1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/os/kernelhwsrv/kernel/eka/euser/maths/um_pow10.cpp Fri Jun 15 03:10:57 2012 +0200
1.3 @@ -0,0 +1,265 @@
1.4 +// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
1.5 +// All rights reserved.
1.6 +// This component and the accompanying materials are made available
1.7 +// under the terms of the License "Eclipse Public License v1.0"
1.8 +// which accompanies this distribution, and is available
1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
1.10 +//
1.11 +// Initial Contributors:
1.12 +// Nokia Corporation - initial contribution.
1.13 +//
1.14 +// Contributors:
1.15 +//
1.16 +// Description:
1.17 +// e32\euser\maths\um_pow10.cpp
1.18 +// Return a power of 10 as a TReal
1.19 +//
1.20 +//
1.21 +
1.22 +#include "um_std.h"
1.23 +
1.24 +#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
1.25 +#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
1.26 +#endif
1.27 +
1.28 +
1.29 +// Tables of powers of 10
1.30 +LOCAL_D const TUint32 PositivePowersOfTen[] =
1.31 + {
1.32 +// Positive powers 1-31
1.33 + 0x00000000,0xA0000000,0x80020000,
1.34 + 0x00000000,0xC8000000,0x80050000,
1.35 + 0x00000000,0xFA000000,0x80080000,
1.36 + 0x00000000,0x9C400000,0x800C0000,
1.37 + 0x00000000,0xC3500000,0x800F0000,
1.38 + 0x00000000,0xF4240000,0x80120000,
1.39 + 0x00000000,0x98968000,0x80160000,
1.40 + 0x00000000,0xBEBC2000,0x80190000,
1.41 + 0x00000000,0xEE6B2800,0x801C0000,
1.42 + 0x00000000,0x9502F900,0x80200000,
1.43 + 0x00000000,0xBA43B740,0x80230000,
1.44 + 0x00000000,0xE8D4A510,0x80260000,
1.45 + 0x00000000,0x9184E72A,0x802A0000,
1.46 + 0x80000000,0xB5E620F4,0x802D0000,
1.47 + 0xA0000000,0xE35FA931,0x80300000,
1.48 + 0x04000000,0x8E1BC9BF,0x80340000,
1.49 + 0xC5000000,0xB1A2BC2E,0x80370000,
1.50 + 0x76400000,0xDE0B6B3A,0x803A0000,
1.51 + 0x89E80000,0x8AC72304,0x803E0000,
1.52 + 0xAC620000,0xAD78EBC5,0x80410000,
1.53 + 0x177A8000,0xD8D726B7,0x80440000,
1.54 + 0x6EAC9000,0x87867832,0x80480000,
1.55 + 0x0A57B400,0xA968163F,0x804B0000,
1.56 + 0xCCEDA100,0xD3C21BCE,0x804E0000,
1.57 + 0x401484A0,0x84595161,0x80520000,
1.58 + 0x9019A5C8,0xA56FA5B9,0x80550000,
1.59 + 0xF4200F3A,0xCECB8F27,0x80580000,
1.60 + 0xF8940984,0x813F3978,0x805C0000,
1.61 + 0x36B90BE5,0xA18F07D7,0x805F0000,
1.62 + 0x04674EDF,0xC9F2C9CD,0x80620000,
1.63 + 0x45812296,0xFC6F7C40,0x80650000,
1.64 +
1.65 +// Positive powers 32-31*32 in steps of 32
1.66 + 0x2B70B59E,0x9DC5ADA8,0x80690000,
1.67 + 0xFFCFA6D5,0xC2781F49,0x80D30000,
1.68 + 0xC59B14A3,0xEFB3AB16,0x813D0000,
1.69 + 0x80E98CE0,0x93BA47C9,0x81A80000,
1.70 + 0x7FE617AA,0xB616A12B,0x82120000,
1.71 + 0x3927556B,0xE070F78D,0x827C0000,
1.72 + 0xE33CC930,0x8A5296FF,0x82E70000,
1.73 + 0x9DF9DE8E,0xAA7EEBFB,0x83510000,
1.74 + 0x5C6A2F8C,0xD226FC19,0x83BB0000,
1.75 + 0xF2CCE376,0x81842F29,0x84260000,
1.76 + 0xDB900AD2,0x9FA42700,0x84900000,
1.77 + 0xAEF8AA17,0xC4C5E310,0x84FA0000,
1.78 + 0xE9B09C59,0xF28A9C07,0x85640000,
1.79 + 0xEBF7F3D4,0x957A4AE1,0x85CF0000,
1.80 + 0x0795A262,0xB83ED8DC,0x86390000,
1.81 + 0xA60E91C7,0xE319A0AE,0x86A30000,
1.82 + 0x432D7BC3,0x8BF61451,0x870E0000,
1.83 + 0x6B6795FD,0xAC83FB89,0x87780000,
1.84 + 0xB8FA79B0,0xD4A44FB4,0x87E20000,
1.85 + 0xE54A9D1D,0x830CF791,0x884D0000,
1.86 + 0xADE24964,0xA1884B69,0x88B70000,
1.87 + 0x1F8F01CC,0xC71AA36A,0x89210000,
1.88 + 0x437028F3,0xF56A298F,0x898B0000,
1.89 + 0xCD00A68C,0x973F9CA8,0x89F60000,
1.90 + 0xD7CC9ECD,0xBA6D9B40,0x8A600000,
1.91 + 0x8D737F0E,0xE5CA5A0B,0x8ACA0000,
1.92 + 0x1346BDA5,0x8D9E89D1,0x8B350000,
1.93 + 0xE3D5DBEA,0xAE8F2B2C,0x8B9F0000,
1.94 + 0x5A0C1B30,0xD7293020,0x8C090000,
1.95 + 0x0D2ECFD2,0x849A672A,0x8C740000,
1.96 + 0x41FA93DE,0xA3722C13,0x8CDE0000,
1.97 +
1.98 +// Positive powers 1024-8*1024 in steps of 1024
1.99 + 0x81750C17,0xC9767586,0x8D480000,
1.100 + 0xC53D5DE5,0x9E8B3B5D,0x9A920000,
1.101 + 0xD88B5A8B,0xF9895D25,0xA7DB0000,
1.102 + 0x8A20979B,0xC4605202,0xB5250000,
1.103 + 0xFED3AB23,0x9A8A7EF0,0xC26F0000,
1.104 + 0x73A56037,0xF33C80E8,0xCFB80000,
1.105 + 0x61889066,0xBF6B0EC4,0xDD020000,
1.106 + 0x7FAF211A,0x96A3A1D1,0xEA4C0000
1.107 + };
1.108 +
1.109 +LOCAL_D const TUint32 NegativePowersOfTen[] =
1.110 + {
1.111 +// Negative powers 1-31
1.112 + 0xCCCCCCCD,0xCCCCCCCC,0x7FFB0000,
1.113 + 0x70A3D70A,0xA3D70A3D,0x7FF80000,
1.114 + 0x8D4FDF3B,0x83126E97,0x7FF50000,
1.115 + 0xE219652C,0xD1B71758,0x7FF10000,
1.116 + 0x1B478423,0xA7C5AC47,0x7FEE0000,
1.117 + 0xAF6C69B6,0x8637BD05,0x7FEB0000,
1.118 + 0xE57A42BC,0xD6BF94D5,0x7FE70000,
1.119 + 0x8461CEFD,0xABCC7711,0x7FE40000,
1.120 + 0x36B4A597,0x89705F41,0x7FE10000,
1.121 + 0xBDEDD5BF,0xDBE6FECE,0x7FDD0000,
1.122 + 0xCB24AAFF,0xAFEBFF0B,0x7FDA0000,
1.123 + 0x6F5088CC,0x8CBCCC09,0x7FD70000,
1.124 + 0x4BB40E13,0xE12E1342,0x7FD30000,
1.125 + 0x095CD80F,0xB424DC35,0x7FD00000,
1.126 + 0x3AB0ACD9,0x901D7CF7,0x7FCD0000,
1.127 + 0xC44DE15B,0xE69594BE,0x7FC90000,
1.128 + 0x36A4B449,0xB877AA32,0x7FC60000,
1.129 + 0x921D5D07,0x9392EE8E,0x7FC30000,
1.130 + 0xB69561A5,0xEC1E4A7D,0x7FBF0000,
1.131 + 0x92111AEB,0xBCE50864,0x7FBC0000,
1.132 + 0x74DA7BEF,0x971DA050,0x7FB90000,
1.133 + 0xBAF72CB1,0xF1C90080,0x7FB50000,
1.134 + 0x95928A27,0xC16D9A00,0x7FB20000,
1.135 + 0x44753B53,0x9ABE14CD,0x7FAF0000,
1.136 + 0xD3EEC551,0xF79687AE,0x7FAB0000,
1.137 + 0x76589DDB,0xC6120625,0x7FA80000,
1.138 + 0x91E07E48,0x9E74D1B7,0x7FA50000,
1.139 + 0x8300CA0E,0xFD87B5F2,0x7FA10000,
1.140 + 0x359A3B3E,0xCAD2F7F5,0x7F9E0000,
1.141 + 0x5E14FC32,0xA2425FF7,0x7F9B0000,
1.142 + 0x4B43FCF5,0x81CEB32C,0x7F980000,
1.143 +
1.144 +// Negative powers 32-31*32 in steps of 32
1.145 + 0x453994BA,0xCFB11EAD,0x7F940000,
1.146 + 0xA539E9A5,0xA87FEA27,0x7F2A0000,
1.147 + 0xFD75539B,0x88B402F7,0x7EC00000,
1.148 + 0x64BCE4A1,0xDDD0467C,0x7E550000,
1.149 + 0xDB73A093,0xB3F4E093,0x7DEB0000,
1.150 + 0x5423CC06,0x91FF8377,0x7D810000,
1.151 + 0x4A314EBE,0xECE53CEC,0x7D160000,
1.152 + 0x637A193A,0xC0314325,0x7CAC0000,
1.153 + 0x836AC577,0x9BECCE62,0x7C420000,
1.154 + 0x478238D1,0xFD00B897,0x7BD70000,
1.155 + 0x46F34F7D,0xCD42A113,0x7B6D0000,
1.156 + 0xB11B0858,0xA686E3E8,0x7B030000,
1.157 + 0x3FFC68A6,0x871A4981,0x7A990000,
1.158 + 0xB6074245,0xDB377599,0x7A2E0000,
1.159 + 0x79007736,0xB1D983B4,0x79C40000,
1.160 + 0xDB23D21C,0x9049EE32,0x795A0000,
1.161 + 0x467F9466,0xEA1F3806,0x78EF0000,
1.162 + 0xEE5092C7,0xBDF139F0,0x78850000,
1.163 + 0xB4730DD0,0x9A197865,0x781B0000,
1.164 + 0x8871347D,0xFA0A6CDB,0x77B00000,
1.165 + 0x3C8736FC,0xCADB6D31,0x77460000,
1.166 + 0x52EB8375,0xA493C750,0x76DC0000,
1.167 + 0x774FB85E,0x85855C0F,0x76720000,
1.168 + 0x505DE96B,0xD8A66D4A,0x76070000,
1.169 + 0xCB39A7B1,0xAFC47766,0x759D0000,
1.170 + 0xA9B05AC8,0x8E997872,0x75330000,
1.171 + 0xFDC06462,0xE761832E,0x74C80000,
1.172 + 0xBB827F2D,0xBBB7EF38,0x745E0000,
1.173 + 0xE1F045DD,0x984B9B19,0x73F40000,
1.174 + 0x3613F568,0xF71D01E0,0x73890000,
1.175 + 0x3F64789E,0xC87B6D2F,0x731F0000,
1.176 +
1.177 +// Negative powers 1024-8*1024 in steps of 1024
1.178 + 0xDA57C0BE,0xA2A682A5,0x72B50000,
1.179 + 0x34362DE4,0xCEAE534F,0x656B0000,
1.180 + 0x91575A88,0x8350BF3C,0x58220000,
1.181 + 0xD2CE9FDE,0xA6DD04C8,0x4AD80000,
1.182 + 0x0DA5D8E8,0xD408CB01,0x3D8E0000,
1.183 + 0x22EB58E9,0x86B77A60,0x30450000,
1.184 + 0x4779611E,0xAB2F7655,0x22FB0000,
1.185 + 0x686DA869,0xD986C20B,0x15B10000
1.186 + };
1.187 +
1.188 +TInt Math::MultPow10X(TRealX& aTrg, TInt aPower)
1.189 + {
1.190 + if (aTrg.IsZero())
1.191 + return KErrNone;
1.192 + if (!aTrg.IsFinite())
1.193 + {
1.194 + if (aTrg.IsNaN())
1.195 + return KErrArgument;
1.196 + return KErrOverflow;
1.197 + }
1.198 + if (aPower==0)
1.199 + return KErrNone;
1.200 + // smallest non-zero TRealX is 2^-32766=2.83E-9864
1.201 + // largest TRealX is 2^32768=1.42E+9864
1.202 + // Therefore aPower>=19728 guarantees an overflow
1.203 + // and aPower<=-19728 guarantees an underflow
1.204 + if (aPower>=19728)
1.205 + {
1.206 + aTrg.SetInfinite(aTrg.iSign);
1.207 + return KErrOverflow;
1.208 + }
1.209 + if (aPower<=-19728)
1.210 + {
1.211 + aTrg.SetZero(aTrg.iSign);
1.212 + return KErrUnderflow;
1.213 + }
1.214 + const TRealX* powTab;
1.215 + if (aPower>0)
1.216 + powTab=(const TRealX*)PositivePowersOfTen;
1.217 + else
1.218 + {
1.219 + aPower=-aPower;
1.220 + powTab=(const TRealX*)NegativePowersOfTen;
1.221 + }
1.222 + TInt r=KErrNone;
1.223 + while(aPower>=8192)
1.224 + {
1.225 + aPower-=8192;
1.226 + r=aTrg.MultEq(powTab[31+31+7]);
1.227 + if (r!=KErrNone)
1.228 + return r;
1.229 + }
1.230 + TInt bottom5=aPower & 0x1f;
1.231 + TInt middle5=(aPower>>5)&0x1f;
1.232 + TInt top3=(aPower>>10);
1.233 + if (top3)
1.234 + r=aTrg.MultEq(powTab[31+31+top3-1]);
1.235 + if (r==KErrNone && middle5)
1.236 + r=aTrg.MultEq(powTab[31+middle5-1]);
1.237 + if (r==KErrNone && bottom5)
1.238 + r=aTrg.MultEq(powTab[bottom5-1]);
1.239 + return r;
1.240 + }
1.241 +
1.242 +
1.243 +
1.244 +
1.245 +EXPORT_C TInt Math::Pow10(TReal &aTrg,const TInt aExp)
1.246 +/**
1.247 +Calculates the value of 10 to the power of x.
1.248 +
1.249 +@param aTrg A reference containing the result.
1.250 +@param aExp The power to which 10 is to be raised.
1.251 +
1.252 +@return KErrNone if successful, otherwise another of
1.253 + the system-wide error codes.
1.254 +*/
1.255 +//
1.256 +// Write the binary floating point representation of a power of 10 to aSrc
1.257 +// Returns KErrNone if OK or a negative error number otherwise.
1.258 +//
1.259 + {
1.260 +#ifndef __USE_VFP_MATH
1.261 + TRealX x=1;
1.262 + TInt r=Math::MultPow10X(x,aExp);
1.263 + TInt s=x.GetTReal(aTrg);
1.264 + return (r==KErrNone)?s:r;
1.265 +#else // __USE_VFP_MATH
1.266 + return Math::Pow(aTrg,10,aExp);
1.267 +#endif
1.268 + }