os/kernelhwsrv/kernel/eka/euser/maths/um_ln.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/kernel/eka/euser/maths/um_ln.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,143 @@
     1.4 +// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of the License "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +// e32\euser\maths\um_ln.cpp
    1.18 +// Natural log.
    1.19 +// 
    1.20 +//
    1.21 +
    1.22 +#include "um_std.h"
    1.23 +
    1.24 +#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
    1.25 +#error	__USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh 
    1.26 +#endif
    1.27 +
    1.28 +
    1.29 +#ifndef __USE_VFP_MATH
    1.30 +
    1.31 +LOCAL_D const TUint32 ArtanhCoeffs[] =
    1.32 +	{
    1.33 +	0x5C17F0BC,0xB8AA3B29,0x80010000,	// polynomial approximation to (4/ln2)artanh(x)
    1.34 +	0xD02489EE,0xF6384EE1,0x7FFF0000,	// for |x| <= (sqr2-1)/(sqr2+1)
    1.35 +	0x7008CA5F,0x93BB6287,0x7FFF0000,
    1.36 +	0xE32D1D6B,0xD30BB16D,0x7FFE0000,
    1.37 +	0x461D071E,0xA4257CE2,0x7FFE0000,
    1.38 +	0xC3B0EC87,0x8650D459,0x7FFE0000,
    1.39 +	0x53BEC0CD,0xE23137E3,0x7FFD0000,
    1.40 +	0xC523F21B,0xDAF79221,0x7FFD0000
    1.41 +	};
    1.42 +
    1.43 +LOCAL_D const TUint32 Ln2By2data[] = {0xD1CF79AC,0xB17217F7,0x7FFD0000};	// (ln2)/2
    1.44 +LOCAL_D const TUint32 Sqr2data[] = {0xF9DE6484,0xB504F333,0x7FFF0000};		// sqr2
    1.45 +LOCAL_D const TUint32 Sqr2Invdata[] = {0xF9DE6484,0xB504F333,0x7FFE0000};	// 1/sqr2
    1.46 +LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000};		// 1.0
    1.47 +
    1.48 +
    1.49 +
    1.50 +
    1.51 +EXPORT_C TInt Math::Ln(TReal& aTrg, const TReal& aSrc)
    1.52 +/**
    1.53 +Calculates the natural logarithm of a number.
    1.54 +
    1.55 +@param aTrg A reference containing the result. 
    1.56 +@param aSrc The number whose natural logarithm is required.
    1.57 +
    1.58 +@return KErrNone if successful, otherwise another of
    1.59 +        the system-wide error codes. 
    1.60 +*/
    1.61 +	{
    1.62 +	// Calculate ln(aSrc) and write to aTrg
    1.63 +	// Algorithm:
    1.64 +	//		Calculate log2(aSrc) and multiply by ln2
    1.65 +	//		log2(aSrc)=log2(2^e.m) e=exponent of aSrc, m=mantissa 1<=m<2
    1.66 +	//		log2(aSrc)=e+log2(m)
    1.67 +	//		If e=-1 (0.5<=aSrc<1), let x=aSrc else let x=mantissa(aSrc)
    1.68 +	//		If x>Sqr2, replace x with x/Sqr2
    1.69 +	//		If x<Sqr2/2, replace x with x*Sqr2
    1.70 +	//		Replace x with (x-1)/(x+1)
    1.71 +	//		Use polynomial to calculate artanh(x) for |x| <= (sqr2-1)/(sqr2+1)
    1.72 +	//			( use identity ln(x) = 2artanh((x-1)/(x+1)) )
    1.73 +
    1.74 +	TRealX x;
    1.75 +	const TRealX& Ln2By2=*(const TRealX*)Ln2By2data;
    1.76 +	const TRealX& Sqr2=*(const TRealX*)Sqr2data;
    1.77 +	const TRealX& Sqr2Inv=*(const TRealX*)Sqr2Invdata;
    1.78 +	const TRealX& One=*(const TRealX*)Onedata;
    1.79 +
    1.80 +	TInt r=x.Set(aSrc);
    1.81 +	if (r==KErrNone)
    1.82 +		{
    1.83 +		if (x.iExp==0)
    1.84 +			{
    1.85 +			SetInfinite(aTrg,1);
    1.86 +			return KErrOverflow;
    1.87 +			}
    1.88 +		if (x.iSign&1)
    1.89 +			{
    1.90 +			SetNaN(aTrg);
    1.91 +			return KErrArgument;
    1.92 +			}
    1.93 +		TInt n=(x.iExp-0x7FFF)<<1;
    1.94 +		x.iExp=0x7FFF;
    1.95 +		if (n!=-2)
    1.96 +			{
    1.97 +			if (x>Sqr2)
    1.98 +				{
    1.99 +				x*=Sqr2Inv;
   1.100 +				n++;
   1.101 +				}
   1.102 +			}
   1.103 +		else 
   1.104 +			{
   1.105 +			n=0;
   1.106 +			x.iExp=0x7FFE;
   1.107 +			if (x<Sqr2Inv)
   1.108 +				{
   1.109 +				x*=Sqr2;
   1.110 +				n--;
   1.111 +				}
   1.112 +			}
   1.113 +		x=(x-One)/(x+One);	// ln(x)=2artanh((x-1)/(x+1))
   1.114 +		TRealX y;
   1.115 +		PolyX(y,x*x,7,(const TRealX*)ArtanhCoeffs);
   1.116 +		y*=x;
   1.117 +		y+=TRealX(n);
   1.118 +		y*=Ln2By2;
   1.119 +		return y.GetTReal(aTrg);
   1.120 +		}
   1.121 +	if (r==KErrArgument || (r==KErrOverflow && (x.iSign&1)))
   1.122 +		{
   1.123 +		SetNaN(aTrg);
   1.124 +		return KErrArgument;
   1.125 +		}
   1.126 +	SetInfinite(aTrg,0);
   1.127 +	return KErrOverflow;
   1.128 +	}
   1.129 +
   1.130 +#else // __USE_VFP_MATH
   1.131 +
   1.132 +// definitions come from RVCT math library
   1.133 +extern "C" TReal log(TReal);
   1.134 +
   1.135 +EXPORT_C TInt Math::Ln(TReal& aTrg, const TReal& aSrc)
   1.136 +	{
   1.137 +	aTrg = log(aSrc);
   1.138 +	if (Math::IsFinite(aTrg))
   1.139 +		return KErrNone;
   1.140 +	if (Math::IsInfinite(aTrg))
   1.141 +		return KErrOverflow;
   1.142 +	SetNaN(aTrg);
   1.143 +	return KErrArgument;
   1.144 +	}
   1.145 +
   1.146 +#endif