os/kernelhwsrv/kernel/eka/nkern/win32/ncsched.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/kernel/eka/nkern/win32/ncsched.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,942 @@
     1.4 +// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of the License "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +// e32\nkern\win32\ncsched.cpp
    1.18 +// 
    1.19 +//
    1.20 +
    1.21 +// NThreadBase member data
    1.22 +#define __INCLUDE_NTHREADBASE_DEFINES__
    1.23 +
    1.24 +#include <e32cmn.h>
    1.25 +#include <e32cmn_private.h>
    1.26 +#include "nk_priv.h"
    1.27 +
    1.28 +#ifdef __EMI_SUPPORT__
    1.29 +extern void EMI_AddTaskSwitchEvent(TAny* aPrevious, TAny* aNext);
    1.30 +extern void EMI_CheckDfcTag(TAny* aNext);
    1.31 +#endif
    1.32 +typedef void (*ProcessHandler)(TAny* aAddressSpace);
    1.33 +
    1.34 +static DWORD TlsIndex = TLS_OUT_OF_INDEXES;
    1.35 +
    1.36 +static NThreadBase* SelectThread(TScheduler& aS)
    1.37 +//
    1.38 +// Select the next thread to run.
    1.39 +// This is the heart of the rescheduling algorithm.
    1.40 +//
    1.41 +	{
    1.42 +	NThreadBase* t = static_cast<NThreadBase*>(aS.First());
    1.43 +	__NK_ASSERT_DEBUG(t);
    1.44 +#ifdef _DEBUG
    1.45 +	if (t->iHeldFastMutex)
    1.46 +		{
    1.47 +		__KTRACE_OPT(KSCHED2,DEBUGPRINT("Resched init->%T, Holding %M",t,t->iHeldFastMutex));
    1.48 +		}
    1.49 +	else
    1.50 +		{
    1.51 +		__KTRACE_OPT(KSCHED2,DEBUGPRINT("Resched init->%T",t));
    1.52 +		}
    1.53 +#endif
    1.54 +	if (t->iTime == 0 && !t->Alone())
    1.55 +		{
    1.56 +		// round robin
    1.57 +		// get here if thread's timeslice has expired and there is another
    1.58 +		// thread ready at the same priority
    1.59 +		if (t->iHeldFastMutex)
    1.60 +			{
    1.61 +			// round-robin deferred due to fast mutex held
    1.62 +			t->iHeldFastMutex->iWaiting = 1;
    1.63 +			return t;
    1.64 +			}
    1.65 +		t->iTime = t->iTimeslice;		// reset old thread time slice
    1.66 +		t = static_cast<NThreadBase*>(t->iNext);					// next thread
    1.67 +		aS.iQueue[t->iPriority] = t;		// make it first in list
    1.68 +		__KTRACE_OPT(KSCHED2,DEBUGPRINT("RoundRobin->%T",t));
    1.69 +		}
    1.70 +	if (t->iHeldFastMutex)
    1.71 +		{
    1.72 +		if (t->iHeldFastMutex == &aS.iLock)
    1.73 +			{
    1.74 +			// thread holds system lock: use it
    1.75 +			return t;
    1.76 +			}
    1.77 +		if ((t->i_ThrdAttr & KThreadAttImplicitSystemLock) != 0 && aS.iLock.iHoldingThread)
    1.78 +			t->iHeldFastMutex->iWaiting = 1;
    1.79 +		__NK_ASSERT_DEBUG((t->i_ThrdAttr & KThreadAttAddressSpace) == 0);
    1.80 +/*
    1.81 +		Check for an address space change. Not implemented for Win32, but useful as
    1.82 +		documentaiton of the algorithm.
    1.83 +
    1.84 +		if ((t->i_ThrdAttr & KThreadAttAddressSpace) != 0 && t->iAddressSpace != aS.iAddressSpace)
    1.85 +			t->iHeldFastMutex->iWaiting = 1;
    1.86 +*/
    1.87 +		}
    1.88 +	else if (t->iWaitFastMutex && t->iWaitFastMutex->iHoldingThread)
    1.89 +		{
    1.90 +		__KTRACE_OPT(KSCHED2,DEBUGPRINT("Resched inter->%T, Blocked on %M",t->iWaitFastMutex->iHoldingThread,t->iWaitFastMutex));
    1.91 +		t = t->iWaitFastMutex->iHoldingThread;
    1.92 +		}
    1.93 +	else if (t->i_ThrdAttr & KThreadAttImplicitSystemLock)
    1.94 +		{
    1.95 +		// implicit system lock required
    1.96 +		if (aS.iLock.iHoldingThread)
    1.97 +			{
    1.98 +			// system lock held, switch to that thread
    1.99 +			t = aS.iLock.iHoldingThread;
   1.100 +			__KTRACE_OPT(KSCHED2,DEBUGPRINT("Resched inter->%T (IMP SYS)",t));
   1.101 +			t->iHeldFastMutex->iWaiting = 1;	// aS.iLock.iWaiting = 1;
   1.102 +			return t;
   1.103 +			}
   1.104 +		__NK_ASSERT_DEBUG((t->i_ThrdAttr & KThreadAttAddressSpace) == 0);
   1.105 +/*
   1.106 +		Check for an address space change. Not implemented for Win32, but useful as
   1.107 +		documentaiton of the algorithm.
   1.108 +
   1.109 +		if ((t->i_ThrdAttr & KThreadAttAddressSpace) != 0 || t->iAddressSpace != aS.iAddressSpace)
   1.110 +			{
   1.111 +			// what do we do now?
   1.112 +			__NK_ASSERT_DEBUG(FALSE);
   1.113 +			}
   1.114 +*/
   1.115 +		}
   1.116 +	return t;
   1.117 +	}
   1.118 +
   1.119 +// from NThread
   1.120 +#undef i_ThrdAttr
   1.121 +
   1.122 +TBool NThread::WakeUp()
   1.123 +//
   1.124 +// Wake up the thread. What to do depends on whether we were preempted or voluntarily
   1.125 +// rescheduled.
   1.126 +//
   1.127 +// Return TRUE if we need to immediately reschedule again because we had to unlock
   1.128 +// the kernel but there are DFCs pending. In this case, the thread does not wake up.
   1.129 +//
   1.130 +// NB. kernel is locked
   1.131 +//
   1.132 +	{
   1.133 +	switch (iWakeup)
   1.134 +		{
   1.135 +	default:
   1.136 +		FAULT();
   1.137 +	case EIdle:
   1.138 +		__NK_ASSERT_ALWAYS(TheScheduler.iCurrentThread == this);
   1.139 +		__NK_ASSERT_ALWAYS(SetEvent(iScheduleLock));
   1.140 +		break;
   1.141 +	case ERelease:
   1.142 +		TheScheduler.iCurrentThread = this;
   1.143 +		__NK_ASSERT_ALWAYS(SetEvent(iScheduleLock));
   1.144 +		break;
   1.145 +	case EResumeLocked:
   1.146 +		// The thread is Win32 suspended and must be resumed.
   1.147 +		//
   1.148 +		// A newly created thread does not need the kernel unlocked so we can
   1.149 +		// just resume the suspended thread
   1.150 +		//
   1.151 +		__KTRACE_OPT(KSCHED,DEBUGPRINT("Win32Resume->%T",this));
   1.152 +		iWakeup = ERelease;
   1.153 +		TheScheduler.iCurrentThread = this;
   1.154 +		if (TheScheduler.iProcessHandler)
   1.155 +			(*ProcessHandler(TheScheduler.iProcessHandler))(iAddressSpace); // new thread will need to have its static data updated
   1.156 +		__NK_ASSERT_ALWAYS(TInt(ResumeThread(iWinThread)) > 0);	// check thread was previously suspended
   1.157 +		break;
   1.158 +	case EResumeDiverted:
   1.159 +		// The thread is Win32 suspended and must be resumed.
   1.160 +		//
   1.161 +		// The thread needs to be diverted, and does not need the kernel
   1.162 +		// unlocked.
   1.163 +		//
   1.164 +		// It's safe the divert the thread here because we called
   1.165 +		// IsSafeToPreempt() when we suspended it - otherwise the diversion
   1.166 +		// could get lost.
   1.167 +		//
   1.168 +		__KTRACE_OPT(KSCHED,DEBUGPRINT("Win32Resume->%T (Resuming diverted thread)",this));
   1.169 +		iWakeup = ERelease;
   1.170 +		ApplyDiversion();
   1.171 +		TheScheduler.iCurrentThread = this;
   1.172 +		__NK_ASSERT_ALWAYS(TInt(ResumeThread(iWinThread)) == 1);
   1.173 +		break;
   1.174 +	case EResume:
   1.175 +		// The thread is Win32 suspended and must be resumed.
   1.176 +		//
   1.177 +		// the complication here is that we have to unlock the kernel on behalf of the
   1.178 +		// pre-empted thread. This means that we have to check to see if there are more DFCs
   1.179 +		// pending or a reschedule required, as we unlock the kernel. That check is
   1.180 +		// carried out with interrupts disabled.
   1.181 +		//
   1.182 +		// If so, we go back around the loop in this thread context
   1.183 +		//
   1.184 +		// Otherwise, we unlock the kernel (having marked us as not-preempted),
   1.185 +		// enable interrupts and then resume the thread. If pre-emption occurs before the thread
   1.186 +		// is resumed, it is the new thread that is pre-empted, not the running thread, so we are guaranteed
   1.187 +		// to be able to call ResumeThread. If pre-emption occurs, and we are rescheduled to run before
   1.188 +		// that occurs, we will once again be running with the kernel locked and the other thread will
   1.189 +		// have been re-suspended by Win32: so all is well.
   1.190 +		//		
   1.191 +		{
   1.192 +		__KTRACE_OPT(KSCHED,DEBUGPRINT("Win32Resume->%T",this));
   1.193 +		TInt irq = NKern::DisableAllInterrupts();
   1.194 +		if (TheScheduler.iDfcPendingFlag || TheScheduler.iRescheduleNeededFlag)
   1.195 +			{
   1.196 +			// we were interrrupted... back to the top
   1.197 +			TheScheduler.iRescheduleNeededFlag = TRUE;	// ensure we do the reschedule
   1.198 +			return TRUE;
   1.199 +			}
   1.200 +		iWakeup = ERelease;
   1.201 +		TheScheduler.iCurrentThread = this;
   1.202 +		if (TheScheduler.iProcessHandler)
   1.203 +			(*ProcessHandler(TheScheduler.iProcessHandler))(iAddressSpace); // threads resumed after interrupt or locks need to have static data updated
   1.204 +
   1.205 +		if (iInKernel == 0 && iUserModeCallbacks != NULL)
   1.206 +			ApplyDiversion();
   1.207 +		else 
   1.208 +			TheScheduler.iKernCSLocked = 0;		// have to unlock the kernel on behalf of the new thread
   1.209 +		
   1.210 +		TheScheduler.iCurrentThread = this;
   1.211 +		NKern::RestoreInterrupts(irq);
   1.212 +		__NK_ASSERT_ALWAYS(TInt(ResumeThread(iWinThread)) > 0);	// check thread was previously suspended
   1.213 +		}
   1.214 +		break;
   1.215 +		}
   1.216 +	return FALSE;
   1.217 +	}
   1.218 +
   1.219 +static void ThreadExit(NThread& aCurrent, NThread& aNext)
   1.220 +//
   1.221 +// The final context switch of a thread.
   1.222 +// Wake up the next thread and then destroy this one's Win32 resources.
   1.223 +//
   1.224 +// Return without terminating if we need to immediately reschedule again because
   1.225 +// we had to unlock the kernel but there are DFCs pending.
   1.226 +//
   1.227 +	{
   1.228 +	// the thread is dead
   1.229 +	// extract win32 handles from dying NThread object before rescheduling
   1.230 +	HANDLE sl = aCurrent.iScheduleLock;
   1.231 +	HANDLE th = aCurrent.iWinThread;
   1.232 +
   1.233 +	// wake up the next thread
   1.234 +	if (aNext.WakeUp())
   1.235 +		return;			// need to re-reschedule in this thread
   1.236 +
   1.237 +	// we are now a vanilla win32 thread, nKern no longer knows about us
   1.238 +	// release resources and exit cleanly
   1.239 +	CloseHandle(sl);
   1.240 +	CloseHandle(th);
   1.241 +	ExitThread(0);		// does not return
   1.242 +	}
   1.243 +
   1.244 +#ifdef MONITOR_THREAD_CPU_TIME
   1.245 +static inline void UpdateThreadCpuTime(NThread& aCurrent, NThread& aNext)
   1.246 +	{	
   1.247 +	TUint32 timestamp = NKern::FastCounter();
   1.248 +	if (aCurrent.iLastStartTime)
   1.249 +		aCurrent.iTotalCpuTime += timestamp - aCurrent.iLastStartTime;
   1.250 +	aNext.iLastStartTime = timestamp;
   1.251 +	}
   1.252 +#else
   1.253 +static inline void UpdateThreadCpuTime(NThread& /*aCurrent*/, NThread& /*aNext*/)
   1.254 +	{	
   1.255 +	}
   1.256 +#endif
   1.257 +
   1.258 +static void SwitchThreads(NThread& aCurrent, NThread& aNext)
   1.259 +//
   1.260 +// The fundamental context switch - wake up the next thread and wait for reschedule
   1.261 +// trivially is aNext.WakeUp(), Wait(aCurrent.iScheduleLock), but we may be able to
   1.262 +// optimise the signal-and-wait
   1.263 +//
   1.264 +	{
   1.265 +	UpdateThreadCpuTime(aCurrent, aNext);
   1.266 +	if (aCurrent.iNState == NThread::EDead)
   1.267 +		ThreadExit(aCurrent, aNext);
   1.268 +	else if (Win32AtomicSOAW && aNext.iWakeup==NThread::ERelease)
   1.269 +		{
   1.270 +		// special case optimization for normally blocked threads using atomic Win32 primitive
   1.271 +		TheScheduler.iCurrentThread = &aNext;
   1.272 +		DWORD result=SignalObjectAndWait(aNext.iScheduleLock,aCurrent.iScheduleLock, INFINITE, FALSE);
   1.273 +		if (result != WAIT_OBJECT_0)
   1.274 +			{
   1.275 +			__NK_ASSERT_ALWAYS(result == 0xFFFFFFFF);
   1.276 +			KPrintf("SignalObjectAndWait() failed with %d (%T->%T)",GetLastError(),&aCurrent,&aNext);
   1.277 +			FAULT();
   1.278 +			}
   1.279 +		}
   1.280 +	else
   1.281 +		{
   1.282 +		if (aNext.WakeUp())
   1.283 +			return;			// need to re-reschedule in this thread
   1.284 +		__NK_ASSERT_ALWAYS(WaitForSingleObject(aCurrent.iScheduleLock, INFINITE) == WAIT_OBJECT_0);
   1.285 +		}
   1.286 +	}
   1.287 +
   1.288 +void TScheduler::YieldTo(NThreadBase*)
   1.289 +//
   1.290 +// Directed context switch to the nominated thread.
   1.291 +// Enter with kernel locked, exit with kernel unlocked but interrupts disabled.
   1.292 +//
   1.293 +	{
   1.294 +	RescheduleNeeded();
   1.295 +	TScheduler::Reschedule();
   1.296 +	}
   1.297 +
   1.298 +void TScheduler::Reschedule()
   1.299 +//
   1.300 +// Enter with kernel locked, exit with kernel unlocked, interrupts disabled.
   1.301 +// If the thread is dead do not return, but terminate the thread.
   1.302 +//
   1.303 +	{
   1.304 +	__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 1);
   1.305 +	NThread& me = *static_cast<NThread*>(TheScheduler.iCurrentThread);
   1.306 +	for (;;)
   1.307 +		{
   1.308 +		NKern::DisableAllInterrupts();
   1.309 +		if (TheScheduler.iDfcPendingFlag)
   1.310 +			TheScheduler.QueueDfcs();
   1.311 +		if (!TheScheduler.iRescheduleNeededFlag)
   1.312 +			break;
   1.313 +		NKern::EnableAllInterrupts();
   1.314 +		TheScheduler.iRescheduleNeededFlag = FALSE;
   1.315 +		NThread* t = static_cast<NThread*>(SelectThread(TheScheduler));
   1.316 +		__KTRACE_OPT(KSCHED,DEBUGPRINT("Reschedule->%T (%08x%08x)",t,TheScheduler.iPresent[1],TheScheduler.iPresent[0]));
   1.317 +#ifdef __EMI_SUPPORT__
   1.318 +		EMI_AddTaskSwitchEvent(&me,t);
   1.319 +		EMI_CheckDfcTag(t);
   1.320 +#endif
   1.321 +#ifdef BTRACE_CPU_USAGE
   1.322 +		if(TheScheduler.iCpuUsageFilter)
   1.323 +			TheScheduler.iBTraceHandler(BTRACE_HEADER_C(4,BTrace::ECpuUsage,BTrace::ENewThreadContext),0,(TUint32)t,0,0,0,0,0);
   1.324 +#endif
   1.325 +		SwitchThreads(me, *t);
   1.326 +
   1.327 +		// we have just been scheduled to run... check for diversion/new Dfcs
   1.328 +		NThread::TDivert divert = me.iDivert;
   1.329 +		if (divert)
   1.330 +			{
   1.331 +			// diversion (e.g. force exit)
   1.332 +			me.iDivert = NULL;
   1.333 +			divert();						// does not return
   1.334 +			}
   1.335 +		}
   1.336 +	if (TheScheduler.iProcessHandler)
   1.337 +		(*ProcessHandler(TheScheduler.iProcessHandler))(me.iAddressSpace);
   1.338 +	// interrrupts are disabled, the kernel is still locked
   1.339 +	TheScheduler.iKernCSLocked = 0;
   1.340 +	}
   1.341 +
   1.342 +/**	Put the emulator into 'idle'.
   1.343 +	This is called by the idle thread when there is nothing else to do.
   1.344 +
   1.345 +	@internalTechnology
   1.346 + */
   1.347 +EXPORT_C void NThread::Idle()
   1.348 +//
   1.349 +// Rather than spin, we go to sleep on the schedule lock. Preemption detects
   1.350 +// this state (Win32Idling) and pokes the event rather than diverting the thread.
   1.351 +//
   1.352 +// enter and exit with kernel locked
   1.353 +//
   1.354 +	{
   1.355 +	NThread& me = *static_cast<NThread*>(TheScheduler.iCurrentThread);
   1.356 +	me.iWakeup = EIdle;
   1.357 +	__NK_ASSERT_ALWAYS(WaitForSingleObject(me.iScheduleLock, INFINITE) == WAIT_OBJECT_0);
   1.358 +	// something happened, and we've been prodded by an interrupt
   1.359 +	// the kernel was locked by the interrupt, and now reschedule
   1.360 +	me.iWakeup = ERelease;
   1.361 +	TScheduler::Reschedule();
   1.362 +	NKern::EnableAllInterrupts();
   1.363 +	}
   1.364 +
   1.365 +void SchedulerInit(NThread& aInit)
   1.366 +//
   1.367 +// Initialise the win32 nKern scheduler
   1.368 +//
   1.369 +	{
   1.370 +	DWORD procaffin,sysaffin;
   1.371 +	if (GetProcessAffinityMask(GetCurrentProcess(),&procaffin,&sysaffin))
   1.372 +		{
   1.373 +		DWORD cpu;
   1.374 +		switch (Win32SingleCpu)
   1.375 +			{
   1.376 +		default:
   1.377 +			// bind the emulator to a nominated CPU on the host PC
   1.378 +			cpu = (1<<Win32SingleCpu);
   1.379 +			if (!(sysaffin & cpu))
   1.380 +				cpu = procaffin;	// CPU selection invalid
   1.381 +			break;
   1.382 +		case NThread::ECpuSingle:
   1.383 +			// bind the emulator to a single CPU on the host PC, pick one
   1.384 +			cpu = procaffin ^ (procaffin & (procaffin-1));
   1.385 +			break;
   1.386 +		case NThread::ECpuAll:
   1.387 +			// run the emulator on all CPUs on the host PC
   1.388 +			cpu=sysaffin;
   1.389 +			break;
   1.390 +			}
   1.391 +		SetProcessAffinityMask(GetCurrentProcess(), cpu);
   1.392 +		}
   1.393 +	// identify if we can use the atomic SignalObjectAndWait API in Win32 for rescheduling
   1.394 +	Win32AtomicSOAW = (SignalObjectAndWait(aInit.iScheduleLock, aInit.iScheduleLock, INFINITE, FALSE) == WAIT_OBJECT_0);
   1.395 +	//
   1.396 +	// allocate the TLS used for thread identification, and set it for the init thread
   1.397 +	TlsIndex = TlsAlloc();
   1.398 +	__NK_ASSERT_ALWAYS(TlsIndex != TLS_OUT_OF_INDEXES);
   1.399 +	SchedulerRegister(aInit);
   1.400 +	//
   1.401 +	Interrupt.Init();
   1.402 +
   1.403 +	Win32FindNonPreemptibleFunctions();
   1.404 +	}
   1.405 +
   1.406 +void SchedulerRegister(NThread& aSelf)
   1.407 +	{
   1.408 +	TlsSetValue(TlsIndex,&aSelf);
   1.409 +	}
   1.410 +
   1.411 +NThread* SchedulerThread()
   1.412 +	{
   1.413 +	if (TlsIndex != TLS_OUT_OF_INDEXES)
   1.414 +		return static_cast<NThread*>(TlsGetValue(TlsIndex));
   1.415 +	else
   1.416 +		return NULL;  // not yet initialised
   1.417 +	}
   1.418 +
   1.419 +inline TBool IsScheduledThread()
   1.420 +	{
   1.421 +	return SchedulerThread() == TheScheduler.iCurrentThread;
   1.422 +	}
   1.423 +	
   1.424 +NThread& CheckedCurrentThread()
   1.425 +	{
   1.426 +	NThread* t = SchedulerThread();
   1.427 +	__NK_ASSERT_ALWAYS(t == TheScheduler.iCurrentThread);
   1.428 +	return *t;
   1.429 +	}
   1.430 +
   1.431 +
   1.432 +/**	Disable normal 'interrupts'.
   1.433 +
   1.434 +	@param	aLevel Ignored
   1.435 +	@return	Cookie to be passed into RestoreInterrupts()
   1.436 + */
   1.437 +EXPORT_C TInt NKern::DisableInterrupts(TInt /*aLevel*/)
   1.438 +	{
   1.439 +	return Interrupt.Mask();
   1.440 +	}
   1.441 +
   1.442 +
   1.443 +/**	Disable all maskable 'interrupts'.
   1.444 +
   1.445 +	@return	Cookie to be passed into RestoreInterrupts()
   1.446 + */
   1.447 +EXPORT_C TInt NKern::DisableAllInterrupts()
   1.448 +	{
   1.449 +	return Interrupt.Mask();
   1.450 +	}
   1.451 +
   1.452 +
   1.453 +/**	Enable all maskable 'interrupts'
   1.454 +
   1.455 +	@internalComponent
   1.456 + */
   1.457 +EXPORT_C void NKern::EnableAllInterrupts()
   1.458 +	{
   1.459 +	Interrupt.Restore(0);
   1.460 +	}
   1.461 +
   1.462 +
   1.463 +/** Restore interrupt mask to state preceding a DisableInterrupts() call
   1.464 +
   1.465 +	@param	aLevel Cookie returned by Disable(All)Interrupts()
   1.466 + */
   1.467 +EXPORT_C void NKern::RestoreInterrupts(TInt aLevel)
   1.468 +	{
   1.469 +	Interrupt.Restore(aLevel);
   1.470 +	}
   1.471 +
   1.472 +
   1.473 +/**	Unlocks the kernel.
   1.474 +
   1.475 +	Decrements iKernCSLocked; if it becomes zero and IDFCs or a reschedule are
   1.476 +	pending, calls the scheduler to process them.
   1.477 +
   1.478 +    @pre    Call either in a thread or an IDFC context.
   1.479 +    @pre    Do not call from an ISR.
   1.480 +	@pre	Do not call from bare Win32 threads.
   1.481 + */
   1.482 +EXPORT_C void NKern::Unlock()
   1.483 +//
   1.484 +// using this coding sequence it is possible to call Reschedule unnecessarily
   1.485 +// if we are preempted after testing the flags (lock is zero at this point).
   1.486 +// However, in the common case this is much faster because 'disabling interrupts'
   1.487 +// can be very expensive.
   1.488 +//
   1.489 +	{
   1.490 +	CHECK_PRECONDITIONS(MASK_NOT_ISR,"NKern::Unlock");	
   1.491 +	__ASSERT_WITH_MESSAGE_DEBUG(IsScheduledThread(),"Do not call from bare Win32 threads","NKern::Unlock");	// check that we are a scheduled thread
   1.492 +	__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked > 0);	// Can't unlock if it isn't locked!
   1.493 +	if (--TheScheduler.iKernCSLocked == 0)
   1.494 +		{
   1.495 +		if (TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag)
   1.496 +			{
   1.497 +			TheScheduler.iKernCSLocked = 1;
   1.498 +			TScheduler::Reschedule();
   1.499 +			NKern::EnableAllInterrupts();
   1.500 +			}
   1.501 +		}
   1.502 +	}
   1.503 +
   1.504 +
   1.505 +/**	Locks the kernel.
   1.506 +
   1.507 +	Increments iKernCSLocked, thereby deferring IDFCs and preemption.
   1.508 +
   1.509 +    @pre    Call either in a thread or an IDFC context.
   1.510 +    @pre    Do not call from an ISR.
   1.511 +	@pre	Do not call from bare Win32 threads.
   1.512 + */
   1.513 +EXPORT_C void NKern::Lock()
   1.514 +	{
   1.515 +	CHECK_PRECONDITIONS(MASK_NOT_ISR,"NKern::Lock");		
   1.516 +	__ASSERT_WITH_MESSAGE_ALWAYS(IsScheduledThread(),"Do not call from bare Win32 threads","NKern::Lock");	// check that we are a scheduled thread
   1.517 +	++TheScheduler.iKernCSLocked;
   1.518 +	}
   1.519 +
   1.520 +
   1.521 +/**	Locks the kernel and returns a pointer to the current thread
   1.522 +	Increments iKernCSLocked, thereby deferring IDFCs and preemption.
   1.523 +
   1.524 +    @pre    Call either in a thread or an IDFC context.
   1.525 +    @pre    Do not call from an ISR.
   1.526 +	@pre	Do not call from bare Win32 threads.
   1.527 + */
   1.528 +EXPORT_C NThread* NKern::LockC()
   1.529 +	{
   1.530 +	CHECK_PRECONDITIONS(MASK_NOT_ISR,"NKern::Lock");		
   1.531 +	__ASSERT_WITH_MESSAGE_ALWAYS(IsScheduledThread(),"Do not call from bare Win32 threads","NKern::Lock");	// check that we are a scheduled thread
   1.532 +	++TheScheduler.iKernCSLocked;
   1.533 +	return (NThread*)TheScheduler.iCurrentThread;
   1.534 +	}
   1.535 +
   1.536 +
   1.537 +/**	Allows IDFCs and rescheduling if they are pending.
   1.538 +
   1.539 +	If IDFCs or a reschedule are pending and iKernCSLocked is exactly equal to 1
   1.540 +	calls the scheduler to process the IDFCs and possibly reschedule.
   1.541 +
   1.542 +	@return	Nonzero if a reschedule actually occurred, zero if not.
   1.543 +	
   1.544 +    @pre    Call either in a thread or an IDFC context.
   1.545 +    @pre    Do not call from an ISR.
   1.546 +	@pre	Do not call from bare Win32 threads.
   1.547 + */
   1.548 +EXPORT_C TInt NKern::PreemptionPoint()
   1.549 +	{
   1.550 +	CHECK_PRECONDITIONS(MASK_NOT_ISR,"NKern::PreemptionPoint");		
   1.551 +	__ASSERT_WITH_MESSAGE_DEBUG(IsScheduledThread(),"Do not call from bare Win32 threads","NKern::PreemptionPoint");	// check that we are a scheduled thread
   1.552 +	if (TheScheduler.iKernCSLocked == 1 && 
   1.553 +		(TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag))
   1.554 +		{
   1.555 +		TScheduler::Reschedule();
   1.556 +		TheScheduler.iKernCSLocked = 1;
   1.557 +		NKern::EnableAllInterrupts();
   1.558 +		return TRUE;
   1.559 +		}
   1.560 +	return FALSE;
   1.561 +	}
   1.562 +
   1.563 +
   1.564 +/**	Mark the start of an 'interrupt' in the Win32 emulator.
   1.565 +	This must be called in interrupt threads before using any other kernel APIs,
   1.566 +	and should be paired with a call to EndOfInterrupt().
   1.567 +
   1.568 +	@pre	Win32 'interrupt' thread context
   1.569 + */
   1.570 +EXPORT_C void StartOfInterrupt()
   1.571 +	{
   1.572 +	__ASSERT_WITH_MESSAGE_DEBUG(!IsScheduledThread(),"Win32 'interrupt' thread context","StartOfInterrupt");	// check that we are a scheduled thread
   1.573 +	Interrupt.Begin();
   1.574 +	}
   1.575 +
   1.576 +
   1.577 +/**	Mark the end of an 'interrupt' in the Win32 emulator.
   1.578 +	This checks to see if we need to reschedule.
   1.579 +
   1.580 +	@pre	Win32 'interrupt' thread context
   1.581 + */
   1.582 +EXPORT_C void EndOfInterrupt()
   1.583 +	{
   1.584 +	__ASSERT_WITH_MESSAGE_DEBUG(!IsScheduledThread(),"Win32 'interrupt' thread context","EndOfInterrupt");	// check that we are a scheduled thread
   1.585 +	Interrupt.End();
   1.586 +	}
   1.587 +
   1.588 +
   1.589 +void Win32Interrupt::Init()
   1.590 +	{
   1.591 +	iQ=CreateSemaphoreA(NULL, 0, KMaxTInt, NULL);
   1.592 +	__NK_ASSERT_ALWAYS(iQ);
   1.593 +	//
   1.594 +	// create the NThread which exists solely to service reschedules for interrupts
   1.595 +	// this makes the End() much simpler as it merely needs to kick this thread
   1.596 +	SNThreadCreateInfo ni;
   1.597 +	memclr(&ni, sizeof(ni));
   1.598 +	ni.iFunction=&Reschedule;
   1.599 +	ni.iTimeslice=-1;
   1.600 +	ni.iPriority=1;
   1.601 +	NKern::ThreadCreate(&iScheduler, ni);
   1.602 +	NKern::Lock();
   1.603 +	TScheduler::YieldTo(&iScheduler);
   1.604 +	Restore(0);
   1.605 +	}
   1.606 +
   1.607 +TInt Win32Interrupt::Mask()
   1.608 +	{
   1.609 +	if (!iQ)
   1.610 +		return 0;				// interrupt scheme not enabled yet
   1.611 +	DWORD id=GetCurrentThreadId();
   1.612 +	if (__e32_atomic_add_ord32(&iLock, 1))
   1.613 +		{
   1.614 +		if (id==iOwner)
   1.615 +			return iLevel++;
   1.616 +		__NK_ASSERT_ALWAYS(WaitForSingleObject(iQ,INFINITE) == WAIT_OBJECT_0);
   1.617 +		iRescheduleOnExit=IsScheduledThread() &&
   1.618 +				(TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag);
   1.619 +		}
   1.620 +	else
   1.621 +		iRescheduleOnExit=FALSE;
   1.622 +	__NK_ASSERT_ALWAYS(iOwner==0 && iLevel==0);
   1.623 +	iOwner=id;
   1.624 +	iLevel=1;
   1.625 +	return 0;
   1.626 +	}
   1.627 +
   1.628 +void Win32Interrupt::Restore(TInt aLevel)
   1.629 +	{
   1.630 +	if (!iQ)
   1.631 +		return;				// interrupt scheme not enabled yet
   1.632 +	DWORD id=GetCurrentThreadId();
   1.633 +	for (;;)
   1.634 +		{
   1.635 +		__NK_ASSERT_ALWAYS(id == iOwner);
   1.636 +		TInt count = iLevel - aLevel;
   1.637 +		if (count <= 0)
   1.638 +			return;						// alredy restored to that level
   1.639 +		TBool reschedule = FALSE;
   1.640 +		iLevel = aLevel;		// update this value before releasing the lock
   1.641 +		if (aLevel == 0)
   1.642 +			{
   1.643 +			// we release the lock
   1.644 +			iOwner = 0;
   1.645 +			if (iRescheduleOnExit && TheScheduler.iKernCSLocked == 0)
   1.646 +				reschedule = TRUE;		// need to trigger reschedule on full release
   1.647 +			}
   1.648 +		// now release the lock
   1.649 +		if (__e32_atomic_add_ord32(&iLock, TUint32(-count)) == (TUint32)count)
   1.650 +			{	// fully released, check for reschedule
   1.651 +			if (!reschedule)
   1.652 +				return;
   1.653 +			}
   1.654 +		else
   1.655 +			{	// not fully released
   1.656 +			if (aLevel == 0)
   1.657 +				__NK_ASSERT_ALWAYS(ReleaseSemaphore(iQ,1,NULL));
   1.658 +			return;
   1.659 +			}
   1.660 +		// unlocked everything but a reschedule may be required
   1.661 +		TheScheduler.iKernCSLocked = 1;
   1.662 +		TScheduler::Reschedule();
   1.663 +		// return with the kernel unlocked, but interrupts disabled
   1.664 +		// instead of going recursive with a call to EnableAllInterrupts() we iterate
   1.665 +		aLevel=0;
   1.666 +		}
   1.667 +	}
   1.668 +
   1.669 +void Win32Interrupt::Begin()
   1.670 +	{
   1.671 +	Mask();
   1.672 +	__NK_ASSERT_ALWAYS(iInterrupted==0);	// check we haven't done this already
   1.673 +	__NK_ASSERT_ALWAYS(!IsScheduledThread());	// check that we aren't a scheduled thread
   1.674 +	NThread* pC;
   1.675 +	for (;;)
   1.676 +		{
   1.677 +		pC=static_cast<NThread*>(TheScheduler.iCurrentThread);
   1.678 +		DWORD r=SuspendThread(pC->iWinThread);
   1.679 +		if (pC == TheScheduler.iCurrentThread)
   1.680 +			{
   1.681 +			// there was no race while suspending the thread, so we can carry on
   1.682 +			__NK_ASSERT_ALWAYS(r != 0xffffffff);
   1.683 +			break;
   1.684 +			}
   1.685 +		// We suspended the thread while doing a context switch, resume it and try again
   1.686 +		if (r != 0xffffffff)
   1.687 +			__NK_ASSERT_ALWAYS(TInt(ResumeThread(pC->iWinThread)) > 0);	// check thread was previously suspended
   1.688 +		}
   1.689 +#ifdef BTRACE_CPU_USAGE
   1.690 +	BTrace0(BTrace::ECpuUsage,BTrace::EIrqStart);
   1.691 +#endif
   1.692 +	iInterrupted = pC;
   1.693 +	}
   1.694 +
   1.695 +void Win32Interrupt::End()
   1.696 +	{
   1.697 +	__NK_ASSERT_ALWAYS(iOwner == GetCurrentThreadId());	// check we are the interrupting thread
   1.698 +	NThread* pC = iInterrupted;
   1.699 +	__NK_ASSERT_ALWAYS(pC==TheScheduler.iCurrentThread);
   1.700 +	iInterrupted = 0;
   1.701 +	if (iLock == 1 && TheScheduler.iKernCSLocked == 0 &&
   1.702 +		(TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag) &&
   1.703 +		pC->IsSafeToPreempt())
   1.704 +		{
   1.705 +		TheScheduler.iKernCSLocked = 1;		// prevent further pre-emption
   1.706 +		if (pC->iWakeup == NThread::EIdle)
   1.707 +			{
   1.708 +			// wake up the NULL thread, it will always reschedule immediately
   1.709 +			pC->WakeUp();
   1.710 +			}
   1.711 +		else
   1.712 +			{
   1.713 +			// pre-empt the current thread and poke the 'scheduler' thread
   1.714 +			__NK_ASSERT_ALWAYS(pC->iWakeup == NThread::ERelease);
   1.715 +			pC->iWakeup = NThread::EResume;
   1.716 +			UpdateThreadCpuTime(*pC, iScheduler);
   1.717 +			RescheduleNeeded();
   1.718 +			NKern::EnableAllInterrupts();
   1.719 +			iScheduler.WakeUp();
   1.720 +			return;
   1.721 +			}
   1.722 +		}
   1.723 +	else
   1.724 +		{
   1.725 +		// no thread reschedle, so emit trace...
   1.726 +#ifdef BTRACE_CPU_USAGE
   1.727 +		BTrace0(BTrace::ECpuUsage,BTrace::EIrqEnd);
   1.728 +#endif
   1.729 +		}
   1.730 +
   1.731 +	if (((NThread*)pC)->iInKernel == 0 &&		// thread is running in user mode
   1.732 +		pC->iUserModeCallbacks != NULL && 		// and has callbacks queued
   1.733 +		TheScheduler.iKernCSLocked == 0 &&		// and is not currently processing a diversion
   1.734 +		pC->IsSafeToPreempt())					// and can be safely prempted at this point
   1.735 +		{
   1.736 +		TheScheduler.iKernCSLocked = 1;
   1.737 +		pC->ApplyDiversion();
   1.738 +		}
   1.739 +	NKern::EnableAllInterrupts();
   1.740 +	__NK_ASSERT_ALWAYS(TInt(ResumeThread(pC->iWinThread)) > 0);	// check thread was previously suspended
   1.741 +	}
   1.742 +
   1.743 +void Win32Interrupt::Reschedule(TAny*)
   1.744 +//
   1.745 +// The entry-point for the interrupt-rescheduler thread.
   1.746 +//
   1.747 +// This spends its whole life going around the TScheduler::Reschedule() loop
   1.748 +// selecting another thread to run.
   1.749 +//
   1.750 +	{
   1.751 +	TheScheduler.iKernCSLocked = 1;
   1.752 +	RescheduleNeeded();
   1.753 +	TScheduler::Reschedule();
   1.754 +	FAULT();
   1.755 +	}
   1.756 +
   1.757 +void Win32Interrupt::ForceReschedule()
   1.758 +	{
   1.759 +	RescheduleNeeded();
   1.760 +	iScheduler.WakeUp();
   1.761 +	}
   1.762 +
   1.763 +void SchedulerEscape()
   1.764 +	{
   1.765 +	NThread& me=CheckedCurrentThread();
   1.766 +	EnterKernel();
   1.767 +	__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked==0);	// Can't call Escape() with the Emulator/kernel already locked
   1.768 +	NKern::ThreadEnterCS();
   1.769 +	NKern::Lock();
   1.770 +	me.iNState=NThreadBase::EBlocked;
   1.771 +	TheScheduler.Remove(&me);
   1.772 +	me.iWakeup=NThread::EEscaped;
   1.773 +	SetThreadPriority(me.iWinThread,THREAD_PRIORITY_ABOVE_NORMAL);
   1.774 +	Interrupt.ForceReschedule();	// schedules some other thread so we can carry on outside the scheduler domain
   1.775 +	// this will change the value of iCurrentThread to ensure the 'escaped' invariants are set
   1.776 +	}
   1.777 +
   1.778 +void ReenterDfc(TAny* aPtr)
   1.779 +	{
   1.780 +	NThread& me = *static_cast<NThread*>(aPtr);
   1.781 +	me.iWakeup = NThread::ERelease;
   1.782 +	me.CheckSuspendThenReady();
   1.783 +	}
   1.784 +
   1.785 +void SchedulerReenter()
   1.786 +	{
   1.787 +	NThread* me=SchedulerThread();
   1.788 +	__NK_ASSERT_ALWAYS(me);
   1.789 +	__NK_ASSERT_ALWAYS(me->iWakeup == NThread::EEscaped);
   1.790 +	TDfc idfc(&ReenterDfc, me);
   1.791 +	StartOfInterrupt();
   1.792 +	idfc.Add();
   1.793 +	EndOfInterrupt();
   1.794 +	SetThreadPriority(me->iWinThread,THREAD_PRIORITY_NORMAL);
   1.795 +	__NK_ASSERT_ALWAYS(WaitForSingleObject(me->iScheduleLock, INFINITE) == WAIT_OBJECT_0);
   1.796 +	// when released, the kernel is locked and handed over to us
   1.797 +	// need to complete the reschedule protocol in this thread now
   1.798 +	TScheduler::Reschedule();
   1.799 +	NKern::EnableAllInterrupts();
   1.800 +	NKern::ThreadLeaveCS();
   1.801 +	LeaveKernel();
   1.802 +	}
   1.803 +
   1.804 +
   1.805 +/**	Return the current processor context type
   1.806 +	(thread, IDFC, interrupt or escaped thread)
   1.807 +
   1.808 +	@return	A value from NKern::TContext enumeration (including EEscaped)
   1.809 +	@pre	Any context
   1.810 +
   1.811 +	@see	NKern::TContext
   1.812 + */
   1.813 +EXPORT_C TInt NKern::CurrentContext()
   1.814 +	{
   1.815 +	NThread* t = SchedulerThread();
   1.816 +	if (!t)
   1.817 +		return NKern::EInterrupt;
   1.818 +	if (TheScheduler.iInIDFC)
   1.819 +		return NKern::EIDFC;
   1.820 +	if (t->iWakeup == NThread::EEscaped)
   1.821 +		return NKern::EEscaped;
   1.822 +	__NK_ASSERT_ALWAYS(NKern::Crashed() || t == TheScheduler.iCurrentThread);
   1.823 +	return NKern::EThread;
   1.824 +	}
   1.825 +
   1.826 +//
   1.827 +// We use SuspendThread and ResumeThread to preempt threads.  This can cause
   1.828 +// deadlock if the thread is using windows synchronisation primitives (eg
   1.829 +// critical sections).  This isn't too much of a problem most of the time,
   1.830 +// because threads generally use the symbian environment rather than the native
   1.831 +// windows APIs.  However exceptions are an issue - they can happen at any time,
   1.832 +// and cause execution of native windows code over which we have no control.
   1.833 +//
   1.834 +// To work around this we examine the call stack to see if the thread is inside
   1.835 +// one of the windows exception handling functions.  If so, preemption is
   1.836 +// deferred.
   1.837 +//
   1.838 +
   1.839 +#include <winnt.h>
   1.840 +
   1.841 +const TInt KWin32NonPreemptibleFunctionCount = 2;
   1.842 +
   1.843 +struct TWin32FunctionInfo
   1.844 +	{
   1.845 +	TUint iStartAddr;
   1.846 +	TUint iLength;
   1.847 +	};
   1.848 +
   1.849 +static TWin32FunctionInfo Win32NonPreemptibleFunctions[KWin32NonPreemptibleFunctionCount];
   1.850 +
   1.851 +TWin32FunctionInfo Win32FindExportedFunction(const char* aModuleName, const char* aFunctionName)
   1.852 +	{
   1.853 +	HMODULE library = GetModuleHandleA(aModuleName);
   1.854 +	__NK_ASSERT_ALWAYS(library != NULL);
   1.855 +
   1.856 +	// Find the start address of the function
   1.857 +	TUint start = (TUint)GetProcAddress(library, aFunctionName);
   1.858 +	__NK_ASSERT_ALWAYS(start);
   1.859 +
   1.860 +	// Now have to check all other exports to find the end of the function
   1.861 +	TUint end = 0xffffffff;
   1.862 +	TInt i = 1;
   1.863 +	for (;;)
   1.864 +		{
   1.865 +		TUint addr = (TUint)GetProcAddress(library, MAKEINTRESOURCEA(i));
   1.866 +		if (!addr)
   1.867 +			break;
   1.868 +		if (addr > start && addr < end)
   1.869 +			end = addr;
   1.870 +		++i;
   1.871 +		}
   1.872 +	__NK_ASSERT_ALWAYS(end != 0xffffffff);
   1.873 +
   1.874 +	TWin32FunctionInfo result = { start, end - start };
   1.875 +	return result;
   1.876 +	}
   1.877 +
   1.878 +void Win32FindNonPreemptibleFunctions()
   1.879 +	{
   1.880 +	Win32NonPreemptibleFunctions[0] = Win32FindExportedFunction("kernel32.dll", "RaiseException");
   1.881 +	Win32NonPreemptibleFunctions[1] = Win32FindExportedFunction("ntdll.dll", "KiUserExceptionDispatcher");
   1.882 +	}
   1.883 +	
   1.884 +TBool Win32IsThreadInNonPreemptibleFunction(HANDLE aWinThread, TLinAddr aStackTop)
   1.885 +	{
   1.886 +	const TInt KMaxSearchDepth = 16;		 // 12 max observed while handling exceptions
   1.887 +	const TInt KMaxStackSize = 1024 * 1024;  // Default reserved stack size on windows
   1.888 +	const TInt KMaxFrameSize = 4096;
   1.889 +
   1.890 +	CONTEXT c;
   1.891 + 	c.ContextFlags=CONTEXT_FULL;
   1.892 +	GetThreadContext(aWinThread, &c);
   1.893 +
   1.894 +	TUint eip = c.Eip;
   1.895 +	TUint ebp = c.Ebp;
   1.896 +	TUint lastEbp = c.Esp;
   1.897 +
   1.898 +	// Walk the call stack
   1.899 +	for (TInt i = 0 ; i < KMaxSearchDepth ; ++i)
   1.900 +		{
   1.901 +		for (TInt j = 0 ; j < KWin32NonPreemptibleFunctionCount ; ++j)
   1.902 +			{
   1.903 +			const TWin32FunctionInfo& info = Win32NonPreemptibleFunctions[j];
   1.904 +			if (TUint(eip - info.iStartAddr) < info.iLength)
   1.905 +				{
   1.906 +				__KTRACE_OPT(KSCHED, DEBUGPRINT("Thread is in non-preemptible function %d at frame %d: eip == %08x", j, i, eip));
   1.907 +				return TRUE;
   1.908 +				}
   1.909 +			}
   1.910 +		
   1.911 +		// Check frame pointer is valid before dereferencing it
   1.912 +		if (TUint(aStackTop - ebp) > KMaxStackSize || TUint(ebp - lastEbp) > KMaxFrameSize || ebp & 3)
   1.913 +			break;
   1.914 +
   1.915 +		TUint* frame = (TUint*)ebp;
   1.916 +		lastEbp = ebp;
   1.917 +		ebp = frame[0];
   1.918 +		eip = frame[1];
   1.919 +		}
   1.920 +	
   1.921 +	return FALSE;
   1.922 +	}
   1.923 +
   1.924 +TBool NThread::IsSafeToPreempt()
   1.925 +	{
   1.926 +	return !Win32IsThreadInNonPreemptibleFunction(iWinThread, iUserStackBase);
   1.927 +	}
   1.928 +
   1.929 +void LeaveKernel()
   1.930 +	{
   1.931 +	TInt& k=CheckedCurrentThread().iInKernel;
   1.932 +	__NK_ASSERT_DEBUG(k>0);
   1.933 +	if (k==1)  // just about to leave kernel
   1.934 +		{
   1.935 +		NThread& t = CheckedCurrentThread();
   1.936 +		__NK_ASSERT_ALWAYS(t.iCsCount==0);
   1.937 +		__NK_ASSERT_ALWAYS(t.iHeldFastMutex==0);
   1.938 +		__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked==0);
   1.939 +		NKern::DisableAllInterrupts();
   1.940 +		t.CallUserModeCallbacks();
   1.941 +		NKern::EnableAllInterrupts();
   1.942 +		}
   1.943 +	--k;
   1.944 +	}
   1.945 +