem.Wait(5000000); // 5 second timeout
  1.1821 +				if (r)
  1.1822 +					{
  1.1823 +					RDebug::Printf("Line %d: count=%d r=%d", __LINE__, bufarray.Count(), r);
  1.1824 +					return r;
  1.1825 +					}
  1.1826 +				}
  1.1827 +		}
  1.1828 +	bufarray.Close();
  1.1829 +	sem.Close();
  1.1830 +	return KErrNone;
  1.1831 +	}
  1.1832 +
  1.1833 +enum TTestLowSpaceType
  1.1834 +	{
  1.1835 +	ETestCancelNonExistent,
  1.1836 +	ETestCancelTwice
  1.1837 +	};
  1.1838 +
  1.1839 +struct TTestThreadLowSpacePanicArgs
  1.1840 +	{
  1.1841 +	RShPool*			iPool;
  1.1842 +	TUint				iThreshold1;
  1.1843 +	TUint				iThreshold2;
  1.1844 +	TTestLowSpaceType	iType;
  1.1845 +	};
  1.1846 +
  1.1847 +TInt ThreadLowSpacePanic(TAny* aArg)
  1.1848 +	{
  1.1849 +	if (!aArg)
  1.1850 +		{
  1.1851 +		return KErrArgument;
  1.1852 +		}
  1.1853 +	TTestThreadLowSpacePanicArgs& targs = *(TTestThreadLowSpacePanicArgs*) aArg;
  1.1854 +	TRequestStatus rs;
  1.1855 +	if (targs.iType == ETestCancelNonExistent)
  1.1856 +		{
  1.1857 +		targs.iPool->CancelLowSpaceNotification(rs); // should panic
  1.1858 +		}
  1.1859 +	else if (targs.iType == ETestCancelTwice)
  1.1860 +		{
  1.1861 +		targs.iPool->RequestLowSpaceNotification(targs.iThreshold1, rs);
  1.1862 +		targs.iPool->CancelLowSpaceNotification(rs);
  1.1863 +		targs.iPool->CancelLowSpaceNotification(rs); // should panic
  1.1864 +		}
  1.1865 +	else
  1.1866 +		{
  1.1867 +		return KErrArgument;
  1.1868 +		}
  1.1869 +	return KErrNone;
  1.1870 +	}
  1.1871 +
  1.1872 +/*
  1.1873 + * CancelLowSpaceNotification() no longer panic()s if it can't find the
  1.1874 + * notification, so this routine not currently called.
  1.1875 + */
  1.1876 +void RequestLowSpacePanic(RShPool& aPool, TUint aThreshold1, TUint aThreshold2, TTestLowSpaceType aType, TInt aLine)
  1.1877 +	{
  1.1878 +	static TInt count = 0;
  1.1879 +	count++;
  1.1880 +	test.Printf(_L("RequestLowSpacePanic@%d(%d)\n"), aLine, count);
  1.1881 +	TBool jit = User::JustInTime();
  1.1882 +	User::SetJustInTime(EFalse);
  1.1883 +	TInt expectedpaniccode = KErrNone;	// Initialised to silence compiler warnings
  1.1884 +	switch (aType)
  1.1885 +		{
  1.1886 +		case ETestCancelNonExistent:
  1.1887 +		case ETestCancelTwice:
  1.1888 +			expectedpaniccode = KErrNotFound;
  1.1889 +			break;
  1.1890 +		default:
  1.1891 +			test(EFalse);
  1.1892 +		}
  1.1893 +	//
  1.1894 +	TTestThreadLowSpacePanicArgs targs;
  1.1895 +	targs.iPool = &aPool;
  1.1896 +	targs.iThreshold1 = aThreshold1;
  1.1897 +	targs.iThreshold2 = aThreshold2;
  1.1898 +	targs.iType = aType;
  1.1899 +	//
  1.1900 +	RThread threadpanic;
  1.1901 +	TRequestStatus threadpanicrs;
  1.1902 +	TInt r;
  1.1903 +	TBuf<30> threadname;
  1.1904 +	threadname.Format(_L("ThreadLowSpacePanic%d"), count);
  1.1905 +	r = threadpanic.Create(threadname, ThreadLowSpacePanic, KDefaultStackSize, KMinHeapSize, 1 << 20, (TAny*) &targs);
  1.1906 +	test_KErrNone(r);
  1.1907 +	threadpanic.Logon(threadpanicrs);
  1.1908 +	threadpanic.Resume();
  1.1909 +	User::WaitForRequest(threadpanicrs);
  1.1910 +	//
  1.1911 +	test_Equal(expectedpaniccode, threadpanicrs.Int());
  1.1912 +	test_Equal(EExitPanic, threadpanic.ExitType());
  1.1913 +	test_Equal(expectedpaniccode, threadpanic.ExitReason());
  1.1914 +	threadpanic.Close();
  1.1915 +	User::SetJustInTime(jit);
  1.1916 +	}
  1.1917 +
  1.1918 +void NotificationRequests(RShPool& aPool)
  1.1919 +	{
  1.1920 +	test.Next(_L("Notifications"));
  1.1921 +	TInt r;
  1.1922 +
  1.1923 +	RSemaphore sem;
  1.1924 +	r = sem.CreateGlobal(KTestLowSpaceSemaphore, 0);
  1.1925 +	test_KErrNone(r);
  1.1926 +	RTimer timer;
  1.1927 +	r = timer.CreateLocal();
  1.1928 +	test_KErrNone(r);
  1.1929 +	RThread thread;
  1.1930 +	TRequestStatus threadrs;
  1.1931 +	r = thread.Create(_L("ThreadNotifications"), ThreadNotifications, KDefaultStackSize, KMinHeapSize, 1 << 20, (TAny*) &aPool);
  1.1932 +	test_KErrNone(r);
  1.1933 +	thread.SetPriority(EPriorityMore);
  1.1934 +	thread.Logon(threadrs);
  1.1935 +
  1.1936 +	test.Printf(_L("Low space notification\n"));
  1.1937 +	TRequestStatus low1;
  1.1938 +	TRequestStatus low2;
  1.1939 +	TRequestStatus low3;
  1.1940 +	TRequestStatus low4;
  1.1941 +	TRequestStatus low5;
  1.1942 +	TRequestStatus low6;
  1.1943 +	aPool.RequestLowSpaceNotification(1, low1);
  1.1944 +	test_Equal(KRequestPending, low1.Int());
  1.1945 +	aPool.RequestLowSpaceNotification(2, low2);
  1.1946 +	test_Equal(KRequestPending, low2.Int());
  1.1947 +	aPool.RequestLowSpaceNotification(aPool.FreeCount() - 1, low3);
  1.1948 +	test_Equal(KRequestPending, low3.Int());
  1.1949 +	aPool.RequestLowSpaceNotification(1, low4);
  1.1950 +	test_Equal(KRequestPending, low4.Int());
  1.1951 +	aPool.RequestLowSpaceNotification(0, low5); // Never completes
  1.1952 +	test_Equal(KRequestPending, low5.Int());
  1.1953 +	aPool.RequestLowSpaceNotification(KMaxTUint, low6); // Completes instantly
  1.1954 +	TRequestStatus timeoutlow;
  1.1955 +	timer.After(timeoutlow, 5000000); // 5 seconds time out
  1.1956 +	User::WaitForRequest(low6, timeoutlow);
  1.1957 +	test_KErrNone(low6.Int());
  1.1958 +	test_Equal(KRequestPending, low1.Int());
  1.1959 +	test_Equal(KRequestPending, low2.Int());
  1.1960 +	test_Equal(KRequestPending, low3.Int());
  1.1961 +	test_Equal(KRequestPending, low4.Int());
  1.1962 +	test_Equal(KRequestPending, low5.Int());
  1.1963 +	timer.Cancel();
  1.1964 +	User::WaitForRequest(timeoutlow);
  1.1965 +	thread.Resume();
  1.1966 +	User::WaitForRequest(low3, threadrs);
  1.1967 +	test_KErrNone(low3.Int());
  1.1968 +	test_Equal(KRequestPending, low1.Int());
  1.1969 +	test_Equal(KRequestPending, low2.Int());
  1.1970 +	test_Equal(KRequestPending, low4.Int());
  1.1971 +	test_Equal(KRequestPending, low5.Int());
  1.1972 +	sem.Signal();
  1.1973 +	User::WaitForRequest(low2, threadrs);
  1.1974 +	test_KErrNone(low2.Int())
  1.1975 +	test_Equal(KRequestPending, low1.Int());
  1.1976 +	test_Equal(KRequestPending, low4.Int());
  1.1977 +	test_Equal(KRequestPending, low5.Int());
  1.1978 +	sem.Signal();
  1.1979 +	User::WaitForRequest(low1, threadrs);
  1.1980 +	test_KErrNone(low1.Int());
  1.1981 +	User::WaitForRequest(low4, threadrs);
  1.1982 +	test_KErrNone(low4.Int());
  1.1983 +	test_Equal(KRequestPending, low5.Int());
  1.1984 +	test_Equal(EExitPending, thread.ExitType()); // Thread is still running
  1.1985 +	test_Compare(aPool.FreeCount(), <=, 1);
  1.1986 +
  1.1987 +	test.Printf(_L("Free space notification\n"));
  1.1988 +	TRequestStatus free1;
  1.1989 +	TRequestStatus free2;
  1.1990 +	TRequestStatus free3;
  1.1991 +	TRequestStatus free4;
  1.1992 +	TRequestStatus free5;
  1.1993 +	TRequestStatus free6;
  1.1994 +	aPool.RequestFreeSpaceNotification(KTestPoolSizeInBufs, free1);
  1.1995 +	test_Equal(KRequestPending, free1.Int());
  1.1996 +	aPool.RequestFreeSpaceNotification(KTestPoolSizeInBufs - 1, free2);
  1.1997 +	test_Equal(KRequestPending, free2.Int());
  1.1998 +	aPool.RequestFreeSpaceNotification(aPool.FreeCount() + 1, free3);
  1.1999 +	test_Equal(KRequestPending, free3.Int());
  1.2000 +	aPool.RequestFreeSpaceNotification(KTestPoolSizeInBufs, free4);
  1.2001 +	test_Equal(KRequestPending, free4.Int());
  1.2002 +	aPool.RequestFreeSpaceNotification(KTestPoolSizeInBufs + 1, free5); // Never completes
  1.2003 +	test_Equal(KRequestPending, free5.Int());
  1.2004 +	aPool.RequestFreeSpaceNotification(0, free6); // Completes instantly
  1.2005 +
  1.2006 +	TRequestStatus timeoutfree;
  1.2007 +	timer.After(timeoutfree, 5000000); // 5 seconds time out
  1.2008 +	User::WaitForRequest(free6, timeoutfree);
  1.2009 +	test_KErrNone(free6.Int());
  1.2010 +
  1.2011 +	test_Equal(KRequestPending, free1.Int());
  1.2012 +	test_Equal(KRequestPending, free2.Int());
  1.2013 +	test_Equal(KRequestPending, free3.Int());
  1.2014 +	test_Equal(KRequestPending, free4.Int());
  1.2015 +	test_Equal(KRequestPending, free5.Int());
  1.2016 +
  1.2017 +	timer.Cancel();
  1.2018 +	User::WaitForRequest(timeoutfree);
  1.2019 +
  1.2020 +	sem.Signal();	// resume thread execution
  1.2021 +	User::WaitForRequest(free3, threadrs);
  1.2022 +	test_KErrNone(free3.Int());
  1.2023 +	test_Equal(KRequestPending, free1.Int());
  1.2024 +	test_Equal(KRequestPending, free2.Int());
  1.2025 +	test_Equal(KRequestPending, free4.Int());
  1.2026 +	test_Equal(KRequestPending, free5.Int());
  1.2027 +
  1.2028 +	sem.Signal();
  1.2029 +	User::WaitForRequest(free2, threadrs);
  1.2030 +	test_KErrNone(free2.Int())
  1.2031 +
  1.2032 +	test_Equal(KRequestPending, free1.Int());
  1.2033 +	test_Equal(KRequestPending, free4.Int());
  1.2034 +	test_Equal(KRequestPending, free5.Int());
  1.2035 +	sem.Signal();
  1.2036 +
  1.2037 +	User::WaitForRequest(free1, threadrs);
  1.2038 +	test_KErrNone(free1.Int());
  1.2039 +	test_KErrNone(free4.Int());
  1.2040 +
  1.2041 +	test_Equal(KRequestPending, free5.Int());
  1.2042 +	test_Equal(EExitPending, thread.ExitType()); // Thread is still running
  1.2043 +
  1.2044 +	test_Compare(aPool.FreeCount(), >=, KTestPoolSizeInBufs);
  1.2045 +
  1.2046 +	// Complete the requests still pending...
  1.2047 +	aPool.CancelLowSpaceNotification(low5);
  1.2048 +	User::WaitForRequest(low5);
  1.2049 +
  1.2050 +	aPool.CancelFreeSpaceNotification(free5);
  1.2051 +	User::WaitForRequest(free5);
  1.2052 +
  1.2053 +	// Let thread complete
  1.2054 +	sem.Signal();
  1.2055 +	User::WaitForRequest(threadrs);
  1.2056 +	test_Equal(EExitKill, thread.ExitType());
  1.2057 +	test_KErrNone(thread.ExitReason());
  1.2058 +	thread.Close();
  1.2059 +	sem.Close();
  1.2060 +	timer.Close();
  1.2061 +	}
  1.2062 +
  1.2063 +/*
  1.2064 +@SYMTestCaseID				9
  1.2065 +@SYMTestCaseDesc			Cancel low- and free-space notifications
  1.2066 +@SYMREQ						REQ11423
  1.2067 +@SYMTestActions
  1.2068 +	Set Low/High LowSpace Notifications.
  1.2069 +	Cancel them.
  1.2070 +@SYMTestExpectedResults
  1.2071 +	All OK.
  1.2072 +@SYMTestPriority			Medium
  1.2073 +*/
  1.2074 +
  1.2075 +void CancelNotificationRequests(RShPool& aPool)
  1.2076 +	{
  1.2077 +	test.Next(_L("Cancel notifications"));
  1.2078 +	TInt r;
  1.2079 +
  1.2080 +	RSemaphore sem;
  1.2081 +	r = sem.CreateGlobal(KTestLowSpaceSemaphore, 0);
  1.2082 +	test_KErrNone(r);
  1.2083 +	RThread thread;
  1.2084 +	TRequestStatus threadrs;
  1.2085 +	r = thread.Create(_L("ThreadCancelNotifications"), ThreadNotifications, KDefaultStackSize, KMinHeapSize, 1 << 20, (TAny*) &aPool);
  1.2086 +	test_KErrNone(r);
  1.2087 +	thread.SetPriority(EPriorityLess);
  1.2088 +	thread.Logon(threadrs);
  1.2089 +
  1.2090 +	test.Printf(_L("Cancel low space notifications\n"));
  1.2091 +	// Low space notification cancel
  1.2092 +	TRequestStatus low;
  1.2093 +	aPool.RequestLowSpaceNotification(1, low);
  1.2094 +	aPool.CancelLowSpaceNotification(low);
  1.2095 +	test_Equal(KErrCancel, low.Int());
  1.2096 +	// We should be able to cancel again without panic()ing
  1.2097 +	// (no guarantees on return code; maybe Cancel() should have void return type?)
  1.2098 +	aPool.CancelLowSpaceNotification(low);
  1.2099 +	test.Printf(_L("Second cancel returned %d\n"), low.Int());
  1.2100 +	TRequestStatus low2;
  1.2101 +	aPool.RequestLowSpaceNotification(1, low2); // For thread sync
  1.2102 +	thread.Resume();
  1.2103 +	sem.Signal(2);
  1.2104 +	User::WaitForRequest(low2, threadrs);
  1.2105 +	test_KErrNone(low2.Int());
  1.2106 +	test_Equal(EExitPending, thread.ExitType()); // Thread is still running
  1.2107 +	test_Compare(aPool.FreeCount(), <=, 1);
  1.2108 +
  1.2109 +	test.Printf(_L("Cancel free space notifications\n"));
  1.2110 +	TRequestStatus free;
  1.2111 +	aPool.CancelFreeSpaceNotification(free);	// Cancel non-existant notification
  1.2112 +	aPool.RequestFreeSpaceNotification(KTestPoolSizeInBufs, free);
  1.2113 +	aPool.CancelLowSpaceNotification(free);		// Use wrong method
  1.2114 +	aPool.CancelFreeSpaceNotification(free);		// Use wrong method
  1.2115 +	test_Equal(KErrCancel, free.Int());
  1.2116 +	aPool.CancelFreeSpaceNotification(free);		// Already cancelled
  1.2117 +
  1.2118 +	// Complete the requests still pending...
  1.2119 +	User::WaitForRequest(low);
  1.2120 +
  1.2121 +	sem.Signal(4); // Resume thread execution and let it complete
  1.2122 +	User::WaitForRequest(threadrs);
  1.2123 +	test_KErrNone(threadrs.Int());
  1.2124 +	test_Equal(EExitKill, thread.ExitType());
  1.2125 +	test_KErrNone(thread.ExitReason());
  1.2126 +	test_Compare(aPool.FreeCount(), >=, KTestPoolSizeInBufs);
  1.2127 +	thread.Close();
  1.2128 +	sem.Close();
  1.2129 +	}
  1.2130 +
  1.2131 +
  1.2132 +/*
  1.2133 +@SYMTestCaseID				10
  1.2134 +@SYMTestCaseDesc			Grow and shrink pool
  1.2135 +@SYMREQ						REQ11423
  1.2136 +@SYMTestActions
  1.2137 +	1. Test Thread creates pools with various size attributes
  1.2138 +	2. Test Thread keeps allocating buffers on pool.
  1.2139 +	3. Test Thread keeps freeing buffers on pool
  1.2140 +	4. Test Thread frees all buffers and close pool.
  1.2141 +@SYMTestExpectedResults
  1.2142 +	Pools grows and shrink grows as expected.
  1.2143 +@SYMTestPriority			High
  1.2144 +*/
  1.2145 +
  1.2146 +const TInt KTestFreeCountTimeOut = 20000000; // 20 seconds (of thread inactivity)
  1.2147 +const TInt KTestWaitBeforeRetry = 2000; // 0.002 second
  1.2148 +
  1.2149 +TUint MultFx248(TUint n, TUint f)
  1.2150 +	{
  1.2151 +	TUint64 r = (TUint64) n * f;
  1.2152 +	I64LSR(r, 8);
  1.2153 +	return r > KMaxTUint32 ? KMaxTUint32 : I64LOW(r);
  1.2154 +	}
  1.2155 +
  1.2156 +class TTestPoolModel
  1.2157 +	{
  1.2158 +public:
  1.2159 +	TTestPoolModel(TShPoolInfo& aInfo);
  1.2160 +	void Alloc();
  1.2161 +	void Free();
  1.2162 +	TUint FreeCount();
  1.2163 +	void DisplayCounters();
  1.2164 +private:
  1.2165 +	void CalcGSP();
  1.2166 +	void CheckGrowShrink();
  1.2167 +	void Grow();
  1.2168 +	void Shrink();
  1.2169 +private:
  1.2170 +	TUint iAllocated;
  1.2171 +	TUint iFree;
  1.2172 +	//
  1.2173 +	TUint iInitial;
  1.2174 +	TUint iMax;
  1.2175 +	TUint iGrowTriggerRatio;
  1.2176 +	TUint iGrowByRatio;
  1.2177 +	TUint iShrinkByRatio;
  1.2178 +	TUint iShrinkHysteresisRatio;
  1.2179 +	TUint iPoolFlags;
  1.2180 +	//
  1.2181 +	TUint iGrowTrigger;
  1.2182 +	TUint iShrinkTrigger;
  1.2183 +	//
  1.2184 +	TBool iDebug;
  1.2185 +	};
  1.2186 +
  1.2187 +TTestPoolModel::TTestPoolModel(TShPoolInfo& aInfo)
  1.2188 +	{
  1.2189 +	iInitial = aInfo.iInitialBufs;
  1.2190 +	iMax = aInfo.iMaxBufs;
  1.2191 +	iGrowTriggerRatio = aInfo.iGrowTriggerRatio;
  1.2192 +	iGrowByRatio = aInfo.iGrowByRatio;
  1.2193 +	iShrinkByRatio = 256 - 65536 / (256 + iGrowByRatio);
  1.2194 +	iShrinkHysteresisRatio = aInfo.iShrinkHysteresisRatio;
  1.2195 +	iPoolFlags = aInfo.iFlags;
  1.2196 +	iAllocated = 0;
  1.2197 +	iFree = iInitial;
  1.2198 +	iDebug = EFalse; // Set this to ETrue to display detailed information
  1.2199 +	
  1.2200 +	CalcGSP();
  1.2201 +	if (iDebug)
  1.2202 +		{
  1.2203 +		test.Printf(_L("A     F     A+F   GT    ST    \n"));
  1.2204 +		test.Printf(_L("==============================\n"));
  1.2205 +		DisplayCounters();
  1.2206 +		}
  1.2207 +	}
  1.2208 +
  1.2209 +void TTestPoolModel::Alloc()
  1.2210 +	{
  1.2211 +	iAllocated++;
  1.2212 +	iFree--;
  1.2213 +	CheckGrowShrink();
  1.2214 +	}
  1.2215 +
  1.2216 +void TTestPoolModel::Free()
  1.2217 +	{
  1.2218 +	iAllocated--;
  1.2219 +	iFree++;
  1.2220 +	CheckGrowShrink();
  1.2221 +	}
  1.2222 +
  1.2223 +TUint TTestPoolModel::FreeCount()
  1.2224 +	{
  1.2225 +	return iFree;
  1.2226 +	}
  1.2227 +
  1.2228 +void TTestPoolModel::CalcGSP()
  1.2229 +	{
  1.2230 +	TUint n = iAllocated + iFree;
  1.2231 +
  1.2232 +	// If the pool is at its maximum size, we can't grow
  1.2233 +	if (n >= iMax || iGrowTriggerRatio == 0 /*|| iCommittedPages >= iMaxPages*/)
  1.2234 +		{
  1.2235 +		iGrowTrigger = 0;
  1.2236 +		}
  1.2237 +	else
  1.2238 +		{
  1.2239 +		iGrowTrigger = MultFx248(n, iGrowTriggerRatio);
  1.2240 +
  1.2241 +		// Deal with rounding towards zero
  1.2242 +		if (iGrowTrigger == 0)
  1.2243 +			iGrowTrigger = 1;
  1.2244 +		}
  1.2245 +
  1.2246 +	// If no growing has happened, we can't shrink
  1.2247 +	if (n <= iInitial || iGrowTriggerRatio == 0 || (iPoolFlags & EShPoolSuppressShrink) != 0)
  1.2248 +		{
  1.2249 +		iShrinkTrigger = iMax;
  1.2250 +		}
  1.2251 +	else
  1.2252 +		{
  1.2253 +		// To ensure that shrinking doesn't immediately happen after growing, the trigger
  1.2254 +		// amount is the grow trigger + the grow amount (which is the number of free buffers
  1.2255 +		// just after a grow) times the shrink hysteresis value.
  1.2256 +		iShrinkTrigger = MultFx248(n, iGrowTriggerRatio + iGrowByRatio);
  1.2257 +		iShrinkTrigger = MultFx248(iShrinkTrigger, iShrinkHysteresisRatio);
  1.2258 +
  1.2259 +		// Deal with rounding towards zero
  1.2260 +		if (iShrinkTrigger == 0)
  1.2261 +			iShrinkTrigger = 1;
  1.2262 +
  1.2263 +		// If the shrink trigger ends up > the number of buffers currently in
  1.2264 +		// the pool, set it to that number (less 1, since the test is "> trigger").
  1.2265 +		// This means the pool will only shrink when all the buffers have been freed.
  1.2266 +		if (iShrinkTrigger >= n)
  1.2267 +			iShrinkTrigger = n - 1;
  1.2268 +		}
  1.2269 +	if (iDebug)
  1.2270 +		{
  1.2271 +		DisplayCounters();
  1.2272 +		}
  1.2273 +	}
  1.2274 +
  1.2275 +void TTestPoolModel::CheckGrowShrink()
  1.2276 +	{
  1.2277 +	if (iFree < iGrowTrigger)
  1.2278 +		{
  1.2279 +		Grow();
  1.2280 +		CheckGrowShrink();
  1.2281 +		}
  1.2282 +	if (iFree > iShrinkTrigger)
  1.2283 +		{
  1.2284 +		Shrink();
  1.2285 +		CheckGrowShrink();
  1.2286 +		}
  1.2287 +	}
  1.2288 +
  1.2289 +void TTestPoolModel::Grow()
  1.2290 +	{
  1.2291 +	TUint headroom = iMax - (iAllocated + iFree);
  1.2292 +	TUint growby = MultFx248(iAllocated + iFree, iGrowByRatio);
  1.2293 +	if (growby == 0)			// Handle round-to-zero
  1.2294 +		growby = 1;
  1.2295 +	if (growby > headroom)
  1.2296 +		growby = headroom;
  1.2297 +	iFree += growby;
  1.2298 +	if (iDebug)
  1.2299 +		{
  1.2300 +		test.Printf(_L("GROW by %d!\n"), growby);
  1.2301 +		}
  1.2302 +	CalcGSP();
  1.2303 +	}
  1.2304 +
  1.2305 +void TTestPoolModel::Shrink()
  1.2306 +	{
  1.2307 +	TUint grownBy = iAllocated + iFree - iInitial;
  1.2308 +	TUint shrinkby = MultFx248(iAllocated + iFree, iShrinkByRatio);
  1.2309 +	if (shrinkby == 0)			// Handle round-to-zero
  1.2310 +		shrinkby = 1;
  1.2311 +	if (shrinkby > grownBy)
  1.2312 +		shrinkby = grownBy;
  1.2313 +	if (shrinkby > iFree)
  1.2314 +		shrinkby = iFree;
  1.2315 +	iFree -= shrinkby;
  1.2316 +	if (iDebug)
  1.2317 +		{
  1.2318 +		test.Printf(_L("SHRINK by %d!\n"), shrinkby);
  1.2319 +		}
  1.2320 +	CalcGSP();
  1.2321 +	}
  1.2322 +
  1.2323 +void TTestPoolModel::DisplayCounters()
  1.2324 +	{
  1.2325 +	test.Printf(_L("%-6u%-6u%-6u%-6u%-6u\n"), iAllocated, iFree, iAllocated + iFree, iGrowTrigger, iShrinkTrigger);
  1.2326 +	}
  1.2327 +
  1.2328 +void PoolGrowingTestRoutine(const TShPoolCreateInfo& aInfo, TUint aBufferFlags = 0)
  1.2329 +	{
  1.2330 +	TInt r;
  1.2331 +	TInt timeout;
  1.2332 +	RShPool pool;
  1.2333 +	r = pool.Create(aInfo, KDefaultPoolHandleFlags);
  1.2334 +	test_KErrNone(r);
  1.2335 +
  1.2336 +	TShPoolInfo info;
  1.2337 +	pool.GetInfo(info);
  1.2338 +
  1.2339 +	// Only set the buffer window if we're going to map the buffers
  1.2340 +	if (!(aBufferFlags & EShPoolAllocNoMap) && (info.iFlags & EShPoolPageAlignedBuffer))
  1.2341 +		{
  1.2342 +		r = pool.SetBufferWindow(-1, ETrue);
  1.2343 +		test_KErrNone(r)
  1.2344 +		}
  1.2345 +
  1.2346 +	TTestPoolModel model(info);
  1.2347 +	RArray<RShBuf> bufarray;
  1.2348 +	test_Equal(info.iInitialBufs, pool.FreeCount());
  1.2349 +
  1.2350 +	// Buffer allocation
  1.2351 +	do
  1.2352 +		{
  1.2353 +		timeout = KTestFreeCountTimeOut / KTestWaitBeforeRetry;
  1.2354 +		while (model.FreeCount() != pool.FreeCount())
  1.2355 +			{
  1.2356 +			User::After(KTestWaitBeforeRetry);
  1.2357 +			test_Assert(--timeout,
  1.2358 +				test.Printf(_L("Timeout: Free==%u (expected %u)\n"), pool.FreeCount(), model.FreeCount());
  1.2359 +				model.DisplayCounters();
  1.2360 +				);
  1.2361 +			if ((timeout * KTestWaitBeforeRetry) % 1000000 == 0)
  1.2362 +				{
  1.2363 +				test.Printf(_L("Time out in %d seconds! (line %d)\n"), timeout * KTestWaitBeforeRetry / 1000000, __LINE__);
  1.2364 +				}
  1.2365 +			}
  1.2366 +		RShBuf buf;
  1.2367 +		r = buf.Alloc(pool, aBufferFlags);
  1.2368 +		if (r == KErrNoMemory)
  1.2369 +			{
  1.2370 +			// We expect to get a failure when all buffers are allocated
  1.2371 +			if ((TUint) bufarray.Count() == info.iMaxBufs)
  1.2372 +				break;
  1.2373 +			if (!(aBufferFlags & EShPoolAllocCanWait))
  1.2374 +				{
  1.2375 +				// Give the Management DFC some time to run, then try allocating again
  1.2376 +				User::After(1000000); // 1 second
  1.2377 +				r = buf.Alloc(pool);
  1.2378 +				if (r)
  1.2379 +					{
  1.2380 +					test.Printf(_L("Alloc fail after %d of %d; Free==%u (expected %u)\n"),
  1.2381 +						bufarray.Count(), info.iMaxBufs, pool.FreeCount(), model.FreeCount());
  1.2382 +					break;
  1.2383 +					}
  1.2384 +				}
  1.2385 +			}
  1.2386 +
  1.2387 +		if (r == KErrNone)
  1.2388 +			{
  1.2389 +			model.Alloc();
  1.2390 +			if (!(aBufferFlags & EShPoolAllocNoMap))
  1.2391 +				{
  1.2392 +				TPtr8 ptr(buf.Ptr(), buf.Size(),buf.Size());
  1.2393 +				ptr.Fill(bufarray.Count() % 256);
  1.2394 +				}
  1.2395 +			bufarray.Append(buf);
  1.2396 +			}
  1.2397 +		}
  1.2398 +	while (r == KErrNone);
  1.2399 +
  1.2400 +	test_Equal(KErrNoMemory, r);
  1.2401 +	test_Equal(info.iMaxBufs, bufarray.Count());
  1.2402 +	test_Equal(0, pool.FreeCount());
  1.2403 +
  1.2404 +	// Now free no more than 1/3 of these buffers...
  1.2405 +	while ((TUint) bufarray.Count() > 2 * info.iMaxBufs / 3)
  1.2406 +		{
  1.2407 +		// remove buffers from the back of the array
  1.2408 +		if (!(aBufferFlags & EShPoolAllocNoMap))
  1.2409 +			{
  1.2410 +			TPtr8 ptr(bufarray[bufarray.Count() - 1].Ptr(), bufarray[bufarray.Count() - 1].Size(),bufarray[bufarray.Count() - 1].Size());
  1.2411 +			ptr.Fill((bufarray.Count() + 1) % 256);
  1.2412 +			}
  1.2413 +		bufarray[bufarray.Count() - 1].Close();
  1.2414 +		bufarray.Remove(bufarray.Count() - 1);
  1.2415 +		model.Free();
  1.2416 +		
  1.2417 +		timeout = KTestFreeCountTimeOut / KTestWaitBeforeRetry;
  1.2418 +		while (model.FreeCount() != pool.FreeCount())
  1.2419 +			{
  1.2420 +			User::After(KTestWaitBeforeRetry);
  1.2421 +			test_Assert(--timeout,
  1.2422 +				test.Printf(_L("Timeout: Free==%u (expected %u)\n"), pool.FreeCount(), model.FreeCount());
  1.2423 +				model.DisplayCounters();
  1.2424 +				);
  1.2425 +			if ((timeout * KTestWaitBeforeRetry) % 1000000 == 0)
  1.2426 +				{
  1.2427 +				test.Printf(_L("Time out in %d seconds! (line %d)\n"), timeout * KTestWaitBeforeRetry / 1000000, __LINE__);
  1.2428 +				}
  1.2429 +			}
  1.2430 +		}
  1.2431 +
  1.2432 +	// ... and re-allocate them
  1.2433 +	do
  1.2434 +		{
  1.2435 +		timeout = KTestFreeCountTimeOut / KTestWaitBeforeRetry;
  1.2436 +		while (model.FreeCount() != pool.FreeCount())
  1.2437 +			{
  1.2438 +			User::After(KTestWaitBeforeRetry);
  1.2439 +			test_Assert(--timeout,
  1.2440 +				test.Printf(_L("Timeout: Free==%u (expected %u)\n"), pool.FreeCount(), model.FreeCount());
  1.2441 +				model.DisplayCounters();
  1.2442 +				);
  1.2443 +			if ((timeout * KTestWaitBeforeRetry) % 1000000 == 0)
  1.2444 +				{
  1.2445 +				test.Printf(_L("Time out in %d seconds! (line %d)\n"), timeout * KTestWaitBeforeRetry / 1000000, __LINE__);
  1.2446 +				}
  1.2447 +			}
  1.2448 +		RShBuf buf;
  1.2449 +		r = buf.Alloc(pool, aBufferFlags);
  1.2450 +		if (r == KErrNoMemory)
  1.2451 +			{
  1.2452 +			// We expect to get a failure when all buffers are allocated
  1.2453 +			if ((TUint) bufarray.Count() == info.iMaxBufs)
  1.2454 +				break;
  1.2455 +			if (!(aBufferFlags & EShPoolAllocCanWait))
  1.2456 +				{
  1.2457 +				// Give the Management DFC some time to run, then try allocating again
  1.2458 +				User::After(1000000); // 1 second
  1.2459 +				r = buf.Alloc(pool);
  1.2460 +				if (r)
  1.2461 +					{
  1.2462 +					test.Printf(_L("Alloc fail after %d of %d; Free==%u (expected %u)\n"),
  1.2463 +						bufarray.Count(), info.iMaxBufs, pool.FreeCount(), model.FreeCount());
  1.2464 +					break;
  1.2465 +					}
  1.2466 +				}
  1.2467 +			}
  1.2468 +
  1.2469 +		if (r == KErrNone)
  1.2470 +			{
  1.2471 +			model.Alloc();
  1.2472 +			if (!(aBufferFlags & EShPoolAllocNoMap))
  1.2473 +				{
  1.2474 +				TPtr8 ptr(buf.Ptr(), buf.Size(),buf.Size());
  1.2475 +				ptr.Fill(bufarray.Count() % 256);
  1.2476 +				}
  1.2477 +			bufarray.Append(buf);
  1.2478 +			}
  1.2479 +		}
  1.2480 +	while (r == KErrNone);
  1.2481 +
  1.2482 +	test_Equal(KErrNoMemory, r);
  1.2483 +	test_Equal(info.iMaxBufs, bufarray.Count());
  1.2484 +	test_Equal(0, pool.FreeCount());
  1.2485 +
  1.2486 +	// Free all buffers
  1.2487 +	while (bufarray.Count())
  1.2488 +		{
  1.2489 +		// remove buffers from the back of the array
  1.2490 +		if (!(aBufferFlags & EShPoolAllocNoMap))
  1.2491 +			{
  1.2492 +			TPtr8 ptr(bufarray[bufarray.Count() - 1].Ptr(), bufarray[bufarray.Count() - 1].Size(),bufarray[bufarray.Count() - 1].Size());
  1.2493 +			ptr.Fill((bufarray.Count() + 1) % 256);
  1.2494 +			}
  1.2495 +		bufarray[bufarray.Count() - 1].Close();
  1.2496 +		bufarray.Remove(bufarray.Count() - 1);
  1.2497 +		model.Free();
  1.2498 +		
  1.2499 +		timeout = KTestFreeCountTimeOut / KTestWaitBeforeRetry;
  1.2500 +		while (model.FreeCount() != pool.FreeCount())
  1.2501 +			{
  1.2502 +			User::After(KTestWaitBeforeRetry);
  1.2503 +			test_Assert(--timeout,
  1.2504 +				test.Printf(_L("Timeout: Free==%u (expected %u)\n"), pool.FreeCount(), model.FreeCount());
  1.2505 +				model.DisplayCounters();
  1.2506 +				);
  1.2507 +			if ((timeout * KTestWaitBeforeRetry) % 1000000 == 0)
  1.2508 +				{
  1.2509 +				test.Printf(_L("Time out in %d seconds! (line %d)\n"), timeout * KTestWaitBeforeRetry / 1000000, __LINE__);
  1.2510 +				}
  1.2511 +			}
  1.2512 +		}
  1.2513 +
  1.2514 +	// Pool should have shrunk back to its initial size
  1.2515 +	test_Equal(info.iInitialBufs, pool.FreeCount());
  1.2516 +	bufarray.Close();
  1.2517 +	pool.Close();
  1.2518 +	}
  1.2519 +
  1.2520 +void PoolGrowingUser()
  1.2521 +	{
  1.2522 +	test.Next(_L("Pool Growing/Shrinking (User)"));
  1.2523 +	TInt r;
  1.2524 +	TInt pagesize;
  1.2525 +	r = HAL::Get(HAL::EMemoryPageSize, pagesize);
  1.2526 +	test_KErrNone(r);
  1.2527 +	// Pool A: Non-page aligned pool (64-byte alignment)
  1.2528 +		{
  1.2529 +		TInt alignment = 6;
  1.2530 +		TInt maxbufs = KTestPoolSizeInBytes / RoundUp(*PtrBufSize, alignment);
  1.2531 +		if (maxbufs > 32000)
  1.2532 +			{
  1.2533 +			maxbufs = 32000;
  1.2534 +			}
  1.2535 +		TInt initialbufs = maxbufs / 2;
  1.2536 +		TInt growtrigger = 32;
  1.2537 +		TInt growby = 32;
  1.2538 +		TInt shrinkhys = 288;
  1.2539 +		test.Printf(_L("POOL A: BufSize=%d InitialBufs=%d MaxBufs=%d GrowTrigger=%d GrowBy=%d ShrinkHys=%d Alignment=%d\n"),
  1.2540 +			*PtrBufSize, initialbufs, maxbufs, growtrigger, growby, shrinkhys, alignment);
  1.2541 +		TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize, initialbufs, alignment);
  1.2542 +		r = inf.SetSizingAttributes(maxbufs, growtrigger, growby, shrinkhys);
  1.2543 +		test_KErrNone(r);
  1.2544 +		PoolGrowingTestRoutine(inf);
  1.2545 +		}
  1.2546 +
  1.2547 +	// Pool B: Non-page aligned pool (maximum alignment)
  1.2548 +		{
  1.2549 +		TInt alignment = Log2(pagesize);
  1.2550 +		TInt maxbufs = KTestPoolSizeInBytes / RoundUp(*PtrBufSize, alignment);
  1.2551 +		if (maxbufs > 32000)
  1.2552 +			{
  1.2553 +			maxbufs = 32000;
  1.2554 +			}
  1.2555 +		TInt initialbufs = maxbufs / 4;
  1.2556 +		TInt growtrigger = 32;
  1.2557 +		TInt growby = 32;
  1.2558 +		TInt shrinkhys = 288;
  1.2559 +		test.Printf(_L("POOL B: BufSize=%d InitialBufs=%d MaxBufs=%d GrowTrigger=%d GrowBy=%d ShrinkHys=%d Alignment=%d\n"),
  1.2560 +			*PtrBufSize, initialbufs, maxbufs, growtrigger, growby, shrinkhys, alignment);
  1.2561 +		TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize, initialbufs, alignment);
  1.2562 +		r = inf.SetSizingAttributes(maxbufs, growtrigger, growby, shrinkhys);
  1.2563 +		test_KErrNone(r);
  1.2564 +		PoolGrowingTestRoutine(inf);
  1.2565 +		}
  1.2566 +	
  1.2567 +	// Pool C: Page aligned pool without guard pages
  1.2568 +		{
  1.2569 +		TInt maxbufs = KTestPoolSizeInBytes / RoundUp(*PtrBufSize, Log2(pagesize));
  1.2570 +		if (maxbufs > 32000)
  1.2571 +			{
  1.2572 +			maxbufs = 32000;
  1.2573 +			}
  1.2574 +		TInt initialbufs = maxbufs * 3 / 8;
  1.2575 +		TInt growtrigger = 32;
  1.2576 +		TInt growby = 32;
  1.2577 +		TInt shrinkhys = 288;
  1.2578 +		test.Printf(_L("POOL C: BufSize=%d InitialBufs=%d MaxBufs=%d GrowTrigger=%d GrowBy=%d ShrinkHys=%d Page-Aligned\n"),
  1.2579 +			*PtrBufSize, initialbufs, maxbufs, growtrigger, growby, shrinkhys);
  1.2580 +		TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, initialbufs);
  1.2581 +		r = inf.SetSizingAttributes(maxbufs, growtrigger, growby, shrinkhys);
  1.2582 +		test_KErrNone(r);
  1.2583 +		PoolGrowingTestRoutine(inf);
  1.2584 +		}
  1.2585 +
  1.2586 +	// Pool D: Page aligned pool without guard pages
  1.2587 +		{
  1.2588 +		TInt maxbufs = KTestPoolSizeInBytes / RoundUp(*PtrBufSize, Log2(pagesize));
  1.2589 +		if (maxbufs > 32000)
  1.2590 +			{
  1.2591 +			maxbufs = 32000;
  1.2592 +			}
  1.2593 +		TInt initialbufs = maxbufs / 2;
  1.2594 +		TInt growtrigger = 32;
  1.2595 +		TInt growby = 32;
  1.2596 +		TInt shrinkhys = 288;
  1.2597 +		test.Printf(_L("POOL D: BufSize=%d InitialBufs=%d MaxBufs=%d GrowTrigger=%d GrowBy=%d ShrinkHys=%d Page-Aligned+Guard\n"),
  1.2598 +			*PtrBufSize, initialbufs, maxbufs, growtrigger, growby, shrinkhys);
  1.2599 +		TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, initialbufs);
  1.2600 +		r = inf.SetSizingAttributes(maxbufs, growtrigger, growby, shrinkhys);
  1.2601 +		test_KErrNone(r);
  1.2602 +		r = inf.SetGuardPages();
  1.2603 +		test_KErrNone(r);
  1.2604 +		PoolGrowingTestRoutine(inf);
  1.2605 +		}
  1.2606 +
  1.2607 +	// Pool A': Non-page aligned pool (64-byte alignment)
  1.2608 +		{
  1.2609 +		TInt alignment = 6;
  1.2610 +		TInt maxbufs = KTestPoolSizeInBytes / RoundUp(*PtrBufSize, alignment);
  1.2611 +		if (maxbufs > 32000)
  1.2612 +			{
  1.2613 +			maxbufs = 32000;
  1.2614 +			}
  1.2615 +		TInt initialbufs = 1;
  1.2616 +		TInt growtrigger = 32;
  1.2617 +		TInt growby = 256;
  1.2618 +		TInt shrinkhys = 512;
  1.2619 +		test.Printf(_L("POOL A': BufSize=%d InitialBufs=%d MaxBufs=%d GrowTrigger=%d GrowBy=%d ShrinkHys=%d Alignment=%d\n"),
  1.2620 +			*PtrBufSize, initialbufs, maxbufs, growtrigger, growby, shrinkhys, alignment);
  1.2621 +		TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize, initialbufs, alignment);
  1.2622 +		r = inf.SetSizingAttributes(maxbufs, growtrigger, growby, shrinkhys);
  1.2623 +		test_KErrNone(r);
  1.2624 +		PoolGrowingTestRoutine(inf);
  1.2625 +		}
  1.2626 +
  1.2627 +	// Pool A'': Non-page aligned pool (64-byte alignment) - AllocCanWait
  1.2628 +		{
  1.2629 +		TInt alignment = 6;
  1.2630 +		TInt maxbufs = KTestPoolSizeInBytes / RoundUp(*PtrBufSize, alignment);
  1.2631 +		if (maxbufs > 32000)
  1.2632 +			{
  1.2633 +			maxbufs = 32000;
  1.2634 +			}
  1.2635 +		TInt initialbufs = 1;
  1.2636 +		TInt growtrigger = 1;
  1.2637 +		TInt growby = 1;
  1.2638 +		TInt shrinkhys = 257;
  1.2639 +		test.Printf(_L("POOL A'': BufSize=%d InitialBufs=%d MaxBufs=%d GrowTrigger=%d GrowBy=%d ShrinkHys=%d Alignment=%d\n"),
  1.2640 +			*PtrBufSize, initialbufs, maxbufs, growtrigger, growby, shrinkhys, alignment);
  1.2641 +		TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize, initialbufs, alignment);
  1.2642 +		r = inf.SetSizingAttributes(maxbufs, growtrigger, growby, shrinkhys);
  1.2643 +		test_KErrNone(r);
  1.2644 +		PoolGrowingTestRoutine(inf, EShPoolAllocCanWait);
  1.2645 +		}
  1.2646 +
  1.2647 +	// Pool D': Page aligned pool without guard pages
  1.2648 +		{
  1.2649 +		TInt maxbufs = KTestPoolSizeInBytes / RoundUp(*PtrBufSize, Log2(pagesize));
  1.2650 +		if (maxbufs > 32000)
  1.2651 +			{
  1.2652 +			maxbufs = 32000;
  1.2653 +			}
  1.2654 +		TInt initialbufs = 1;
  1.2655 +		TInt growtrigger = 1;
  1.2656 +		TInt growby = 1024;
  1.2657 +		TInt shrinkhys = 2048;
  1.2658 +		test.Printf(_L("POOL D': BufSize=%d InitialBufs=%d MaxBufs=%d GrowTrigger=%d GrowBy=%d ShrinkHys=%d Page-Aligned+Guard\n"),
  1.2659 +			*PtrBufSize, initialbufs, maxbufs, growtrigger, growby, shrinkhys);
  1.2660 +		TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, initialbufs);
  1.2661 +		r = inf.SetSizingAttributes(maxbufs, growtrigger, growby, shrinkhys);
  1.2662 +		test_KErrNone(r);
  1.2663 +		r = inf.SetGuardPages();
  1.2664 +		test_KErrNone(r);
  1.2665 +		PoolGrowingTestRoutine(inf);
  1.2666 +		}
  1.2667 +	// Pool D'': Page aligned pool without guard pages - NoBufferMap
  1.2668 +		{
  1.2669 +		TInt maxbufs = KTestPoolSizeInBytes / RoundUp(*PtrBufSize, Log2(pagesize));
  1.2670 +		if (maxbufs > 32000)
  1.2671 +			{
  1.2672 +			maxbufs = 32000;
  1.2673 +			}
  1.2674 +		TInt initialbufs = maxbufs / 2;
  1.2675 +		TInt growtrigger = 32;
  1.2676 +		TInt growby = 32;
  1.2677 +		TInt shrinkhys = 288;
  1.2678 +		test.Printf(_L("POOL D'': BufSize=%d InitialBufs=%d MaxBufs=%d GrowTrigger=%d GrowBy=%d ShrinkHys=%d Page-Aligned+Guard\n"),
  1.2679 +			*PtrBufSize, initialbufs, maxbufs, growtrigger, growby, shrinkhys);
  1.2680 +		TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, initialbufs);
  1.2681 +		r = inf.SetSizingAttributes(maxbufs, growtrigger, growby, shrinkhys);
  1.2682 +		test_KErrNone(r);
  1.2683 +		r = inf.SetGuardPages();
  1.2684 +		test_KErrNone(r);
  1.2685 +		PoolGrowingTestRoutine(inf, EShPoolAllocNoMap);
  1.2686 +		}
  1.2687 +	}
  1.2688 +
  1.2689 +/*
  1.2690 +@SYMTestCaseID				X3
  1.2691 +@SYMTestCaseDesc			Contiguous buffer allocation
  1.2692 +@SYMREQ						REQ11423
  1.2693 +@SYMTestActions
  1.2694 +	Create a pool with the Contiguous attribute and allocate buffers.
  1.2695 +@SYMTestExpectedResults
  1.2696 +	Buffers memory is physically contiguous.
  1.2697 +@SYMTestPriority			High
  1.2698 +*/
  1.2699 +
  1.2700 +void ContiguousPoolKernel()
  1.2701 +	{
  1.2702 +	test.Next(_L("Contiguous Pool (Kernel)"));
  1.2703 +#ifdef __WINS__
  1.2704 +	test.Printf(_L("Does not run on the emulator. Skipped\n"));
  1.2705 +#else
  1.2706 +	TInt r;
  1.2707 +	TInt pagesize;
  1.2708 +	r = HAL::Get(HAL::EMemoryPageSize, pagesize);
  1.2709 +	test_KErrNone(r);
  1.2710 +	if (*PtrBufSize <= pagesize)
  1.2711 +		{
  1.2712 +		test.Printf(_L("Buffer size <= page size. Skipped.\n"));
  1.2713 +		return;
  1.2714 +		}
  1.2715 +
  1.2716 +	TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, KTestPoolSizeInBufs);
  1.2717 +//	r = inf.SetSizingAttributes(KTestPoolSizeInBufs, 25, 25, 25600);
  1.2718 +//	test_KErrNone(r);
  1.2719 +
  1.2720 +	r = Ldd.ContiguousPoolKernel(inf);
  1.2721 +	test_KErrNone(r);
  1.2722 +
  1.2723 +#endif // __WINS__
  1.2724 +	}
  1.2725 +
  1.2726 +void ShBufPin()
  1.2727 +	{
  1.2728 +	test.Next(_L("Buffer pinning"));
  1.2729 +#ifdef __WINS__
  1.2730 +	test.Printf(_L("Does not run on the emulator. Skipped\n"));
  1.2731 +#else
  1.2732 +	TInt r;
  1.2733 +	RShPool pool1;
  1.2734 +	RShBuf buf1;
  1.2735 +	TShPoolCreateInfo inf1(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize * KTestPoolSizeInBufs, 1, KTestMinimumAlignmentLog2);
  1.2736 +	r = pool1.Create(inf1, KDefaultPoolHandleFlags);
  1.2737 +	test_KErrNone(r);
  1.2738 +	r = buf1.Alloc(pool1);
  1.2739 +	test_KErrNone(r);
  1.2740 +	r = Ldd.PinBuffer(pool1.Handle(), buf1.Handle());
  1.2741 +	test_KErrNone(r);
  1.2742 +	buf1.Close();
  1.2743 +	pool1.Close();
  1.2744 +	
  1.2745 +	RShPool pool2;
  1.2746 +	RShBuf buf2;
  1.2747 +	TShPoolCreateInfo inf2(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize * KTestPoolSizeInBufs, 1, KTestMinimumAlignmentLog2);
  1.2748 +	r = pool2.Create(inf2, KDefaultPoolHandleFlags);
  1.2749 +	test_KErrNone(r);
  1.2750 +	r = buf2.Alloc(pool2);
  1.2751 +	test_KErrNone(r);
  1.2752 +	r = Ldd.PinBuffer(pool2.Handle(), buf2.Handle());
  1.2753 +	test_KErrNone(r);
  1.2754 +	buf2.Close();
  1.2755 +	pool2.Close();
  1.2756 +#endif // _WINS_
  1.2757 +	}
  1.2758 +
  1.2759 +/*
  1.2760 +@SYMTestCaseID
  1.2761 +@SYMTestCaseDesc
  1.2762 +@SYMREQ
  1.2763 +@SYMTestActions
  1.2764 +@SYMTestExpectedResults
  1.2765 +@SYMTestPriority
  1.2766 +*/
  1.2767 +
  1.2768 +void SingleBufferPool()
  1.2769 +	{
  1.2770 +	test.Next(_L("Single Buffer Pool"));
  1.2771 +	TInt r;
  1.2772 +
  1.2773 +	RShPool pool;
  1.2774 +	RShBuf buf;
  1.2775 +	RShBuf buf2;
  1.2776 +
  1.2777 +	TShPoolCreateInfo infpa(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize * KTestPoolSizeInBufs, 1);
  1.2778 +	r = infpa.SetGuardPages();
  1.2779 +	test_KErrNone(r);
  1.2780 +	r = pool.Create(infpa, KDefaultPoolHandleFlags);
  1.2781 +	test_KErrNone(r);
  1.2782 +	r = pool.SetBufferWindow(-1, ETrue);
  1.2783 +	test_KErrNone(r);
  1.2784 +	r = buf.Alloc(pool);
  1.2785 +	test_KErrNone(r);
  1.2786 +	r = buf2.Alloc(pool);
  1.2787 +	test_Equal(KErrNoMemory, r);
  1.2788 +	TPtr8(buf.Ptr(), buf.Size(), buf.Size()).Fill('!');
  1.2789 +	buf.Close();
  1.2790 +	pool.Close();
  1.2791 +
  1.2792 +	TShPoolCreateInfo infnpa(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize * KTestPoolSizeInBufs, 1, KTestMinimumAlignmentLog2);
  1.2793 +	r = pool.Create(infnpa, KDefaultPoolHandleFlags);
  1.2794 +	test_KErrNone(r);
  1.2795 +	r = buf.Alloc(pool);
  1.2796 +	test_KErrNone(r);
  1.2797 +	r = buf2.Alloc(pool);
  1.2798 +	test_Equal(KErrNoMemory, r);
  1.2799 +	TPtr8(buf.Ptr(), buf.Size(),buf.Size()).Fill('?');
  1.2800 +	buf.Close();
  1.2801 +	pool.Close();
  1.2802 +	}
  1.2803 +
  1.2804 +/*
  1.2805 +@SYMTestCaseID				X4
  1.2806 +@SYMTestCaseDesc			Negative tests (user/kernel)
  1.2807 +@SYMREQ						REQ11423
  1.2808 +@SYMTestActions
  1.2809 +	API calls with invalid arguments.
  1.2810 +@SYMTestExpectedResults
  1.2811 +	Appropriate error code returned.
  1.2812 +@SYMTestPriority			High
  1.2813 +*/
  1.2814 +
  1.2815 +void NegativeTestsUser()
  1.2816 +	{
  1.2817 +	test.Next(_L("Negative tests (User)"));
  1.2818 +	TInt r;
  1.2819 +	TInt pagesize;
  1.2820 +	TInt ram;
  1.2821 +	r = HAL::Get(HAL::EMemoryPageSize, pagesize);
  1.2822 +	test_KErrNone(r);
  1.2823 +	r = HAL::Get(HAL::EMemoryRAM, ram);
  1.2824 +	test_KErrNone(r);
  1.2825 +
  1.2826 +	RShPool pool;
  1.2827 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, 0, 0); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2828 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, 100, 0); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2829 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, 0, 100); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2830 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, KMaxTUint, 10); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2831 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, 10, KMaxTUint); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2832 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, KMaxTUint, KMaxTUint); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2833 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, 65537, 65536); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2834 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, 10, 1 + (1 << (32 - Log2(pagesize)))); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2835 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, 4096, 10); r = pool.Create(inf, KDefaultPoolHandleFlags); test_Equal(KErrNone, r); pool.Close(); }
  1.2836 +	// XXX The following test will need updating in Phase 2, when exclusive access will be supported
  1.2837 +	// (page-aligned-buffer pools only)
  1.2838 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, 4096, 10); inf.SetExclusive(); r = pool.Create(inf, KDefaultPoolHandleFlags); test_Equal(KErrNotSupported, r); pool.Close(); }
  1.2839 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 4096, 10, 12); r = pool.Create(inf, KDefaultPoolHandleFlags); test_Equal(KErrNone, r); pool.Close(); }
  1.2840 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 4096, 10, 12); inf.SetExclusive(); r = pool.Create(inf, KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); pool.Close(); }
  1.2841 +#ifndef __WINS__
  1.2842 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, 128 * pagesize, (ram / (128 * pagesize)) + 1); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrNoMemory, r); }
  1.2843 +#endif
  1.2844 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 0, 0, 0); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2845 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 100, 0, 0); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2846 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 0, 100, 0); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2847 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, KMaxTUint, 10, 0); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2848 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 10, KMaxTUint, 0); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2849 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, KMaxTUint, KMaxTUint, 0); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2850 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 65537, 65536, 0); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2851 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 10, 10, KMaxTUint); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2852 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 10, 10, 33); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2853 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 10, 300, 24); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2854 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 10, 65537, 16); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2855 +	{ TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 10, 10, Log2(pagesize) + 1); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r); }
  1.2856 +
  1.2857 +		{
  1.2858 +		TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, *BufferSize, KTestPoolSizeInBufs, 0);
  1.2859 +		inf.SetGuardPages();
  1.2860 +		r = pool.Create(inf, KDefaultPoolHandleFlags); test_Equal(KErrArgument, r);
  1.2861 +		r = inf.SetSizingAttributes(KTestPoolSizeInBufs - 1, 25, 25, 280); test_KErrNone(r); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r);
  1.2862 +		// Either grow trigger ratio or grow by ratio == 0 => non-growable pool
  1.2863 +		// Such pools must have initial buffers == max buffers
  1.2864 +		r = inf.SetSizingAttributes(KTestPoolSizeInBufs * 2, 1, 0, 1); test_Equal(KErrArgument, r); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r);
  1.2865 +		r = inf.SetSizingAttributes(KTestPoolSizeInBufs * 2, 1, 0, 0); test_Equal(KErrArgument, r); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r);
  1.2866 +		// shrink hysteresis ratio must be > 256
  1.2867 +		r = inf.SetSizingAttributes(KTestPoolSizeInBufs - 1, 25, 25, 256); test_Equal(KErrArgument, r); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r);
  1.2868 +		// grow ratio must be < 256
  1.2869 +		r = inf.SetSizingAttributes(KTestPoolSizeInBufs * 2, 256, 25, 260); test_Equal(KErrArgument, r); r = pool.Create(inf,KDefaultPoolHandleFlags); test_Equal(KErrArgument, r);
  1.2870 +		}
  1.2871 +
  1.2872 +	// Can't have a non-aligned, contiguous pool that grows
  1.2873 +	TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 200, 10, 0);
  1.2874 +	r = inf.SetSizingAttributes(KTestPoolSizeInBufs * 2, 25, 25, 280);
  1.2875 +	test_KErrNone(r);
  1.2876 +	}
  1.2877 +
  1.2878 +void NegativeTestsKernel()
  1.2879 +	{
  1.2880 +	test.Next(_L("Negative tests (Kernel)"));
  1.2881 +	TInt r;
  1.2882 +	r = Ldd.NegativeTestsKernel();
  1.2883 +	test_KErrNone(r);
  1.2884 +	}
  1.2885 +
  1.2886 +/*
  1.2887 +@SYMTestCaseID				23
  1.2888 +@SYMTestCaseDesc			Out of memory testing
  1.2889 +@SYMREQ
  1.2890 +@SYMTestActions
  1.2891 +	TBD
  1.2892 +@SYMTestExpectedResults
  1.2893 +@SYMTestPriority			High
  1.2894 +*/
  1.2895 +
  1.2896 +void OutOfMemory()
  1.2897 +	{
  1.2898 +	test.Next(_L("Out of memory"));
  1.2899 +#ifdef _DEBUG
  1.2900 +
  1.2901 +	
  1.2902 +	const TInt KMaxKernelAllocations = 1024;
  1.2903 +	TInt i, r;
  1.2904 +	RShPool pool;
  1.2905 +	TShPoolCreateInfo inf0(TShPoolCreateInfo::EPageAlignedBuffer, *PtrBufSize, 1);
  1.2906 +	TShPoolCreateInfo inf1(TShPoolCreateInfo::ENonPageAlignedBuffer, *PtrBufSize, 1, 0);
  1.2907 +	r = inf0.SetSizingAttributes(4, 100, 1024, 300);
  1.2908 +	test_KErrNone(r);
  1.2909 +	r = inf1.SetSizingAttributes(4, 100, 1024, 300);
  1.2910 +	test_KErrNone(r);
  1.2911 +	
  1.2912 +	for(TInt j = 0; j <= 1; j++)
  1.2913 +		{
  1.2914 +
  1.2915 +		if(j == 0)
  1.2916 +			test.Printf(_L("OOM testing for page-aligned pool\n"));
  1.2917 +		else
  1.2918 +			test.Printf(_L("OOM testing for non-page-aligned pool\n"));
  1.2919 +
  1.2920 +		r = KErrNoMemory;
  1.2921 +
  1.2922 +		__KHEAP_RESET;
  1.2923 +		
  1.2924 +		//Create the pool
  1.2925 +		for (i = 0; i < KMaxKernelAllocations && r == KErrNoMemory; i++)
  1.2926 +			{
  1.2927 +			__KHEAP_FAILNEXT(i);
  1.2928 +			if(j == 0)
  1.2929 +				r = pool.Create(inf0,KDefaultPoolHandleFlags);
  1.2930 +			else
  1.2931 +				r = pool.Create(inf1,KDefaultPoolHandleFlags);
  1.2932 +			__KHEAP_RESET;
  1.2933 +			}
  1.2934 +		test.Printf(_L("Create pool took %d tries\n"),i);
  1.2935 +		test_KErrNone(r);
  1.2936 +
  1.2937 +		//Allocate buffers with automatic pool growing enabled
  1.2938 +		r = KErrNoMemory;
  1.2939 +		RShBuf buf1;
  1.2940 +		for (i = 0; i < KMaxKernelAllocations && r == KErrNoMemory; i++)
  1.2941 +			{
  1.2942 +			__KHEAP_FAILNEXT(i);
  1.2943 +			if(j == 0)
  1.2944 +				r = buf1.Alloc(pool, EShPoolAllocNoMap);
  1.2945 +			else
  1.2946 +				r = buf1.Alloc(pool);
  1.2947 +			__KHEAP_RESET;
  1.2948 +			}
  1.2949 +		test.Printf(_L("Allocate shared buffer 1 took %d tries\n"),i);	
  1.2950 +		test_KErrNone(r);
  1.2951 +
  1.2952 +		// delay to allow the pool to grow
  1.2953 +		User::After(20000);
  1.2954 +
  1.2955 +		r = KErrNoMemory;
  1.2956 +		RShBuf buf2;
  1.2957 +		for (i = 0; i < KMaxKernelAllocations && r == KErrNoMemory; i++)
  1.2958 +			{
  1.2959 +			__KHEAP_FAILNEXT(i);
  1.2960 +			if(j == 0)
  1.2961 +				r = buf2.Alloc(pool, EShPoolAllocNoMap);
  1.2962 +			else
  1.2963 +				r = buf2.Alloc(pool);
  1.2964 +			__KHEAP_RESET;
  1.2965 +			User::After(20000);
  1.2966 +			}
  1.2967 +		test.Printf(_L("Allocate shared buffer 2 took %d tries\n"),i);	
  1.2968 +		test_KErrNone(r);
  1.2969 +
  1.2970 +		// delay to allow the pool to grow again
  1.2971 +		User::After(20000);
  1.2972 +
  1.2973 +		r = KErrNoMemory;
  1.2974 +		RShBuf buf3;
  1.2975 +		for (i = 0; i < KMaxKernelAllocations && r == KErrNoMemory; i++)
  1.2976 +			{
  1.2977 +			__KHEAP_FAILNEXT(i);
  1.2978 +			if(j == 0)
  1.2979 +				r = buf3.Alloc(pool, EShPoolAllocNoMap);
  1.2980 +			else
  1.2981 +				r = buf3.Alloc(pool);
  1.2982 +			__KHEAP_RESET;
  1.2983 +			}
  1.2984 +		test.Printf(_L("Allocate shared buffer 3 took %d tries\n"),i);	
  1.2985 +		test_KErrNone(r);
  1.2986 +
  1.2987 +		//Map a buffer in page-aligned-pool case
  1.2988 +		if(j == 0)
  1.2989 +			{
  1.2990 +			//Open a one-buffer window
  1.2991 +			r = pool.SetBufferWindow(1, ETrue);
  1.2992 +			test_KErrNone(r);
  1.2993 +
  1.2994 +			//Map a buffer
  1.2995 +			r = KErrNoMemory;
  1.2996 +  			for (i = 0; i < KMaxKernelAllocations && r == KErrNoMemory; i++)
  1.2997 +				{
  1.2998 +				buf1.UnMap();
  1.2999 +				__KHEAP_FAILNEXT(i);
  1.3000 +				r = buf1.Map();
  1.3001 +				__KHEAP_RESET;
  1.3002 +				}
  1.3003 +			test.Printf(_L("Mapping buffer 1 took %d tries\n"),i);	
  1.3004 +			test_KErrNone(r);
  1.3005 +			}
  1.3006 +
  1.3007 +		//Setup low-space notification
  1.3008 +		TRequestStatus low;
  1.3009 +		low = KErrNoMemory;
  1.3010 +		for (i = 0; i < KMaxKernelAllocations && low != KRequestPending; i++)
  1.3011 +			{
  1.3012 +			__KHEAP_FAILNEXT(i);
  1.3013 +			pool.RequestLowSpaceNotification(1, low);
  1.3014 +			__KHEAP_RESET;
  1.3015 +			}
  1.3016 +		test.Printf(_L("Setting up low-space notification took %d tries\n"),i);
  1.3017 +		test_Equal(low.Int(), KRequestPending);
  1.3018 +	
  1.3019 +		//Setup free-space notification
  1.3020 +		TRequestStatus free;
  1.3021 +		free = KErrNoMemory;
  1.3022 +		for (i = 0; i < KMaxKernelAllocations && free != KRequestPending; i++)
  1.3023 +			{
  1.3024 +			__KHEAP_FAILNEXT(i);
  1.3025 +			pool.RequestFreeSpaceNotification(4, free);
  1.3026 +			__KHEAP_RESET;
  1.3027 +			}
  1.3028 +		test.Printf(_L("Setting up free-space notification took %d tries\n"),i);
  1.3029 +		test_Equal(free.Int(), KRequestPending);
  1.3030 +		
  1.3031 +		//No allocations should occur here
  1.3032 +		__KHEAP_FAILNEXT(1);
  1.3033 +		if(j == 0)
  1.3034 +			{
  1.3035 +			//Unmap the buffer
  1.3036 +			r = buf1.UnMap();
  1.3037 +			}
  1.3038 +
  1.3039 +		//Cancel the notifications
  1.3040 +		pool.CancelLowSpaceNotification(low);
  1.3041 +		pool.CancelFreeSpaceNotification(free);
  1.3042 +	
  1.3043 +		//Close the buffers and the pool
  1.3044 +		buf1.Close();
  1.3045 +		buf2.Close();
  1.3046 +		buf3.Close();
  1.3047 +		pool.Close();
  1.3048 +		__KHEAP_RESET;
  1.3049 +
  1.3050 +		}
  1.3051 +
  1.3052 +	// Allocate kernel-side buffer on Pool 2
  1.3053 +	TInt handle = 0;
  1.3054 +	RShBuf kbuf;
  1.3055 +	r = KErrNoMemory;
  1.3056 +	for (i = 0; i < KMaxKernelAllocations && r == KErrNoMemory; i++)
  1.3057 +		{
  1.3058 +		__KHEAP_FAILNEXT(i);
  1.3059 +		r = Ldd.AllocateKernelBuffer(1, handle);
  1.3060 +		__KHEAP_RESET;
  1.3061 +		}
  1.3062 +	test.Printf(_L("Allocate kernel buffer took %d tries\n"),i);
  1.3063 +	test_KErrNone(r);
  1.3064 +     
  1.3065 +	__KHEAP_FAILNEXT(1);
  1.3066 +	kbuf.SetHandle(handle);
  1.3067 +	__KHEAP_RESET;
  1.3068 +
  1.3069 +	r = KErrNoMemory;
  1.3070 +	for (i = 0; i < KMaxKernelAllocations && r == KErrNoMemory; i++)
  1.3071 +		{
  1.3072 +        r = kbuf.UnMap();
  1.3073 +		__KHEAP_FAILNEXT(i);
  1.3074 +		r = kbuf.Map();
  1.3075 +		__KHEAP_RESET;
  1.3076 +		}
  1.3077 +	test.Printf(_L("Mapping kernel buffer took %d tries\n"),i);
  1.3078 +	test_KErrNone(r);
  1.3079 +
  1.3080 +	__KHEAP_FAILNEXT(1);
  1.3081 +	r = kbuf.UnMap();
  1.3082 +	kbuf.Close();
  1.3083 +	__KHEAP_RESET;
  1.3084 +
  1.3085 +
  1.3086 +#else // _DEBUG
  1.3087 +	test.Printf(_L("Debug builds only. Test skipped."));
  1.3088 +#endif // _DEBUG
  1.3089 +	}
  1.3090 +
  1.3091 +/*
  1.3092 +@SYMTestCaseID				22
  1.3093 +@SYMTestCaseDesc			Stress testing
  1.3094 +@SYMREQ
  1.3095 +@SYMTestActions
  1.3096 +	TBD
  1.3097 +@SYMTestExpectedResults
  1.3098 +@SYMTestPriority			Medium
  1.3099 +*/
  1.3100 +
  1.3101 +TInt StressThread1(TAny*)
  1.3102 +	{
  1.3103 +	TInt r;
  1.3104 +	TInt pagesize;
  1.3105 +	r = HAL::Get(HAL::EMemoryPageSize, pagesize);
  1.3106 +	test_KErrNone(r);
  1.3107 +
  1.3108 +	TInt i = 0;
  1.3109 +	FOREVER
  1.3110 +		{
  1.3111 +		RShPool pool;
  1.3112 +		if (i % 2)
  1.3113 +			{
  1.3114 +			TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, 1000, 512);
  1.3115 +			r = pool.Create(inf,KDefaultPoolHandleFlags);
  1.3116 +			if (r)
  1.3117 +				{
  1.3118 +				RDebug::Printf("Error %d line %d", r, __LINE__);
  1.3119 +				break;
  1.3120 +				}
  1.3121 +
  1.3122 +			r = pool.SetBufferWindow(-1, ETrue);
  1.3123 +			test_KErrNone(r);
  1.3124 +
  1.3125 +			}
  1.3126 +		else
  1.3127 +			{
  1.3128 +			TShPoolCreateInfo inf(TShPoolCreateInfo::ENonPageAlignedBuffer, 10000, 200, 0);
  1.3129 +			r = pool.Create(inf,KDefaultPoolHandleFlags);
  1.3130 +			if (r)
  1.3131 +				{
  1.3132 +				RDebug::Printf("Error %d line %d", r, __LINE__);
  1.3133 +				break;
  1.3134 +				}
  1.3135 +			}
  1.3136 +		pool.Close();
  1.3137 +		i++;
  1.3138 +		if (i % 100 == 0)
  1.3139 +			{
  1.3140 +			RDebug::Printf("ST1 %d iterations", i);
  1.3141 +			}
  1.3142 +		}
  1.3143 +	return r;
  1.3144 +	}
  1.3145 +
  1.3146 +TInt StressThread2(TAny*)
  1.3147 +	{
  1.3148 +	TInt r = KErrUnknown;
  1.3149 +	TShPoolInfo inf1;
  1.3150 +	TShPoolInfo inf2;
  1.3151 +	P1.GetInfo(inf1);
  1.3152 +	P2.GetInfo(inf2);
  1.3153 +	TInt j = 0;
  1.3154 +	FOREVER
  1.3155 +		{
  1.3156 +		TUint i;
  1.3157 +		RArray<RShBuf> bufarray1;
  1.3158 +		RArray<RShBuf> bufarray2;
  1.3159 +		for (i = 0; i < inf1.iMaxBufs; i++)
  1.3160 +			{
  1.3161 +			RShBuf buf;
  1.3162 +			r = buf.Alloc(P1);
  1.3163 +			if (r)
  1.3164 +				{
  1.3165 +				RDebug::Printf("Error %d line %d i=%d", r, __LINE__, i);
  1.3166 +				break;
  1.3167 +				}
  1.3168 +			TPtr8(buf.Ptr(), buf.Size(),buf.Size()).Fill('1');
  1.3169 +			r = bufarray1.Append(buf);
  1.3170 +			if (r)
  1.3171 +				{
  1.3172 +				buf.Close();
  1.3173 +				RDebug::Printf("Error %d line %d i=%d", r, __LINE__, i);
  1.3174 +				break;
  1.3175 +				}
  1.3176 +			}
  1.3177 +		for (i = 0; i < inf2.iMaxBufs; i++)
  1.3178 +			{
  1.3179 +			RShBuf buf;
  1.3180 +			r = buf.Alloc(P2);
  1.3181 +			if (r)
  1.3182 +				{
  1.3183 +				RDebug::Printf("Error %d line %d i=%d", r, __LINE__, i);
  1.3184 +				break;
  1.3185 +				}
  1.3186 +			TPtr8(buf.Ptr(), buf.Size(),buf.Size()).Fill('2');
  1.3187 +			bufarray2.Append(buf);
  1.3188 +			}
  1.3189 +		i = 0;
  1.3190 +		while (bufarray1.Count())
  1.3191 +			{
  1.3192 +			bufarray1[0].Close();
  1.3193 +			bufarray1.Remove(0);
  1.3194 +			i++;
  1.3195 +			}
  1.3196 +
  1.3197 +		while (bufarray2.Count())
  1.3198 +			{
  1.3199 +			bufarray2[0].Close();
  1.3200 +			bufarray2.Remove(0);
  1.3201 +			}
  1.3202 +		bufarray1.Close();
  1.3203 +		bufarray2.Close();
  1.3204 +		if (r)
  1.3205 +			{
  1.3206 +			break;
  1.3207 +			}
  1.3208 +		j++;
  1.3209 +		if (j % 10 == 0)
  1.3210 +			{
  1.3211 +			RDebug::Printf("ST2 %d iterations", j);
  1.3212 +			}
  1.3213 +		}
  1.3214 +	return r;
  1.3215 +	}
  1.3216 +
  1.3217 +void StressTesting(TInt aSecs)
  1.3218 +	{
  1.3219 +	test.Next(_L("Stress testing"));
  1.3220 +	TInt r;
  1.3221 +
  1.3222 +	test.Start(_L("Create pools"));
  1.3223 +	TShPoolCreateInfo inf1(TShPoolCreateInfo::ENonPageAlignedBuffer, 2000, 500, 11);
  1.3224 +	r = P1.Create(inf1,KDefaultPoolHandleFlags);
  1.3225 +	test_KErrNone(r);
  1.3226 +	TInt handle;
  1.3227 +	TShPoolCreateInfo inf2(TShPoolCreateInfo::EPageAlignedBuffer, 5000, 150);
  1.3228 +	r = Ldd.OpenKernelPool(inf2, handle);
  1.3229 +	test_KErrNone(r);
  1.3230 +	P2.SetHandle(handle);
  1.3231 +
  1.3232 +	r = P2.SetBufferWindow(-1, ETrue);
  1.3233 +	test_KErrNone(r);
  1.3234 +
  1.3235 +	test.Next(_L("Create threads"));
  1.3236 +	RThread t1;
  1.3237 +	r = t1.Create(_L("THREAD1"), StressThread1, KDefaultStackSize, KMinHeapSize, KMinHeapSize, NULL);
  1.3238 +	test_KErrNone(r);
  1.3239 +	RThread t2;
  1.3240 +	r = t2.Create(_L("THREAD2"), StressThread2, KDefaultStackSize*2, KMinHeapSize, 1 << 20, NULL);
  1.3241 +	test_KErrNone(r);
  1.3242 +	test.Next(_L("Start threads"));
  1.3243 +	test.Printf(_L("Wait for %d seconds\n"), aSecs);
  1.3244 +	RThread().SetPriority(EPriorityMore);
  1.3245 +	TRequestStatus t1rs;
  1.3246 +	TRequestStatus t2rs;
  1.3247 +	t1.Logon(t1rs);
  1.3248 +	t2.Logon(t2rs);
  1.3249 +	t1.Resume();
  1.3250 +	t2.Resume();
  1.3251 +	User::After(aSecs * 1000000);
  1.3252 +
  1.3253 +	test.Next(_L("Kill threads"));
  1.3254 +	t1.Kill(KErrNone);
  1.3255 +	t2.Kill(KErrNone);
  1.3256 +
  1.3257 +	// wait for threads to actually die
  1.3258 +	User::WaitForRequest(t1rs);
  1.3259 +	User::WaitForRequest(t2rs);
  1.3260 +
  1.3261 +	t1.Close();
  1.3262 +	t2.Close();
  1.3263 +	RThread().SetPriority(EPriorityNormal);
  1.3264 +
  1.3265 +	test.Next(_L("Close pools"));
  1.3266 +	P1.Close();
  1.3267 +	r = Ldd.CloseKernelPool();
  1.3268 +	test_KErrNone(r);
  1.3269 +	P2.Close();
  1.3270 +	test.End();
  1.3271 +	}
  1.3272 +
  1.3273 +/*
  1.3274 +@SYMTestCaseID
  1.3275 +@SYMTestCaseDesc
  1.3276 +@SYMREQ
  1.3277 +@SYMTestActions
  1.3278 +@SYMTestExpectedResults
  1.3279 +@SYMTestPriority
  1.3280 +*/
  1.3281 +
  1.3282 +void NoDeallocation()
  1.3283 +	{
  1.3284 +	test.Next(_L("No deallocation"));
  1.3285 +	TInt r;
  1.3286 +	TBuf<10> command;
  1.3287 +	command.Format(_L("%S %d"), &KTestSlave, ETestSlaveNoDeallocation);
  1.3288 +	RProcess p;
  1.3289 +	r = p.Create(RProcess().FileName(), command);
  1.3290 +	test_KErrNone(r);
  1.3291 +	TRequestStatus rs;
  1.3292 +	p.Logon(rs);
  1.3293 +	p.Resume();
  1.3294 +	User::WaitForRequest(rs);
  1.3295 +
  1.3296 +	// wait for memory to be freed
  1.3297 +	r = UserSvr::HalFunction(EHalGroupKernel, EKernelHalSupervisorBarrier, (TAny*)5000, 0);
  1.3298 +	test_KErrNone(r);
  1.3299 +
  1.3300 +	__KHEAP_MARKEND;
  1.3301 +	test_KErrNone(rs.Int());
  1.3302 +	test_Equal(EExitKill, p.ExitType());
  1.3303 +	test_KErrNone(p.ExitReason());
  1.3304 +	p.Close();
  1.3305 +	}
  1.3306 +
  1.3307 +TInt SlaveNoDeallocation()
  1.3308 +	{
  1.3309 +	__KHEAP_MARK;
  1.3310 +	TInt r;
  1.3311 +	RShPool pool;
  1.3312 +	TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *BufferSize, KTestPoolSizeInBufs);
  1.3313 +	r = pool.Create(inf,KDefaultPoolHandleFlags);
  1.3314 +	test_KErrNone(r);
  1.3315 +
  1.3316 +	pool.SetBufferWindow(-1, ETrue);
  1.3317 +	test_KErrNone(r);
  1.3318 +
  1.3319 +	if (!r)
  1.3320 +		{
  1.3321 +		RShBuf buf;
  1.3322 +		r = buf.Alloc(pool);
  1.3323 +		}
  1.3324 +	return r;
  1.3325 +	}
  1.3326 +
  1.3327 +TInt E32Main()
  1.3328 +	{
  1.3329 +	__UHEAP_MARK;
  1.3330 +
  1.3331 +	// Parse command line for slave processes
  1.3332 +	TInt r = KErrArgument;
  1.3333 +	TBuf<KMaxFullName> cmd;
  1.3334 +	User::CommandLine(cmd);
  1.3335 +	TLex lex(cmd);
  1.3336 +	if (lex.NextToken() == KTestSlave)
  1.3337 +		{
  1.3338 +		TInt function;
  1.3339 +		TLex functionlex(lex.NextToken());
  1.3340 +		functionlex.Val(function);
  1.3341 +		switch (function)
  1.3342 +			{
  1.3343 +			case ETestSlaveNoDeallocation:
  1.3344 +				r = SlaveNoDeallocation();
  1.3345 +				break;
  1.3346 +			}
  1.3347 +		__UHEAP_MARKEND;
  1.3348 +		return r;
  1.3349 +		}
  1.3350 +	// Test starts here
  1.3351 +	test.Title();
  1.3352 +
  1.3353 +	test.Start(_L("Check for Shared Buffers availability"));
  1.3354 +	RShPool pool;
  1.3355 +	TShPoolCreateInfo inf(TShPoolCreateInfo::EPageAlignedBuffer, *BufferSize, KTestPoolSizeInBufs);
  1.3356 +	r = pool.Create(inf,KDefaultPoolHandleFlags);
  1.3357 +	if (r == KErrNotSupported)
  1.3358 +		{
  1.3359 +		test.Printf(_L("Not supported by this memory model.\n"));
  1.3360 +		}
  1.3361 +	else
  1.3362 +		{
  1.3363 +		test_KErrNone(r);
  1.3364 +		pool.Close();
  1.3365 +
  1.3366 +		test.Next(_L("No device driver"));
  1.3367 +		test.Start(_L("Start test loop"));
  1.3368 +		for (PtrBufSize = BufferSize; *PtrBufSize != 0; PtrBufSize++)
  1.3369 +			{
  1.3370 +			TBuf<30> title;
  1.3371 +			title.Format(_L("Buffer size = %d bytes"), *PtrBufSize);
  1.3372 +			test.Next(title);
  1.3373 +			test.Start(_L("New test iteration"));
  1.3374 +			BufferAlignmentUser();
  1.3375 +			BufferMapping();
  1.3376 +			BufferWindow();
  1.3377 +			GuardPages();
  1.3378 +			PoolGrowingUser();
  1.3379 +			SingleBufferPool();
  1.3380 +			test.End();
  1.3381 +			}
  1.3382 +		test.End();
  1.3383 +		test.Next(_L("Load Device Driver"));
  1.3384 +		LoadDeviceDrivers();
  1.3385 +
  1.3386 +		#ifdef TEST_CLIENT_THREAD
  1.3387 +		test.Next(_L("Device driver in client thread"));
  1.3388 +		r = Ldd.Open(0);
  1.3389 +		#else
  1.3390 +		test.Next(_L("Device driver in own thread"));
  1.3391 +		r = Ldd.Open(1);
  1.3392 +		#endif
  1.3393 +
  1.3394 +		test_KErrNone(r);
  1.3395 +
  1.3396 +		test.Start(_L("Start test loop"));
  1.3397 +		for (PtrBufSize = BufferSize; *PtrBufSize != 0; PtrBufSize++)
  1.3398 +			{
  1.3399 +			TBuf<30> title;
  1.3400 +			title.Format(_L("Buffer size = %d bytes"), *PtrBufSize);
  1.3401 +			test.Next(title);
  1.3402 +			test.Start(_L("New test iteration"));
  1.3403 +			CreateUserPool(ETestNonPageAligned);
  1.3404 +			CreateKernelPool(ETestNonPageAligned);
  1.3405 +			AllocateUserBuffer();
  1.3406 +			AllocateKernelBuffer();
  1.3407 +			AllocateUserMax(P1);
  1.3408 +			AllocateUserMax(P2);
  1.3409 +			AllocateKernelMax();
  1.3410 +			BufferAlignmentKernel();
  1.3411 +			CreateKernelPoolPhysAddr();
  1.3412 +			NotificationRequests(P1);
  1.3413 +			NotificationRequests(P2);
  1.3414 +			CancelNotificationRequests(P1);
  1.3415 +			CancelNotificationRequests(P2);
  1.3416 +			ShBufPin();
  1.3417 +			CloseKernelPool();
  1.3418 +			CloseUserPool();
  1.3419 +			ContiguousPoolKernel();
  1.3420 +			CreateUserPool(ETestPageAligned);
  1.3421 +			CreateKernelPool(ETestPageAligned);
  1.3422 +			OutOfMemory();
  1.3423 +			AllocateUserBuffer();
  1.3424 +			AllocateKernelBuffer();
  1.3425 +			AllocateUserMax(P1);
  1.3426 +			AllocateUserMax(P2);
  1.3427 +			AllocateKernelMax();
  1.3428 +			NotificationRequests(P1);
  1.3429 +			NotificationRequests(P2);
  1.3430 +			CloseUserPool();
  1.3431 +			CloseKernelPool();
  1.3432 +			CreateUserPool(ETestPageAlignedGrowing);
  1.3433 +			CreateKernelPool(ETestPageAlignedGrowing);
  1.3434 +			OutOfMemory();
  1.3435 +			AllocateKernelMax();
  1.3436 +			AllocateUserMax(P1);
  1.3437 +			AllocateUserMax(P2);
  1.3438 +			CloseUserPool();
  1.3439 +			CloseKernelPool();
  1.3440 +			test.End();
  1.3441 +			}
  1.3442 +		NegativeTestsKernel();
  1.3443 +		StressTesting(5);
  1.3444 +		test.End();
  1.3445 +		Ldd.Close();
  1.3446 +
  1.3447 +		NegativeTestsUser();
  1.3448 +		NoDeallocation();
  1.3449 +
  1.3450 +		test.Next(_L("Unload Device Drivers"));
  1.3451 +		FreeDeviceDrivers();
  1.3452 +		}
  1.3453 +	test.End();
  1.3454 +	test.Close();
  1.3455 +
  1.3456 +	__UHEAP_MARKEND;
  1.3457 +	return KErrNone;
  1.3458 +	}