os/kernelhwsrv/kerneltest/e32test/mmu/t_imb.cia
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/kerneltest/e32test/mmu/t_imb.cia	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,479 @@
     1.4 +// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of the License "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +// e32test\mmu\t_imb.cia
    1.18 +// 
    1.19 +//
    1.20 +
    1.21 +#include <e32test.h>
    1.22 +#include <u32std.h>
    1.23 +#include <e32math.h>
    1.24 +
    1.25 +#ifdef __CPU_ARM
    1.26 +__NAKED__ TInt Sqrt(TReal& /*aDest*/, const TReal& /*aSrc*/)
    1.27 +	{
    1.28 +	// r0=address of aDest, r1=address of aSrc
    1.29 +	asm("stmfd sp!, {r4-r10,lr} ");
    1.30 +#ifdef __DOUBLE_WORDS_SWAPPED__
    1.31 +	asm("ldmia r1, {r3,r4} ");			// low mant into r4, sign:exp:high mant into r3
    1.32 +#else
    1.33 +	asm("ldr r3, [r1, #4] ");
    1.34 +	asm("ldr r4, [r1, #0] ");
    1.35 +#endif
    1.36 +	asm("bic r5, r3, #0xFF000000 ");
    1.37 +	asm("bic r5, r5, #0x00F00000 ");	// high word of mantissa into r5
    1.38 +	asm("mov r2, r3, lsr #20 ");
    1.39 +	asm("bics r2, r2, #0x800 ");		// exponent now in r2
    1.40 +	asm("beq fastsqrt1 ");				// branch if exponent zero (zero or denormal)
    1.41 +	asm("mov r6, #0xFF ");
    1.42 +	asm("orr r6, r6, #0x700 ");
    1.43 +	asm("cmp r2, r6 ");					// check for infinity or NaN
    1.44 +	asm("beq fastsqrt2 ");				// branch if infinity or NaN
    1.45 +	asm("movs r3, r3 ");				// test sign
    1.46 +	asm("bmi fastsqrtn ");				// branch if negative
    1.47 +	asm("sub r2, r2, #0xFF ");			// unbias the exponent
    1.48 +	asm("sub r2, r2, #0x300 ");			//
    1.49 +	asm("fastsqrtd1: ");
    1.50 +	asm("mov r1, #0x40000000 ");		// value for comparison
    1.51 +	asm("mov r3, #27 ");				// loop counter (number of bits/2)
    1.52 +	asm("movs r2, r2, asr #1 ");		// divide exponent by 2, LSB into CF
    1.53 +	asm("movcs r7, r5, lsl #11 ");		// mantissa into r6,r7 with MSB in MSB of r7
    1.54 +	asm("orrcs r7, r7, r4, lsr #21 ");
    1.55 +	asm("movcs r6, r4, lsl #11 ");
    1.56 +	asm("movcs r4, #0 ");				// r4, r5 will hold result mantissa
    1.57 +	asm("orrcs r7, r7, #0x80000000 ");	// if exponent odd, restore MSB of mantissa
    1.58 +	asm("movcc r7, r5, lsl #12 ");		// mantissa into r6,r7 with MSB in MSB of r7
    1.59 +	asm("orrcc r7, r7, r4, lsr #20 ");	// if exponent even, shift mantissa left an extra
    1.60 +	asm("movcc r6, r4, lsl #12 ");		// place, lose top bit, and
    1.61 +	asm("movcc r4, #1 ");				// set MSB of result, and
    1.62 +	asm("mov r5, #0 ");					// r4, r5 will hold result mantissa
    1.63 +	asm("mov r8, #0 ");					// r8, r9 will be comparison accumulator
    1.64 +	asm("mov r9, #0 ");
    1.65 +	asm("bcc fastsqrt4 ");				// if exponent even, calculate one less bit
    1.66 +										// as result MSB already known
    1.67 +
    1.68 +	// Main mantissa square-root loop
    1.69 +	asm("fastsqrt3: ");					// START OF MAIN LOOP
    1.70 +	asm("subs r10, r7, r1 ");			// subtract result:01 from acc:mant
    1.71 +	asm("sbcs r12, r8, r4 ");			// result into r14:r12:r10
    1.72 +	asm("sbcs r14, r9, r5 ");
    1.73 +	asm("movcs r7, r10 ");				// if no borrow replace accumulator with result
    1.74 +	asm("movcs r8, r12 ");
    1.75 +	asm("movcs r9, r14 ");
    1.76 +	asm("adcs r4, r4, r4 ");			// shift result left one, putting in next bit
    1.77 +	asm("adcs r5, r5, r5 ");
    1.78 +	asm("mov r9, r9, lsl #2 ");			// shift acc:mant left by 2 bits
    1.79 +	asm("orr r9, r9, r8, lsr #30 ");
    1.80 +	asm("mov r8, r8, lsl #2 ");
    1.81 +	asm("orr r8, r8, r7, lsr #30 ");
    1.82 +	asm("mov r7, r7, lsl #2 ");
    1.83 +	asm("orr r7, r7, r6, lsr #30 ");
    1.84 +	asm("mov r6, r6, lsl #2 ");
    1.85 +	asm("fastsqrt4: ");					// Come in here if we need to do one less iteration
    1.86 +	asm("subs r10, r7, r1 ");			// subtract result:01 from acc:mant
    1.87 +	asm("sbcs r12, r8, r4 ");			// result into r14:r12:r10
    1.88 +	asm("sbcs r14, r9, r5 ");
    1.89 +	asm("movcs r7, r10 ");				// if no borrow replace accumulator with result
    1.90 +	asm("movcs r8, r12 ");
    1.91 +	asm("movcs r9, r14 ");
    1.92 +	asm("adcs r4, r4, r4 ");			// shift result left one, putting in next bit
    1.93 +	asm("adcs r5, r5, r5 ");
    1.94 +	asm("mov r9, r9, lsl #2 ");			// shift acc:mant left by 2 bits
    1.95 +	asm("orr r9, r9, r8, lsr #30 ");
    1.96 +	asm("mov r8, r8, lsl #2 ");
    1.97 +	asm("orr r8, r8, r7, lsr #30 ");
    1.98 +	asm("mov r7, r7, lsl #2 ");
    1.99 +	asm("orr r7, r7, r6, lsr #30 ");
   1.100 +	asm("mov r6, r6, lsl #2 ");
   1.101 +	asm("subs r3, r3, #1 ");			// decrement loop counter
   1.102 +	asm("bne fastsqrt3 ");				// do necessary number of iterations
   1.103 +
   1.104 +	asm("movs r4, r4, lsr #1 ");		// shift result mantissa right 1 place
   1.105 +	asm("orr r4, r4, r5, lsl #31 ");	// LSB (=rounding bit) into carry
   1.106 +	asm("mov r5, r5, lsr #1 ");
   1.107 +	asm("adcs r4, r4, #0 ");			// round the mantissa to 53 bits
   1.108 +	asm("adcs r5, r5, #0 ");
   1.109 +	asm("cmp r5, #0x00200000 ");		// check for mantissa overflow
   1.110 +	asm("addeq r2, r2, #1 ");			// if so, increment exponent - can never overflow
   1.111 +	asm("bic r5, r5, #0x00300000 ");	// remove top bit of mantissa - it is implicit
   1.112 +	asm("add r2, r2, #0xFF ");			// re-bias the exponent
   1.113 +	asm("add r3, r2, #0x300 ");			// and move into r3
   1.114 +	asm("orr r3, r5, r3, lsl #20 ");	// r3 now contains exponent + top of mantissa
   1.115 +	asm("fastsqrt_ok: ");
   1.116 +#ifdef __DOUBLE_WORDS_SWAPPED__
   1.117 +	asm("stmia r0, {r3,r4} ");			// store the result
   1.118 +#else
   1.119 +	asm("str r3, [r0, #4] ");
   1.120 +	asm("str r4, [r0, #0] ");
   1.121 +#endif
   1.122 +	asm("mov r0, #0 ");					// error code KErrNone
   1.123 +	__POPRET("r4-r10,");
   1.124 +
   1.125 +	asm("fastsqrt1: ");
   1.126 +	asm("orrs r6, r5, r4 ");			// exponent zero - test mantissa
   1.127 +	asm("beq fastsqrt_ok ");			// if zero, return 0
   1.128 +
   1.129 +	asm("movs r3, r3 ");				// denormal - test sign
   1.130 +	asm("bmi fastsqrtn ");				// branch out if negative
   1.131 +	asm("sub r2, r2, #0xFE ");			// unbias the exponent
   1.132 +	asm("sub r2, r2, #0x300 ");			//
   1.133 +	asm("fastsqrtd: ");
   1.134 +	asm("adds r4, r4, r4 ");			// shift mantissa left
   1.135 +	asm("adcs r5, r5, r5 ");
   1.136 +	asm("sub r2, r2, #1 ");				// and decrement exponent
   1.137 +	asm("tst r5, #0x00100000 ");		// test if normalised
   1.138 +	asm("beq fastsqrtd ");				// loop until normalised
   1.139 +	asm("b fastsqrtd1 ");				// now treat as a normalised number
   1.140 +	asm("fastsqrt2: ");					// get here if infinity or NaN
   1.141 +	asm("orrs r6, r5, r4 ");			// if mantissa zero, infinity
   1.142 +	asm("bne fastsqrtnan ");			// branch if not - must be NaN
   1.143 +	asm("movs r3, r3 ");				// test sign of infinity
   1.144 +	asm("bmi fastsqrtn ");				// branch if -ve
   1.145 +#ifdef __DOUBLE_WORDS_SWAPPED__
   1.146 +	asm("stmia r0, {r3,r4} ");			// store the result
   1.147 +#else
   1.148 +	asm("str r3, [r0, #4] ");
   1.149 +	asm("str r4, [r0, #0] ");
   1.150 +#endif
   1.151 +	asm("mov r0, #-9 ");				// return KErrOverflow
   1.152 +	asm("b fastsqrt_end ");
   1.153 +
   1.154 +	asm("fastsqrtn: ");					// get here if negative or QNaN operand
   1.155 +	asm("mov r3, #0xFF000000 ");		// generate "real indefinite" QNaN
   1.156 +	asm("orr r3, r3, #0x00F80000 ");	// sign=1, exp=7FF, mantissa = 1000...0
   1.157 +	asm("mov r4, #0 ");
   1.158 +	asm("fastsqrtxa: ");
   1.159 +#ifdef __DOUBLE_WORDS_SWAPPED__
   1.160 +	asm("stmia r0, {r3,r4} ");			// store the result
   1.161 +#else
   1.162 +	asm("str r3, [r0, #4] ");
   1.163 +	asm("str r4, [r0, #0] ");
   1.164 +#endif
   1.165 +	asm("mov r0, #-6 ");				// return KErrArgument
   1.166 +	asm("fastsqrt_end: ");
   1.167 +	__POPRET("r4-r10,");
   1.168 +
   1.169 +	asm("fastsqrtnan: ");				// operand is a NaN
   1.170 +	asm("tst r5, #0x00080000 ");		// test MSB of mantissa
   1.171 +	asm("bne fastsqrtn ");				// if set it is a QNaN - so return "real indefinite"
   1.172 +	asm("bic r3, r3, #0x00080000 ");	// else convert SNaN to QNaN
   1.173 +	asm("b fastsqrtxa ");				// and return KErrArgument
   1.174 +
   1.175 +	asm("Sqrt__FRdRCd_end: ");
   1.176 +
   1.177 +	}
   1.178 +
   1.179 +__NAKED__ TUint Sqrt_Length()
   1.180 +	{
   1.181 +	asm("adr r0, Sqrt__FRdRCd_end ");
   1.182 +	asm("adr r1, Sqrt__FRdRCd ");
   1.183 +	asm("sub r0, r0, r1 ");
   1.184 +	__JUMP(,lr);
   1.185 +	}
   1.186 +
   1.187 +__NAKED__ TInt Divide(TRealX& /*aDividend*/, const TRealX& /*aDivisor*/)
   1.188 +	{
   1.189 +	asm("stmfd sp!, {r0,r4-r9,lr} ");
   1.190 +	asm("ldmia r1, {r4,r5,r6} ");
   1.191 +	asm("ldmia r0, {r1,r2,r3} ");
   1.192 +	asm("bl TRealXDivide ");
   1.193 +	asm("ldmfd sp!, {r0,r4-r9,lr} ");
   1.194 +	asm("stmia r0, {r1,r2,r3} ");
   1.195 +	asm("mov r0, r12 ");
   1.196 +	__JUMP(,lr);
   1.197 +
   1.198 +	// TRealX division r1,r2,r3 / r4,r5,r6 result in r1,r2,r3
   1.199 +	// Error code returned in r12
   1.200 +	// Registers r0-r9,r12 modified
   1.201 +	// NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE.
   1.202 +	asm("TRealXDivide: ");
   1.203 +	asm("mov r12, #0 ");					// initialise return value to KErrNone
   1.204 +	asm("bic r3, r3, #0x300 ");				// clear rounding flags
   1.205 +	asm("tst r6, #1 ");
   1.206 +	asm("eorne r3, r3, #1 ");				// Exclusive-OR signs
   1.207 +	asm("cmn r3, #0x10000 ");				// check if dividend is NaN or infinity
   1.208 +	asm("bcs TRealXDivide1 ");				// branch if it is
   1.209 +	asm("cmn r6, #0x10000 ");				// check if divisor is NaN or infinity
   1.210 +	asm("bcs TRealXDivide2 ");				// branch if it is
   1.211 +	asm("cmp r6, #0x10000 ");				// check if divisor zero
   1.212 +	asm("bcc TRealXDivide3 ");				// branch if it is
   1.213 +	asm("cmp r3, #0x10000 ");				// check if dividend zero
   1.214 +	__JUMP(cc,lr);					// if zero, exit
   1.215 +	asm("tst r3, #1 ");
   1.216 +	asm("orrne lr, lr, #1 ");				// save sign in bottom bit of lr
   1.217 +
   1.218 +	// calculate result exponent
   1.219 +	asm("mov r0, r3, lsr #16 ");			// r0=dividend exponent
   1.220 +	asm("sub r0, r0, r6, lsr #16 ");		// r0=dividend exponent - divisor exponent
   1.221 +	asm("add r0, r0, #0x7F00 ");
   1.222 +	asm("add r0, r0, #0x00FF ");			// r0 now contains result exponent
   1.223 +	asm("mov r6, r1 ");						// move dividend into r6,r7,r8
   1.224 +	asm("mov r7, r2 ");
   1.225 +	asm("mov r8, #0 ");						// use r8 to hold extra bit shifted up
   1.226 +											// r2:r1 will hold result mantissa
   1.227 +	asm("mov r2, #1 ");						// we will make sure first bit is 1
   1.228 +	asm("cmp r7, r5 ");						// compare dividend mantissa to divisor mantissa
   1.229 +	asm("cmpeq r6, r4 ");
   1.230 +	asm("bcs TRealXDivide4 ");				// branch if dividend >= divisor
   1.231 +	asm("adds r6, r6, r6 ");				// else shift dividend left one
   1.232 +	asm("adcs r7, r7, r7 ");				// ignore carry here
   1.233 +	asm("sub r0, r0, #1 ");					// decrement result exponent by one
   1.234 +	asm("TRealXDivide4: ");
   1.235 +	asm("subs r6, r6, r4 ");				// subtract divisor from dividend
   1.236 +	asm("sbcs r7, r7, r5 ");
   1.237 +
   1.238 +	// Main mantissa division code
   1.239 +	// First calculate the top 32 bits of the result
   1.240 +	// Top bit is 1, do 10 lots of 3 bits the one more bit
   1.241 +	asm("mov r12, #10 ");
   1.242 +	asm("TRealXDivide5: ");
   1.243 +	asm("adds r6, r6, r6 ");				// shift accumulator left by one
   1.244 +	asm("adcs r7, r7, r7 ");
   1.245 +	asm("adcs r8, r8, r8 ");
   1.246 +	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
   1.247 +	asm("sbcs r3, r7, r5 ");
   1.248 +	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
   1.249 +	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
   1.250 +	asm("movcs r7, r3 ");
   1.251 +	asm("adcs r2, r2, r2 ");				// shift in new result bit
   1.252 +	asm("adds r6, r6, r6 ");				// shift accumulator left by one
   1.253 +	asm("adcs r7, r7, r7 ");
   1.254 +	asm("adcs r8, r8, r8 ");
   1.255 +	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
   1.256 +	asm("sbcs r3, r7, r5 ");
   1.257 +	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
   1.258 +	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
   1.259 +	asm("movcs r7, r3 ");
   1.260 +	asm("adcs r2, r2, r2 ");				// shift in new result bit
   1.261 +	asm("adds r6, r6, r6 ");				// shift accumulator left by one
   1.262 +	asm("adcs r7, r7, r7 ");
   1.263 +	asm("adcs r8, r8, r8 ");
   1.264 +	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
   1.265 +	asm("sbcs r3, r7, r5 ");
   1.266 +	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
   1.267 +	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
   1.268 +	asm("movcs r7, r3 ");
   1.269 +	asm("adcs r2, r2, r2 ");				// shift in new result bit
   1.270 +	asm("subs r12, r12, #1 ");
   1.271 +	asm("bne TRealXDivide5 ");				// iterate the loop
   1.272 +	asm("adds r6, r6, r6 ");				// shift accumulator left by one
   1.273 +	asm("adcs r7, r7, r7 ");
   1.274 +	asm("adcs r8, r8, r8 ");
   1.275 +	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
   1.276 +	asm("sbcs r3, r7, r5 ");
   1.277 +	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
   1.278 +	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
   1.279 +	asm("movcs r7, r3 ");
   1.280 +	asm("adcs r2, r2, r2 ");				// shift in new result bit - now have 32 bits
   1.281 +
   1.282 +	// Now calculate the bottom 32 bits of the result
   1.283 +	// Do 8 lots of 4 bits
   1.284 +	asm("mov r12, #8 ");
   1.285 +	asm("TRealXDivide5a: ");
   1.286 +	asm("adds r6, r6, r6 ");				// shift accumulator left by one
   1.287 +	asm("adcs r7, r7, r7 ");
   1.288 +	asm("adcs r8, r8, r8 ");
   1.289 +	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
   1.290 +	asm("sbcs r3, r7, r5 ");
   1.291 +	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
   1.292 +	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
   1.293 +	asm("movcs r7, r3 ");
   1.294 +	asm("adcs r1, r1, r1 ");				// shift in new result bit
   1.295 +	asm("adds r6, r6, r6 ");				// shift accumulator left by one
   1.296 +	asm("adcs r7, r7, r7 ");
   1.297 +	asm("adcs r8, r8, r8 ");
   1.298 +	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
   1.299 +	asm("sbcs r3, r7, r5 ");
   1.300 +	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
   1.301 +	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
   1.302 +	asm("movcs r7, r3 ");
   1.303 +	asm("adcs r1, r1, r1 ");				// shift in new result bit
   1.304 +	asm("adds r6, r6, r6 ");				// shift accumulator left by one
   1.305 +	asm("adcs r7, r7, r7 ");
   1.306 +	asm("adcs r8, r8, r8 ");
   1.307 +	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
   1.308 +	asm("sbcs r3, r7, r5 ");
   1.309 +	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
   1.310 +	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
   1.311 +	asm("movcs r7, r3 ");
   1.312 +	asm("adcs r1, r1, r1 ");				// shift in new result bit
   1.313 +	asm("adds r6, r6, r6 ");				// shift accumulator left by one
   1.314 +	asm("adcs r7, r7, r7 ");
   1.315 +	asm("adcs r8, r8, r8 ");
   1.316 +	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
   1.317 +	asm("sbcs r3, r7, r5 ");
   1.318 +	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
   1.319 +	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
   1.320 +	asm("movcs r7, r3 ");
   1.321 +	asm("adcs r1, r1, r1 ");				// shift in new result bit
   1.322 +	asm("subs r12, r12, #1 ");
   1.323 +	asm("bne TRealXDivide5a ");				// iterate the loop
   1.324 +
   1.325 +	// r2:r1 now contains a 64-bit normalised mantissa
   1.326 +	// need to do rounding now
   1.327 +	asm("and r3, lr, #1 ");					// result sign back into r3
   1.328 +	asm("orrs r9, r6, r7 ");				// check if accumulator zero
   1.329 +	asm("beq TRealXDivide6 ");				// if it is, result is exact, else generate next bit
   1.330 +	asm("adds r6, r6, r6 ");				// shift accumulator left by one
   1.331 +	asm("adcs r7, r7, r7 ");
   1.332 +	asm("adcs r8, r8, r8 ");
   1.333 +	asm("subs r6, r6, r4 ");				// subtract divisor from accumulator
   1.334 +	asm("sbcs r7, r7, r5 ");
   1.335 +	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
   1.336 +	asm("orrcc r3, r3, #0x100 ");			// if borrow, round down and set round-down flag
   1.337 +	asm("bcc TRealXDivide6 ");
   1.338 +	asm("orrs r9, r6, r7 ");				// if no borrow, check if exactly half-way
   1.339 +	asm("moveqs r9, r1, lsr #1 ");			// if exactly half-way, round to even
   1.340 +	asm("orrcc r3, r3, #0x100 ");			// if C=0, round result down and set round-down flag
   1.341 +	asm("bcc TRealXDivide6 ");
   1.342 +	asm("orr r3, r3, #0x200 ");				// else set round-up flag
   1.343 +	asm("adds r1, r1, #1 ");				// and round mantissa up
   1.344 +	asm("adcs r2, r2, #0 ");
   1.345 +	asm("movcs r2, #0x80000000 ");			// if carry, mantissa = 80000000 00000000
   1.346 +	asm("addcs r0, r0, #1 ");				// and increment exponent
   1.347 +
   1.348 +	// check for overflow or underflow and assemble final result
   1.349 +	asm("TRealXDivide6: ");
   1.350 +	asm("add r4, r0, #1 ");					// need to add 1 to get usable threshold
   1.351 +	asm("cmp r4, #0x10000 ");				// check if exponent >= 0xFFFF
   1.352 +	asm("bge TRealXMultiply6 ");			// if so, overflow
   1.353 +	asm("cmp r0, #0 ");						// check for underflow
   1.354 +	asm("orrgt r3, r3, r0, lsl #16 ");		// if no underflow, result exponent into r3, ...
   1.355 +	asm("movgt r12, #0 ");					// ... return KErrNone ...
   1.356 +	__JUMP(gt,lr);
   1.357 +
   1.358 +	// underflow
   1.359 +	asm("and r3, r3, #1 ");					// set exponent=0, keep sign
   1.360 +	asm("mvn r12, #9 ");					// return KErrUnderflow
   1.361 +	__JUMP(,lr);
   1.362 +
   1.363 +	// come here if divisor is zero, dividend finite
   1.364 +	asm("TRealXDivide3: ");
   1.365 +	asm("cmp r3, #0x10000 ");				// check if dividend also zero
   1.366 +	asm("bcc TRealXRealIndefinite ");		// if so, return 'real indefinite'
   1.367 +	asm("orr r3, r3, #0xFF000000 ");		// else return infinity with xor sign
   1.368 +	asm("orr r3, r3, #0x00FF0000 ");
   1.369 +	asm("mov r2, #0x80000000 ");
   1.370 +	asm("mov r1, #0 ");
   1.371 +	asm("mvn r12, #40 ");					// return KErrDivideByZero
   1.372 +	__JUMP(,lr);
   1.373 +
   1.374 +	// Dividend is NaN or infinity
   1.375 +	asm("TRealXDivide1: ");
   1.376 +	asm("cmp r2, #0x80000000 ");			// check for infinity
   1.377 +	asm("cmpeq r1, #0 ");
   1.378 +	asm("bne TRealXBinOpNan ");				// branch if NaN
   1.379 +	asm("cmn r6, #0x10000 ");				// check 2nd operand for NaN/infinity
   1.380 +	asm("mvncc r12, #8 ");					// if not, return KErrOverflow
   1.381 +	__JUMP(cc,lr);
   1.382 +
   1.383 +	// Dividend=infinity, divisor=NaN or infinity
   1.384 +	asm("cmp r5, #0x80000000 ");			// check 2nd operand for infinity
   1.385 +	asm("cmpeq r4, #0 ");
   1.386 +	asm("bne TRealXBinOpNan ");				// branch if NaN
   1.387 +	asm("b TRealXRealIndefinite ");			// else return 'real indefinite'
   1.388 +
   1.389 +	// Divisor is NaN or infinity, dividend finite
   1.390 +	asm("TRealXDivide2: ");
   1.391 +	asm("cmp r5, #0x80000000 ");			// check for infinity
   1.392 +	asm("cmpeq r4, #0 ");
   1.393 +	asm("bne TRealXBinOpNan ");				// branch if NaN
   1.394 +	asm("and r3, r3, #1 ");					// else return zero with xor sign
   1.395 +	__JUMP(,lr);
   1.396 +
   1.397 +	asm("TRealXBinOpNan: ");				// generic routine to process NaNs in binary
   1.398 +											// operations
   1.399 +	asm("cmn r3, #0x10000 ");				// check if first operand is NaN
   1.400 +	asm("movcc r0, r1 ");					// if not, swap the operands
   1.401 +	asm("movcc r1, r4 ");
   1.402 +	asm("movcc r4, r0 ");
   1.403 +	asm("movcc r0, r2 ");
   1.404 +	asm("movcc r2, r5 ");
   1.405 +	asm("movcc r5, r0 ");
   1.406 +	asm("movcc r0, r3 ");
   1.407 +	asm("movcc r3, r6 ");
   1.408 +	asm("movcc r6, r0 ");
   1.409 +	asm("cmn r6, #0x10000 ");				// both operands NaNs?
   1.410 +	asm("bcc TRealXBinOpNan1 ");			// skip if not
   1.411 +	asm("cmp r2, r5 ");						// if so, compare the significands
   1.412 +	asm("cmpeq r1, r4 ");
   1.413 +	asm("movcc r1, r4 ");					// r1,r2,r3 will get NaN with larger significand
   1.414 +	asm("movcc r2, r5 ");
   1.415 +	asm("movcc r3, r6 ");
   1.416 +	asm("TRealXBinOpNan1: ");
   1.417 +	asm("orr r2, r2, #0x40000000 ");		// convert an SNaN to a QNaN
   1.418 +	asm("mvn r12, #5 ");					// return KErrArgument
   1.419 +	__JUMP(,lr);
   1.420 +
   1.421 +	// Return 'real indefinite'
   1.422 +	asm("TRealXRealIndefinite: ");
   1.423 +	asm("ldr r3, __RealIndefiniteExponent ");
   1.424 +	asm("mov r2, #0xC0000000 ");
   1.425 +	asm("mov r1, #0 ");
   1.426 +	asm("mvn r12, #5 ");					// return KErrArgument
   1.427 +	__JUMP(,lr);
   1.428 +
   1.429 +	// overflow
   1.430 +	asm("TRealXMultiply6: ");
   1.431 +	asm("bic r3, r3, #0x0000FF00 ");		// clear rounding flags
   1.432 +	asm("orr r3, r3, #0xFF000000 ");		// make exponent FFFF for infinity
   1.433 +	asm("orr r3, r3, #0x00FF0000 ");
   1.434 +	asm("mov r2, #0x80000000 ");			// mantissa = 80000000 00000000
   1.435 +	asm("mov r1, #0 ");
   1.436 +	asm("mvn r12, #8 ");					// return KErrOverflow
   1.437 +	__JUMP(,lr);
   1.438 +
   1.439 +	asm("__RealIndefiniteExponent: ");
   1.440 +	asm(".word 0xFFFF0001 ");
   1.441 +
   1.442 +	asm("Divide__FR6TRealXRC6TRealX_end: ");
   1.443 +	}
   1.444 +
   1.445 +__NAKED__ TUint Divide_Length()
   1.446 +	{
   1.447 +	asm("adr r0, Divide__FR6TRealXRC6TRealX_end ");
   1.448 +	asm("adr r1, Divide__FR6TRealXRC6TRealX ");
   1.449 +	asm("sub r0, r0, r1 ");
   1.450 +	__JUMP(,lr);
   1.451 +	}
   1.452 +
   1.453 +__NAKED__ TInt SDummy(TInt)
   1.454 +	{
   1.455 +	__JUMP(,lr);
   1.456 +	asm("SDummy__Fi_end: ");
   1.457 +	}
   1.458 +
   1.459 +__NAKED__ TUint SDummy_Length()
   1.460 +	{
   1.461 +	asm("adr r0, SDummy__Fi_end ");
   1.462 +	asm("adr r1, SDummy__Fi ");
   1.463 +	asm("sub r0, r0, r1 ");
   1.464 +	__JUMP(,lr);
   1.465 +	}
   1.466 +
   1.467 +__NAKED__ TInt Increment(TInt)
   1.468 +	{
   1.469 +	asm("add r0, r0, #1 ");
   1.470 +	__JUMP(,lr);
   1.471 +	asm("Increment__Fi_end: ");
   1.472 +	}
   1.473 +
   1.474 +__NAKED__ TUint Increment_Length()
   1.475 +	{
   1.476 +	asm("adr r0, Increment__Fi_end ");
   1.477 +	asm("adr r1, Increment__Fi ");
   1.478 +	asm("sub r0, r0, r1 ");
   1.479 +	__JUMP(,lr);
   1.480 +	}
   1.481 +
   1.482 +#endif