os/kernelhwsrv/kernel/eka/euser/epoc/x86/uc_realx.cia
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/kernel/eka/euser/epoc/x86/uc_realx.cia	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,3348 @@
     1.4 +// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of the License "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +// e32\euser\epoc\x86\uc_realx.cia
    1.18 +// 
    1.19 +//
    1.20 +
    1.21 +
    1.22 +#include "u32std.h"
    1.23 +#include <e32math.h>
    1.24 +
    1.25 +
    1.26 +void TRealXPanic(TInt aErr);
    1.27 +
    1.28 +LOCAL_C __NAKED__ void TRealXPanicEax(void)
    1.29 +	{
    1.30 +	asm("push eax");
    1.31 +	asm("call %a0": : "i"(&TRealXPanic));
    1.32 +	}
    1.33 +
    1.34 +LOCAL_C __NAKED__ void TRealXRealIndefinite(void)
    1.35 +	{
    1.36 +	// return 'real indefinite' NaN in ecx,edx:ebx
    1.37 +	asm("mov ecx, 0xFFFF0001");	// exponent=FFFF, sign negative
    1.38 +	asm("mov edx, 0xC0000000"); // mantissa=C0000000 00000000
    1.39 +	asm("xor ebx, ebx");
    1.40 +	asm("mov eax, -6"); // return KErrArgument
    1.41 +	asm("ret");
    1.42 +	}
    1.43 +
    1.44 +LOCAL_C __NAKED__ void TRealXBinOpNaN(void)
    1.45 +	{
    1.46 +	// generic routine to process NaN's in binary operations
    1.47 +	// destination operand in ecx,edx:eax
    1.48 +	// source operand at [esi]
    1.49 +
    1.50 +	asm("mov eax, [esi+8]");			// source operand into eax,edi:ebp
    1.51 +	asm("mov edi, [esi+4]");
    1.52 +	asm("mov ebp, [esi]");
    1.53 +	asm("cmp ecx, 0xFFFF0000");			// check if dest is a NaN
    1.54 +	asm("jb short TRealXBinOpNaN1");	// if not, swap them
    1.55 +	asm("cmp edx, 0x80000000");
    1.56 +	asm("jne short TRealXBinOpNaN2");
    1.57 +	asm("test ebx, ebx");
    1.58 +	asm("jne short TRealXBinOpNaN2");
    1.59 +	asm("TRealXBinOpNaN1:");			// swap the operands
    1.60 +	asm("xchg ecx, eax");
    1.61 +	asm("xchg edx, edi");
    1.62 +	asm("xchg ebx, ebp");
    1.63 +	asm("TRealXBinOpNaN2:");
    1.64 +	asm("cmp eax, 0xFFFF0000");			// check if both operands are NaNs
    1.65 +	asm("jb short TRealXBinOpNaN4");	// if not, ignore non-NaN operand
    1.66 +	asm("cmp edi, 0x80000000");
    1.67 +	asm("jne short TRealXBinOpNaN3");
    1.68 +	asm("test ebp, ebp");
    1.69 +	asm("je short TRealXBinOpNaN4");
    1.70 +	asm("TRealXBinOpNaN3:");			// if both operands are NaN's, compare significands
    1.71 +	asm("cmp edx, edi");
    1.72 +	asm("ja short TRealXBinOpNaN4");
    1.73 +	asm("jb short TRealXBinOpNaN5");
    1.74 +	asm("cmp ebx, ebp");
    1.75 +	asm("jae short TRealXBinOpNaN4");
    1.76 +	asm("TRealXBinOpNaN5:");			// come here if dest is smaller - copy source to dest
    1.77 +	asm("mov ecx, eax");
    1.78 +	asm("mov edx, edi");
    1.79 +	asm("mov ebx, ebp");
    1.80 +	asm("TRealXBinOpNaN4:");			// NaN with larger significand is in ecx,edx:ebx
    1.81 +	asm("or edx, 0x40000000");			// convert an SNaN to a QNaN
    1.82 +	asm("mov eax, -6");					// return KErrArgument
    1.83 +	asm("ret");
    1.84 +	}
    1.85 +
    1.86 +// Add TRealX at [esi] + ecx,edx:ebx
    1.87 +// Result in ecx,edx:ebx
    1.88 +// Error code in eax
    1.89 +// Note:	+0 + +0 = +0, -0 + -0 = -0, +0 + -0 = -0 + +0 = +0,
    1.90 +//			+/-0 + X = X + +/-0 = X, X + -X = -X + X = +0
    1.91 +LOCAL_C __NAKED__ void TRealXAdd()
    1.92 +	{
    1.93 +	asm("xor ch, ch");				// clear rounding flags
    1.94 +	asm("cmp ecx, 0xFFFF0000");		// check if dest=NaN or infinity
    1.95 +	asm("jnc addfpsd");				// branch if it is
    1.96 +	asm("mov eax, [esi+8]");		// fetch sign/exponent of source
    1.97 +	asm("cmp eax, 0xFFFF0000");		// check if source=NaN or infinity
    1.98 +	asm("jnc addfpss");				// branch if it is
    1.99 +	asm("cmp eax, 0x10000");		// check if source=0
   1.100 +	asm("jc addfp0s");				// branch if it is
   1.101 +	asm("cmp ecx, 0x10000");		// check if dest=0
   1.102 +	asm("jc addfp0d");				// branch if it is
   1.103 +	asm("and cl, 1");				// clear bits 1-7 of ecx
   1.104 +	asm("and al, 1");				// clear bits 1-7 of eax
   1.105 +	asm("mov ch, cl");
   1.106 +	asm("xor ch, al");				// xor of signs into ch bit 0
   1.107 +	asm("add ch, ch");
   1.108 +	asm("or cl, ch");				// and into cl bit 1
   1.109 +	asm("or al, ch");				// and al bit 1
   1.110 +	asm("xor ch, ch");				// clear rounding flags
   1.111 +	asm("mov ebp, [esi]");			// fetch source mantissa 0-31
   1.112 +	asm("mov edi, [esi+4]");		// fetch source mantissa 32-63
   1.113 +	asm("ror ecx, 16");				// dest exponent into cx
   1.114 +	asm("ror eax, 16");				// source exponent into ax
   1.115 +	asm("push ecx");				// push dest exponent/sign
   1.116 +	asm("sub cx, ax");				// cx = dest exponent - source exponent
   1.117 +	asm("je short addfp3b");		// if equal, no shifting required
   1.118 +	asm("ja short addfp1");			// branch if dest exponent >= source exponent
   1.119 +	asm("xchg ebx, ebp");			// make sure edi:ebp contains the mantissa to be shifted
   1.120 +	asm("xchg edx, edi");			
   1.121 +	asm("xchg eax, [esp]");			// and larger exponent and corresponding sign is on the stack
   1.122 +	asm("neg cx");					// make cx positive = number of right shifts needed
   1.123 +	asm("addfp1:");
   1.124 +	asm("cmp cx, 64");				// if more than 64 shifts needed
   1.125 +	asm("ja addfp2");				// branch to output larger number
   1.126 +	asm("jb addfp3");				// branch if <64 shifts
   1.127 +	asm("mov eax, edi");			// exactly 64 shifts needed - rounding word=mant high
   1.128 +	asm("test ebp, ebp");			// check bits lost
   1.129 +	asm("jz short addfp3a");
   1.130 +	asm("or ch, 1");				// if not all zero, set rounded-down flag
   1.131 +	asm("addfp3a:");
   1.132 +	asm("xor edi, edi");			// clear edx:ebx
   1.133 +	asm("xor ebp, ebp");			
   1.134 +	asm("jmp short addfp5");		// finished shifting
   1.135 +	asm("addfp3b:");				// exponents equal
   1.136 +	asm("xor eax, eax");			// set rounding word=0
   1.137 +	asm("jmp short addfp5");
   1.138 +	asm("addfp3:");
   1.139 +	asm("cmp cl, 32");				// 32 or more shifts needed ?
   1.140 +	asm("jb short addfp4");			// skip if <32
   1.141 +	asm("mov eax, ebp");			// rounding word=mant low
   1.142 +	asm("mov ebp, edi");			// mant low=mant high
   1.143 +	asm("xor edi, edi");			// mant high=0
   1.144 +	asm("sub cl, 32");				// reduce count by 32
   1.145 +	asm("jz short addfp5");			// if now zero, finished shifting
   1.146 +	asm("shrd edi, eax, cl");		// shift ebp:eax:edi right by cl bits
   1.147 +	asm("shrd eax, ebp, cl");		//
   1.148 +	asm("shr ebp, cl");				//
   1.149 +	asm("test edi, edi");			// check bits lost in shift
   1.150 +	asm("jz short addfp5");			// if all zero, finished
   1.151 +	asm("or ch, 1");				// else set rounded-down flag
   1.152 +	asm("xor edi, edi");			// clear edx again
   1.153 +	asm("jmp short addfp5");		// finished shifting
   1.154 +	asm("addfp4:");					// <32 shifts needed now
   1.155 +	asm("xor eax, eax");			// clear rounding word initially
   1.156 +	asm("shrd eax, ebp, cl");		// shift edi:ebp:eax right by cl bits
   1.157 +	asm("shrd ebp, edi, cl");		//
   1.158 +	asm("shr edi, cl");				//
   1.159 +
   1.160 +	asm("addfp5:");
   1.161 +	asm("mov [esp+3], ch");			// rounding flag into ch image on stack
   1.162 +	asm("pop ecx");					// recover sign and exponent into ecx, with rounding flag
   1.163 +	asm("ror ecx, 16");				// into normal position
   1.164 +	asm("test cl, 2");				// addition or subtraction needed ?
   1.165 +	asm("jnz short subfp1");		// branch if subtraction
   1.166 +	asm("add ebx,ebp");				// addition required - add mantissas
   1.167 +	asm("adc edx,edi");				//
   1.168 +	asm("jnc short roundfp");		// branch if no carry
   1.169 +	asm("rcr edx,1");				// shift carry right into mantissa
   1.170 +	asm("rcr ebx,1");				//
   1.171 +	asm("rcr eax,1");				// and into rounding word
   1.172 +	asm("jnc short addfp5a");
   1.173 +	asm("or ch, 1");				// if 1 shifted out, set rounded-down flag
   1.174 +	asm("addfp5a:");
   1.175 +	asm("add ecx, 0x10000");		// and increment exponent
   1.176 +
   1.177 +	// perform rounding based on rounding word in eax and rounding flag in ch
   1.178 +	asm("roundfp:");
   1.179 +	asm("cmp eax, 0x80000000");		
   1.180 +	asm("jc roundfp0");				// if rounding word<80000000, round down
   1.181 +	asm("ja roundfp1");				// if >80000000, round up
   1.182 +	asm("test ch, 1");
   1.183 +	asm("jnz short roundfp1");		// if rounded-down flag set, round up
   1.184 +	asm("test ch, 2");
   1.185 +	asm("jnz short roundfp0");		// if rounded-up flag set, round down
   1.186 +	asm("test bl, 1");				// else test mantissa lsb
   1.187 +	asm("jz short roundfp0");		// round down if 0, up if 1 [round to even]
   1.188 +	asm("roundfp1:");				// Come here to round up
   1.189 +	asm("add ebx, 1");				// increment mantissa
   1.190 +	asm("adc edx,0");				//
   1.191 +	asm("jnc roundfp1a");			// if no carry OK
   1.192 +	asm("rcr edx,1");				// else shift carry into mantissa [edx:ebx=0 here]
   1.193 +	asm("add ecx, 0x10000");		// and increment exponent
   1.194 +	asm("roundfp1a:");
   1.195 +	asm("cmp ecx, 0xFFFF0000");		// check for overflow
   1.196 +	asm("jae short addfpovfw");		// jump if overflow
   1.197 +	asm("mov ch, 2");				// else set rounded-up flag
   1.198 +	asm("xor eax, eax");			// return KErrNone
   1.199 +	asm("ret");
   1.200 +
   1.201 +	asm("roundfp0:");				// Come here to round down
   1.202 +	asm("cmp ecx, 0xFFFF0000");		// check for overflow
   1.203 +	asm("jae short addfpovfw");		// jump if overflow
   1.204 +	asm("test eax, eax");			// else check if rounding word zero
   1.205 +	asm("jz short roundfp0a");		// if so, leave rounding flags as they are
   1.206 +	asm("mov ch, 1");				// else set rounded-down flag
   1.207 +	asm("roundfp0a:");				
   1.208 +	asm("xor eax, eax");			// return KErrNone
   1.209 +	asm("ret");
   1.210 +
   1.211 +	asm("addfpovfw:");				// Come here if overflow occurs
   1.212 +	asm("xor ch, ch");				// clear rounding flags, exponent=FFFF
   1.213 +	asm("xor ebx, ebx");
   1.214 +	asm("mov edx, 0x80000000");		// mantissa=80000000 00000000 for infinity
   1.215 +	asm("mov eax, -9");				// return KErrOverflow
   1.216 +	asm("ret");
   1.217 +
   1.218 +	// exponents differ by more than 64 - output larger number
   1.219 +	asm("addfp2:");					
   1.220 +	asm("pop ecx");					// recover exponent and sign
   1.221 +	asm("ror ecx, 16");				// into normal position
   1.222 +	asm("or ch, 1");				// set rounded-down flag
   1.223 +	asm("test cl, 2");				// check if signs the same
   1.224 +	asm("jz addfp2a");
   1.225 +	asm("xor ch, 3");				// if not, set rounded-up flag
   1.226 +	asm("addfp2a:");
   1.227 +	asm("xor eax, eax");			// return KErrNone
   1.228 +	asm("ret");
   1.229 +
   1.230 +	// signs differ, so must subtract mantissas
   1.231 +	asm("subfp1:");
   1.232 +	asm("add ch, ch");				// if rounded-down flag set, change it to rounded-up
   1.233 +	asm("neg eax");					// subtract rounding word from 0
   1.234 +	asm("sbb ebx, ebp");			// and subtract mantissas with borrow
   1.235 +	asm("sbb edx, edi");			//
   1.236 +	asm("jnc short subfp2");		// if no borrow, sign is correct
   1.237 +	asm("xor cl, 1");				// else change sign of result
   1.238 +	asm("shr ch, 1");				// change rounding back to rounded-down
   1.239 +	asm("not eax");					// negate rounding word
   1.240 +	asm("not ebx");					// and mantissa
   1.241 +	asm("not edx");					//
   1.242 +	asm("add eax,1");				// two's complement negation
   1.243 +	asm("adc ebx,0");				//
   1.244 +	asm("adc edx,0");				//
   1.245 +	asm("subfp2:");
   1.246 +	asm("jnz short subfp3");		// branch if edx non-zero at this point
   1.247 +	asm("mov edx, ebx");			// else shift ebx into edx
   1.248 +	asm("or edx, edx");				//
   1.249 +	asm("jz short subfp4");			// if still zero, branch
   1.250 +	asm("mov ebx, eax");			// else shift rounding word into ebx
   1.251 +	asm("xor eax, eax");			// and zero rounding word
   1.252 +	asm("sub ecx, 0x200000");		// decrease exponent by 32 due to shift
   1.253 +	asm("jnc short subfp3");		// if no borrow, carry on
   1.254 +	asm("jmp short subfpundflw");	// if borrow here, underflow
   1.255 +	asm("subfp4:");
   1.256 +	asm("mov edx, eax");			// move rounding word into edx
   1.257 +	asm("or edx, edx");				// is edx still zero ?
   1.258 +	asm("jz short subfp0");			// if so, result is precisely zero
   1.259 +	asm("xor ebx, ebx");			// else zero ebx and rounding word
   1.260 +	asm("xor eax, eax");			//
   1.261 +	asm("sub ecx, 0x400000");		// and decrease exponent by 64 due to shift
   1.262 +	asm("jc short subfpundflw");	// if borrow, underflow
   1.263 +	asm("subfp3:");
   1.264 +	asm("mov edi, ecx");			// preserve sign and exponent
   1.265 +	asm("bsr ecx, edx");			// position of most significant 1 into ecx
   1.266 +	asm("neg ecx");					//
   1.267 +	asm("add ecx, 31");				// cl = 31-position of MS 1 = number of shifts to normalise
   1.268 +	asm("shld edx, ebx, cl");		// shift edx:ebx:eax left by cl bits
   1.269 +	asm("shld ebx, eax, cl");		//
   1.270 +	asm("shl eax, cl");				//
   1.271 +	asm("mov ebp, ecx");			// bit count into ebp for subtraction
   1.272 +	asm("shl ebp, 16");				// shift left by 16 to align with exponent
   1.273 +	asm("mov ecx, edi");			// exponent, sign, rounding flags back into ecx
   1.274 +	asm("sub ecx, ebp");			// subtract shift count from exponent
   1.275 +	asm("jc short subfpundflw");	// if borrow, underflow
   1.276 +	asm("cmp ecx, 0x10000");		// check if exponent 0
   1.277 +	asm("jnc roundfp");				// if not, jump to round result, else underflow
   1.278 +
   1.279 +	// come here if underflow
   1.280 +	asm("subfpundflw:");			
   1.281 +	asm("and ecx, 1");				// set exponent to zero, leave sign
   1.282 +	asm("xor edx, edx");
   1.283 +	asm("xor ebx, ebx");
   1.284 +	asm("mov eax, -10");			// return KErrUnderflow
   1.285 +	asm("ret");
   1.286 +
   1.287 +	// come here to return zero result
   1.288 +	asm("subfp0:");
   1.289 +	asm("xor ecx, ecx");			// set exponent to zero, positive sign
   1.290 +	asm("xor edx, edx");
   1.291 +	asm("xor ebx, ebx");
   1.292 +	asm("addfp0snzd:");
   1.293 +	asm("xor eax, eax");			// return KErrNone
   1.294 +	asm("ret");
   1.295 +
   1.296 +	// come here if source=0 - eax=source exponent/sign
   1.297 +	asm("addfp0s:");
   1.298 +	asm("cmp ecx, 0x10000");		// check if dest=0
   1.299 +	asm("jnc addfp0snzd");			// if not, return dest unaltered
   1.300 +	asm("and ecx, eax");			// else both zero, result negative iff both zeros negative
   1.301 +	asm("and ecx, 1");
   1.302 +	asm("xor eax, eax");			// return KErrNone
   1.303 +	asm("ret");
   1.304 +
   1.305 +	// come here if dest=0, source nonzero
   1.306 +	asm("addfp0d:");
   1.307 +	asm("mov ebx, [esi]");			// return source unaltered
   1.308 +	asm("mov edx, [esi+4]");
   1.309 +	asm("mov ecx, [esi+8]");
   1.310 +	asm("xor eax, eax");			// return KErrNone
   1.311 +	asm("ret");
   1.312 +
   1.313 +	// come here if dest=NaN or infinity
   1.314 +	asm("addfpsd:");
   1.315 +	asm("cmp edx, 0x80000000");		// check for infinity
   1.316 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.317 +	asm("test ebx, ebx");
   1.318 +	_ASM_jn(e,TRealXBinOpNaN)
   1.319 +	asm("mov eax, [esi+8]");		// eax=second operand exponent
   1.320 +	asm("cmp eax, 0xFFFF0000");		// check second operand for NaN or infinity
   1.321 +	asm("jae short addfpsd1");		// branch if NaN or infinity
   1.322 +	asm("addfpsd2:");
   1.323 +	asm("mov eax, -9");				// else return dest unaltered [infinity] and KErrOverflow
   1.324 +	asm("ret");
   1.325 +	asm("addfpsd1:");
   1.326 +	asm("mov ebp, [esi]");			// source mantissa into edi:ebp
   1.327 +	asm("mov edi, [esi+4]");
   1.328 +	asm("cmp edi, 0x80000000");		// check for infinity
   1.329 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.330 +	asm("test ebp, ebp");
   1.331 +	_ASM_jn(e,TRealXBinOpNaN)
   1.332 +	asm("xor al, cl");				// both operands are infinity - check signs
   1.333 +	asm("test al, 1");
   1.334 +	asm("jz short addfpsd2");		// if both the same, return KErrOverflow
   1.335 +	asm("jmp %a0": : "i"(&TRealXRealIndefinite));		// else return 'real indefinite'
   1.336 +
   1.337 +	// come here if source=NaN or infinity, dest finite
   1.338 +	asm("addfpss:");
   1.339 +	asm("mov ebp, [esi]");			// source mantissa into edi:ebp
   1.340 +	asm("mov edi, [esi+4]");
   1.341 +	asm("cmp edi, 0x80000000");		// check for infinity
   1.342 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.343 +	asm("test ebp, ebp");
   1.344 +	_ASM_jn(e,TRealXBinOpNaN)
   1.345 +	asm("mov ecx, eax");			// if source=infinity, return source unaltered
   1.346 +	asm("mov edx, edi");
   1.347 +	asm("mov ebx, ebp");
   1.348 +	asm("mov eax, -9");				// return KErrOverflow
   1.349 +	asm("ret");
   1.350 +	}
   1.351 +
   1.352 +// Subtract TRealX at [esi] - ecx,edx:ebx
   1.353 +// Result in ecx,edx:ebx
   1.354 +// Error code in eax
   1.355 +LOCAL_C __NAKED__ void TRealXSubtract()
   1.356 +	{
   1.357 +	asm("xor cl, 1");				// negate subtrahend
   1.358 +	asm("jmp %a0": :"i"(&TRealXAdd));
   1.359 +	}
   1.360 +
   1.361 +// Multiply TRealX at [esi] * ecx,edx:ebx
   1.362 +// Result in ecx,edx:ebx
   1.363 +// Error code in eax
   1.364 +LOCAL_C __NAKED__ void TRealXMultiply()
   1.365 +	{
   1.366 +	asm("xor ch, ch");				// clear rounding flags
   1.367 +	asm("mov eax, [esi+8]");		// fetch sign/exponent of source
   1.368 +	asm("xor cl, al");				// xor signs
   1.369 +	asm("cmp ecx, 0xFFFF0000");		// check if dest=NaN or infinity
   1.370 +	asm("jnc mulfpsd");				// branch if it is
   1.371 +	asm("cmp eax, 0xFFFF0000");		// check if source=NaN or infinity
   1.372 +	asm("jnc mulfpss");				// branch if it is
   1.373 +	asm("cmp eax, 0x10000");		// check if source=0
   1.374 +	asm("jc mulfp0");				// branch if it is
   1.375 +	asm("cmp ecx, 0x10000");		// check if dest=0
   1.376 +	asm("jc mulfp0");				// branch if it is
   1.377 +	asm("push ecx");				// save result sign
   1.378 +	asm("shr ecx, 16");				// dest exponent into cx
   1.379 +	asm("shr eax, 16");				// source exponent into ax
   1.380 +	asm("add eax, ecx");			// add exponents
   1.381 +	asm("sub eax, 0x7FFE");			// eax now contains result exponent
   1.382 +	asm("push eax");				// save it
   1.383 +	asm("mov edi, edx");			// save dest mantissa high
   1.384 +	asm("mov eax, ebx");			// dest mantissa low -> eax
   1.385 +	asm("mul dword ptr [esi]");		// dest mantissa low * source mantissa low -> edx:eax
   1.386 +	asm("xchg ebx, eax");			// result dword 0 -> ebx, dest mant low -> eax
   1.387 +	asm("mov ebp, edx");			// result dword 1 -> ebp
   1.388 +	asm("mul dword ptr [esi+4]");	// dest mant low * src mant high -> edx:eax
   1.389 +	asm("add ebp, eax");			// add in partial product to dwords 1 and 2
   1.390 +	asm("adc edx, 0");				//
   1.391 +	asm("mov ecx, edx");			// result dword 2 -> ecx
   1.392 +	asm("mov eax, edi");			// dest mant high -> eax
   1.393 +	asm("mul dword ptr [esi+4]");	// dest mant high * src mant high -> edx:eax
   1.394 +	asm("add ecx, eax");			// add in partial product to dwords 2, 3
   1.395 +	asm("adc edx, 0");				//
   1.396 +	asm("mov eax, edi");			// dest mant high -> eax
   1.397 +	asm("mov edi, edx");			// result dword 3 -> edi
   1.398 +	asm("mul dword ptr [esi]");		// dest mant high * src mant low -> edx:eax
   1.399 +	asm("add ebp, eax");			// add in partial product to dwords 1, 2
   1.400 +	asm("adc ecx, edx");			//
   1.401 +	asm("adc edi, 0");				// 128-bit mantissa product is now in edi:ecx:ebp:ebx
   1.402 +	asm("mov edx, edi");			// top 64 bits into edx:ebx
   1.403 +	asm("mov edi, ebx");			
   1.404 +	asm("mov ebx, ecx");			// bottom 64 bits now in ebp:edi
   1.405 +	asm("pop ecx");					// recover exponent
   1.406 +	asm("js short mulfp1");			// skip if mantissa normalised
   1.407 +	asm("add edi, edi");			// else shift left [only one shift will be needed]
   1.408 +	asm("adc ebp, ebp");
   1.409 +	asm("adc ebx, ebx");
   1.410 +	asm("adc edx, edx");
   1.411 +	asm("dec ecx");					// and decrement exponent
   1.412 +	asm("mulfp1:");
   1.413 +	asm("cmp ebp, 0x80000000");		// compare bottom 64 bits with 80000000 00000000 for rounding
   1.414 +	asm("ja short mulfp2");			// branch to round up
   1.415 +	asm("jb short mulfp3");			// branch to round down
   1.416 +	asm("test edi, edi");
   1.417 +	asm("jnz short mulfp2");		// branch to round up
   1.418 +	asm("test bl, 1");				// if exactly half-way, test LSB of result mantissa
   1.419 +	asm("jz short mulfp4");			// if LSB=0, round down [round to even]
   1.420 +	asm("mulfp2:");
   1.421 +	asm("add ebx, 1");				// round up - increment mantissa
   1.422 +	asm("adc edx, 0");
   1.423 +	asm("jnc short mulfp2a");
   1.424 +	asm("rcr edx, 1");
   1.425 +	asm("inc ecx");	
   1.426 +	asm("mulfp2a:");
   1.427 +	asm("mov al, 2");				// set rounded-up flag
   1.428 +	asm("jmp short mulfp5");
   1.429 +	asm("mulfp3:");					// round down
   1.430 +	asm("xor al, al");				// clear rounding flags
   1.431 +	asm("or ebp, edi");				// check for exact result
   1.432 +	asm("jz short mulfp5");			// skip if exact
   1.433 +	asm("mulfp4:");					// come here to round down when we know result inexact
   1.434 +	asm("mov al, 1");				// else set rounded-down flag
   1.435 +	asm("mulfp5:");					// final mantissa now in edx:ebx, exponent in ecx
   1.436 +	asm("cmp ecx, 0xFFFF");			// check for overflow
   1.437 +	asm("jge short mulfp6");		// branch if overflow
   1.438 +	asm("cmp ecx, 0");				// check for underflow
   1.439 +	asm("jle short mulfp7");		// branch if underflow
   1.440 +	asm("shl ecx, 16");				// else exponent up to top end of ecx
   1.441 +	asm("mov ch, al");				// rounding flags into ch
   1.442 +	asm("pop eax");					// recover result sign
   1.443 +	asm("mov cl, al");				// into cl
   1.444 +	asm("xor eax, eax");			// return KErrNone
   1.445 +	asm("ret");
   1.446 +
   1.447 +	// come here if overflow
   1.448 +	asm("mulfp6:");					
   1.449 +	asm("pop eax");					// recover result sign
   1.450 +	asm("mov ecx, 0xFFFF0000");		// exponent=FFFF
   1.451 +	asm("mov cl, al");				// sign into cl
   1.452 +	asm("mov edx, 0x80000000");		// set mantissa to 80000000 00000000 for infinity
   1.453 +	asm("xor ebx, ebx");
   1.454 +	asm("mov eax, -9");				// return KErrOverflow
   1.455 +	asm("ret");
   1.456 +
   1.457 +	// come here if underflow
   1.458 +	asm("mulfp7:");				
   1.459 +	asm("pop eax");					// recover result sign
   1.460 +	asm("xor ecx, ecx");			// exponent=0
   1.461 +	asm("mov cl, al");				// sign into cl
   1.462 +	asm("xor edx, edx");
   1.463 +	asm("xor ebx, ebx");
   1.464 +	asm("mov eax, -10");			// return KErrUnderflow
   1.465 +	asm("ret");
   1.466 +
   1.467 +	// come here if either operand zero
   1.468 +	asm("mulfp0:");
   1.469 +	asm("and ecx, 1");				// set exponent=0, keep sign
   1.470 +	asm("xor edx, edx");
   1.471 +	asm("xor ebx, ebx");
   1.472 +	asm("xor eax, eax");			// return KErrNone
   1.473 +	asm("ret");
   1.474 +
   1.475 +	// come here if destination operand NaN or infinity
   1.476 +	asm("mulfpsd:");
   1.477 +	asm("cmp edx, 0x80000000");		// check for infinity
   1.478 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.479 +	asm("test ebx, ebx");
   1.480 +	_ASM_jn(e,TRealXBinOpNaN)
   1.481 +	asm("cmp eax, 0xFFFF0000");		// check second operand for NaN or infinity
   1.482 +	asm("jae short mulfpsd1");		// branch if NaN or infinity
   1.483 +	asm("cmp eax, 0x10000");		// check if second operand zero
   1.484 +	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
   1.485 +	asm("mov eax, -9");				// else return dest [infinity] with xor sign and KErrOverflow
   1.486 +	asm("ret");
   1.487 +	asm("mulfpsd1:");
   1.488 +	asm("mov ebp, [esi]");			// source mantissa into edi:ebp
   1.489 +	asm("mov edi, [esi+4]");		
   1.490 +	asm("cmp edi, 0x80000000");		// check for infinity
   1.491 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.492 +	asm("test ebp, ebp");
   1.493 +	_ASM_jn(e,TRealXBinOpNaN)
   1.494 +	asm("mov eax, -9");				// both operands infinity - return infinity with xor sign
   1.495 +	asm("ret");						// and KErrOverflow
   1.496 +
   1.497 +	// come here if source operand NaN or infinity, destination finite
   1.498 +	asm("mulfpss:");
   1.499 +	asm("mov ebp, [esi]");			// source mantissa into edi:ebp
   1.500 +	asm("mov edi, [esi+4]");
   1.501 +	asm("cmp edi, 0x80000000");		// check for infinity
   1.502 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.503 +	asm("test ebp, ebp");
   1.504 +	_ASM_jn(e,TRealXBinOpNaN)
   1.505 +	asm("cmp ecx, 0x10000");		// source=infinity, check if dest=0
   1.506 +	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
   1.507 +	asm("or ecx, 0xFFFF0000");		// set exp=FFFF, leave xor sign in cl
   1.508 +	asm("mov edx, edi");			// set mantissa for infinity
   1.509 +	asm("mov ebx, ebp");
   1.510 +	asm("mov eax, -9");				// return KErrOverflow
   1.511 +	asm("ret");
   1.512 +	}
   1.513 +
   1.514 +// Divide 96-bit unsigned dividend EDX:EAX:0 by 64-bit unsigned divisor ECX:EBX
   1.515 +// Assume ECX bit 31 = 1, ie 2^63 <= divisor < 2^64
   1.516 +// Assume the quotient fits in 32 bits
   1.517 +// Return 32 bit quotient in EDI
   1.518 +// Return 64 bit remainder in EBP:ESI
   1.519 +LOCAL_C __NAKED__ void LongDivide(void)
   1.520 +	{
   1.521 +	asm("push edx");				// save dividend
   1.522 +	asm("push eax");				//
   1.523 +	asm("cmp edx, ecx");			// check if truncation of divisor will overflow DIV instruction
   1.524 +	asm("jb short longdiv1");		// skip if not
   1.525 +	asm("xor eax, eax");			// else return quotient of 0xFFFFFFFF
   1.526 +	asm("dec eax");					//
   1.527 +	asm("jmp short longdiv2");		//
   1.528 +	asm("longdiv1:");
   1.529 +	asm("div ecx");					// divide EDX:EAX by ECX to give approximate quotient in EAX
   1.530 +	asm("longdiv2:");
   1.531 +	asm("mov edi, eax");			// save approx quotient
   1.532 +	asm("mul ebx");					// multiply approx quotient by full divisor ECX:EBX
   1.533 +	asm("mov esi, eax");			// first partial product into EBP:ESI
   1.534 +	asm("mov ebp, edx");			//
   1.535 +	asm("mov eax, edi");			// approx quotient back into eax
   1.536 +	asm("mul ecx");					// upper partial product now in EDX:EAX
   1.537 +	asm("add eax, ebp");			// add to form 96-bit product in EDX:EAX:ESI
   1.538 +	asm("adc edx, 0");				//
   1.539 +	asm("neg esi");					// remainder = dividend - approx quotient * divisor
   1.540 +	asm("mov ebp, [esp]");			// fetch dividend bits 32-63
   1.541 +	asm("sbb ebp, eax");			//
   1.542 +	asm("mov eax, [esp+4]");		// fetch dividend bits 64-95
   1.543 +	asm("sbb eax, edx");			// remainder is now in EAX:EBP:ESI
   1.544 +	asm("jns short longdiv4");		// if remainder positive, quotient is correct, so exit
   1.545 +	asm("longdiv3:");
   1.546 +	asm("dec edi");					// else quotient is too big, so decrement it
   1.547 +	asm("add esi, ebx");			// and add divisor to remainder
   1.548 +	asm("adc ebp, ecx");			//
   1.549 +	asm("adc eax, 0");				//
   1.550 +	asm("js short longdiv3");		// if still negative, repeat [requires <4 iterations]
   1.551 +	asm("longdiv4:");
   1.552 +	asm("add esp, 8");				// remove dividend from stack
   1.553 +	asm("ret");						// return with quotient in EDI, remainder in EBP:ESI
   1.554 +	}
   1.555 +
   1.556 +// Divide TRealX at [esi] / ecx,edx:ebx
   1.557 +// Result in ecx,edx:ebx
   1.558 +// Error code in eax
   1.559 +LOCAL_C __NAKED__ void TRealXDivide(void)
   1.560 +	{
   1.561 +	asm("xor ch, ch");				// clear rounding flags
   1.562 +	asm("mov eax, [esi+8]");		// fetch sign/exponent of dividend
   1.563 +	asm("xor cl, al");				// xor signs
   1.564 +	asm("cmp eax, 0xFFFF0000");		// check if dividend=NaN or infinity
   1.565 +	asm("jnc divfpss");				// branch if it is
   1.566 +	asm("cmp ecx, 0xFFFF0000");		// check if divisor=NaN or infinity
   1.567 +	asm("jnc divfpsd");				// branch if it is
   1.568 +	asm("cmp ecx, 0x10000");		// check if divisor=0
   1.569 +	asm("jc divfpdv0");				// branch if it is
   1.570 +	asm("cmp eax, 0x10000");		// check if dividend=0
   1.571 +	asm("jc divfpdd0");				// branch if it is
   1.572 +	asm("push esi");				// save pointer to dividend
   1.573 +	asm("push ecx");				// save result sign
   1.574 +	asm("shr ecx, 16");				// divisor exponent into cx
   1.575 +	asm("shr eax, 16");				// dividend exponent into ax
   1.576 +	asm("sub eax, ecx");			// subtract exponents
   1.577 +	asm("add eax, 0x7FFE");			// eax now contains result exponent
   1.578 +	asm("push eax");				// save it
   1.579 +	asm("mov ecx, edx");			// divisor mantissa into ecx:ebx
   1.580 +	asm("mov edx, [esi+4]");		// dividend mantissa into edx:eax
   1.581 +	asm("mov eax, [esi]");			
   1.582 +	asm("xor edi, edi");			// clear edi initially
   1.583 +	asm("cmp edx, ecx");			// compare EDX:EAX with ECX:EBX
   1.584 +	asm("jb short divfp1");			// if EDX:EAX < ECX:EBX, leave everything as is
   1.585 +	asm("ja short divfp2");			//
   1.586 +	asm("cmp eax, ebx");			// if EDX=ECX, then compare ls dwords
   1.587 +	asm("jb short divfp1");			// if dividend mant < divisor mant, leave everything as is
   1.588 +	asm("divfp2:");
   1.589 +	asm("sub eax, ebx");			// else dividend mant -= divisor mant
   1.590 +	asm("sbb edx, ecx");			//
   1.591 +	asm("inc edi");					// and EDI=1 [bit 0 of EDI is the integer part of the result]
   1.592 +	asm("inc dword ptr [esp]");		// also increment result exponent
   1.593 +	asm("divfp1:");
   1.594 +	asm("push edi");				// save top bit of result
   1.595 +	asm("call %a0": : "i"(&LongDivide));	// divide EDX:EAX:0 by ECX:EBX to give next 32 bits of result in EDI
   1.596 +	asm("push edi");				// save next 32 bits of result
   1.597 +	asm("mov edx, ebp");			// remainder from EBP:ESI into EDX:EAX
   1.598 +	asm("mov eax, esi");			//
   1.599 +	asm("call %a0": : "i"(&LongDivide));	// divide EDX:EAX:0 by ECX:EBX to give next 32 bits of result in EDI
   1.600 +	asm("test byte ptr [esp+4], 1");	// test integer bit of result
   1.601 +	asm("jnz short divfp4");		// if set, no need to calculate another bit
   1.602 +	asm("xor eax, eax");			//
   1.603 +	asm("add esi, esi");			// 2*remainder into EAX:EBP:ESI
   1.604 +	asm("adc ebp, ebp");			//
   1.605 +	asm("adc eax, eax");			//
   1.606 +	asm("sub esi, ebx");			// subtract divisor to generate final quotient bit
   1.607 +	asm("sbb ebp, ecx");			//
   1.608 +	asm("sbb eax, 0");				//
   1.609 +	asm("jnc short divfp3");		// skip if no borrow - in this case eax=0
   1.610 +	asm("add esi, ebx");			// if borrow add back - final remainder now in EBP:ESI
   1.611 +	asm("adc ebp, ecx");			//
   1.612 +	asm("adc eax, 0");				// eax will be zero after this and carry will be set
   1.613 +	asm("divfp3:");
   1.614 +	asm("cmc");						// final bit = 1-C
   1.615 +	asm("rcr eax, 1");				// shift it into eax bit 31
   1.616 +	asm("mov ebx, edi");			// result into EDX:EBX:EAX, remainder in EBP:ESI
   1.617 +	asm("pop edx");
   1.618 +	asm("add esp, 4");				// discard integer bit [zero]
   1.619 +	asm("jmp short divfp5");		// branch to round
   1.620 +
   1.621 +	asm("divfp4:");					// integer bit was set
   1.622 +	asm("mov ebx, edi");			// result into EDX:EBX:EAX
   1.623 +	asm("pop edx");					//
   1.624 +	asm("pop eax");					// integer part of result into eax [=1]
   1.625 +	asm("stc");						// shift a 1 into top end of mantissa
   1.626 +	asm("rcr edx,1");				//
   1.627 +	asm("rcr ebx,1");				//
   1.628 +	asm("rcr eax,1");				// bottom bit into eax bit 31
   1.629 +
   1.630 +	// when we get to here we have 65 bits of quotient mantissa in
   1.631 +	// EDX:EBX:EAX (bottom bit in eax bit 31)
   1.632 +	// and the remainder is in EBP:ESI
   1.633 +	asm("divfp5:");
   1.634 +	asm("pop ecx");					// recover result exponent
   1.635 +	asm("add eax, eax");			// test rounding bit
   1.636 +	asm("jnc short divfp6");		// branch to round down
   1.637 +	asm("or ebp, esi");				// test remainder to see if we are exactly half-way
   1.638 +	asm("jnz short divfp7");		// if not, round up
   1.639 +	asm("test bl, 1");				// exactly halfway - test LSB of mantissa
   1.640 +	asm("jz short divfp8");			// round down if LSB=0 [round to even]
   1.641 +	asm("divfp7:");
   1.642 +	asm("add ebx, 1");				// round up - increment mantissa
   1.643 +	asm("adc edx, 0");
   1.644 +	asm("jnc short divfp7a");
   1.645 +	asm("rcr edx, 1");				// if carry, shift 1 into mantissa MSB
   1.646 +	asm("inc ecx");					// and increment exponent
   1.647 +	asm("divfp7a:");
   1.648 +	asm("mov al, 2");				// set rounded-up flag
   1.649 +	asm("jmp short divfp9");
   1.650 +	asm("divfp6:");
   1.651 +	asm("xor al, al");				// round down - first clear rounding flags
   1.652 +	asm("or ebp, esi");				// test if result exact
   1.653 +	asm("jz short divfp9");			// skip if exact
   1.654 +	asm("divfp8:");					// come here to round down when we know result is inexact
   1.655 +	asm("mov al, 1");				// set rounded-down flag
   1.656 +	asm("divfp9:");					// final mantissa now in edx:ebx, exponent in ecx
   1.657 +	asm("cmp ecx, 0xFFFF");			// check for overflow
   1.658 +	asm("jge short divfp10");		// branch if overflow
   1.659 +	asm("cmp ecx, 0");				// check for underflow
   1.660 +	asm("jle short divfp11");		// branch if underflow
   1.661 +	asm("shl ecx, 16");				// else exponent up to top end of ecx
   1.662 +	asm("mov ch, al");				// rounding flags into ch
   1.663 +	asm("pop eax");					// recover result sign
   1.664 +	asm("mov cl, al");				// into cl
   1.665 +	asm("pop esi");					// recover dividend pointer
   1.666 +	asm("xor eax, eax");			// return KErrNone
   1.667 +	asm("ret");
   1.668 +
   1.669 +	// come here if overflow
   1.670 +	asm("divfp10:");
   1.671 +	asm("pop eax");					// recover result sign
   1.672 +	asm("mov ecx, 0xFFFF0000");		// exponent=FFFF
   1.673 +	asm("mov cl, al");				// sign into cl
   1.674 +	asm("mov edx, 0x80000000");		// set mantissa to 80000000 00000000 for infinity
   1.675 +	asm("xor ebx, ebx");
   1.676 +	asm("mov eax, -9");				// return KErrOverflow
   1.677 +	asm("pop esi");					// recover dividend pointer
   1.678 +	asm("ret");
   1.679 +
   1.680 +	// come here if underflow
   1.681 +	asm("divfp11:");	
   1.682 +	asm("pop eax");					// recover result sign
   1.683 +	asm("xor ecx, ecx");			// exponent=0
   1.684 +	asm("mov cl, al");				// sign into cl
   1.685 +	asm("xor edx, edx");
   1.686 +	asm("xor ebx, ebx");
   1.687 +	asm("mov eax, -10");			// return KErrUnderflow
   1.688 +	asm("pop esi");					// recover dividend pointer
   1.689 +	asm("ret");
   1.690 +
   1.691 +
   1.692 +	// come here if divisor=0, dividend finite
   1.693 +	asm("divfpdv0:");
   1.694 +	asm("cmp eax, 0x10000");		// check if dividend also zero
   1.695 +	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
   1.696 +	asm("or ecx, 0xFFFF0000");		// else set exponent=FFFF, leave xor sign in cl
   1.697 +	asm("mov edx, 0x80000000");		// set mantissa for infinity
   1.698 +	asm("xor ebx, ebx");
   1.699 +	asm("mov eax, -41");			// return KErrDivideByZero
   1.700 +	asm("ret");
   1.701 +
   1.702 +	// come here if dividend=0, divisor finite and nonzero
   1.703 +	asm("divfpdd0:");
   1.704 +	asm("and ecx, 1");				// exponent=0, leave xor sign in cl
   1.705 +	asm("xor eax, eax");			// return KErrNone
   1.706 +	asm("ret");
   1.707 +
   1.708 +	// come here if dividend is a NaN or infinity
   1.709 +	asm("divfpss:");
   1.710 +	asm("mov ebp, [esi]");			// dividend mantissa into edi:ebp
   1.711 +	asm("mov edi, [esi+4]");
   1.712 +	asm("cmp edi, 0x80000000");		// check for infinity
   1.713 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.714 +	asm("test ebp, ebp");
   1.715 +	_ASM_jn(e,TRealXBinOpNaN)
   1.716 +	asm("cmp ecx, 0xFFFF0000");		// check divisor for NaN or infinity
   1.717 +	asm("jae short divfpss1");		// branch if NaN or infinity
   1.718 +	asm("or ecx, 0xFFFF0000");		// infinity/finite - return infinity with xor sign
   1.719 +	asm("mov edx, 0x80000000");
   1.720 +	asm("xor ebx, ebx");
   1.721 +	asm("mov eax, -9");				// return KErrOverflow
   1.722 +	asm("ret");
   1.723 +	asm("divfpss1:");
   1.724 +	asm("cmp edx, 0x80000000");		// check for infinity
   1.725 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.726 +	asm("test ebx, ebx");
   1.727 +	_ASM_jn(e,TRealXBinOpNaN)
   1.728 +	asm("jmp %a0": : "i"(&TRealXRealIndefinite)); // if both operands infinite, return 'real indefinite'
   1.729 +
   1.730 +	// come here if divisor is a NaN or infinity, dividend finite
   1.731 +	asm("divfpsd:");
   1.732 +	asm("cmp edx, 0x80000000");		// check for infinity
   1.733 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.734 +	asm("test ebx, ebx");
   1.735 +	_ASM_jn(e,TRealXBinOpNaN)
   1.736 +	asm("and ecx, 1");				// dividend is finite, divisor=infinity, so return 0 with xor sign
   1.737 +	asm("xor edx, edx");
   1.738 +	asm("xor ebx, ebx");
   1.739 +	asm("xor eax, eax");			// return KErrNone
   1.740 +	asm("ret");
   1.741 +	}
   1.742 +
   1.743 +// TRealX modulo - dividend at [esi], divisor in ecx,edx:ebx
   1.744 +// Result in ecx,edx:ebx
   1.745 +// Error code in eax
   1.746 +LOCAL_C __NAKED__ void TRealXModulo(void)
   1.747 +	{
   1.748 +	asm("mov eax, [esi+8]");		// fetch sign/exponent of dividend
   1.749 +	asm("mov cl, al");				// result sign=dividend sign
   1.750 +	asm("xor ch, ch");				// clear rounding flags
   1.751 +	asm("cmp eax, 0xFFFF0000");		// check if dividend=NaN or infinity
   1.752 +	asm("jnc short modfpss");		// branch if it is
   1.753 +	asm("cmp ecx, 0xFFFF0000");		// check if divisor=NaN or infinity
   1.754 +	asm("jnc short modfpsd");		// branch if it is
   1.755 +	asm("cmp ecx, 0x10000");		// check if divisor=0
   1.756 +	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
   1.757 +	asm("shr eax, 16");				// ax=dividend exponent
   1.758 +	asm("ror ecx, 16");				// cx=divisor exponent
   1.759 +	asm("sub ax, cx");				// ax=dividend exponent-divisor exponent
   1.760 +	asm("jc short modfpdd0");		// if dividend exponent is smaller, return dividend
   1.761 +	asm("cmp ax, 64");				// check if exponents differ by >= 64 bits
   1.762 +	asm("jnc short modfplp");		// if so, underflow
   1.763 +	asm("mov ah, 0");				// ah bit 0 acts as 65th accumulator bit
   1.764 +	asm("mov ebp, [esi]");			// edi:ebp=dividend mantissa
   1.765 +	asm("mov edi, [esi+4]");		//
   1.766 +	asm("jmp short modfp2");		// skip left shift on first iteration
   1.767 +	asm("modfp1:");
   1.768 +	asm("add ebp, ebp");			// shift accumulator left [65 bits]
   1.769 +	asm("adc edi, edi");
   1.770 +	asm("adc ah, ah");
   1.771 +	asm("modfp2:");
   1.772 +	asm("sub ebp, ebx");			// subtract divisor from dividend
   1.773 +	asm("sbb edi, edx");
   1.774 +	asm("sbb ah, 0");
   1.775 +	asm("jnc short modfp3");		// skip if no borrow
   1.776 +	asm("add ebp, ebx");			// else add back
   1.777 +	asm("adc edi, edx");
   1.778 +	asm("adc ah, 0");
   1.779 +	asm("modfp3:");
   1.780 +	asm("dec al");					// any more bits to do?
   1.781 +	asm("jns short modfp1");		// loop if there are
   1.782 +	asm("mov edx, edi");			// result mantissa [not yet normalised] into edx:ebx
   1.783 +	asm("mov ebx, ebp");
   1.784 +	asm("or edi, ebx");				// check for zero
   1.785 +	asm("jz short modfp0");			// jump if result zero
   1.786 +	asm("or edx, edx");				// check if ms dword zero
   1.787 +	asm("jnz short modfp4");
   1.788 +	asm("mov edx, ebx");			// if so, shift left by 32
   1.789 +	asm("xor ebx, ebx");
   1.790 +	asm("sub cx, 32");				// and decrement exponent by 32
   1.791 +	asm("jbe short modfpund");		// if borrow or exponent zero, underflow
   1.792 +	asm("modfp4:");
   1.793 +	asm("mov edi, ecx");			// preserve sign and exponent
   1.794 +	asm("bsr ecx, edx");			// position of most significant 1 into ecx
   1.795 +	asm("neg ecx");					//
   1.796 +	asm("add ecx, 31");				// cl = 31-position of MS 1 = number of shifts to normalise
   1.797 +	asm("shld edx, ebx, cl");		// shift edx:ebx left by cl bits
   1.798 +	asm("shl ebx, cl");				//
   1.799 +	asm("mov ebp, ecx");			// bit count into ebp for subtraction
   1.800 +	asm("mov ecx, edi");			// exponent & sign back into ecx
   1.801 +	asm("sub cx, bp");				// subtract shift count from exponent
   1.802 +	asm("jbe short modfpund");		// if borrow or exponent 0, underflow
   1.803 +	asm("rol ecx, 16");				// else ecx=exponent:sign
   1.804 +	asm("xor eax, eax");			// normal exit, result in ecx,edx:ebx
   1.805 +	asm("ret");
   1.806 +
   1.807 +	// dividend=NaN or infinity
   1.808 +	asm("modfpss:");
   1.809 +	asm("mov ebp, [esi]");			// dividend mantissa into edi:ebp
   1.810 +	asm("mov edi, [esi+4]");
   1.811 +	asm("cmp edi, 0x80000000");		// check for infinity
   1.812 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.813 +	asm("test ebp, ebp");
   1.814 +	_ASM_jn(e,TRealXBinOpNaN)
   1.815 +	asm("cmp ecx, 0xFFFF0000");		// check divisor for NaN or infinity
   1.816 +	_ASM_j(b,TRealXRealIndefinite)	// infinity%finite - return 'real indefinite'
   1.817 +	asm("cmp edx, 0x80000000");		// check for divisor=infinity
   1.818 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.819 +	asm("test ebx, ebx");
   1.820 +	_ASM_jn(e,TRealXBinOpNaN)
   1.821 +	asm("jmp %a0": : "i"(&TRealXRealIndefinite));	// if both operands infinite, return 'real indefinite'
   1.822 +
   1.823 +	// divisor=NaN or infinity, dividend finite
   1.824 +	asm("modfpsd:");
   1.825 +	asm("cmp edx, 0x80000000");		// check for infinity
   1.826 +	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
   1.827 +	asm("test ebx, ebx");
   1.828 +	_ASM_jn(e,TRealXBinOpNaN)
   1.829 +	// finite%infinity - return dividend unaltered
   1.830 +
   1.831 +	asm("modfpdd0:");
   1.832 +	asm("mov ebx, [esi]");			// normal exit, return dividend unaltered
   1.833 +	asm("mov edx, [esi+4]");
   1.834 +	asm("mov ecx, [esi+8]");
   1.835 +	asm("xor eax, eax");
   1.836 +	asm("ret");
   1.837 +
   1.838 +	asm("modfp0:");
   1.839 +	asm("shr ecx, 16");				// normal exit, result 0
   1.840 +	asm("xor eax, eax");
   1.841 +	asm("ret");
   1.842 +
   1.843 +	asm("modfpund:");
   1.844 +	asm("shr ecx, 16");				// underflow, result 0
   1.845 +	asm("mov eax, -10");			// return KErrUnderflow
   1.846 +	asm("ret");
   1.847 +
   1.848 +	asm("modfplp:");
   1.849 +	asm("shr ecx, 16");				// loss of precision, result 0
   1.850 +	asm("mov eax, -7");				// return KErrTotalLossOfPrecision
   1.851 +	asm("ret");
   1.852 +	}
   1.853 +
   1.854 +
   1.855 +
   1.856 +
   1.857 +__NAKED__ EXPORT_C TRealX::TRealX()
   1.858 +/**
   1.859 +Constructs a default extended precision object.
   1.860 +
   1.861 +This sets the value to zero.
   1.862 +*/
   1.863 +	{
   1.864 +	THISCALL_PROLOG0()
   1.865 +	asm("xor eax, eax");
   1.866 +	asm("mov [ecx], eax");				// set value to zero
   1.867 +	asm("mov [ecx+4], eax");
   1.868 +	asm("mov [ecx+8], eax");
   1.869 +	asm("mov eax, ecx");				// must return this
   1.870 +	THISCALL_EPILOG0()
   1.871 +	}
   1.872 +
   1.873 +
   1.874 +
   1.875 +
   1.876 +__NAKED__ EXPORT_C TRealX::TRealX(TUint /*aExp*/, TUint /*aMantHi*/, TUint /*aMantLo*/)
   1.877 +/**
   1.878 +Constructs an extended precision object from an explicit exponent and
   1.879 +a 64 bit mantissa.
   1.880 +
   1.881 +@param aExp    The exponent
   1.882 +@param aMantHi The high order 32 bits of the 64 bit mantissa
   1.883 +@param aMantLo The low order 32 bits of the 64 bit mantissa
   1.884 +*/
   1.885 +	{
   1.886 +	THISCALL_PROLOG3()
   1.887 +	asm("mov eax, [esp+4]");			// eax=aExp
   1.888 +	asm("mov [ecx+8], eax");
   1.889 +	asm("mov eax, [esp+8]");			// eax=aMantHi
   1.890 +	asm("mov [ecx+4], eax");
   1.891 +	asm("mov eax, [esp+12]");			// eax=aMantLo
   1.892 +	asm("mov [ecx], eax");
   1.893 +	asm("mov eax, ecx");				// must return this
   1.894 +	THISCALL_EPILOG3()
   1.895 +	}
   1.896 +
   1.897 +
   1.898 +__NAKED__ EXPORT_C TInt TRealX::Set(TInt /*aInt*/)
   1.899 +/**
   1.900 +Gives this extended precision object a new value taken
   1.901 +from a signed integer.
   1.902 +
   1.903 +@param aInt The signed integer value.
   1.904 +
   1.905 +@return KErrNone, always.
   1.906 +*/
   1.907 +	{
   1.908 +	THISCALL_PROLOG1()
   1.909 +	// on entry ecx=this, [esp+4]=aInt, return code in eax
   1.910 +	asm("mov edx, [esp+4]");	// edx=aInt
   1.911 +	asm("or edx, edx");			// test sign/zero
   1.912 +	asm("mov eax, 0x7FFF");
   1.913 +	asm("jz short trealxfromint0_2");	// branch if 0
   1.914 +	asm("jns short trealxfromint1_2");// skip if positive
   1.915 +	asm("neg edx");					// take absolute value
   1.916 +	asm("add eax, 0x10000");		// sign bit in eax bit 16
   1.917 +	asm("trealxfromint1_2:");
   1.918 +	asm("push ecx");				// save this
   1.919 +	asm("bsr ecx, edx");			// bit number of edx MSB into ecx
   1.920 +	asm("add eax, ecx");			// add to eax to form result exponent
   1.921 +	asm("neg cl");
   1.922 +	asm("add cl, 31");				// 31-bit number = number of shifts to normalise edx
   1.923 +	asm("shl edx, cl");				// normalise edx
   1.924 +	asm("pop ecx");					// this back into ecx
   1.925 +	asm("ror eax, 16");				// sign/exponent into normal positions
   1.926 +	asm("mov [ecx+4], edx");		// store mantissa high word
   1.927 +	asm("mov [ecx+8], eax");		// store sign/exponent
   1.928 +	asm("xor eax, eax");
   1.929 +	asm("mov [ecx], eax");			// zero mantissa low word
   1.930 +	THISCALL_EPILOG1()					// return KErrNone
   1.931 +	asm("trealxfromint0_2:");
   1.932 +	asm("mov [ecx], edx");
   1.933 +	asm("mov [ecx+4], edx");		// store mantissa high word=0
   1.934 +	asm("mov [ecx+8], edx");		// store sign/exponent=0
   1.935 +	asm("xor eax, eax");			// return KErrNone
   1.936 +	THISCALL_EPILOG1()
   1.937 +	}
   1.938 +
   1.939 +
   1.940 +
   1.941 +__NAKED__ EXPORT_C TInt TRealX::Set(TUint /*aInt*/)
   1.942 +/**
   1.943 +Gives this extended precision object a new value taken from
   1.944 +an unsigned integer.
   1.945 +
   1.946 +@param aInt The unsigned integer value.
   1.947 +
   1.948 +@return KErrNone, always.
   1.949 +*/
   1.950 +	{
   1.951 +	THISCALL_PROLOG1()
   1.952 +	asm("mov edx, [esp+4]");		// edx=aInt
   1.953 +	asm("mov eax, 0x7FFF");
   1.954 +	asm("or edx, edx");				// test for 0
   1.955 +	asm("jz short trealxfromuint0_");// branch if 0
   1.956 +	asm("push ecx");				// save this
   1.957 +	asm("bsr ecx, edx");			// bit number of edx MSB into ecx
   1.958 +	asm("add eax, ecx");			// add to eax to form result exponent
   1.959 +	asm("neg cl");
   1.960 +	asm("add cl, 31");				// 31-bit number = number of shifts to normalise edx
   1.961 +	asm("shl edx, cl");				// normalise edx
   1.962 +	asm("pop ecx");					// this back into ecx
   1.963 +	asm("shl eax, 16");				// exponent into normal position
   1.964 +	asm("mov [ecx+4], edx");		// store mantissa high word
   1.965 +	asm("mov [ecx+8], eax");		// store exponent
   1.966 +	asm("xor eax, eax");
   1.967 +	asm("mov [ecx], eax");			// zero mantissa low word
   1.968 +	THISCALL_EPILOG1()				// return KErrNone
   1.969 +	asm("trealxfromuint0_:");
   1.970 +	asm("mov [ecx], edx");
   1.971 +	asm("mov [ecx+4], edx");		// store mantissa high word=0
   1.972 +	asm("mov [ecx+8], edx");		// store sign/exponent=0
   1.973 +	asm("xor eax, eax");			// return KErrNone
   1.974 +	THISCALL_EPILOG1()
   1.975 +	}
   1.976 +
   1.977 +
   1.978 +
   1.979 +
   1.980 +LOCAL_C __NAKED__ void TRealXFromTInt64(void)
   1.981 +	{
   1.982 +	// Convert TInt64 in edx:ebx to TRealX in ecx,edx:ebx
   1.983 +	asm("mov eax, 0x7FFF");
   1.984 +	asm("or edx, edx");					// test sign/zero
   1.985 +	asm("jz short trealxfromtint64a");	// branch if top word zero
   1.986 +	asm("jns short trealxfromtint64b");
   1.987 +	asm("add eax, 0x10000");			// sign bit into eax bit 16
   1.988 +	asm("neg edx");						// take absolute value
   1.989 +	asm("neg ebx");
   1.990 +	asm("sbb edx, 0");
   1.991 +	asm("jz short trealxfromtint64d");	// branch if top word zero
   1.992 +	asm("trealxfromtint64b:");
   1.993 +	asm("bsr ecx, edx");				// ecx=bit number of edx MSB
   1.994 +	asm("add eax, ecx");				// add to exponent in eax
   1.995 +	asm("add eax, 32");
   1.996 +	asm("neg cl");
   1.997 +	asm("add cl, 31");					// 31-bit number = number of left shifts to normalise
   1.998 +	asm("shld edx, ebx, cl");			// shift left to normalise edx:ebx
   1.999 +	asm("shl ebx, cl");
  1.1000 +	asm("mov ecx, eax");				// sign/exponent into ecx
  1.1001 +	asm("ror ecx, 16");					// and into normal positions
  1.1002 +	asm("ret");
  1.1003 +	asm("trealxfromtint64a:");			// come here if top word zero
  1.1004 +	asm("or ebx, ebx");					// test for bottom word also zero
  1.1005 +	asm("jz short trealxfromtint64c");	// branch if it is
  1.1006 +	asm("trealxfromtint64d:");			// come here if top word zero, bottom word not
  1.1007 +	asm("mov edx, ebx");				// shift edx:ebx left 32
  1.1008 +	asm("xor ebx, ebx");
  1.1009 +	asm("bsr ecx, edx");				// ecx=bit number of edx MSB
  1.1010 +	asm("add eax, ecx");				// add to exponent in eax
  1.1011 +	asm("neg cl");
  1.1012 +	asm("add cl, 31");					// 31-bit number = number of left shifts to normalise
  1.1013 +	asm("shl edx, cl");					// normalise
  1.1014 +	asm("mov ecx, eax");				// sign/exponent into ecx
  1.1015 +	asm("ror ecx, 16");					// and into normal positions
  1.1016 +	asm("ret");
  1.1017 +	asm("trealxfromtint64c:");			// entire number is zero
  1.1018 +	asm("xor ecx, ecx");
  1.1019 +	asm("ret");
  1.1020 +	}
  1.1021 +
  1.1022 +
  1.1023 +
  1.1024 +
  1.1025 +__NAKED__ EXPORT_C TInt TRealX::Set(const TInt64& /*aInt*/)
  1.1026 +/**
  1.1027 +Gives this extended precision object a new value taken from
  1.1028 +a 64 bit integer.
  1.1029 +
  1.1030 +@param aInt The 64 bit integer value.
  1.1031 +
  1.1032 +@return KErrNone, always.
  1.1033 +*/
  1.1034 +	{
  1.1035 +	// on entry ecx=this, [esp+4]=address of aInt, return code in eax
  1.1036 +	THISCALL_PROLOG1()
  1.1037 +	asm("push ebx");
  1.1038 +	asm("push ecx");
  1.1039 +	asm("mov edx, [esp+12]");			// edx=address of aInt
  1.1040 +	asm("mov ebx, [edx]");
  1.1041 +	asm("mov edx, [edx+4]");			// edx:ebx=aInt
  1.1042 +	asm("call %a0": : "i"(&TRealXFromTInt64)); // convert to TRealX in ecx,edx:ebx
  1.1043 +	asm("pop eax");						// eax=this
  1.1044 +	asm("mov [eax], ebx");				// store result
  1.1045 +	asm("mov [eax+4], edx");
  1.1046 +	asm("mov [eax+8], ecx");
  1.1047 +	asm("xor eax, eax");				// return KErrNone
  1.1048 +	asm("pop ebx");
  1.1049 +	THISCALL_EPILOG1()
  1.1050 +	}
  1.1051 +
  1.1052 +
  1.1053 +
  1.1054 +LOCAL_C __NAKED__ void __6TRealXi()
  1.1055 +	{
  1.1056 +	// common function for int to TRealX
  1.1057 +	THISCALL_PROLOG1()
  1.1058 +	asm("mov edx, [esp+4]");			// edx=aInt
  1.1059 +	asm("or edx, edx");					// test sign/zero
  1.1060 +	asm("mov eax, 0x7FFF");
  1.1061 +	asm("jz short trealxfromint0");		// branch if 0
  1.1062 +	asm("jns short trealxfromint1");	// skip if positive
  1.1063 +	asm("neg edx");						// take absolute value
  1.1064 +	asm("add eax, 0x10000");			// sign bit in eax bit 16
  1.1065 +	asm("trealxfromint1:");
  1.1066 +	asm("push ecx");					// save this
  1.1067 +	asm("bsr ecx, edx");				// bit number of edx MSB into ecx
  1.1068 +	asm("add eax, ecx");				// add to eax to form result exponent
  1.1069 +	asm("neg cl");
  1.1070 +	asm("add cl, 31");					// 31-bit number = number of shifts to normalise edx
  1.1071 +	asm("shl edx, cl");					// normalise edx
  1.1072 +	asm("pop ecx");						// this back into ecx
  1.1073 +	asm("ror eax, 16");					// sign/exponent into normal positions
  1.1074 +	asm("mov [ecx+4], edx");			// store mantissa high word
  1.1075 +	asm("mov [ecx+8], eax");			// store sign/exponent
  1.1076 +	asm("xor eax, eax");
  1.1077 +	asm("mov [ecx], eax");				// zero mantissa low word
  1.1078 +	asm("mov eax, ecx");				// return eax=this
  1.1079 +	THISCALL_EPILOG1()
  1.1080 +	asm("trealxfromint0:");
  1.1081 +	asm("mov [ecx], edx");
  1.1082 +	asm("mov [ecx+4], edx");			// store mantissa high word=0
  1.1083 +	asm("mov [ecx+8], edx");			// store sign/exponent=0
  1.1084 +	asm("mov eax, ecx");				// return eax=this
  1.1085 +	THISCALL_EPILOG1()
  1.1086 +	}
  1.1087 +
  1.1088 +
  1.1089 +__NAKED__ EXPORT_C TRealX::TRealX(TInt /*aInt*/)
  1.1090 +/**
  1.1091 +Constructs an extended precision object from a signed integer value.
  1.1092 +
  1.1093 +@param aInt The signed integer value.
  1.1094 +*/
  1.1095 +	{
  1.1096 +	// on entry ecx=this, [esp+4]=aInt, return eax=this
  1.1097 +	asm("jmp %a0": : "i"(&__6TRealXi));
  1.1098 +	}
  1.1099 +
  1.1100 +
  1.1101 +
  1.1102 +
  1.1103 +__NAKED__ EXPORT_C TRealX& TRealX::operator=(TInt /*aInt*/)
  1.1104 +/**
  1.1105 +Assigns the specified signed integer value to this extended precision object.
  1.1106 +
  1.1107 +@param aInt The signed integer value.
  1.1108 +
  1.1109 +@return A reference to this extended precision object.
  1.1110 +*/
  1.1111 +	{
  1.1112 +	// on entry ecx=this, [esp+4]=aInt, return eax=this
  1.1113 +	asm("jmp %a0": : "i"(&__6TRealXi));
  1.1114 +	}
  1.1115 +
  1.1116 +
  1.1117 +
  1.1118 +LOCAL_C __NAKED__ void __6TRealXui()
  1.1119 +	{
  1.1120 +	// common function for unsigned int to TRealX
  1.1121 +	THISCALL_PROLOG1()
  1.1122 +	asm("mov edx, [esp+4]");			// edx=aInt
  1.1123 +	asm("mov eax, 0x7FFF");
  1.1124 +	asm("or edx, edx");					// test for zero
  1.1125 +	asm("jz short trealxfromuint0");	// branch if 0
  1.1126 +	asm("push ecx");					// save this
  1.1127 +	asm("bsr ecx, edx");				// bit number of edx MSB into ecx
  1.1128 +	asm("add eax, ecx");				// add to eax to form result exponent
  1.1129 +	asm("neg cl");
  1.1130 +	asm("add cl, 31");					// 31-bit number = number of shifts to normalise edx
  1.1131 +	asm("shl edx, cl");					// normalise edx
  1.1132 +	asm("pop ecx");						// this back into ecx
  1.1133 +	asm("shl eax, 16");					// exponent into normal position
  1.1134 +	asm("mov [ecx+4], edx");			// store mantissa high word
  1.1135 +	asm("mov [ecx+8], eax");			// store exponent
  1.1136 +	asm("xor eax, eax");
  1.1137 +	asm("mov [ecx], eax");				// zero mantissa low word
  1.1138 +	asm("mov eax, ecx");				// return eax=this
  1.1139 +	THISCALL_EPILOG1()
  1.1140 +	asm("trealxfromuint0:");
  1.1141 +	asm("mov [ecx], edx");				
  1.1142 +	asm("mov [ecx+4], edx");			// store mantissa high word=0
  1.1143 +	asm("mov [ecx+8], edx");			// store sign/exponent=0
  1.1144 +	asm("mov eax, ecx");				// return eax=this
  1.1145 +	THISCALL_EPILOG1()
  1.1146 +	}
  1.1147 +
  1.1148 +
  1.1149 +
  1.1150 +__NAKED__ EXPORT_C TRealX::TRealX(TUint /*aInt*/)
  1.1151 +/**
  1.1152 +Constructs an extended precision object from an unsigned integer value.
  1.1153 +
  1.1154 +@param aInt The unsigned integer value.
  1.1155 +*/
  1.1156 +	{
  1.1157 +	// on entry ecx=this, [esp+4]=aInt, return eax=this
  1.1158 +	asm("jmp %a0": : "i"(&__6TRealXui));
  1.1159 +	}
  1.1160 +
  1.1161 +
  1.1162 +
  1.1163 +
  1.1164 +__NAKED__ EXPORT_C TRealX& TRealX::operator=(TUint /*aInt*/)
  1.1165 +/**
  1.1166 +Assigns the specified unsigned integer value to this extended precision object.
  1.1167 +
  1.1168 +@param aInt The unsigned integer value.
  1.1169 +
  1.1170 +@return A reference to this extended precision object.
  1.1171 +*/
  1.1172 +	{
  1.1173 +	// on entry ecx=this, [esp+4]=aInt, return eax=this
  1.1174 +	asm("jmp %a0": : "i"(&__6TRealXui));
  1.1175 +	}
  1.1176 +
  1.1177 +
  1.1178 +
  1.1179 +
  1.1180 +LOCAL_C __NAKED__ void __6TRealXRC6TInt64()
  1.1181 +	{
  1.1182 +	// common function for TInt64 to TRealX
  1.1183 +	THISCALL_PROLOG1()
  1.1184 +	asm("push ebx");					// preserve ebx
  1.1185 +	asm("push ecx");					// save this
  1.1186 +	asm("mov edx, [esp+12]");			// edx=address of aInt
  1.1187 +	asm("mov ebx, [edx]");
  1.1188 +	asm("mov edx, [edx+4]");			// edx:ebx=aInt
  1.1189 +	asm("call %a0": : "i"(&TRealXFromTInt64));	// convert to TRealX in ecx,edx:ebx
  1.1190 +	asm("pop eax");						// eax=this
  1.1191 +	asm("mov [eax], ebx");				// store result
  1.1192 +	asm("mov [eax+4], edx");
  1.1193 +	asm("mov [eax+8], ecx");
  1.1194 +	asm("mov ecx, eax");				// restore this ptr
  1.1195 +	asm("pop ebx");						// restore ebx
  1.1196 +	THISCALL_EPILOG1()
  1.1197 +	}
  1.1198 +
  1.1199 +
  1.1200 +
  1.1201 +
  1.1202 +__NAKED__ EXPORT_C TRealX::TRealX(const TInt64& /*aInt*/)
  1.1203 +/**
  1.1204 +Constructs an extended precision object from a 64 bit integer.
  1.1205 +
  1.1206 +@param aInt A reference to a 64 bit integer.
  1.1207 +*/
  1.1208 +	{
  1.1209 +	// on entry ecx=this, [esp+4]=address of aInt, return eax=this
  1.1210 +	asm("jmp %a0": : "i"(&__6TRealXRC6TInt64));
  1.1211 +	}
  1.1212 +
  1.1213 +
  1.1214 +
  1.1215 +
  1.1216 +__NAKED__ EXPORT_C TRealX& TRealX::operator=(const TInt64& /*aInt*/)
  1.1217 +/**
  1.1218 +Assigns the specified 64 bit integer value to this extended precision object.
  1.1219 +
  1.1220 +@param aInt A reference to a 64 bit integer.
  1.1221 +
  1.1222 +@return A reference to this extended precision object.
  1.1223 +*/
  1.1224 +	{
  1.1225 +	// on entry ecx=this, [esp+4]=address of aInt, return eax=this
  1.1226 +	asm("jmp %a0": : "i"(&__6TRealXRC6TInt64));
  1.1227 +	}
  1.1228 +
  1.1229 +
  1.1230 +
  1.1231 +
  1.1232 +LOCAL_C __NAKED__ void ConvertTReal32ToTRealX(void)
  1.1233 +	{
  1.1234 +	// Convert TReal32 in edx to TRealX in ecx:edx,ebx
  1.1235 +	asm("xor ebx, ebx");				// mant low always zero
  1.1236 +	asm("mov eax, edx");
  1.1237 +	asm("shr eax, 23");					// exponent now in al, sign in ah bit 0
  1.1238 +	asm("test al, al");					// check for denormal/zero
  1.1239 +	asm("jz short treal32totrealx2");	// branch if denormal/zero
  1.1240 +	asm("xor ecx, ecx");
  1.1241 +	asm("mov cl, al");
  1.1242 +	asm("add ecx, 0x7F80");				// bias exponent correctly for TRealX
  1.1243 +	asm("cmp al, 0xFF");				// check for infinity/NaN
  1.1244 +	asm("jnz short treal32totrealx1");	// skip if neither
  1.1245 +	asm("mov cl, al");					// else set TRealX exponent to FFFF
  1.1246 +	asm("mov ch, al");
  1.1247 +	asm("treal32totrealx1:");
  1.1248 +	asm("shl edx, 8");					// left-justify mantissa in edx
  1.1249 +	asm("or edx, 0x80000000");			// put in implied integer bit
  1.1250 +	asm("shl ecx, 16");					// exponent into ecx bits 16-31
  1.1251 +	asm("mov cl, ah");					// sign into ecx bit 0
  1.1252 +	asm("ret");
  1.1253 +	asm("treal32totrealx2:");			// come here if exponent 0
  1.1254 +	asm("shl edx, 9");					// left-justify mantissa in edx [shift out integer bit as well]
  1.1255 +	asm("jnz short treal32totrealx3");	// jump if denormal
  1.1256 +	asm("xor ecx, ecx");				// else return 0
  1.1257 +	asm("mov cl, ah");					// with same sign as input value
  1.1258 +	asm("ret");
  1.1259 +	asm("treal32totrealx3:");			// come here if denormal
  1.1260 +	asm("bsr ecx, edx");				// ecx=bit number of MSB of edx
  1.1261 +	asm("neg ecx");
  1.1262 +	asm("add ecx, 31");					// ecx=number of left shifts to normalise edx
  1.1263 +	asm("shl edx, cl");					// normalise
  1.1264 +	asm("neg ecx");
  1.1265 +	asm("add ecx, 0x7F80");				// exponent=7F80-number of shifts
  1.1266 +	asm("shl ecx, 16");					// exponent into ecx bits 16-31
  1.1267 +	asm("mov cl, ah");					// sign into ecx bit 0
  1.1268 +	asm("ret");
  1.1269 +	}
  1.1270 +
  1.1271 +
  1.1272 +
  1.1273 +
  1.1274 +LOCAL_C __NAKED__ void ConvertTReal64ToTRealX(void)
  1.1275 +	{
  1.1276 +	// Convert TReal64 in edx:ebx to TRealX in ecx:edx,ebx
  1.1277 +	asm("mov eax, edx");
  1.1278 +	asm("shr eax, 20");
  1.1279 +	asm("mov ecx, 0x7FF");
  1.1280 +	asm("and ecx, eax");				// ecx=exponent
  1.1281 +	asm("jz short treal64totrealx1");	// branch if zero/denormal
  1.1282 +	asm("add ecx, 0x7C00");				// else bias exponent correctly for TRealX
  1.1283 +	asm("cmp ecx, 0x83FF");				// check for infinity/NaN
  1.1284 +	asm("jnz short treal64totrealx2");
  1.1285 +	asm("mov ch, cl");					// if so, set exponent to FFFF
  1.1286 +	asm("treal64totrealx2:");		
  1.1287 +	asm("shl ecx, 16");					// exponent into ecx bits 16-31
  1.1288 +	asm("mov cl, 11");					// number of shifts needed to justify mantissa correctly
  1.1289 +	asm("shld edx, ebx, cl");			// shift mantissa left
  1.1290 +	asm("shl ebx, cl");
  1.1291 +	asm("or edx, 0x80000000");			// put in implied integer bit
  1.1292 +	asm("shr eax, 11");					// sign bit into al bit 0
  1.1293 +	asm("mov cl, al");					// into ecx bit 0
  1.1294 +	asm("ret");
  1.1295 +	asm("treal64totrealx1:");			// come here if zero/denormal
  1.1296 +	asm("mov cl, 12");					// number of shifts needed to justify mantissa correctly
  1.1297 +	asm("shld edx, ebx, cl");			// shift mantissa left
  1.1298 +	asm("shl ebx, cl");
  1.1299 +	asm("test edx, edx");				// check for zero
  1.1300 +	asm("jnz short treal64totrealx3");
  1.1301 +	asm("test ebx, ebx");
  1.1302 +	asm("jnz short treal64totrealx4");
  1.1303 +	asm("shr eax, 11");					// sign bit into eax bit 0, rest of eax=0
  1.1304 +	asm("mov ecx, eax");				// return 0 result with correct sign
  1.1305 +	asm("ret");
  1.1306 +	asm("treal64totrealx4:");			// come here if denormal, edx=0
  1.1307 +	asm("mov edx, ebx");				// shift mantissa left 32
  1.1308 +	asm("xor ebx, ebx");
  1.1309 +	asm("bsr ecx, edx");				// ecx=bit number of MSB of edx
  1.1310 +	asm("neg ecx");
  1.1311 +	asm("add ecx, 31");					// ecx=number of left shifts to normalise edx
  1.1312 +	asm("shl edx, cl");					// normalise
  1.1313 +	asm("neg ecx");
  1.1314 +	asm("add ecx, 0x7BE0");				// exponent=7BE0-number of shifts	
  1.1315 +	asm("shl ecx, 16");					// exponent into bits 16-31 of ecx
  1.1316 +	asm("shr eax, 11");
  1.1317 +	asm("mov cl, al");					// sign into bit 0 of ecx
  1.1318 +	asm("ret");
  1.1319 +	asm("treal64totrealx3:");			// come here if denormal, edx nonzero
  1.1320 +	asm("bsr ecx, edx");				// ecx=bit number of MSB of edx
  1.1321 +	asm("neg ecx");
  1.1322 +	asm("add ecx, 31");					// ecx=number of left shifts to normalise edx:ebx
  1.1323 +	asm("shld edx, ebx, cl");			// normalise
  1.1324 +	asm("shl ebx, cl");
  1.1325 +	asm("neg ecx");
  1.1326 +	asm("add ecx, 0x7C00");				// exponent=7C00-number of shifts
  1.1327 +	asm("shl ecx, 16");					// exponent into bits 16-31 of ecx
  1.1328 +	asm("shr eax, 11");
  1.1329 +	asm("mov cl, al");					// sign into bit 0 of ecx
  1.1330 +	asm("ret");
  1.1331 +	}
  1.1332 +
  1.1333 +
  1.1334 +
  1.1335 +
  1.1336 +__NAKED__ EXPORT_C TInt TRealX::Set(TReal32 /*aReal*/)
  1.1337 +/**
  1.1338 +Gives this extended precision object a new value taken from
  1.1339 +a single precision floating point number.
  1.1340 +
  1.1341 +@param aReal The single precision floating point value.
  1.1342 +
  1.1343 +@return KErrNone, if a valid number;
  1.1344 +KErrOverflow, if the number is infinite;
  1.1345 +KErrArgument, if not a number.
  1.1346 +*/
  1.1347 +	{
  1.1348 +	// on entry, ecx=this and aReal is in [esp+4]
  1.1349 +	// on exit, error code in eax
  1.1350 +	THISCALL_PROLOG1()
  1.1351 +	asm("push ecx");
  1.1352 +	asm("push ebx");					// save ebx
  1.1353 +	asm("push ecx");					// save this
  1.1354 +	asm("mov edx, [esp+16]");			// aReal into edx
  1.1355 +	asm("call %a0": : "i"(&ConvertTReal32ToTRealX));
  1.1356 +	asm("pop eax");						// eax=this
  1.1357 +	asm("mov [eax], ebx");				// store result
  1.1358 +	asm("mov [eax+4], edx");
  1.1359 +	asm("mov [eax+8], ecx");
  1.1360 +	asm("xor eax, eax");				// error code=KErrNone initially
  1.1361 +	asm("cmp ecx, 0xFFFF0000");			// check for infinity/NaN
  1.1362 +	asm("jb short trealxsettreal32a");	// if neither, return KErrNone
  1.1363 +	asm("mov eax, -9");					// eax=KErrOverflow
  1.1364 +	asm("cmp edx, 0x80000000");			// check for infinity
  1.1365 +	asm("je short trealxsettreal32a");	// if infinity, return KErrOverflow
  1.1366 +	asm("mov eax, -6");					// if NaN, return KErrArgument
  1.1367 +	asm("trealxsettreal32a:");
  1.1368 +	asm("pop ebx");
  1.1369 +	asm("pop ecx");
  1.1370 +	THISCALL_EPILOG1()
  1.1371 +	}
  1.1372 +
  1.1373 +
  1.1374 +
  1.1375 +
  1.1376 +__NAKED__ EXPORT_C TInt TRealX::Set(TReal64 /*aReal*/)
  1.1377 +/**
  1.1378 +Gives this extended precision object a new value taken from
  1.1379 +a double precision floating point number.
  1.1380 +
  1.1381 +@param aReal The double precision floating point value.
  1.1382 +
  1.1383 +@return KErrNone, if a valid number;
  1.1384 +KErrOverflow, if the number is infinite;
  1.1385 +KErrArgument, if not a number.
  1.1386 +*/
  1.1387 +	{
  1.1388 +	// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
  1.1389 +	// on exit, error code in eax
  1.1390 +	THISCALL_PROLOG2()
  1.1391 +	asm("push ecx");
  1.1392 +	asm("push ebx");				// save ebx
  1.1393 +	asm("push ecx");				// save this
  1.1394 +	asm("mov ebx, [esp+16]");		// aReal into edx:ebx
  1.1395 +	asm("mov edx, [esp+20]");
  1.1396 +	asm("call %a0": : "i"(&ConvertTReal64ToTRealX));
  1.1397 +	asm("pop eax");					// eax=this
  1.1398 +	asm("mov [eax], ebx");			// store result
  1.1399 +	asm("mov [eax+4], edx");
  1.1400 +	asm("mov [eax+8], ecx");
  1.1401 +	asm("xor eax, eax");			// error code=KErrNone initially
  1.1402 +	asm("cmp ecx, 0xFFFF0000");		// check for infinity/NaN
  1.1403 +	asm("jb short trealxsettreal64a");	// if neither, return KErrNone
  1.1404 +	asm("mov eax, -9");				// eax=KErrOverflow
  1.1405 +	asm("cmp edx, 0x80000000");		// check for infinity
  1.1406 +	asm("jne short trealxsettreal64b");	// branch if NaN
  1.1407 +	asm("test ebx, ebx");
  1.1408 +	asm("je short trealxsettreal64a");	// if infinity, return KErrOverflow
  1.1409 +	asm("trealxsettreal64b:");
  1.1410 +	asm("mov eax, -6");				// if NaN, return KErrArgument
  1.1411 +	asm("trealxsettreal64a:");
  1.1412 +	asm("pop ebx");
  1.1413 +	asm("pop ecx");
  1.1414 +	THISCALL_EPILOG2()
  1.1415 +	}
  1.1416 +
  1.1417 +
  1.1418 +
  1.1419 +
  1.1420 +LOCAL_C __NAKED__ void __6TRealXf()
  1.1421 +	{
  1.1422 +	// common function for float to TRealX
  1.1423 +	THISCALL_PROLOG1()
  1.1424 +	asm("push ebx");					// save ebx
  1.1425 +	asm("push ecx");					// save this
  1.1426 +	asm("mov edx, [esp+12]");			// aReal into edx
  1.1427 +	asm("call %a0": : "i"(&ConvertTReal32ToTRealX));
  1.1428 +	asm("pop eax");						// eax=this
  1.1429 +	asm("mov [eax], ebx");				// store result
  1.1430 +	asm("mov [eax+4], edx");
  1.1431 +	asm("mov [eax+8], ecx");
  1.1432 +	asm("pop ebx");
  1.1433 +	asm("mov ecx,eax");
  1.1434 +	THISCALL_EPILOG1()
  1.1435 +	}
  1.1436 +
  1.1437 +
  1.1438 +
  1.1439 +
  1.1440 +__NAKED__ EXPORT_C TRealX::TRealX(TReal32 /*aReal*/)
  1.1441 +/**
  1.1442 +Constructs an extended precision object from
  1.1443 +a single precision floating point number.
  1.1444 +
  1.1445 +@param aReal The single precision floating point value.
  1.1446 +*/
  1.1447 +	{
  1.1448 +	// on entry, ecx=this and aReal is in [esp+4]
  1.1449 +	// on exit, eax=this
  1.1450 +	asm("jmp %a0": : "i"(&__6TRealXf));
  1.1451 +	}
  1.1452 +
  1.1453 +
  1.1454 +
  1.1455 +
  1.1456 +__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal32 /*aReal*/)
  1.1457 +/**
  1.1458 +Assigns the specified single precision floating point number to
  1.1459 +this extended precision object.
  1.1460 +
  1.1461 +@param aReal The single precision floating point value.
  1.1462 +
  1.1463 +@return A reference to this extended precision object.
  1.1464 +*/
  1.1465 +	{
  1.1466 +	// on entry, ecx=this and aReal is in [esp+4]
  1.1467 +	// on exit, eax=this
  1.1468 +	asm("jmp %a0": : "i"(&__6TRealXf));
  1.1469 +	}
  1.1470 +
  1.1471 +
  1.1472 +
  1.1473 +
  1.1474 +LOCAL_C __NAKED__ void __6TRealXd()
  1.1475 +	{
  1.1476 +	// common function for double to TRealX
  1.1477 +	THISCALL_PROLOG2()
  1.1478 +	asm("push ebx");				// save ebx
  1.1479 +	asm("push ecx");				// save this
  1.1480 +	asm("mov ebx, [esp+12]");		// aReal into edx:ebx
  1.1481 +	asm("mov edx, [esp+16]");
  1.1482 +	asm("call %a0": : "i"(&ConvertTReal64ToTRealX));
  1.1483 +	asm("pop eax");					// eax=this
  1.1484 +	asm("mov [eax], ebx");			// store result
  1.1485 +	asm("mov [eax+4], edx");
  1.1486 +	asm("mov [eax+8], ecx");
  1.1487 +	asm("pop ebx");
  1.1488 +	asm("mov ecx,eax");
  1.1489 +	THISCALL_EPILOG2()
  1.1490 +	}
  1.1491 +
  1.1492 +
  1.1493 +
  1.1494 +
  1.1495 +__NAKED__ EXPORT_C TRealX::TRealX(TReal64 /*aReal*/)
  1.1496 +/**
  1.1497 +Constructs an extended precision object from
  1.1498 +a double precision floating point number.
  1.1499 +
  1.1500 +@param aReal The double precision floating point value.
  1.1501 +*/
  1.1502 +	{
  1.1503 +	// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
  1.1504 +	// on exit, eax=this
  1.1505 +	asm("jmp %a0": : "i"(&__6TRealXd));
  1.1506 +	}
  1.1507 +
  1.1508 +
  1.1509 +
  1.1510 +
  1.1511 +__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal64 /*aReal*/)
  1.1512 +/**
  1.1513 +Assigns the specified double precision floating point number to
  1.1514 +this extended precision object.
  1.1515 +
  1.1516 +@param aReal The double precision floating point value.
  1.1517 +
  1.1518 +@return A reference to this extended precision object.
  1.1519 +*/
  1.1520 +	{
  1.1521 +	// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
  1.1522 +	// on exit, eax=this
  1.1523 +	asm("jmp %a0": : "i"(&__6TRealXd));
  1.1524 +	}
  1.1525 +
  1.1526 +
  1.1527 +
  1.1528 +
  1.1529 +__NAKED__ EXPORT_C TRealX::operator TInt() const
  1.1530 +/**
  1.1531 +Gets the extended precision value as a signed integer value.
  1.1532 +
  1.1533 +The operator asm("returns:");
  1.1534 +
  1.1535 +1. zero , if the extended precision value is not a number
  1.1536 +
  1.1537 +2. 0x7FFFFFFF, if the value is positive and too big to fit into a TInt.
  1.1538 +
  1.1539 +3. 0x80000000, if the value is negative and too big to fit into a TInt.
  1.1540 +*/
  1.1541 +	{
  1.1542 +	// on entry ecx=this, return value in eax
  1.1543 +	THISCALL_PROLOG0()
  1.1544 +	asm("push ecx");
  1.1545 +	asm("mov edx, [ecx]");			// edx=mantissa low
  1.1546 +	asm("mov eax, [ecx+4]");		// eax=mantissa high
  1.1547 +	asm("mov ecx, [ecx+8]");		// ecx=exponent/sign
  1.1548 +	asm("ror ecx, 16");				// exponent into cx
  1.1549 +	asm("cmp cx, 0xFFFF");
  1.1550 +	asm("jz short trealxtoint1");	// branch if exp=FFFF
  1.1551 +	asm("mov dx, cx");
  1.1552 +	asm("mov cx, 0x801E");
  1.1553 +	asm("sub cx, dx");				// cx=number of right shifts needed to convert mantissa to int
  1.1554 +	asm("jbe short trealxtoint2");	// if exp>=801E, saturate result
  1.1555 +	asm("cmp cx, 31");				// more than 31 shifts needed?
  1.1556 +	asm("ja short trealxtoint0");	// if so, underflow to zero
  1.1557 +	asm("shr eax, cl");				// else ABS[result]=eax>>cl
  1.1558 +	asm("test ecx, 0x10000");		// test sign
  1.1559 +	asm("jz short trealxtoint3");	// skip if +
  1.1560 +	asm("neg eax");
  1.1561 +	asm("trealxtoint3:");
  1.1562 +	asm("pop ecx");
  1.1563 +	THISCALL_EPILOG0()
  1.1564 +	asm("trealxtoint1:");			// come here if exponent=FFFF
  1.1565 +	asm("cmp eax, 0x80000000");		// check for infinity
  1.1566 +	asm("jnz short trealxtoint0");	// if NaN, return 0
  1.1567 +	asm("test edx, edx");
  1.1568 +	asm("jnz short trealxtoint0");	// if NaN, return 0
  1.1569 +	asm("trealxtoint2:");			// come here if argument too big for 32-bit integer
  1.1570 +	asm("mov eax, 0x7FFFFFFF");
  1.1571 +	asm("shr ecx, 17");				// sign bit into carry flag
  1.1572 +	asm("adc eax, 0");				// eax=7FFFFFFF if +, 80000000 if -
  1.1573 +	asm("pop ecx");					
  1.1574 +	THISCALL_EPILOG0()				// return saturated value
  1.1575 +	asm("trealxtoint0:");			// come here if INT{argument}=0 or NaN
  1.1576 +	asm("xor eax, eax");			// return 0
  1.1577 +	asm("pop ecx");
  1.1578 +	THISCALL_EPILOG0()
  1.1579 +	}
  1.1580 +
  1.1581 +
  1.1582 +
  1.1583 +
  1.1584 +__NAKED__ EXPORT_C TRealX::operator TUint() const
  1.1585 +/**
  1.1586 +Returns the extended precision value as an unsigned signed integer value.
  1.1587 +
  1.1588 +The operator asm("returns:");
  1.1589 +
  1.1590 +1. zero, if the extended precision value is not a number
  1.1591 +
  1.1592 +2. 0xFFFFFFFF, if the value is positive and too big to fit into a TUint.
  1.1593 +
  1.1594 +3. zero, if the value is negative and too big to fit into a TUint.
  1.1595 +*/
  1.1596 +	{
  1.1597 +	// on entry ecx=this, return value in eax
  1.1598 +	THISCALL_PROLOG0()
  1.1599 +	asm("push ecx");
  1.1600 +	asm("mov edx, [ecx]");				// edx=mantissa low
  1.1601 +	asm("mov eax, [ecx+4]");			// eax=mantissa high
  1.1602 +	asm("mov ecx, [ecx+8]");			// ecx=exponent/sign
  1.1603 +	asm("ror ecx, 16");					// exponent into cx
  1.1604 +	asm("cmp cx, 0xFFFF");
  1.1605 +	asm("jz short trealxtouint1");		// branch if exp=FFFF
  1.1606 +	asm("mov dx, cx");
  1.1607 +	asm("mov cx, 0x801E");
  1.1608 +	asm("sub cx, dx");					// cx=number of right shifts needed to convert mantissa to int
  1.1609 +	asm("jb short trealxtouint2");		// if exp>801E, saturate result
  1.1610 +	asm("cmp cx, 31");					// more than 31 shifts needed?
  1.1611 +	asm("ja short trealxtouint0");		// if so, underflow to zero
  1.1612 +	asm("test ecx, 0x10000");			// test sign
  1.1613 +	asm("jnz short trealxtouint0");		// if -, return 0
  1.1614 +	asm("shr eax, cl");					// else result=eax>>cl
  1.1615 +	asm("pop ecx");
  1.1616 +	THISCALL_EPILOG0()
  1.1617 +	asm("trealxtouint1:");				// come here if exponent=FFFF
  1.1618 +	asm("cmp eax, 0x80000000");			// check for infinity
  1.1619 +	asm("jnz short trealxtouint0");		// if NaN, return 0
  1.1620 +	asm("test edx, edx");
  1.1621 +	asm("jnz short trealxtouint0");		// if NaN, return 0
  1.1622 +	asm("trealxtouint2:");				// come here if argument too big for 32-bit integer
  1.1623 +	asm("mov eax, 0xFFFFFFFF");
  1.1624 +	asm("shr ecx, 17");					// sign bit into carry flag
  1.1625 +	asm("adc eax, 0");					// eax=FFFFFFFF if +, 0 if -
  1.1626 +	asm("pop ecx");			
  1.1627 +	THISCALL_EPILOG0()					// return saturated value
  1.1628 +	asm("trealxtouint0:");				// come here if INT{argument}=0 or NaN
  1.1629 +	asm("xor eax, eax");				// return 0
  1.1630 +	asm("pop ecx");
  1.1631 +	THISCALL_EPILOG0()
  1.1632 +	}
  1.1633 +
  1.1634 +
  1.1635 +
  1.1636 +
  1.1637 +LOCAL_C __NAKED__ void ConvertTRealXToTInt64(void)
  1.1638 +	{
  1.1639 +	// Convert TRealX in ecx,edx:ebx to TInt64 in edx:ebx
  1.1640 +	asm("ror ecx, 16");					// exponent into cx
  1.1641 +	asm("cmp cx, 0xFFFF");
  1.1642 +	asm("jz short trealxtoint64a");		// branch if exp=FFFF
  1.1643 +	asm("mov ax, cx");
  1.1644 +	asm("mov cx, 0x803E");
  1.1645 +	asm("sub cx, ax");					// cx=number of right shifts needed to convert mantissa to int
  1.1646 +	asm("jbe short trealxtoint64b");	// if exp>=803E, saturate result
  1.1647 +	asm("cmp cx, 63");					// more than 63 shifts needed?
  1.1648 +	asm("ja short trealxtoint64z");		// if so, underflow to zero
  1.1649 +	asm("cmp cl, 31");					// more than 31 shifts needed?
  1.1650 +	asm("jbe short trealxtoint64d");	// branch if not
  1.1651 +	asm("sub cl, 32");					// cl=shift count - 32
  1.1652 +	asm("mov ebx, edx");				// shift right by 32
  1.1653 +	asm("xor edx, edx");
  1.1654 +	asm("trealxtoint64d:");
  1.1655 +	asm("shrd ebx, edx, cl");			// shift edx:ebx right by cl to give ABS{result}
  1.1656 +	asm("shr edx, cl");
  1.1657 +	asm("test ecx, 0x10000");			// test sign
  1.1658 +	asm("jz short trealxtoint64c");		// skip if +
  1.1659 +	asm("neg edx");						// if -, negate
  1.1660 +	asm("neg ebx");
  1.1661 +	asm("sbb edx, 0");
  1.1662 +	asm("trealxtoint64c:");
  1.1663 +	asm("ret");
  1.1664 +	asm("trealxtoint64a:");				// come here if exponent=FFFF
  1.1665 +	asm("cmp edx, 0x80000000");			// check for infinity
  1.1666 +	asm("jnz short trealxtoint64z");	// if NaN, return 0
  1.1667 +	asm("test ebx, ebx");			
  1.1668 +	asm("jnz short trealxtoint64z");	// if NaN, return 0
  1.1669 +	asm("trealxtoint64b:");				// come here if argument too big for 32-bit integer
  1.1670 +	asm("mov edx, 0x7FFFFFFF");
  1.1671 +	asm("mov ebx, 0xFFFFFFFF");
  1.1672 +	asm("shr ecx, 17");					// sign bit into carry flag
  1.1673 +	asm("adc ebx, 0");					// edx:ebx=7FFFFFFF FFFFFFFF if +,
  1.1674 +	asm("adc edx, 0");					// or 80000000 00000000 if -
  1.1675 +	asm("ret");							// return saturated value
  1.1676 +	asm("trealxtoint64z:");				// come here if INT{argument}=0 or NaN
  1.1677 +	asm("xor edx, edx");				// return 0
  1.1678 +	asm("xor ebx, ebx");
  1.1679 +	asm("ret");
  1.1680 +	}
  1.1681 +
  1.1682 +
  1.1683 +
  1.1684 +
  1.1685 +/**
  1.1686 +Returns the extended precision value as a 64 bit integer value.
  1.1687 +
  1.1688 +The operator asm("returns:");
  1.1689 +
  1.1690 +1. zero, if the extended precision value is not a number
  1.1691 +
  1.1692 +2. 0x7FFFFFFF FFFFFFFF, if the value is positive and too big to fit
  1.1693 +into a TInt64
  1.1694 +
  1.1695 +3. 0x80000000 00000000, if the value is negative and too big to fit
  1.1696 +into a TInt.
  1.1697 +*/
  1.1698 +__NAKED__ EXPORT_C TRealX::operator TInt64() const
  1.1699 +	{
  1.1700 +	// on entry, ecx=this, return value in edx:eax
  1.1701 +	THISCALL_PROLOG0()
  1.1702 +	asm("push ecx");
  1.1703 +	asm("push ebx");
  1.1704 +	asm("mov ebx, [ecx]");				// get TRealX value into ecx,edx:ebx
  1.1705 +	asm("mov edx, [ecx+4]");
  1.1706 +	asm("mov ecx, [ecx+8]");
  1.1707 +	asm("call %a0": : "i"(&ConvertTRealXToTInt64));
  1.1708 +	asm("mov eax, ebx");				// result low into eax
  1.1709 +	asm("pop ebx");
  1.1710 +	asm("pop ecx");
  1.1711 +	THISCALL_EPILOG0()
  1.1712 +	}
  1.1713 +
  1.1714 +
  1.1715 +
  1.1716 +
  1.1717 +LOCAL_C __NAKED__ void TRealXGetTReal32(void)
  1.1718 +	{
  1.1719 +	// Convert TRealX in ecx,edx:ebx to TReal32 in edx
  1.1720 +	// Return error code in eax
  1.1721 +	asm("cmp ecx, 0xFFFF0000");				// check for infinity/NaN
  1.1722 +	asm("jnc short trealxgettreal32a");
  1.1723 +	asm("xor eax, eax");
  1.1724 +	asm("ror ecx, 16");						// exponent into cx
  1.1725 +	asm("sub cx, 0x7F80");					// cx=result exponent if normalised
  1.1726 +	asm("jbe short trealxgettreal32b");		// jump if denormal, zero or underflow
  1.1727 +	asm("cmp cx, 0xFF");					// check if overflow
  1.1728 +	asm("jb short trealxgettreal32c");		// jump if not
  1.1729 +	asm("trealxgettreal32d:");				// come here if overflow
  1.1730 +	asm("xor edx, edx");					// set mantissa=0 to generate infinity
  1.1731 +	asm("ror ecx, 16");						// ecx back to normal format
  1.1732 +	asm("trealxgettreal32a:");				// come here if infinity or NaN
  1.1733 +	asm("shr edx, 7");
  1.1734 +	asm("or edx, 0xFF000000");				// set exponent to FF
  1.1735 +	asm("shr ecx, 1");						// sign bit -> carry
  1.1736 +	asm("rcr edx, 1");						// sign bit -> MSB of result
  1.1737 +	asm("mov eax, edx");
  1.1738 +	asm("shl eax, 9");						// test for infinity or NaN
  1.1739 +	asm("mov eax, -9");						// eax=KErrOverflow
  1.1740 +	asm("jz short trealxgettreal32e");
  1.1741 +	asm("mov eax, -6");						// if NaN, eax=KErrArgument
  1.1742 +	asm("trealxgettreal32e:");
  1.1743 +	asm("ret");
  1.1744 +	asm("trealxgettreal32b:");				// come here if exponent<=7F80
  1.1745 +	asm("cmp cx, -24");						// check for zero or total underflow
  1.1746 +	asm("jle short trealxgettreal32z");
  1.1747 +	asm("neg cl");
  1.1748 +	asm("inc cl");							// cl=number of right shifts to form denormal mantissa
  1.1749 +	asm("shrd eax, ebx, cl");				// shift mantissa right into eax
  1.1750 +	asm("shrd ebx, edx, cl");
  1.1751 +	asm("shr edx, cl");
  1.1752 +	asm("or edx, 0x80000000");				// set top bit to ensure correct rounding up
  1.1753 +	asm("xor cl, cl");						// cl=result exponent=0
  1.1754 +	asm("trealxgettreal32c:");				// come here if result normalised
  1.1755 +	asm("cmp dl, 0x80");					// check rounding bits
  1.1756 +	asm("ja short trealxgettreal32f");		// branch to round up
  1.1757 +	asm("jb short trealxgettreal32g");		// branch to round down
  1.1758 +	asm("test ebx, ebx");
  1.1759 +	asm("jnz short trealxgettreal32f");		// branch to round up
  1.1760 +	asm("test eax, eax");
  1.1761 +	asm("jnz short trealxgettreal32f");		// branch to round up
  1.1762 +	asm("test ecx, 0x01000000");			// check rounded-down flag
  1.1763 +	asm("jnz short trealxgettreal32f");		// branch to round up
  1.1764 +	asm("test ecx, 0x02000000");			// check rounded-up flag
  1.1765 +	asm("jnz short trealxgettreal32g");		// branch to round down
  1.1766 +	asm("test dh, 1");						// else round to even
  1.1767 +	asm("jz short trealxgettreal32g");		// branch to round down if LSB=0
  1.1768 +	asm("trealxgettreal32f:");				// come here to round up
  1.1769 +	asm("add edx, 0x100");					// increment mantissa
  1.1770 +	asm("jnc short trealxgettreal32g");
  1.1771 +	asm("rcr edx, 1");
  1.1772 +	asm("inc cl");							// if carry, increment exponent
  1.1773 +	asm("cmp cl, 0xFF");					// and check for overflow
  1.1774 +	asm("jz short trealxgettreal32d");		// branch out if overflow
  1.1775 +	asm("trealxgettreal32g:");				// come here to round down
  1.1776 +	asm("xor dl, dl");
  1.1777 +	asm("add edx, edx");					// shift out integer bit
  1.1778 +	asm("mov dl, cl");
  1.1779 +	asm("ror edx, 8");						// exponent->edx bits 24-31, mantissa in 23-1
  1.1780 +	asm("test edx, edx");					// check if underflow
  1.1781 +	asm("jz short trealxgettreal32h");		// branch out if underflow
  1.1782 +	asm("shr ecx, 17");						// sign bit->carry
  1.1783 +	asm("rcr edx, 1");						// ->edx bit 31, exp->edx bits 23-30, mant->edx bits 22-0
  1.1784 +	asm("xor eax, eax");					// return KErrNone
  1.1785 +	asm("ret");
  1.1786 +	asm("trealxgettreal32z:");				// come here if zero or underflow
  1.1787 +	asm("xor eax, eax");
  1.1788 +	asm("cmp cx, 0x8080");					// check for zero
  1.1789 +	asm("jz short trealxgettreal32y");		// if zero, return KErrNone
  1.1790 +	asm("trealxgettreal32h:");				// come here if underflow after rounding
  1.1791 +	asm("mov eax, -10");					// eax=KErrUnderflow
  1.1792 +	asm("trealxgettreal32y:");
  1.1793 +	asm("xor edx, edx");
  1.1794 +	asm("shr ecx, 17");
  1.1795 +	asm("rcr edx, 1");						// sign bit into edx bit 31, rest of edx=0
  1.1796 +	asm("ret");
  1.1797 +	}
  1.1798 +
  1.1799 +
  1.1800 +
  1.1801 +
  1.1802 +LOCAL_C __NAKED__ void TRealXGetTReal64(void)
  1.1803 +	{
  1.1804 +	// Convert TRealX in ecx,edx:ebx to TReal64 in edx:ebx
  1.1805 +	// Return error code in eax
  1.1806 +	// edi, esi also modified
  1.1807 +	asm("ror ecx, 16");						// exponent into cx
  1.1808 +	asm("cmp cx, 0xFFFF");					// check for infinity/NaN
  1.1809 +	asm("jnc short trealxgettreal64a");
  1.1810 +	asm("xor eax, eax");
  1.1811 +	asm("xor edi, edi");
  1.1812 +	asm("sub cx, 0x7C00");					// cx=result exponent if normalised
  1.1813 +	asm("jbe short trealxgettreal64b");		// jump if denormal, zero or underflow
  1.1814 +	asm("cmp cx, 0x07FF");					// check if overflow
  1.1815 +	asm("jb short trealxgettreal64c");		// jump if not
  1.1816 +	asm("trealxgettreal64d:");				// come here if overflow
  1.1817 +	asm("xor edx, edx");					// set mantissa=0 to generate infinity
  1.1818 +	asm("xor ebx, ebx");
  1.1819 +	asm("trealxgettreal64a:");				// come here if infinity or NaN
  1.1820 +	asm("mov cl, 10");
  1.1821 +	asm("shrd ebx, edx, cl");
  1.1822 +	asm("shr edx, cl");
  1.1823 +	asm("or edx, 0xFFE00000");				// set exponent to 7FF
  1.1824 +	asm("shr ecx, 17");						// sign bit -> carry
  1.1825 +	asm("rcr edx, 1");						// sign bit -> MSB of result
  1.1826 +	asm("rcr ebx, 1");
  1.1827 +	asm("mov eax, edx");
  1.1828 +	asm("shl eax, 12");						// test for infinity or NaN
  1.1829 +	asm("mov eax, -9");						// eax=KErrOverflow
  1.1830 +	asm("jnz short trealxgettreal64n");
  1.1831 +	asm("test ebx, ebx");
  1.1832 +	asm("jz short trealxgettreal64e");
  1.1833 +	asm("trealxgettreal64n:");
  1.1834 +	asm("mov eax, -6");						// if NaN, eax=KErrArgument
  1.1835 +	asm("trealxgettreal64e:");
  1.1836 +	asm("ret");
  1.1837 +	asm("trealxgettreal64b:");				// come here if exponent<=7C00
  1.1838 +	asm("cmp cx, -53");						// check for zero or total underflow
  1.1839 +	asm("jle short trealxgettreal64z");
  1.1840 +	asm("neg cl");
  1.1841 +	asm("inc cl");							// cl=number of right shifts to form denormal mantissa
  1.1842 +	asm("cmp cl, 32");
  1.1843 +	asm("jb trealxgettreal64x");
  1.1844 +	asm("mov eax, ebx");					// if >=32 shifts, do 32 shifts and decrement count by 32
  1.1845 +	asm("mov ebx, edx");
  1.1846 +	asm("xor edx, edx");
  1.1847 +	asm("trealxgettreal64x:");
  1.1848 +	asm("shrd edi, eax, cl");
  1.1849 +	asm("shrd eax, ebx, cl");				// shift mantissa right into eax
  1.1850 +	asm("shrd ebx, edx, cl");
  1.1851 +	asm("shr edx, cl");
  1.1852 +	asm("or edx, 0x80000000");				// set top bit to ensure correct rounding up
  1.1853 +	asm("xor cx, cx");						// cx=result exponent=0
  1.1854 +	asm("trealxgettreal64c:");				// come here if result normalised
  1.1855 +	asm("mov esi, ebx");
  1.1856 +	asm("and esi, 0x7FF");					// esi=rounding bits
  1.1857 +	asm("cmp esi, 0x400");					// check rounding bits
  1.1858 +	asm("ja short trealxgettreal64f");		// branch to round up
  1.1859 +	asm("jb short trealxgettreal64g");		// branch to round down
  1.1860 +	asm("test eax, eax");
  1.1861 +	asm("jnz short trealxgettreal64f");		// branch to round up
  1.1862 +	asm("test edi, edi");
  1.1863 +	asm("jnz short trealxgettreal64f");		// branch to round up
  1.1864 +	asm("test ecx, 0x01000000");			// check rounded-down flag
  1.1865 +	asm("jnz short trealxgettreal64f");		// branch to round up
  1.1866 +	asm("test ecx, 0x02000000");			// check rounded-up flag
  1.1867 +	asm("jnz short trealxgettreal64g");		// branch to round down
  1.1868 +	asm("test ebx, 0x800");					// else round to even
  1.1869 +	asm("jz short trealxgettreal64g");		// branch to round down if LSB=0
  1.1870 +	asm("trealxgettreal64f:");				// come here to round up
  1.1871 +	asm("add ebx, 0x800");					// increment mantissa
  1.1872 +	asm("adc edx, 0");
  1.1873 +	asm("jnc short trealxgettreal64g");
  1.1874 +	asm("rcr edx, 1");
  1.1875 +	asm("inc cx");							// if carry, increment exponent
  1.1876 +	asm("cmp cx, 0x7FF");					// and check for overflow
  1.1877 +	asm("jz short trealxgettreal64d");		// branch out if overflow
  1.1878 +	asm("trealxgettreal64g:");				// come here to round down
  1.1879 +	asm("xor bl, bl");						// clear rounding bits
  1.1880 +	asm("and bh, 0xF8");
  1.1881 +	asm("mov di, cx");						// save exponent
  1.1882 +	asm("mov cl, 10");
  1.1883 +	asm("and edx, 0x7FFFFFFF");				// clear integer bit
  1.1884 +	asm("shrd ebx, edx, cl");				// shift mantissa right by 10
  1.1885 +	asm("shr edx, cl");
  1.1886 +	asm("shl edi, 21");						// exponent into edi bits 21-31
  1.1887 +	asm("or edx, edi");						// into edx bits 21-31
  1.1888 +	asm("test edx, edx");					// check if underflow
  1.1889 +	asm("jnz short trealxgettreal64i");
  1.1890 +	asm("test ebx, ebx");
  1.1891 +	asm("jz short trealxgettreal64h");		// branch out if underflow
  1.1892 +	asm("trealxgettreal64i:");
  1.1893 +	asm("shr ecx, 17");						// sign bit->carry
  1.1894 +	asm("rcr edx, 1");						// ->edx bit 31, exp->edx bits 20-30, mant->edx bits 20-0
  1.1895 +	asm("rcr ebx, 1");
  1.1896 +	asm("xor eax, eax");					// return KErrNone
  1.1897 +	asm("ret");
  1.1898 +	asm("trealxgettreal64z:");				// come here if zero or underflow
  1.1899 +	asm("xor eax, eax");
  1.1900 +	asm("cmp cx, 0x8400");					// check for zero
  1.1901 +	asm("jz short trealxgettreal64y");		// if zero, return KErrNone
  1.1902 +	asm("trealxgettreal64h:");				// come here if underflow after rounding
  1.1903 +	asm("mov eax, -10");					// eax=KErrUnderflow
  1.1904 +	asm("trealxgettreal64y:");
  1.1905 +	asm("xor edx, edx");
  1.1906 +	asm("xor ebx, ebx");
  1.1907 +	asm("shr ecx, 17");
  1.1908 +	asm("rcr edx, 1");						// sign bit into edx bit 31, rest of edx=0, ebx=0
  1.1909 +	asm("ret");
  1.1910 +	}
  1.1911 +
  1.1912 +
  1.1913 +
  1.1914 +
  1.1915 +__NAKED__ EXPORT_C TRealX::operator TReal32() const
  1.1916 +/**
  1.1917 +Returns the extended precision value as
  1.1918 +a single precision floating point value.
  1.1919 +*/
  1.1920 +	{
  1.1921 +	// On entry, ecx=this
  1.1922 +	// On exit, TReal32 value on top of FPU stack
  1.1923 +	THISCALL_PROLOG0()
  1.1924 +	asm("push ecx");
  1.1925 +	asm("push ebx");
  1.1926 +	asm("mov ebx, [ecx]");					// *this into ecx,edx:ebx
  1.1927 +	asm("mov edx, [ecx+4]");
  1.1928 +	asm("mov ecx, [ecx+8]");
  1.1929 +	asm("call %a0": : "i"(&TRealXGetTReal32));	// Convert to TReal32 in edx
  1.1930 +	asm("push edx");						// push TReal32 onto stack
  1.1931 +	asm("fld dword ptr [esp]");				// push TReal32 onto FPU stack
  1.1932 +	asm("pop edx");
  1.1933 +	asm("pop ebx");
  1.1934 +	asm("pop ecx");
  1.1935 +	THISCALL_EPILOG0()
  1.1936 +	}
  1.1937 +
  1.1938 +
  1.1939 +
  1.1940 +
  1.1941 +__NAKED__ EXPORT_C TRealX::operator TReal64() const
  1.1942 +/**
  1.1943 +Returns the extended precision value as
  1.1944 +a double precision floating point value.
  1.1945 +*/
  1.1946 +	{
  1.1947 +	// On entry, ecx=this
  1.1948 +	// On exit, TReal64 value on top of FPU stack
  1.1949 +	THISCALL_PROLOG0()
  1.1950 +	asm("push ecx");
  1.1951 +	asm("push ebx");
  1.1952 +	asm("push esi");
  1.1953 +	asm("push edi");
  1.1954 +	asm("mov ebx, [ecx]");						// *this into ecx,edx:ebx
  1.1955 +	asm("mov edx, [ecx+4]");
  1.1956 +	asm("mov ecx, [ecx+8]");
  1.1957 +	asm("call %a0": : "i"(&TRealXGetTReal64));	// Convert to TReal32 in edx:ebx
  1.1958 +	asm("push edx");							// push TReal64 onto stack
  1.1959 +	asm("push ebx");
  1.1960 +	asm("fld qword ptr [esp]");					// push TReal64 onto FPU stack
  1.1961 +	asm("add esp, 8");
  1.1962 +	asm("pop edi");
  1.1963 +	asm("pop esi");
  1.1964 +	asm("pop ebx");
  1.1965 +	asm("pop ecx");
  1.1966 +	THISCALL_EPILOG0()
  1.1967 +	}
  1.1968 +
  1.1969 +
  1.1970 +
  1.1971 +
  1.1972 +__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal32& /*aVal*/) const
  1.1973 +/**
  1.1974 +Extracts the extended precision value as
  1.1975 +a single precision floating point value.
  1.1976 +
  1.1977 +@param aVal A reference to a single precision object which contains
  1.1978 +the result of the operation.
  1.1979 +
  1.1980 +@return KErrNone, if the operation is successful;
  1.1981 +KErrOverflow, if the operation results in overflow;
  1.1982 +KErrUnderflow, if the operation results in underflow.
  1.1983 +*/
  1.1984 +	{
  1.1985 +	// On entry, ecx=this, [esp+4]=address of aVal
  1.1986 +	// On exit, eax=return code
  1.1987 +	THISCALL_PROLOG1()
  1.1988 +	asm("push ecx");
  1.1989 +	asm("push ebx");
  1.1990 +	asm("mov ebx, [ecx]");						// *this into ecx,edx:ebx
  1.1991 +	asm("mov edx, [ecx+4]");
  1.1992 +	asm("mov ecx, [ecx+8]");
  1.1993 +	asm("call %a0": : "i"(&TRealXGetTReal32));
  1.1994 +	asm("mov ecx, [esp+12]");					// ecx=address of aVal
  1.1995 +	asm("mov [ecx], edx");						// store result
  1.1996 +	asm("pop ebx");
  1.1997 +	asm("pop ecx");
  1.1998 +	THISCALL_EPILOG1()							// return with error code in eax
  1.1999 +	}
  1.2000 +
  1.2001 +
  1.2002 +
  1.2003 +
  1.2004 +__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal64& /*aVal*/) const
  1.2005 +/**
  1.2006 +Extracts the extended precision value as
  1.2007 +a double precision floating point value.
  1.2008 +
  1.2009 +@param aVal A reference to a double precision object which
  1.2010 +contains the result of the operation.
  1.2011 +
  1.2012 +@return KErrNone, if the operation is successful;
  1.2013 +KErrOverflow, if the operation results in overflow;
  1.2014 +KErrUnderflow, if the operation results in underflow.
  1.2015 +*/
  1.2016 +	{
  1.2017 +	// On entry, ecx=this, [esp+4]=address of aVal
  1.2018 +	// On exit, eax=return code
  1.2019 +	THISCALL_PROLOG1()
  1.2020 +	asm("push ecx");
  1.2021 +	asm("push ebx");
  1.2022 +	asm("push esi");
  1.2023 +	asm("push edi");
  1.2024 +	asm("mov ebx, [ecx]");						// *this into ecx,edx:ebx
  1.2025 +	asm("mov edx, [ecx+4]");
  1.2026 +	asm("mov ecx, [ecx+8]");
  1.2027 +	asm("call %a0": : "i"(&TRealXGetTReal64));
  1.2028 +	asm("mov ecx, [esp+20]");					// ecx=address of aVal
  1.2029 +	asm("mov [ecx], ebx");						// store result
  1.2030 +	asm("mov [ecx+4], edx");
  1.2031 +	asm("pop edi");
  1.2032 +	asm("pop esi");
  1.2033 +	asm("pop ebx");
  1.2034 +	asm("pop ecx");
  1.2035 +	THISCALL_EPILOG1()							// return with error code in eax
  1.2036 +	}
  1.2037 +
  1.2038 +
  1.2039 +
  1.2040 +
  1.2041 +__NAKED__ EXPORT_C void TRealX::SetZero(TBool /*aNegative*/)
  1.2042 +/**
  1.2043 +Sets the value of this extended precision object to zero.
  1.2044 +
  1.2045 +@param aNegative ETrue, the value is a negative zero;
  1.2046 +EFalse, the value is a positive zero, this is the default.
  1.2047 +*/
  1.2048 +	{
  1.2049 +	THISCALL_PROLOG1()
  1.2050 +	asm("mov edx, [esp+4]");		// aNegative into edx
  1.2051 +	asm("xor eax, eax");			// eax=0
  1.2052 +	asm("mov [ecx], eax");
  1.2053 +	asm("mov [ecx+4], eax");
  1.2054 +	asm("test edx, edx");
  1.2055 +	asm("jz short setzero1");
  1.2056 +	asm("inc eax");					// eax=1 if aNegative!=0
  1.2057 +	asm("setzero1:");
  1.2058 +	asm("mov [ecx+8], eax");		// generate positive or negative zero
  1.2059 +	THISCALL_EPILOG1()
  1.2060 +	}
  1.2061 +
  1.2062 +
  1.2063 +
  1.2064 +
  1.2065 +__NAKED__ EXPORT_C void TRealX::SetNaN()
  1.2066 +/**
  1.2067 +Sets the value of this extended precision object to 'not a number'.
  1.2068 +*/
  1.2069 +	{
  1.2070 +	THISCALL_PROLOG0()
  1.2071 +	asm("xor eax, eax");			// set *this to 'real indefinite'
  1.2072 +	asm("mov [ecx], eax");
  1.2073 +	asm("mov eax, 0xC0000000");
  1.2074 +	asm("mov [ecx+4], eax");
  1.2075 +	asm("mov eax, 0xFFFF0001");
  1.2076 +	asm("mov [ecx+8], eax");
  1.2077 +	THISCALL_EPILOG0()
  1.2078 +	}
  1.2079 +
  1.2080 +
  1.2081 +
  1.2082 +
  1.2083 +__NAKED__ EXPORT_C void TRealX::SetInfinite(TBool /*aNegative*/)
  1.2084 +/**
  1.2085 +Sets the value of this extended precision object to infinity.
  1.2086 +
  1.2087 +@param aNegative ETrue, the value is a negative zero;
  1.2088 +EFalse, the value is a positive zero.
  1.2089 +*/
  1.2090 +	{
  1.2091 +	THISCALL_PROLOG1()
  1.2092 +	asm("mov edx, [esp+4]");			// aNegative into edx
  1.2093 +	asm("mov eax, 0xFFFF0000");			// exponent=FFFF, sign=0 initially
  1.2094 +	asm("test edx, edx");
  1.2095 +	asm("jz short setinf1");
  1.2096 +	asm("inc eax");						// sign=1 if aNegative!=0
  1.2097 +	asm("setinf1:");
  1.2098 +	asm("mov [ecx+8], eax");
  1.2099 +	asm("mov eax, 0x80000000");			// generate positive or negative infinity
  1.2100 +	asm("mov [ecx+4], eax");
  1.2101 +	asm("xor eax, eax");
  1.2102 +	asm("mov [ecx], eax");
  1.2103 +	THISCALL_EPILOG1()
  1.2104 +	}
  1.2105 +
  1.2106 +
  1.2107 +
  1.2108 +
  1.2109 +__NAKED__ EXPORT_C TBool TRealX::IsZero() const
  1.2110 +/**
  1.2111 +Determines whether the extended precision value is zero.
  1.2112 +
  1.2113 +@return True, if the extended precision value is zero, false, otherwise.
  1.2114 +*/
  1.2115 +	{
  1.2116 +	THISCALL_PROLOG0()
  1.2117 +	asm("mov eax, [ecx+8]");		// check exponent
  1.2118 +	asm("shr eax, 16");				// move exponent into ax
  1.2119 +	asm("jz short iszero1");		// branch if zero
  1.2120 +	asm("xor eax, eax");			// else return 0
  1.2121 +	THISCALL_EPILOG0()
  1.2122 +	asm("iszero1:");
  1.2123 +	asm("inc eax");					// if zero, return 1
  1.2124 +	THISCALL_EPILOG0()
  1.2125 +	}
  1.2126 +
  1.2127 +
  1.2128 +
  1.2129 +
  1.2130 +__NAKED__ EXPORT_C TBool TRealX::IsNaN() const
  1.2131 +/**
  1.2132 +Determines whether the extended precision value is 'not a number'.
  1.2133 +
  1.2134 +@return True, if the extended precision value is 'not a number',
  1.2135 +false, otherwise.
  1.2136 +*/
  1.2137 +	{
  1.2138 +	THISCALL_PROLOG0()
  1.2139 +	asm("mov eax, [ecx+8]");		// check exponent
  1.2140 +	asm("cmp eax, 0xFFFF0000");
  1.2141 +	asm("jc short isnan0");			// branch if not FFFF
  1.2142 +	asm("mov eax, [ecx+4]");
  1.2143 +	asm("cmp eax, 0x80000000");		// check for infinity
  1.2144 +	asm("jne short isnan1");
  1.2145 +	asm("mov eax, [ecx]");
  1.2146 +	asm("test eax, eax");
  1.2147 +	asm("jne short isnan1");
  1.2148 +	asm("isnan0:");
  1.2149 +	asm("xor eax, eax");			// return 0 if not NaN
  1.2150 +	THISCALL_EPILOG0()
  1.2151 +	asm("isnan1:");
  1.2152 +	asm("mov eax, 1");				// return 1 if NaN
  1.2153 +	THISCALL_EPILOG0()
  1.2154 +	}
  1.2155 +
  1.2156 +
  1.2157 +
  1.2158 +
  1.2159 +__NAKED__ EXPORT_C TBool TRealX::IsInfinite() const
  1.2160 +/**
  1.2161 +Determines whether the extended precision value has a finite value.
  1.2162 +
  1.2163 +@return True, if the extended precision value is finite,
  1.2164 +false, if the value is 'not a number' or is infinite,
  1.2165 +*/
  1.2166 +	{
  1.2167 +	THISCALL_PROLOG0()
  1.2168 +	asm("mov eax, [ecx+8]");			// check exponent
  1.2169 +	asm("cmp eax, 0xFFFF0000");
  1.2170 +	asm("jc short isinf0");				// branch if not FFFF
  1.2171 +	asm("mov eax, [ecx+4]");
  1.2172 +	asm("cmp eax, 0x80000000");			// check for infinity
  1.2173 +	asm("jne short isinf0");
  1.2174 +	asm("mov eax, [ecx]");
  1.2175 +	asm("test eax, eax");
  1.2176 +	asm("jne short isinf0");
  1.2177 +	asm("inc eax");						// return 1 if infinity
  1.2178 +	THISCALL_EPILOG0()
  1.2179 +	asm("isinf0:");
  1.2180 +	asm("xor eax, eax");				// return 0 if not infinity
  1.2181 +	THISCALL_EPILOG0()
  1.2182 +	}
  1.2183 +
  1.2184 +
  1.2185 +
  1.2186 +
  1.2187 +__NAKED__ EXPORT_C TBool TRealX::IsFinite() const
  1.2188 +/**
  1.2189 +Determines whether the extended precision value has a finite value.
  1.2190 +
  1.2191 +@return True, if the extended precision value is finite,
  1.2192 +false, if the value is 'not a number' or is infinite,
  1.2193 +*/
  1.2194 +	{
  1.2195 +	THISCALL_PROLOG0()
  1.2196 +	asm("mov eax, [ecx+8]");			// check exponent
  1.2197 +	asm("cmp eax, 0xFFFF0000");			// check for NaN or infinity
  1.2198 +	asm("jnc short isfinite0");			// branch if NaN or infinity
  1.2199 +	asm("mov eax, 1");					// return 1 if finite
  1.2200 +	THISCALL_EPILOG0()
  1.2201 +	asm("isfinite0:");
  1.2202 +	asm("xor eax, eax");				// return 0 if NaN or infinity
  1.2203 +	THISCALL_EPILOG0()
  1.2204 +	}
  1.2205 +
  1.2206 +
  1.2207 +
  1.2208 +
  1.2209 +__NAKED__ EXPORT_C const TRealX& TRealX::operator+=(const TRealX& /*aVal*/)
  1.2210 +/**
  1.2211 +Adds an extended precision value to this extended precision number.
  1.2212 +
  1.2213 +@param aVal The extended precision value to be added.
  1.2214 +
  1.2215 +@return A reference to this object.
  1.2216 +
  1.2217 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2218 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2219 +*/
  1.2220 +	{
  1.2221 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2222 +	THISCALL_PROLOG1()
  1.2223 +	asm("push ebx");					// save registers
  1.2224 +	asm("push ebp");
  1.2225 +	asm("push esi");
  1.2226 +	asm("push edi");
  1.2227 +	asm("mov esi, ecx");				// this into esi
  1.2228 +	asm("mov ecx, [esp+20]");			// address of aVal into ecx
  1.2229 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2230 +	asm("mov edx, [ecx+4]");
  1.2231 +	asm("mov ecx, [ecx+8]");
  1.2232 +	asm("call %a0": :"i"(&TRealXAdd));	// do addition, result in ecx,edx:ebx, error code in eax
  1.2233 +	asm("mov [esi], ebx");				// store result in *this
  1.2234 +	asm("mov [esi+4], edx");
  1.2235 +	asm("mov [esi+8], ecx");
  1.2236 +	asm("test eax, eax");
  1.2237 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2238 +	asm("mov eax, esi");				// return this in eax
  1.2239 +	asm("mov ecx, esi");				// restore registers
  1.2240 +	asm("pop edi");
  1.2241 +	asm("pop esi");
  1.2242 +	asm("pop ebp");
  1.2243 +	asm("pop ebx");
  1.2244 +	THISCALL_EPILOG1()
  1.2245 +	}
  1.2246 +
  1.2247 +
  1.2248 +
  1.2249 +
  1.2250 +__NAKED__ EXPORT_C const TRealX& TRealX::operator-=(const TRealX& /*aVal*/)
  1.2251 +/**
  1.2252 +Subtracts an extended precision value from this extended precision number.
  1.2253 +
  1.2254 +@param aVal The extended precision value to be subtracted.
  1.2255 +
  1.2256 +@return A reference to this object.
  1.2257 +
  1.2258 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2259 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2260 +*/
  1.2261 +	{
  1.2262 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2263 +	THISCALL_PROLOG1()
  1.2264 +	asm("push ebx");						// save registers
  1.2265 +	asm("push ebp");
  1.2266 +	asm("push esi");
  1.2267 +	asm("push edi");
  1.2268 +	asm("mov esi, ecx");					// this into esi
  1.2269 +	asm("mov ecx, [esp+20]");				// address of aVal into ecx
  1.2270 +	asm("mov ebx, [ecx]");					// aVal into ecx,edx:ebx
  1.2271 +	asm("mov edx, [ecx+4]");
  1.2272 +	asm("mov ecx, [ecx+8]");
  1.2273 +	asm("call %a0": : "i"(&TRealXSubtract));	// do subtraction, result in ecx,edx:ebx, error code in eax
  1.2274 +	asm("mov [esi], ebx");					// store result in *this
  1.2275 +	asm("mov [esi+4], edx");
  1.2276 +	asm("mov [esi+8], ecx");
  1.2277 +	asm("test eax, eax");
  1.2278 +	_ASM_jn(z,TRealXPanicEax)				// panic if error
  1.2279 +	asm("mov eax, esi");					// return this in eax
  1.2280 +	asm("mov ecx, esi");					// restore registers
  1.2281 +	asm("pop edi");
  1.2282 +	asm("pop esi");
  1.2283 +	asm("pop ebp");
  1.2284 +	asm("pop ebx");
  1.2285 +	THISCALL_EPILOG1()
  1.2286 +	}
  1.2287 +
  1.2288 +
  1.2289 +
  1.2290 +
  1.2291 +__NAKED__ EXPORT_C const TRealX& TRealX::operator*=(const TRealX& /*aVal*/)
  1.2292 +/**
  1.2293 +Multiplies this extended precision number by an extended precision value.
  1.2294 +
  1.2295 +@param aVal The extended precision value to be subtracted.
  1.2296 +
  1.2297 +@return A reference to this object.
  1.2298 +
  1.2299 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2300 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2301 +*/
  1.2302 +	{
  1.2303 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2304 +	THISCALL_PROLOG1()
  1.2305 +	asm("push ebx");					// save registers
  1.2306 +	asm("push ebp");
  1.2307 +	asm("push esi");
  1.2308 +	asm("push edi");
  1.2309 +	asm("mov esi, ecx");				// esi = this
  1.2310 +	asm("mov ecx, [esp+20]");			// address of aVal into ecx
  1.2311 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2312 +	asm("mov edx, [ecx+4]");
  1.2313 +	asm("mov ecx, [ecx+8]");
  1.2314 +	asm("call %a0": : "i"(&TRealXMultiply)); // do multiplication, result in ecx,edx:ebx, error code in eax
  1.2315 +	asm("mov [esi], ebx");				// store result in *this
  1.2316 +	asm("mov [esi+4], edx");
  1.2317 +	asm("mov [esi+8], ecx");
  1.2318 +	asm("test eax, eax");
  1.2319 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2320 +	asm("mov eax, esi");				// return this in eax
  1.2321 +	asm("mov ecx, esi");				// restore registers
  1.2322 +	asm("pop edi");
  1.2323 +	asm("pop esi");
  1.2324 +	asm("pop ebp");
  1.2325 +	asm("pop ebx");
  1.2326 +	THISCALL_EPILOG1()
  1.2327 +	}
  1.2328 +
  1.2329 +
  1.2330 +
  1.2331 +
  1.2332 +__NAKED__ EXPORT_C const TRealX& TRealX::operator/=(const TRealX& /*aVal*/)
  1.2333 +/**
  1.2334 +Divides this extended precision number by an extended precision value.
  1.2335 +
  1.2336 +@param aVal The extended precision value to be used as the divisor.
  1.2337 +
  1.2338 +@return A reference to this object.
  1.2339 +
  1.2340 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2341 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2342 +@panic MATHX KErrDivideByZero if the divisor is zero.
  1.2343 +*/
  1.2344 +	{
  1.2345 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2346 +	THISCALL_PROLOG1()
  1.2347 +	asm("push ebx");
  1.2348 +	asm("push ebp");
  1.2349 +	asm("push esi");
  1.2350 +	asm("push edi");
  1.2351 +	asm("mov esi, ecx");				// this into esi
  1.2352 +	asm("mov ecx, [esp+20]");			// address of aVal into ecx
  1.2353 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2354 +	asm("mov edx, [ecx+4]");
  1.2355 +	asm("mov ecx, [ecx+8]");
  1.2356 +	asm("call %a0": : "i"(&TRealXDivide));	// do division, result in ecx,edx:ebx, error code in eax
  1.2357 +	asm("mov [esi], ebx");				// store result in *this
  1.2358 +	asm("mov [esi+4], edx");
  1.2359 +	asm("mov [esi+8], ecx");
  1.2360 +	asm("test eax, eax");
  1.2361 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2362 +	asm("mov eax, esi");				// return this in eax
  1.2363 +	asm("mov ecx, esi");				// restore registers
  1.2364 +	asm("pop edi");
  1.2365 +	asm("pop esi");
  1.2366 +	asm("pop ebp");
  1.2367 +	asm("pop ebx");
  1.2368 +	THISCALL_EPILOG1()
  1.2369 +	}
  1.2370 +
  1.2371 +
  1.2372 +
  1.2373 +
  1.2374 +__NAKED__ EXPORT_C const TRealX& TRealX::operator%=(const TRealX& /*aVal*/)
  1.2375 +/**
  1.2376 +Modulo-divides this extended precision number by an extended precision value.
  1.2377 +
  1.2378 +@param aVal The extended precision value to be used as the divisor.
  1.2379 +
  1.2380 +@return A reference to this object.
  1.2381 +
  1.2382 +@panic MATHX KErrTotalLossOfPrecision panic if precision is lost.
  1.2383 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2384 +*/
  1.2385 +	{
  1.2386 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2387 +	THISCALL_PROLOG1()
  1.2388 +	asm("push ebx");
  1.2389 +	asm("push ebp");
  1.2390 +	asm("push esi");
  1.2391 +	asm("push edi");
  1.2392 +	asm("mov esi, ecx");				// this into esi
  1.2393 +	asm("mov ecx, [esp+20]");			// address of aVal into ecx
  1.2394 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2395 +	asm("mov edx, [ecx+4]");
  1.2396 +	asm("mov ecx, [ecx+8]");
  1.2397 +	asm("call %a0": : "i"(&TRealXModulo));	// do modulo, result in ecx,edx:ebx, error code in eax
  1.2398 +	asm("mov [esi], ebx");				// store result in *this
  1.2399 +	asm("mov [esi+4], edx");
  1.2400 +	asm("mov [esi+8], ecx");
  1.2401 +	asm("test eax, eax");
  1.2402 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2403 +	asm("mov eax, esi");				// return this in eax
  1.2404 +	asm("mov ecx, esi");				// restore registers
  1.2405 +	asm("pop edi");
  1.2406 +	asm("pop esi");
  1.2407 +	asm("pop ebp");
  1.2408 +	asm("pop ebx");
  1.2409 +	THISCALL_EPILOG1()
  1.2410 +	}
  1.2411 +
  1.2412 +
  1.2413 +
  1.2414 +
  1.2415 +__NAKED__ EXPORT_C TInt TRealX::AddEq(const TRealX& /*aVal*/)
  1.2416 +/**
  1.2417 +Adds an extended precision value to this extended precision number.
  1.2418 +
  1.2419 +@param aVal The extended precision value to be added.
  1.2420 +
  1.2421 +@return KErrNone, if the operation is successful;
  1.2422 +KErrOverflow,if the operation results in overflow;
  1.2423 +KErrUnderflow, if the operation results in underflow.
  1.2424 +*/
  1.2425 +	{
  1.2426 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2427 +	THISCALL_PROLOG1()
  1.2428 +	asm("push ebx");					// save registers
  1.2429 +	asm("push ebp");
  1.2430 +	asm("push esi");
  1.2431 +	asm("push edi");
  1.2432 +	asm("mov esi, ecx");				// this into esi
  1.2433 +	asm("mov ecx, [esp+20]");			// address of aVal into ecx
  1.2434 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2435 +	asm("mov edx, [ecx+4]");
  1.2436 +	asm("mov ecx, [ecx+8]");
  1.2437 +	asm("call %a0": :"i"(&TRealXAdd));	// do addition, result in ecx,edx:ebx, error code in eax
  1.2438 +	asm("mov [esi], ebx");				// store result
  1.2439 +	asm("mov [esi+4], edx");
  1.2440 +	asm("mov [esi+8], ecx");
  1.2441 +	asm("mov ecx, esi");				// restore registers
  1.2442 +	asm("pop edi");
  1.2443 +	asm("pop esi");
  1.2444 +	asm("pop ebp");
  1.2445 +	asm("pop ebx");
  1.2446 +	THISCALL_EPILOG1()					// return with error code in eax
  1.2447 +	}
  1.2448 +
  1.2449 +
  1.2450 +
  1.2451 +
  1.2452 +__NAKED__ EXPORT_C TInt TRealX::SubEq(const TRealX& /*aVal*/)
  1.2453 +/**
  1.2454 +Subtracts an extended precision value from this extended precision number.
  1.2455 +
  1.2456 +@param aVal The extended precision value to be subtracted.
  1.2457 +
  1.2458 +@return KErrNone, if the operation is successful;
  1.2459 +KErrOverflow, if the operation results in overflow;
  1.2460 +KErrUnderflow, if the operation results in underflow.
  1.2461 +*/
  1.2462 +	{
  1.2463 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2464 +	THISCALL_PROLOG1()
  1.2465 +	asm("push ebx");					// save registers
  1.2466 +	asm("push ebp");
  1.2467 +	asm("push esi");
  1.2468 +	asm("push edi");
  1.2469 +	asm("mov esi, ecx");				// this into esi
  1.2470 +	asm("mov ecx, [esp+20]");			// address of aVal into ecx
  1.2471 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2472 +	asm("mov edx, [ecx+4]");
  1.2473 +	asm("mov ecx, [ecx+8]");
  1.2474 +	asm("call %a0": : "i"(&TRealXSubtract));	// do subtraction, result in ecx,edx:ebx, error code in eax
  1.2475 +	asm("mov [esi], ebx");				// store result
  1.2476 +	asm("mov [esi+4], edx");
  1.2477 +	asm("mov [esi+8], ecx");
  1.2478 +	asm("mov ecx, esi");				// restore registers
  1.2479 +	asm("pop edi");
  1.2480 +	asm("pop esi");
  1.2481 +	asm("pop ebp");
  1.2482 +	asm("pop ebx");
  1.2483 +	THISCALL_EPILOG1()					// return with error code in eax
  1.2484 +	}
  1.2485 +
  1.2486 +
  1.2487 +
  1.2488 +
  1.2489 +__NAKED__ EXPORT_C TInt TRealX::MultEq(const TRealX& /*aVal*/)
  1.2490 +/**
  1.2491 +Multiplies this extended precision number by an extended precision value.
  1.2492 +
  1.2493 +@param aVal The extended precision value to be used as the multiplier.
  1.2494 +
  1.2495 +@return KErrNone, if the operation is successful;
  1.2496 +KErrOverflow, if the operation results in overflow;
  1.2497 +KErrUnderflow, if the operation results in underflow
  1.2498 +*/
  1.2499 +	{
  1.2500 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2501 +	THISCALL_PROLOG1()
  1.2502 +	asm("push ebx");					// save registers
  1.2503 +	asm("push ebp");
  1.2504 +	asm("push esi");
  1.2505 +	asm("push edi");
  1.2506 +	asm("mov esi, ecx");				// this into esi
  1.2507 +	asm("mov ecx, [esp+20]");			// address of aVal into ecx
  1.2508 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2509 +	asm("mov edx, [ecx+4]");
  1.2510 +	asm("mov ecx, [ecx+8]");
  1.2511 +	asm("call %a0": : "i"(&TRealXMultiply));	// do multiplication, result in ecx,edx:ebx, error code in eax
  1.2512 +	asm("mov [esi], ebx");				// store result
  1.2513 +	asm("mov [esi+4], edx");
  1.2514 +	asm("mov [esi+8], ecx");
  1.2515 +	asm("mov ecx, esi");				// restore registers
  1.2516 +	asm("pop edi");
  1.2517 +	asm("pop esi");
  1.2518 +	asm("pop ebp");
  1.2519 +	asm("pop ebx");
  1.2520 +	THISCALL_EPILOG1()					// return with error code in eax
  1.2521 +	}
  1.2522 +
  1.2523 +
  1.2524 +
  1.2525 +
  1.2526 +__NAKED__ EXPORT_C TInt TRealX::DivEq(const TRealX& /*aVal*/)
  1.2527 +/**
  1.2528 +Divides this extended precision number by an extended precision value.
  1.2529 +
  1.2530 +@param aVal The extended precision value to be used as the divisor.
  1.2531 +
  1.2532 +@return KErrNone, if the operation is successful;
  1.2533 +KErrOverflow, if the operation results in overflow;
  1.2534 +KErrUnderflow, if the operation results in underflow;
  1.2535 +KErrDivideByZero, if the divisor is zero.
  1.2536 +*/
  1.2537 +	{
  1.2538 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2539 +	THISCALL_PROLOG1()
  1.2540 +	asm("push ebx");						// save registers
  1.2541 +	asm("push ebp");
  1.2542 +	asm("push esi");
  1.2543 +	asm("push edi");
  1.2544 +	asm("mov esi, ecx");					// this into esi
  1.2545 +	asm("mov ecx, [esp+20]");				// address of aVal into ecx
  1.2546 +	asm("mov ebx, [ecx]");					// aVal into ecx,edx:ebx
  1.2547 +	asm("mov edx, [ecx+4]");
  1.2548 +	asm("mov ecx, [ecx+8]");
  1.2549 +	asm("call %a0": : "i"(&TRealXDivide));	// do division, result in ecx,edx:ebx, error code in eax
  1.2550 +	asm("mov [esi], ebx");					// store result
  1.2551 +	asm("mov [esi+4], edx");
  1.2552 +	asm("mov [esi+8], ecx");
  1.2553 +	asm("mov ecx, esi");					// restore registers
  1.2554 +	asm("pop edi");
  1.2555 +	asm("pop esi");
  1.2556 +	asm("pop ebp");
  1.2557 +	asm("pop ebx");
  1.2558 +	THISCALL_EPILOG1()						// return with error code in eax
  1.2559 +	}
  1.2560 +
  1.2561 +
  1.2562 +
  1.2563 +
  1.2564 +__NAKED__ EXPORT_C TInt TRealX::ModEq(const TRealX& /*aVal*/)
  1.2565 +/**
  1.2566 +Modulo-divides this extended precision number by an extended precision value.
  1.2567 +
  1.2568 +@param aVal The extended precision value to be used as the divisor.
  1.2569 +
  1.2570 +@return KErrNone, if the operation is successful;
  1.2571 +KErrTotalLossOfPrecision, if precision is lost;
  1.2572 +KErrUnderflow, if the operation results in underflow.
  1.2573 +*/
  1.2574 +	{
  1.2575 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2576 +	THISCALL_PROLOG1()
  1.2577 +	asm("push ebx");					// save registers
  1.2578 +	asm("push ebp");
  1.2579 +	asm("push esi");
  1.2580 +	asm("push edi");
  1.2581 +	asm("mov esi, ecx");				// this into esi
  1.2582 +	asm("mov ecx, [esp+20]");			// address of aVal into ecx
  1.2583 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2584 +	asm("mov edx, [ecx+4]");
  1.2585 +	asm("mov ecx, [ecx+8]");
  1.2586 +	asm("call %a0": : "i"(&TRealXModulo));	// do modulo, result in ecx,edx:ebx, error code in eax
  1.2587 +	asm("mov [esi], ebx");				// store result
  1.2588 +	asm("mov [esi+4], edx");
  1.2589 +	asm("mov [esi+8], ecx");
  1.2590 +	asm("mov ecx, esi");				// restore registers
  1.2591 +	asm("pop edi");
  1.2592 +	asm("pop esi");
  1.2593 +	asm("pop ebp");
  1.2594 +	asm("pop ebx");
  1.2595 +	THISCALL_EPILOG1()					// return with error code in eax
  1.2596 +	}
  1.2597 +
  1.2598 +
  1.2599 +
  1.2600 +
  1.2601 +__NAKED__ EXPORT_C TRealX TRealX::operator+() const
  1.2602 +/**
  1.2603 +Returns this extended precision number unchanged.
  1.2604 +
  1.2605 +Note that this may also be referred to as a unary plus operator.
  1.2606 +
  1.2607 +@return The extended precision number.
  1.2608 +*/
  1.2609 +	{
  1.2610 +	THISCALL_PROLOG0_BIGRETVAL()
  1.2611 +	asm("mov eax, [esp+4]");			// eax=address to write return value
  1.2612 +	asm("mov edx, [ecx]");
  1.2613 +	asm("mov [eax], edx");
  1.2614 +	asm("mov edx, [ecx+4]");
  1.2615 +	asm("mov [eax+4], edx");
  1.2616 +	asm("mov edx, [ecx+8]");
  1.2617 +	asm("mov [eax+8], edx");			// return address of return value in eax
  1.2618 +	THISCALL_EPILOG0_BIGRETVAL()
  1.2619 +	}
  1.2620 +
  1.2621 +
  1.2622 +
  1.2623 +
  1.2624 +__NAKED__ EXPORT_C TRealX TRealX::operator-() const
  1.2625 +/**
  1.2626 +Negates this extended precision number.
  1.2627 +
  1.2628 +This may also be referred to as a unary minus operator.
  1.2629 +
  1.2630 +@return The negative of the extended precision number.
  1.2631 +*/
  1.2632 +	{
  1.2633 +	THISCALL_PROLOG0_BIGRETVAL()		
  1.2634 +	asm("mov eax, [esp+4]");			// eax=address to write return value
  1.2635 +	asm("mov edx, [ecx]");
  1.2636 +	asm("mov [eax], edx");
  1.2637 +	asm("mov edx, [ecx+4]");
  1.2638 +	asm("mov [eax+4], edx");
  1.2639 +	asm("mov edx, [ecx+8]");
  1.2640 +	asm("xor dl, 1");					// change sign bit
  1.2641 +	asm("mov [eax+8], edx");			
  1.2642 +	THISCALL_EPILOG0_BIGRETVAL()		// return address of return value in eax
  1.2643 +	}
  1.2644 +
  1.2645 +
  1.2646 +
  1.2647 +
  1.2648 +__NAKED__ EXPORT_C TRealX& TRealX::operator++()
  1.2649 +/**
  1.2650 +Increments this extended precision number by one,
  1.2651 +and then returns a reference to it.
  1.2652 +
  1.2653 +This is also referred to as a prefix operator.
  1.2654 +
  1.2655 +@return A reference to this object.
  1.2656 +
  1.2657 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2658 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2659 +*/
  1.2660 +	{
  1.2661 +	// pre-increment
  1.2662 +	// on entry ecx=this, return this in eax
  1.2663 +	THISCALL_PROLOG0()
  1.2664 +	asm("push ebx");					// save registers
  1.2665 +	asm("push ebp");
  1.2666 +	asm("push esi");
  1.2667 +	asm("push edi");
  1.2668 +	asm("mov esi, ecx");				// this into esi
  1.2669 +	asm("mov ecx, 0x7FFF0000");			// set ecx,edx:ebx to 1.0
  1.2670 +	asm("mov edx, 0x80000000");
  1.2671 +	asm("xor ebx, ebx");
  1.2672 +	asm("call %a0": :"i"(&TRealXAdd));	// add 1 to *this
  1.2673 +	asm("mov [esi], ebx");				// store result
  1.2674 +	asm("mov [esi+4], edx");
  1.2675 +	asm("mov [esi+8], ecx");
  1.2676 +	asm("test eax, eax");				// check error code
  1.2677 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2678 +	asm("mov eax, esi");				// else return this in eax
  1.2679 +	asm("mov ecx, esi");
  1.2680 +	asm("pop edi");
  1.2681 +	asm("pop esi");
  1.2682 +	asm("pop ebp");
  1.2683 +	asm("pop ebx");
  1.2684 +	THISCALL_EPILOG0()
  1.2685 +	}
  1.2686 +
  1.2687 +
  1.2688 +
  1.2689 +
  1.2690 +__NAKED__ EXPORT_C TRealX TRealX::operator++(TInt)
  1.2691 +/**
  1.2692 +Returns this extended precision number before incrementing it by one.
  1.2693 +
  1.2694 +This is also referred to as a postfix operator.
  1.2695 +
  1.2696 +@return A reference to this object.
  1.2697 +
  1.2698 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2699 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2700 +*/
  1.2701 +	{
  1.2702 +	// post-increment
  1.2703 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=dummy int
  1.2704 +	THISCALL_PROLOG1_BIGRETVAL()
  1.2705 +	asm("push ebx");					// save registers
  1.2706 +	asm("push ebp");
  1.2707 +	asm("push esi");
  1.2708 +	asm("push edi");
  1.2709 +	asm("mov esi, ecx");				// this into esi
  1.2710 +	asm("mov edi, [esp+20]");			// address of return value into edi
  1.2711 +	asm("mov eax, [ecx]");				// copy initial value of *this into [edi]
  1.2712 +	asm("mov [edi], eax");
  1.2713 +	asm("mov eax, [ecx+4]");
  1.2714 +	asm("mov [edi+4], eax");
  1.2715 +	asm("mov eax, [ecx+8]");
  1.2716 +	asm("mov [edi+8], eax");
  1.2717 +	asm("mov ecx, 0x7FFF0000");			// set ecx,edx:ebx to 1.0
  1.2718 +	asm("mov edx, 0x80000000");
  1.2719 +	asm("xor ebx, ebx");
  1.2720 +	asm("call %a0": :"i"(&TRealXAdd));	// add 1 to *this
  1.2721 +	asm("mov [esi], ebx");				// store result in *this
  1.2722 +	asm("mov [esi+4], edx");
  1.2723 +	asm("mov [esi+8], ecx");
  1.2724 +	asm("test eax, eax");				// check error code
  1.2725 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2726 +	asm("mov eax, [esp+20]");			// address of return value into eax
  1.2727 +	asm("mov ecx, esi");
  1.2728 +	asm("pop edi");
  1.2729 +	asm("pop esi");
  1.2730 +	asm("pop ebp");
  1.2731 +	asm("pop ebx");
  1.2732 +	THISCALL_EPILOG1_BIGRETVAL()
  1.2733 +	}
  1.2734 +
  1.2735 +
  1.2736 +
  1.2737 +
  1.2738 +__NAKED__ EXPORT_C TRealX& TRealX::operator--()
  1.2739 +/**
  1.2740 +Decrements this extended precision number by one,
  1.2741 +and then returns a reference to it.
  1.2742 +
  1.2743 +This is also referred to as a prefix operator.
  1.2744 +
  1.2745 +@return A reference to this object.
  1.2746 +
  1.2747 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2748 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2749 +*/
  1.2750 +	{
  1.2751 +	// pre-decrement
  1.2752 +	// on entry ecx=this, return this in eax
  1.2753 +	THISCALL_PROLOG0()
  1.2754 +	asm("push ebx");					// save registers
  1.2755 +	asm("push ebp");
  1.2756 +	asm("push esi");
  1.2757 +	asm("push edi");
  1.2758 +	asm("mov esi, ecx");				// this into esi
  1.2759 +	asm("mov ecx, 0x7FFF0001");			// set ecx,edx:ebx to -1.0
  1.2760 +	asm("mov edx, 0x80000000");
  1.2761 +	asm("xor ebx, ebx");
  1.2762 +	asm("call %a0": :"i"(&TRealXAdd));	// add -1 to *this
  1.2763 +	asm("mov [esi], ebx");				// store result
  1.2764 +	asm("mov [esi+4], edx");
  1.2765 +	asm("mov [esi+8], ecx");
  1.2766 +	asm("test eax, eax");				// check error code
  1.2767 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2768 +	asm("mov eax, esi");				// else return this in eax
  1.2769 +	asm("mov ecx, esi");
  1.2770 +	asm("pop edi");
  1.2771 +	asm("pop esi");
  1.2772 +	asm("pop ebp");
  1.2773 +	asm("pop ebx");
  1.2774 +	THISCALL_EPILOG0()
  1.2775 +	}
  1.2776 +
  1.2777 +
  1.2778 +
  1.2779 +
  1.2780 +__NAKED__ EXPORT_C TRealX TRealX::operator--(TInt)
  1.2781 +/**
  1.2782 +Returns this extended precision number before decrementing it by one.
  1.2783 +
  1.2784 +This is also referred to as a postfix operator.
  1.2785 +
  1.2786 +@return A reference to this object.
  1.2787 +
  1.2788 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2789 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2790 +*/
  1.2791 +	{
  1.2792 +	// post-decrement
  1.2793 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=dummy int	
  1.2794 +	THISCALL_PROLOG1_BIGRETVAL()
  1.2795 +	asm("push ebx");					// save registers
  1.2796 +	asm("push ebp");
  1.2797 +	asm("push esi");
  1.2798 +	asm("push edi");
  1.2799 +	asm("mov esi, ecx");				// this into esi
  1.2800 +	asm("mov edi, [esp+20]");			// address of return value into edi
  1.2801 +	asm("mov eax, [ecx]");				// copy initial value of *this into [edi]
  1.2802 +	asm("mov [edi], eax");
  1.2803 +	asm("mov eax, [ecx+4]");
  1.2804 +	asm("mov [edi+4], eax");
  1.2805 +	asm("mov eax, [ecx+8]");
  1.2806 +	asm("mov [edi+8], eax");
  1.2807 +	asm("mov ecx, 0x7FFF0001");			// set ecx,edx:ebx to -1.0
  1.2808 +	asm("mov edx, 0x80000000");
  1.2809 +	asm("xor ebx, ebx");
  1.2810 +	asm("call %a0": :"i"(&TRealXAdd));	// add -1 to *this
  1.2811 +	asm("mov [esi], ebx");				// store result in *this
  1.2812 +	asm("mov [esi+4], edx");
  1.2813 +	asm("mov [esi+8], ecx");
  1.2814 +	asm("test eax, eax");				// check error code
  1.2815 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2816 +	asm("mov eax, [esp+20]");			// address of return value into eax
  1.2817 +	asm("mov ecx, esi");
  1.2818 +	asm("pop edi");
  1.2819 +	asm("pop esi");
  1.2820 +	asm("pop ebp");
  1.2821 +	asm("pop ebx");
  1.2822 +	THISCALL_EPILOG1_BIGRETVAL()
  1.2823 +	}
  1.2824 +
  1.2825 +
  1.2826 +
  1.2827 +
  1.2828 +__NAKED__ EXPORT_C TRealX TRealX::operator+(const TRealX& /*aVal*/) const
  1.2829 +/**
  1.2830 +Adds an extended precision value to this extended precision number.
  1.2831 +
  1.2832 +@param aVal The extended precision value to be added.
  1.2833 +
  1.2834 +@return An extended precision object containing the result.
  1.2835 +
  1.2836 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2837 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2838 +*/
  1.2839 +	{
  1.2840 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
  1.2841 +	THISCALL_PROLOG1_BIGRETVAL()
  1.2842 +	asm("push ecx");					// save registers
  1.2843 +	asm("push ebx");
  1.2844 +	asm("push ebp");
  1.2845 +	asm("push esi");
  1.2846 +	asm("push edi");
  1.2847 +	asm("mov esi, ecx");				// this into esi
  1.2848 +	asm("mov ecx, [esp+28]");			// address of aVal into ecx
  1.2849 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2850 +	asm("mov edx, [ecx+4]");
  1.2851 +	asm("mov ecx, [ecx+8]");
  1.2852 +	asm("call %a0": :"i"(&TRealXAdd));	// do addition, result in ecx,edx:ebx, error code in eax
  1.2853 +	asm("mov esi, [esp+24]");			// esi=address of return value
  1.2854 +	asm("mov [esi], ebx");				// store result
  1.2855 +	asm("mov [esi+4], edx");
  1.2856 +	asm("mov [esi+8], ecx");
  1.2857 +	asm("test eax, eax");
  1.2858 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2859 +	asm("mov eax, esi");				// return address of return value in eax
  1.2860 +	asm("pop edi");						// restore registers
  1.2861 +	asm("pop esi");
  1.2862 +	asm("pop ebp");
  1.2863 +	asm("pop ebx");
  1.2864 +	asm("pop ecx");
  1.2865 +	THISCALL_EPILOG1_BIGRETVAL()
  1.2866 +	}
  1.2867 +
  1.2868 +
  1.2869 +
  1.2870 +
  1.2871 +__NAKED__ EXPORT_C TRealX TRealX::operator-(const TRealX& /*aVal*/) const
  1.2872 +/**
  1.2873 +Subtracts an extended precision value from this extended precision number.
  1.2874 +
  1.2875 +@param aVal The extended precision value to be subtracted.
  1.2876 +
  1.2877 +@return An extended precision object containing the result.
  1.2878 +
  1.2879 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2880 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2881 +*/
  1.2882 +	{
  1.2883 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
  1.2884 +	THISCALL_PROLOG1_BIGRETVAL()
  1.2885 +	asm("push ecx");					// save registers
  1.2886 +	asm("push ebx");
  1.2887 +	asm("push ebp");
  1.2888 +	asm("push esi");
  1.2889 +	asm("push edi");
  1.2890 +	asm("mov esi, ecx");				// this into esi
  1.2891 +	asm("mov ecx, [esp+28]");			// address of aVal into ecx
  1.2892 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2893 +	asm("mov edx, [ecx+4]");
  1.2894 +	asm("mov ecx, [ecx+8]");
  1.2895 +	asm("call %a0": : "i"(&TRealXSubtract)); // do subtraction, result in ecx,edx:ebx, error code in eax
  1.2896 +	asm("mov esi, [esp+24]");			// esi=address of return value
  1.2897 +	asm("mov [esi], ebx");				// store result
  1.2898 +	asm("mov [esi+4], edx");
  1.2899 +	asm("mov [esi+8], ecx");
  1.2900 +	asm("test eax, eax");
  1.2901 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2902 +	asm("mov eax, esi");				// return address of return value in eax
  1.2903 +	asm("pop edi");						// restore registers
  1.2904 +	asm("pop esi");
  1.2905 +	asm("pop ebp");
  1.2906 +	asm("pop ebx");
  1.2907 +	asm("pop ecx");
  1.2908 +	THISCALL_EPILOG1_BIGRETVAL()
  1.2909 +	}
  1.2910 +
  1.2911 +
  1.2912 +
  1.2913 +
  1.2914 +__NAKED__ EXPORT_C TRealX TRealX::operator*(const TRealX& /*aVal*/) const
  1.2915 +/**
  1.2916 +Multiplies this extended precision number by an extended precision value.
  1.2917 +
  1.2918 +@param aVal The extended precision value to be used as the multiplier.
  1.2919 +
  1.2920 +@return An extended precision object containing the result.
  1.2921 +
  1.2922 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2923 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2924 +*/
  1.2925 +	{
  1.2926 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
  1.2927 +	THISCALL_PROLOG1_BIGRETVAL()
  1.2928 +	asm("push ecx");					// save registers
  1.2929 +	asm("push ebx");
  1.2930 +	asm("push ebp");
  1.2931 +	asm("push esi");
  1.2932 +	asm("push edi");
  1.2933 +	asm("mov esi, ecx");				// this into esi
  1.2934 +	asm("mov ecx, [esp+28]");			// address of aVal into ecx
  1.2935 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2936 +	asm("mov edx, [ecx+4]");
  1.2937 +	asm("mov ecx, [ecx+8]");
  1.2938 +	asm("call %a0": : "i"(&TRealXMultiply)); // do multiplication, result in ecx,edx:ebx, error code in eax
  1.2939 +	asm("mov esi, [esp+24]");			// esi=address of return value
  1.2940 +	asm("mov [esi], ebx");				// store result
  1.2941 +	asm("mov [esi+4], edx");
  1.2942 +	asm("mov [esi+8], ecx");
  1.2943 +	asm("test eax, eax");
  1.2944 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2945 +	asm("mov eax, esi");				// return address of return value in eax
  1.2946 +	asm("pop edi");						// restore registers
  1.2947 +	asm("pop esi");
  1.2948 +	asm("pop ebp");
  1.2949 +	asm("pop ebx");
  1.2950 +	asm("pop ecx");
  1.2951 +	THISCALL_EPILOG1_BIGRETVAL()
  1.2952 +	}
  1.2953 +
  1.2954 +
  1.2955 +
  1.2956 +
  1.2957 +__NAKED__ EXPORT_C TRealX TRealX::operator/(const TRealX& /*aVal*/) const
  1.2958 +/**
  1.2959 +Divides this extended precision number by an extended precision value.
  1.2960 +
  1.2961 +@param aVal The extended precision value to be used as the divisor.
  1.2962 +
  1.2963 +@return An extended precision object containing the result.
  1.2964 +
  1.2965 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2966 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2967 +@panic MATHX KErrDivideByZero if the divisor is zero.
  1.2968 +*/
  1.2969 +	{
  1.2970 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
  1.2971 +	THISCALL_PROLOG1_BIGRETVAL()
  1.2972 +	asm("push ecx");					// save registers
  1.2973 +	asm("push ebx");
  1.2974 +	asm("push ebp");
  1.2975 +	asm("push esi");
  1.2976 +	asm("push edi");
  1.2977 +	asm("mov esi, ecx");				// this into esi
  1.2978 +	asm("mov ecx, [esp+28]");			// address of aVal into ecx
  1.2979 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.2980 +	asm("mov edx, [ecx+4]");
  1.2981 +	asm("mov ecx, [ecx+8]");
  1.2982 +	asm("call %a0": : "i"(&TRealXDivide)); // do division, result in ecx,edx:ebx, error code in eax
  1.2983 +	asm("mov esi, [esp+24]");			// esi=address of return value
  1.2984 +	asm("mov [esi], ebx");				// store result
  1.2985 +	asm("mov [esi+4], edx");
  1.2986 +	asm("mov [esi+8], ecx");
  1.2987 +	asm("test eax, eax");
  1.2988 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.2989 +	asm("mov eax, esi");				// return address of return value in eax
  1.2990 +	asm("pop edi");						// restore registers
  1.2991 +	asm("pop esi");
  1.2992 +	asm("pop ebp");
  1.2993 +	asm("pop ebx");
  1.2994 +	asm("pop ecx");
  1.2995 +	THISCALL_EPILOG1_BIGRETVAL()
  1.2996 +	}
  1.2997 +
  1.2998 +
  1.2999 +
  1.3000 +
  1.3001 +__NAKED__ EXPORT_C TRealX TRealX::operator%(const TRealX& /*aVal*/) const
  1.3002 +/**
  1.3003 +Modulo-divides this extended precision number by an extended precision value.
  1.3004 +
  1.3005 +@param aVal The extended precision value to be used as the divisor.
  1.3006 +
  1.3007 +@return An extended precision object containing the result.
  1.3008 +
  1.3009 +@panic MATHX KErrTotalLossOfPrecision if precision is lost.
  1.3010 +@panic MATHX KErrUnderflow if the operation results in underflow.
  1.3011 +*/
  1.3012 +	{
  1.3013 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
  1.3014 +	THISCALL_PROLOG1_BIGRETVAL()
  1.3015 +	asm("push ecx");					// save registers
  1.3016 +	asm("push ebx");
  1.3017 +	asm("push ebp");
  1.3018 +	asm("push esi");
  1.3019 +	asm("push edi");
  1.3020 +	asm("mov esi, ecx");				// this into esi
  1.3021 +	asm("mov ecx, [esp+28]");			// address of aVal into ecx
  1.3022 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.3023 +	asm("mov edx, [ecx+4]");
  1.3024 +	asm("mov ecx, [ecx+8]");
  1.3025 +	asm("call %a0": : "i"(&TRealXModulo)); // do modulo, result in ecx,edx:ebx, error code in eax
  1.3026 +	asm("mov esi, [esp+24]");			// esi=address of return value
  1.3027 +	asm("mov [esi], ebx");				// store result
  1.3028 +	asm("mov [esi+4], edx");
  1.3029 +	asm("mov [esi+8], ecx");
  1.3030 +	asm("test eax, eax");
  1.3031 +	_ASM_jn(z,TRealXPanicEax)			// panic if error
  1.3032 +	asm("mov eax, esi");				// return address of return value in eax
  1.3033 +	asm("pop edi");						// restore registers
  1.3034 +	asm("pop esi");
  1.3035 +	asm("pop ebp");
  1.3036 +	asm("pop ebx");
  1.3037 +	asm("pop ecx");
  1.3038 +	THISCALL_EPILOG1_BIGRETVAL()
  1.3039 +	}
  1.3040 +
  1.3041 +
  1.3042 +
  1.3043 +
  1.3044 +__NAKED__ EXPORT_C TInt TRealX::Add(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
  1.3045 +/**
  1.3046 +Adds an extended precision value to this extended precision number.
  1.3047 +
  1.3048 +@param aResult On return, a reference to an extended precision object
  1.3049 +containing the result of the operation.
  1.3050 +@param aVal    The extended precision value to be added.
  1.3051 +
  1.3052 +@return KErrNone, if the operation is successful;
  1.3053 +KErrOverflow, if the operation results in overflow;
  1.3054 +KErrUnderflow, if the operation results in underflow.
  1.3055 +*/
  1.3056 +	{
  1.3057 +	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
  1.3058 +	THISCALL_PROLOG2()
  1.3059 +	asm("push ecx");					// save registers
  1.3060 +	asm("push ebx");
  1.3061 +	asm("push ebp");
  1.3062 +	asm("push esi");
  1.3063 +	asm("push edi");
  1.3064 +	asm("mov esi, ecx");				// this into esi
  1.3065 +	asm("mov ecx, [esp+28]");			// address of aVal into ecx
  1.3066 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.3067 +	asm("mov edx, [ecx+4]");
  1.3068 +	asm("mov ecx, [ecx+8]");
  1.3069 +	asm("call %a0": :"i"(&TRealXAdd));	// do addition, result in ecx,edx:ebx, error code in eax
  1.3070 +	asm("mov esi, [esp+24]");			// esi=address of aResult
  1.3071 +	asm("mov [esi], ebx");				// store result
  1.3072 +	asm("mov [esi+4], edx");
  1.3073 +	asm("mov [esi+8], ecx");
  1.3074 +	asm("pop edi");						// restore registers
  1.3075 +	asm("pop esi");
  1.3076 +	asm("pop ebp");
  1.3077 +	asm("pop ebx");
  1.3078 +	asm("pop ecx");
  1.3079 +	THISCALL_EPILOG2()					// return with error code in eax
  1.3080 +	}
  1.3081 +
  1.3082 +
  1.3083 +
  1.3084 +
  1.3085 +__NAKED__ EXPORT_C TInt TRealX::Sub(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
  1.3086 +/**
  1.3087 +Subtracts an extended precision value from this extended precision number.
  1.3088 +
  1.3089 +@param aResult On return, a reference to an extended precision object
  1.3090 +containing the result of the operation.
  1.3091 +@param aVal    The extended precision value to be subtracted.
  1.3092 +
  1.3093 +@return KErrNone, if the operation is successful;
  1.3094 +KErrOverflow, if the operation results in overflow;
  1.3095 +KErrUnderflow, if the operation results in underflow.
  1.3096 +*/
  1.3097 +	{
  1.3098 +	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
  1.3099 +	THISCALL_PROLOG2()
  1.3100 +	asm("push ecx");					// save registers
  1.3101 +	asm("push ebx");
  1.3102 +	asm("push ebp");
  1.3103 +	asm("push esi");
  1.3104 +	asm("push edi");
  1.3105 +	asm("mov esi, ecx");				// this into esi
  1.3106 +	asm("mov ecx, [esp+28]");			// address of aVal into ecx
  1.3107 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.3108 +	asm("mov edx, [ecx+4]");
  1.3109 +	asm("mov ecx, [ecx+8]");
  1.3110 +	asm("call %a0": : "i"(&TRealXSubtract));	// do subtraction, result in ecx,edx:ebx, error code in eax
  1.3111 +	asm("mov esi, [esp+24]");			// esi=address of aResult
  1.3112 +	asm("mov [esi], ebx");				// store result
  1.3113 +	asm("mov [esi+4], edx");			
  1.3114 +	asm("mov [esi+8], ecx");
  1.3115 +	asm("pop edi");						// restore registers
  1.3116 +	asm("pop esi");
  1.3117 +	asm("pop ebp");
  1.3118 +	asm("pop ebx");
  1.3119 +	asm("pop ecx");
  1.3120 +	THISCALL_EPILOG2()					// return with error code in eax
  1.3121 +	}
  1.3122 +
  1.3123 +
  1.3124 +
  1.3125 +
  1.3126 +__NAKED__ EXPORT_C TInt TRealX::Mult(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
  1.3127 +/**
  1.3128 +Multiplies this extended precision number by an extended precision value.
  1.3129 +
  1.3130 +@param aResult On return, a reference to an extended precision object
  1.3131 +containing the result of the operation.
  1.3132 +@param aVal    The extended precision value to be used as the multiplier.
  1.3133 +
  1.3134 +@return KErrNone, if the operation is successful;
  1.3135 +KErrOverflow, if the operation results in overflow;
  1.3136 +KErrUnderflow, if the operation results in underflow.
  1.3137 +*/
  1.3138 +	{
  1.3139 +	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
  1.3140 +	THISCALL_PROLOG2()
  1.3141 +	asm("push ecx");					// save registers
  1.3142 +	asm("push ebx");
  1.3143 +	asm("push ebp");
  1.3144 +	asm("push esi");
  1.3145 +	asm("push edi");
  1.3146 +	asm("mov esi, ecx");				// this into esi
  1.3147 +	asm("mov ecx, [esp+28]");			// address of aVal into ecx
  1.3148 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.3149 +	asm("mov edx, [ecx+4]");
  1.3150 +	asm("mov ecx, [ecx+8]");
  1.3151 +	asm("call %a0": : "i"(&TRealXMultiply)); // do multiplication, result in ecx,edx:ebx, error code in eax
  1.3152 +	asm("mov esi, [esp+24]");			// esi=address of aResult
  1.3153 +	asm("mov [esi], ebx");				// store result
  1.3154 +	asm("mov [esi+4], edx");
  1.3155 +	asm("mov [esi+8], ecx");
  1.3156 +	asm("pop edi");						// restore registers
  1.3157 +	asm("pop esi");
  1.3158 +	asm("pop ebp");
  1.3159 +	asm("pop ebx");
  1.3160 +	asm("pop ecx");
  1.3161 +	THISCALL_EPILOG2()					// return with error code in eax
  1.3162 +	}
  1.3163 +
  1.3164 +
  1.3165 +
  1.3166 +__NAKED__ EXPORT_C TInt TRealX::Div(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
  1.3167 +/**
  1.3168 +Divides this extended precision number by an extended precision value.
  1.3169 +
  1.3170 +@param aResult On return, a reference to an extended precision object
  1.3171 +containing the result of the operation.
  1.3172 +@param aVal    The extended precision value to be used as the divisor.
  1.3173 +
  1.3174 +@return KErrNone, if the operation is successful;
  1.3175 +KErrOverflow, if the operation results in overflow;
  1.3176 +KErrUnderflow, if the operation results in underflow;
  1.3177 +KErrDivideByZero, if the divisor is zero.
  1.3178 +*/
  1.3179 +	{
  1.3180 +	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
  1.3181 +	THISCALL_PROLOG2()
  1.3182 +	asm("push ecx");					// save registers
  1.3183 +	asm("push ebx");
  1.3184 +	asm("push ebp");
  1.3185 +	asm("push esi");
  1.3186 +	asm("push edi");
  1.3187 +	asm("mov esi, ecx");				// this into esi
  1.3188 +	asm("mov ecx, [esp+28]");			// address of aVal into ecx
  1.3189 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.3190 +	asm("mov edx, [ecx+4]");
  1.3191 +	asm("mov ecx, [ecx+8]");
  1.3192 +	asm("call %a0": : "i"(&TRealXDivide)); // do division, result in ecx,edx:ebx, error code in eax
  1.3193 +	asm("mov esi, [esp+24]");			// esi=address of aResult
  1.3194 +	asm("mov [esi], ebx");				// store result
  1.3195 +	asm("mov [esi+4], edx");
  1.3196 +	asm("mov [esi+8], ecx");
  1.3197 +	asm("pop edi");						// restore registers
  1.3198 +	asm("pop esi");
  1.3199 +	asm("pop ebp");
  1.3200 +	asm("pop ebx");
  1.3201 +	asm("pop ecx");
  1.3202 +	THISCALL_EPILOG2()					// return with error code in eax
  1.3203 +	}
  1.3204 +
  1.3205 +
  1.3206 +
  1.3207 +
  1.3208 +__NAKED__ EXPORT_C TInt TRealX::Mod(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
  1.3209 +/**
  1.3210 +Modulo-divides this extended precision number by an extended precision value.
  1.3211 +
  1.3212 +@param aResult On return, a reference to an extended precision object
  1.3213 +containing the result of the operation.
  1.3214 +
  1.3215 +@param aVal    The extended precision value to be used as the divisor.
  1.3216 +
  1.3217 +@return KErrNone, if the operation is successful;
  1.3218 +KErrTotalLossOfPrecision, if precision is lost;
  1.3219 +KErrUnderflow, if the operation results in underflow.
  1.3220 +*/
  1.3221 +	{
  1.3222 +	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
  1.3223 +	THISCALL_PROLOG2()
  1.3224 +	asm("push ecx");					// save registers
  1.3225 +	asm("push ebx");
  1.3226 +	asm("push ebp");
  1.3227 +	asm("push esi");
  1.3228 +	asm("push edi");
  1.3229 +	asm("mov esi, ecx");				// this into esi
  1.3230 +	asm("mov ecx, [esp+28]");			// address of aVal into ecx
  1.3231 +	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
  1.3232 +	asm("mov edx, [ecx+4]");
  1.3233 +	asm("mov ecx, [ecx+8]");
  1.3234 +	asm("call %a0": : "i"(&TRealXModulo)); // do modulo, result in ecx,edx:ebx, error code in eax
  1.3235 +	asm("mov esi, [esp+24]");			// esi=address of aResult
  1.3236 +	asm("mov [esi], ebx");				// store result
  1.3237 +	asm("mov [esi+4], edx");
  1.3238 +	asm("mov [esi+8], ecx");
  1.3239 +	asm("pop edi");						// restore registers
  1.3240 +	asm("pop esi");
  1.3241 +	asm("pop ebp");
  1.3242 +	asm("pop ebx");
  1.3243 +	asm("pop ecx");
  1.3244 +	THISCALL_EPILOG2()					// return with error code in eax
  1.3245 +	}
  1.3246 +
  1.3247 +// Compare TRealX in ecx,edx:ebx (op1) to TRealX at [esi] (op2)
  1.3248 +// Return 1 if op1<op2
  1.3249 +// Return 2 if op1=op2
  1.3250 +// Return 4 if op1>op2
  1.3251 +// Return 8 if unordered
  1.3252 +// Return value in eax
  1.3253 +LOCAL_C __NAKED__ void TRealXCompare(void)
  1.3254 +	{
  1.3255 +	asm("cmp ecx, 0xFFFF0000");		// check if op1=NaN or infinity
  1.3256 +	asm("jc short fpcmp1");			// branch if not
  1.3257 +	asm("cmp edx, 0x80000000");		// check for infinity
  1.3258 +	asm("jnz short fpcmpunord");	// branch if NaN
  1.3259 +	asm("test ebx, ebx");
  1.3260 +	asm("jz short fpcmp1");			// if infinity, process normally
  1.3261 +	asm("fpcmpunord:");				// come here if unordered
  1.3262 +	asm("mov eax, 8");				// return 8
  1.3263 +	asm("ret");
  1.3264 +	asm("fpcmp1:");					// op1 is not a NaN
  1.3265 +	asm("mov eax, [esi+8]");		// get op2 into eax,edi:ebp
  1.3266 +	asm("mov edi, [esi+4]");
  1.3267 +	asm("mov ebp, [esi]");
  1.3268 +	asm("cmp eax, 0xFFFF0000");		// check for NaN or infinity
  1.3269 +	asm("jc short fpcmp2");			// branch if neither
  1.3270 +	asm("cmp edi, 0x80000000");		// check for infinity
  1.3271 +	asm("jnz short fpcmpunord");	// branch if NaN
  1.3272 +	asm("test ebp, ebp");
  1.3273 +	asm("jnz short fpcmpunord");
  1.3274 +	asm("fpcmp2:");					// neither operand is a NaN
  1.3275 +	asm("cmp ecx, 0x10000");		// check if op1=0
  1.3276 +	asm("jc short fpcmpop1z");		// branch if it is
  1.3277 +	asm("cmp eax, 0x10000");		// check if op2=0
  1.3278 +	asm("jc short fpcmp4");			// branch if it is
  1.3279 +	asm("xor al, cl");				// check if signs the same
  1.3280 +	asm("test al, 1");
  1.3281 +	asm("jnz short fpcmp4");		// branch if different
  1.3282 +	asm("push ecx");
  1.3283 +	asm("shr ecx, 16");				// op1 exponent into cx
  1.3284 +	asm("shr eax, 16");				// op2 exponent into ax
  1.3285 +	asm("cmp ecx, eax");			// compare exponents
  1.3286 +	asm("pop ecx");
  1.3287 +	asm("ja short fpcmp4");			// if op1 exp > op2 exp op1>op2 if +ve
  1.3288 +	asm("jb short fpcmp5");			// if op1 exp < op2 exp op1<op2 if +ve
  1.3289 +	asm("cmp edx, edi");			// else compare mantissa high words
  1.3290 +	asm("ja short fpcmp4");
  1.3291 +	asm("jb short fpcmp5");
  1.3292 +	asm("cmp ebx, ebp");			// if equal compare mantissa low words
  1.3293 +	asm("ja short fpcmp4");
  1.3294 +	asm("jb short fpcmp5");
  1.3295 +	asm("fpcmp0:");
  1.3296 +	asm("mov eax, 2");				// numbers exactly equal
  1.3297 +	asm("ret");
  1.3298 +	asm("fpcmp4:");					// come here if ABS{op1}>ABS{op2} or if signs different
  1.3299 +									// or if op2 zero, op1 nonzero
  1.3300 +	asm("mov eax, 4");				// return 4 if +ve
  1.3301 +	asm("test cl, 1");				// check sign
  1.3302 +	asm("jz short fpcmp4a");		// skip if +
  1.3303 +	asm("mov al, 1");				// return 1 if -ve
  1.3304 +	asm("fpcmp4a:");
  1.3305 +	asm("ret");
  1.3306 +	asm("fpcmp5:");					// come here if ABS{op1}<ABS{op2}
  1.3307 +	asm("mov eax, 1");				// return 1 if +ve
  1.3308 +	asm("test cl, 1");				// check sign
  1.3309 +	asm("jz short fpcmp5a");		// skip if +
  1.3310 +	asm("mov al, 4");				// return 4 if -ve
  1.3311 +	asm("fpcmp5a:");
  1.3312 +	asm("ret");
  1.3313 +	asm("fpcmpop1z:");				// come here if op1=0
  1.3314 +	asm("cmp eax, 0x10000");		// check if op2 also zero
  1.3315 +	asm("jc short fpcmp0");			// if so, they are equal
  1.3316 +	asm("test al, 1");				// test sign of op 2
  1.3317 +	asm("mov eax, 4");				// if -, return 4
  1.3318 +	asm("jnz short fpcmpop1z2n");	// skip if -
  1.3319 +	asm("mov al, 1");				// else return 1
  1.3320 +	asm("fpcmpop1z2n:");
  1.3321 +	asm("ret");
  1.3322 +	}
  1.3323 +
  1.3324 +
  1.3325 +
  1.3326 +
  1.3327 +__NAKED__ EXPORT_C TRealX::TRealXOrder TRealX::Compare(const TRealX& /*aVal*/) const
  1.3328 +/**
  1.3329 +*/
  1.3330 +	{
  1.3331 +	// On entry ecx=this, [esp+4]=address of aVal
  1.3332 +	THISCALL_PROLOG1()
  1.3333 +	asm("push ecx");					// save registers
  1.3334 +	asm("push ebx");
  1.3335 +	asm("push ebp");
  1.3336 +	asm("push esi");
  1.3337 +	asm("push edi");
  1.3338 +	asm("mov esi, [esp+24]");			// address of aVal into esi
  1.3339 +	asm("mov ebx, [ecx]");				// *this into ecx,edx:ebx
  1.3340 +	asm("mov edx, [ecx+4]");
  1.3341 +	asm("mov ecx, [ecx+8]");
  1.3342 +	asm("call %a0": : "i"(&TRealXCompare)); // result in eax
  1.3343 +	asm("pop edi");
  1.3344 +	asm("pop esi");
  1.3345 +	asm("pop ebp");
  1.3346 +	asm("pop ebx");
  1.3347 +	asm("pop ecx");
  1.3348 +	THISCALL_EPILOG1()
  1.3349 +	}
  1.3350 +
  1.3351 +