os/kernelhwsrv/kernel/eka/euser/epoc/win32/uc_realx.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/kernel/eka/euser/epoc/win32/uc_realx.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,3281 @@
     1.4 +// Copyright (c) 1997-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of the License "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +// e32\euser\epoc\win32\uc_realx.cpp
    1.18 +// 
    1.19 +//
    1.20 +
    1.21 +#include "u32std.h"
    1.22 +#include <e32math.h>
    1.23 +
    1.24 +#pragma warning (disable : 4100)	// unreferenced formal parameter
    1.25 +#pragma warning (disable : 4700)	// local variable 'this' used without
    1.26 +									// having been initialised
    1.27 +#pragma warning ( disable : 4414 )  // short jump to function converted to near
    1.28 +
    1.29 +
    1.30 +#if defined(__VC32__) && (_MSC_VER==1100)	// untested on MSVC++ > 5.0
    1.31 +// Workaround for MSVC++ 5.0 bug; MSVC incorrectly fixes up conditional jumps
    1.32 +// when the destination is a C++ function.
    1.33 +#define _ASM_j(cond,dest) _asm jn##cond short $+11 _asm jmp dest
    1.34 +#define _ASM_jn(cond,dest) _asm j##cond short $+11 _asm jmp dest
    1.35 +#pragma optimize( "", off )			// stop MSVC murdering the code
    1.36 +#else
    1.37 +#define _ASM_j(cond,dest) _asm j##cond dest
    1.38 +#define _ASM_jn(cond,dest) _asm jn##cond dest
    1.39 +#endif
    1.40 +
    1.41 +//
    1.42 +// 64-bit precision floating point routines
    1.43 +// Register storage format:
    1.44 +// edx:ebx=64 bit normalised mantissa
    1.45 +// ecx bits 16-31 = 16-bit exponent, biased by 7FFF
    1.46 +// ecx bit 0 = sign
    1.47 +// ecx bit 8 = rounded-down flag
    1.48 +// ecx bit 9 = rounded-up flag
    1.49 +//
    1.50 +// Memory storage format:
    1.51 +// 3 doublewords per number
    1.52 +// Low 32 bits of mantissa at [addr]
    1.53 +// High 32 bits of mantissa at [addr+4]
    1.54 +// Exponent/flags/sign at [addr+8]
    1.55 +//
    1.56 +
    1.57 +LOCAL_C void TRealXPanic(TInt aErr)
    1.58 +	{
    1.59 +	User::Panic(_L("MATHX"),aErr);
    1.60 +	}
    1.61 +
    1.62 +__NAKED__ LOCAL_C void TRealXPanicEax(void)
    1.63 +	{
    1.64 +	_asm push eax
    1.65 +	_asm call TRealXPanic
    1.66 +	}
    1.67 +
    1.68 +LOCAL_C __NAKED__ void TRealXRealIndefinite(void)
    1.69 +	{
    1.70 +	// return 'real indefinite' NaN in ecx,edx:ebx
    1.71 +	_asm mov ecx, 0xFFFF0001	// exponent=FFFF, sign negative
    1.72 +	_asm mov edx, 0xC0000000	// mantissa=C0000000 00000000
    1.73 +	_asm xor ebx, ebx
    1.74 +	_asm mov eax, -6			// return KErrArgument
    1.75 +	_asm ret
    1.76 +	}
    1.77 +
    1.78 +LOCAL_C __NAKED__ void TRealXBinOpNaN(void)
    1.79 +	{
    1.80 +	// generic routine to process NaN's in binary operations
    1.81 +	// destination operand in ecx,edx:eax
    1.82 +	// source operand at [esi]
    1.83 +
    1.84 +	_asm mov eax, [esi+8]		// source operand into eax,edi:ebp
    1.85 +	_asm mov edi, [esi+4]
    1.86 +	_asm mov ebp, [esi]
    1.87 +	_asm cmp ecx, 0xFFFF0000	// check if dest is a NaN
    1.88 +	_asm jb short TRealXBinOpNaN1	// if not, swap them
    1.89 +	_asm cmp edx, 0x80000000
    1.90 +	_asm jne short TRealXBinOpNaN2
    1.91 +	_asm test ebx, ebx
    1.92 +	_asm jne short TRealXBinOpNaN2
    1.93 +	TRealXBinOpNaN1:			// swap the operands
    1.94 +	_asm xchg ecx, eax
    1.95 +	_asm xchg edx, edi
    1.96 +	_asm xchg ebx, ebp
    1.97 +	TRealXBinOpNaN2:
    1.98 +	_asm cmp eax, 0xFFFF0000	// check if both operands are NaNs
    1.99 +	_asm jb short TRealXBinOpNaN4	// if not, ignore non-NaN operand
   1.100 +	_asm cmp edi, 0x80000000
   1.101 +	_asm jne short TRealXBinOpNaN3
   1.102 +	_asm test ebp, ebp
   1.103 +	_asm je short TRealXBinOpNaN4
   1.104 +	TRealXBinOpNaN3:			// if both operands are NaN's, compare significands
   1.105 +	_asm cmp edx, edi
   1.106 +	_asm ja short TRealXBinOpNaN4
   1.107 +	_asm jb short TRealXBinOpNaN5
   1.108 +	_asm cmp ebx, ebp
   1.109 +	_asm jae short TRealXBinOpNaN4
   1.110 +	TRealXBinOpNaN5:			// come here if dest is smaller - copy source to dest
   1.111 +	_asm mov ecx, eax
   1.112 +	_asm mov edx, edi
   1.113 +	_asm mov ebx, ebp
   1.114 +	TRealXBinOpNaN4:			// NaN with larger significand is in ecx,edx:ebx
   1.115 +	_asm or edx, 0x40000000		// convert an SNaN to a QNaN
   1.116 +	_asm mov eax, -6			// return KErrArgument
   1.117 +	_asm ret
   1.118 +	}
   1.119 +
   1.120 +// Add TRealX at [esi] + ecx,edx:ebx
   1.121 +// Result in ecx,edx:ebx
   1.122 +// Error code in eax
   1.123 +// Note:	+0 + +0 = +0, -0 + -0 = -0, +0 + -0 = -0 + +0 = +0,
   1.124 +//			+/-0 + X = X + +/-0 = X, X + -X = -X + X = +0
   1.125 +__NAKED__ LOCAL_C void TRealXAdd()
   1.126 +	{
   1.127 +	_asm xor ch, ch				// clear rounding flags
   1.128 +	_asm cmp ecx, 0xFFFF0000	// check if dest=NaN or infinity
   1.129 +	_asm jnc addfpsd			// branch if it is
   1.130 +	_asm mov eax, [esi+8]		// fetch sign/exponent of source
   1.131 +	_asm cmp eax, 0xFFFF0000	// check if source=NaN or infinity
   1.132 +	_asm jnc addfpss			// branch if it is
   1.133 +	_asm cmp eax, 0x10000		// check if source=0
   1.134 +	_asm jc addfp0s				// branch if it is
   1.135 +	_asm cmp ecx, 0x10000		// check if dest=0
   1.136 +	_asm jc addfp0d				// branch if it is
   1.137 +	_asm and cl, 1				// clear bits 1-7 of ecx
   1.138 +	_asm and al, 1				// clear bits 1-7 of eax
   1.139 +	_asm mov ch, cl
   1.140 +	_asm xor ch, al				// xor of signs into ch bit 0
   1.141 +	_asm add ch, ch
   1.142 +	_asm or cl, ch				// and into cl bit 1
   1.143 +	_asm or al, ch				// and al bit 1
   1.144 +	_asm xor ch, ch				// clear rounding flags
   1.145 +	_asm mov ebp, [esi]			// fetch source mantissa 0-31
   1.146 +	_asm mov edi, [esi+4]		// fetch source mantissa 32-63
   1.147 +	_asm ror ecx, 16			// dest exponent into cx
   1.148 +	_asm ror eax, 16			// source exponent into ax
   1.149 +	_asm push ecx				// push dest exponent/sign
   1.150 +	_asm sub cx, ax				// cx = dest exponent - source exponent
   1.151 +	_asm je short addfp3b		// if equal, no shifting required
   1.152 +	_asm ja short addfp1		// branch if dest exponent >= source exponent
   1.153 +	_asm xchg ebx, ebp			// make sure edi:ebp contains the mantissa to be shifted
   1.154 +	_asm xchg edx, edi			//
   1.155 +	_asm xchg eax, [esp]		// and larger exponent and corresponding sign is on the stack
   1.156 +	_asm neg cx					// make cx positive = number of right shifts needed
   1.157 +	addfp1:
   1.158 +	_asm cmp cx, 64				// if more than 64 shifts needed
   1.159 +	_asm ja addfp2				// branch to output larger number
   1.160 +	_asm jb addfp3				// branch if <64 shifts
   1.161 +	_asm mov eax, edi			// exactly 64 shifts needed - rounding word=mant high
   1.162 +	_asm test ebp, ebp			// check bits lost
   1.163 +	_asm jz short addfp3a
   1.164 +	_asm or ch, 1				// if not all zero, set rounded-down flag
   1.165 +	addfp3a:
   1.166 +	_asm xor edi, edi			// clear edx:ebx
   1.167 +	_asm xor ebp, ebp
   1.168 +	_asm jmp short addfp5		// finished shifting
   1.169 +	addfp3b:					// exponents equal
   1.170 +	_asm xor eax, eax			// set rounding word=0
   1.171 +	_asm jmp short addfp5
   1.172 +	addfp3:
   1.173 +	_asm cmp cl, 32				// 32 or more shifts needed ?
   1.174 +	_asm jb short addfp4		// skip if <32
   1.175 +	_asm mov eax, ebp			// rounding word=mant low
   1.176 +	_asm mov ebp, edi			// mant low=mant high
   1.177 +	_asm xor edi, edi			// mant high=0
   1.178 +	_asm sub cl, 32				// reduce count by 32
   1.179 +	_asm jz short addfp5		// if now zero, finished shifting
   1.180 +	_asm shrd edi, eax, cl		// shift ebp:eax:edi right by cl bits
   1.181 +	_asm shrd eax, ebp, cl		//
   1.182 +	_asm shr ebp, cl			//
   1.183 +	_asm test edi, edi			// check bits lost in shift
   1.184 +	_asm jz short addfp5		// if all zero, finished
   1.185 +	_asm or ch, 1				// else set rounded-down flag
   1.186 +	_asm xor edi, edi			// clear edx again
   1.187 +	_asm jmp short addfp5		// finished shifting
   1.188 +	addfp4:						// <32 shifts needed now
   1.189 +	_asm xor eax, eax			// clear rounding word initially
   1.190 +	_asm shrd eax, ebp, cl		// shift edi:ebp:eax right by cl bits
   1.191 +	_asm shrd ebp, edi, cl		//
   1.192 +	_asm shr edi, cl			//
   1.193 +
   1.194 +	addfp5:
   1.195 +	_asm mov [esp+3], ch		// rounding flag into ch image on stack
   1.196 +	_asm pop ecx				// recover sign and exponent into ecx, with rounding flag
   1.197 +	_asm ror ecx, 16			// into normal position
   1.198 +	_asm test cl, 2				// addition or subtraction needed ?
   1.199 +	_asm jnz short subfp1		// branch if subtraction
   1.200 +	_asm add ebx,ebp			// addition required - add mantissas
   1.201 +	_asm adc edx,edi			//
   1.202 +	_asm jnc short roundfp		// branch if no carry
   1.203 +	_asm rcr edx,1				// shift carry right into mantissa
   1.204 +	_asm rcr ebx,1				//
   1.205 +	_asm rcr eax,1				// and into rounding word
   1.206 +	_asm jnc short addfp5a
   1.207 +	_asm or ch, 1				// if 1 shifted out, set rounded-down flag
   1.208 +	addfp5a:
   1.209 +	_asm add ecx, 0x10000		// and increment exponent
   1.210 +
   1.211 +	// perform rounding based on rounding word in eax and rounding flag in ch
   1.212 +	roundfp:
   1.213 +	_asm cmp eax, 0x80000000
   1.214 +	_asm jc roundfp0			// if rounding word<80000000, round down
   1.215 +	_asm ja roundfp1			// if >80000000, round up
   1.216 +	_asm test ch, 1
   1.217 +	_asm jnz short roundfp1		// if rounded-down flag set, round up
   1.218 +	_asm test ch, 2
   1.219 +	_asm jnz short roundfp0		// if rounded-up flag set, round down
   1.220 +	_asm test bl, 1				// else test mantissa lsb
   1.221 +	_asm jz short roundfp0		// round down if 0, up if 1 (round to even)
   1.222 +	roundfp1:					// Come here to round up
   1.223 +	_asm add ebx, 1				// increment mantissa
   1.224 +	_asm adc edx,0				//
   1.225 +	_asm jnc roundfp1a			// if no carry OK
   1.226 +	_asm rcr edx,1				// else shift carry into mantissa (edx:ebx=0 here)
   1.227 +	_asm add ecx, 0x10000		// and increment exponent
   1.228 +	roundfp1a:
   1.229 +	_asm cmp ecx, 0xFFFF0000	// check for overflow
   1.230 +	_asm jae short addfpovfw	// jump if overflow
   1.231 +	_asm mov ch, 2				// else set rounded-up flag
   1.232 +	_asm xor eax, eax			// return KErrNone
   1.233 +	_asm ret
   1.234 +
   1.235 +	roundfp0:					// Come here to round down
   1.236 +	_asm cmp ecx, 0xFFFF0000	// check for overflow
   1.237 +	_asm jae short addfpovfw	// jump if overflow
   1.238 +	_asm test eax, eax			// else check if rounding word zero
   1.239 +	_asm jz short roundfp0a		// if so, leave rounding flags as they are
   1.240 +	_asm mov ch, 1				// else set rounded-down flag
   1.241 +	roundfp0a:
   1.242 +	_asm xor eax, eax			// return KErrNone
   1.243 +	_asm ret					// exit
   1.244 +
   1.245 +	addfpovfw:					// Come here if overflow occurs
   1.246 +	_asm xor ch, ch				// clear rounding flags, exponent=FFFF
   1.247 +	_asm xor ebx, ebx
   1.248 +	_asm mov edx, 0x80000000	// mantissa=80000000 00000000 for infinity
   1.249 +	_asm mov eax, -9			// return KErrOverflow
   1.250 +	_asm ret
   1.251 +
   1.252 +	// exponents differ by more than 64 - output larger number
   1.253 +	addfp2:
   1.254 +	_asm pop ecx				// recover exponent and sign
   1.255 +	_asm ror ecx, 16			// into normal position
   1.256 +	_asm or ch, 1				// set rounded-down flag
   1.257 +	_asm test cl, 2				// check if signs the same
   1.258 +	_asm jz addfp2a
   1.259 +	_asm xor ch, 3				// if not, set rounded-up flag
   1.260 +	addfp2a:
   1.261 +	_asm xor eax, eax			// return KErrNone
   1.262 +	_asm ret
   1.263 +
   1.264 +	// signs differ, so must subtract mantissas
   1.265 +	subfp1:
   1.266 +	_asm add ch, ch				// if rounded-down flag set, change it to rounded-up
   1.267 +	_asm neg eax				// subtract rounding word from 0
   1.268 +	_asm sbb ebx, ebp			// and subtract mantissas with borrow
   1.269 +	_asm sbb edx, edi			//
   1.270 +	_asm jnc short subfp2		// if no borrow, sign is correct
   1.271 +	_asm xor cl, 1				// else change sign of result
   1.272 +	_asm shr ch, 1				// change rounding back to rounded-down
   1.273 +	_asm not eax				// negate rounding word
   1.274 +	_asm not ebx				// and mantissa
   1.275 +	_asm not edx				//
   1.276 +	_asm add eax,1				// two's complement negation
   1.277 +	_asm adc ebx,0				//
   1.278 +	_asm adc edx,0				//
   1.279 +	subfp2:
   1.280 +	_asm jnz short subfp3		// branch if edx non-zero at this point
   1.281 +	_asm mov edx, ebx			// else shift ebx into edx
   1.282 +	_asm or edx, edx			//
   1.283 +	_asm jz short subfp4		// if still zero, branch
   1.284 +	_asm mov ebx, eax			// else shift rounding word into ebx
   1.285 +	_asm xor eax, eax			// and zero rounding word
   1.286 +	_asm sub ecx, 0x200000		// decrease exponent by 32 due to shift
   1.287 +	_asm jnc short subfp3		// if no borrow, carry on
   1.288 +	_asm jmp short subfpundflw	// if borrow here, underflow
   1.289 +	subfp4:
   1.290 +	_asm mov edx, eax			// move rounding word into edx
   1.291 +	_asm or edx, edx			// is edx still zero ?
   1.292 +	_asm jz short subfp0		// if so, result is precisely zero
   1.293 +	_asm xor ebx, ebx			// else zero ebx and rounding word
   1.294 +	_asm xor eax, eax			//
   1.295 +	_asm sub ecx, 0x400000		// and decrease exponent by 64 due to shift
   1.296 +	_asm jc short subfpundflw	// if borrow, underflow
   1.297 +	subfp3:
   1.298 +	_asm mov edi, ecx			// preserve sign and exponent
   1.299 +	_asm bsr ecx, edx			// position of most significant 1 into ecx
   1.300 +	_asm neg ecx				//
   1.301 +	_asm add ecx, 31			// cl = 31-position of MS 1 = number of shifts to normalise
   1.302 +	_asm shld edx, ebx, cl		// shift edx:ebx:eax left by cl bits
   1.303 +	_asm shld ebx, eax, cl		//
   1.304 +	_asm shl eax, cl			//
   1.305 +	_asm mov ebp, ecx			// bit count into ebp for subtraction
   1.306 +	_asm shl ebp, 16			// shift left by 16 to align with exponent
   1.307 +	_asm mov ecx, edi			// exponent, sign, rounding flags back into ecx
   1.308 +	_asm sub ecx, ebp			// subtract shift count from exponent
   1.309 +	_asm jc short subfpundflw	// if borrow, underflow
   1.310 +	_asm cmp ecx, 0x10000		// check if exponent 0
   1.311 +	_asm jnc roundfp			// if not, jump to round result, else underflow
   1.312 +
   1.313 +	// come here if underflow
   1.314 +	subfpundflw:
   1.315 +	_asm and ecx, 1				// set exponent to zero, leave sign
   1.316 +	_asm xor edx, edx
   1.317 +	_asm xor ebx, ebx
   1.318 +	_asm mov eax, -10			// return KErrUnderflow
   1.319 +	_asm ret
   1.320 +
   1.321 +	// come here to return zero result
   1.322 +	subfp0:
   1.323 +	_asm xor ecx, ecx			// set exponent to zero, positive sign
   1.324 +	_asm xor edx, edx
   1.325 +	_asm xor ebx, ebx
   1.326 +	addfp0snzd:
   1.327 +	_asm xor eax, eax			// return KErrNone
   1.328 +	_asm ret
   1.329 +
   1.330 +	// come here if source=0 - eax=source exponent/sign
   1.331 +	addfp0s:
   1.332 +	_asm cmp ecx, 0x10000		// check if dest=0
   1.333 +	_asm jnc addfp0snzd			// if not, return dest unaltered
   1.334 +	_asm and ecx, eax			// else both zero, result negative iff both zeros negative
   1.335 +	_asm and ecx, 1
   1.336 +	_asm xor eax, eax			// return KErrNone
   1.337 +	_asm ret
   1.338 +
   1.339 +	// come here if dest=0, source nonzero
   1.340 +	addfp0d:
   1.341 +	_asm mov ebx, [esi]			// return source unaltered
   1.342 +	_asm mov edx, [esi+4]
   1.343 +	_asm mov ecx, [esi+8]
   1.344 +	_asm xor eax, eax			// return KErrNone
   1.345 +	_asm ret
   1.346 +
   1.347 +	// come here if dest=NaN or infinity
   1.348 +	addfpsd:
   1.349 +	_asm cmp edx, 0x80000000	// check for infinity
   1.350 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.351 +	_asm test ebx, ebx
   1.352 +	_ASM_jn(e,TRealXBinOpNaN)
   1.353 +	_asm mov eax, [esi+8]		// eax=second operand exponent
   1.354 +	_asm cmp eax, 0xFFFF0000	// check second operand for NaN or infinity
   1.355 +	_asm jae short addfpsd1		// branch if NaN or infinity
   1.356 +	addfpsd2:
   1.357 +	_asm mov eax, -9			// else return dest unaltered (infinity) and KErrOverflow
   1.358 +	_asm ret
   1.359 +	addfpsd1:
   1.360 +	_asm mov ebp, [esi]			// source mantissa into edi:ebp
   1.361 +	_asm mov edi, [esi+4]
   1.362 +	_asm cmp edi, 0x80000000	// check for infinity
   1.363 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.364 +	_asm test ebp, ebp
   1.365 +	_ASM_jn(e,TRealXBinOpNaN)
   1.366 +	_asm xor al, cl				// both operands are infinity - check signs
   1.367 +	_asm test al, 1
   1.368 +	_asm jz short addfpsd2		// if both the same, return KErrOverflow
   1.369 +	_asm jmp TRealXRealIndefinite	// else return 'real indefinite'
   1.370 +
   1.371 +	// come here if source=NaN or infinity, dest finite
   1.372 +	addfpss:
   1.373 +	_asm mov ebp, [esi]			// source mantissa into edi:ebp
   1.374 +	_asm mov edi, [esi+4]
   1.375 +	_asm cmp edi, 0x80000000	// check for infinity
   1.376 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.377 +	_asm test ebp, ebp
   1.378 +	_ASM_jn(e,TRealXBinOpNaN)
   1.379 +	_asm mov ecx, eax			// if source=infinity, return source unaltered
   1.380 +	_asm mov edx, edi
   1.381 +	_asm mov ebx, ebp
   1.382 +	_asm mov eax, -9			// return KErrOverflow
   1.383 +	_asm ret
   1.384 +	}
   1.385 +
   1.386 +// Subtract TRealX at [esi] - ecx,edx:ebx
   1.387 +// Result in ecx,edx:ebx
   1.388 +// Error code in eax
   1.389 +__NAKED__ LOCAL_C void TRealXSubtract()
   1.390 +	{
   1.391 +	_asm xor cl, 1              // negate subtrahend
   1.392 +	_asm jmp TRealXAdd
   1.393 +	}
   1.394 +
   1.395 +// Multiply TRealX at [esi] * ecx,edx:ebx
   1.396 +// Result in ecx,edx:ebx
   1.397 +// Error code in eax
   1.398 +__NAKED__ LOCAL_C void TRealXMultiply()
   1.399 +	{
   1.400 +	_asm xor ch, ch				// clear rounding flags
   1.401 +	_asm mov eax, [esi+8]		// fetch sign/exponent of source
   1.402 +	_asm xor cl, al				// xor signs
   1.403 +	_asm cmp ecx, 0xFFFF0000	// check if dest=NaN or infinity
   1.404 +	_asm jnc mulfpsd			// branch if it is
   1.405 +	_asm cmp eax, 0xFFFF0000	// check if source=NaN or infinity
   1.406 +	_asm jnc mulfpss			// branch if it is
   1.407 +	_asm cmp eax, 0x10000		// check if source=0
   1.408 +	_asm jc mulfp0				// branch if it is
   1.409 +	_asm cmp ecx, 0x10000		// check if dest=0
   1.410 +	_asm jc mulfp0				// branch if it is
   1.411 +	_asm push ecx				// save result sign
   1.412 +	_asm shr ecx, 16			// dest exponent into cx
   1.413 +	_asm shr eax, 16			// source exponent into ax
   1.414 +	_asm add eax, ecx			// add exponents
   1.415 +	_asm sub eax, 0x7FFE		// eax now contains result exponent
   1.416 +	_asm push eax				// save it
   1.417 +	_asm mov edi, edx			// save dest mantissa high
   1.418 +	_asm mov eax, ebx			// dest mantissa low -> eax
   1.419 +	_asm mul dword ptr [esi]	// dest mantissa low * source mantissa low -> edx:eax
   1.420 +	_asm xchg ebx, eax			// result dword 0 -> ebx, dest mant low -> eax
   1.421 +	_asm mov ebp, edx			// result dword 1 -> ebp
   1.422 +	_asm mul dword ptr [esi+4]	// dest mant low * src mant high -> edx:eax
   1.423 +	_asm add ebp, eax			// add in partial product to dwords 1 and 2
   1.424 +	_asm adc edx, 0				//
   1.425 +	_asm mov ecx, edx			// result dword 2 -> ecx
   1.426 +	_asm mov eax, edi			// dest mant high -> eax
   1.427 +	_asm mul dword ptr [esi+4]	// dest mant high * src mant high -> edx:eax
   1.428 +	_asm add ecx, eax			// add in partial product to dwords 2, 3
   1.429 +	_asm adc edx, 0				//
   1.430 +	_asm mov eax, edi			// dest mant high -> eax
   1.431 +	_asm mov edi, edx			// result dword 3 -> edi
   1.432 +	_asm mul dword ptr [esi]	// dest mant high * src mant low -> edx:eax
   1.433 +	_asm add ebp, eax			// add in partial product to dwords 1, 2
   1.434 +	_asm adc ecx, edx			//
   1.435 +	_asm adc edi, 0				// 128-bit mantissa product is now in edi:ecx:ebp:ebx
   1.436 +	_asm mov edx, edi			// top 64 bits into edx:ebx
   1.437 +	_asm mov edi, ebx
   1.438 +	_asm mov ebx, ecx			// bottom 64 bits now in ebp:edi
   1.439 +	_asm pop ecx				// recover exponent
   1.440 +	_asm js short mulfp1		// skip if mantissa normalised
   1.441 +	_asm add edi, edi			// else shift left (only one shift will be needed)
   1.442 +	_asm adc ebp, ebp
   1.443 +	_asm adc ebx, ebx
   1.444 +	_asm adc edx, edx
   1.445 +	_asm dec ecx				// and decrement exponent
   1.446 +	mulfp1:
   1.447 +	_asm cmp ebp, 0x80000000	// compare bottom 64 bits with 80000000 00000000 for rounding
   1.448 +	_asm ja short mulfp2		// branch to round up
   1.449 +	_asm jb short mulfp3		// branch to round down
   1.450 +	_asm test edi, edi
   1.451 +	_asm jnz short mulfp2		// branch to round up
   1.452 +	_asm test bl, 1				// if exactly half-way, test LSB of result mantissa
   1.453 +	_asm jz short mulfp4		// if LSB=0, round down (round to even)
   1.454 +	mulfp2:
   1.455 +	_asm add ebx, 1				// round up - increment mantissa
   1.456 +	_asm adc edx, 0
   1.457 +	_asm jnc short mulfp2a
   1.458 +	_asm rcr edx, 1
   1.459 +	_asm inc ecx
   1.460 +	mulfp2a:
   1.461 +	_asm mov al, 2				// set rounded-up flag
   1.462 +	_asm jmp short mulfp5
   1.463 +	mulfp3:						// round down
   1.464 +	_asm xor al, al				// clear rounding flags
   1.465 +	_asm or ebp, edi			// check for exact result
   1.466 +	_asm jz short mulfp5		// skip if exact
   1.467 +	mulfp4:						// come here to round down when we know result inexact
   1.468 +	_asm mov al, 1				// else set rounded-down flag
   1.469 +	mulfp5:						// final mantissa now in edx:ebx, exponent in ecx
   1.470 +	_asm cmp ecx, 0xFFFF		// check for overflow
   1.471 +	_asm jge short mulfp6		// branch if overflow
   1.472 +	_asm cmp ecx, 0				// check for underflow
   1.473 +	_asm jle short mulfp7		// branch if underflow
   1.474 +	_asm shl ecx, 16			// else exponent up to top end of ecx
   1.475 +	_asm mov ch, al				// rounding flags into ch
   1.476 +	_asm pop eax				// recover result sign
   1.477 +	_asm mov cl, al				// into cl
   1.478 +	_asm xor eax, eax			// return KErrNone
   1.479 +	_asm ret
   1.480 +
   1.481 +	// come here if overflow
   1.482 +	mulfp6:
   1.483 +	_asm pop eax				// recover result sign
   1.484 +	_asm mov ecx, 0xFFFF0000	// exponent=FFFF
   1.485 +	_asm mov cl, al				// sign into cl
   1.486 +	_asm mov edx, 0x80000000	// set mantissa to 80000000 00000000 for infinity
   1.487 +	_asm xor ebx, ebx
   1.488 +	_asm mov eax, -9			// return KErrOverflow
   1.489 +	_asm ret
   1.490 +
   1.491 +	// come here if underflow
   1.492 +	mulfp7:
   1.493 +	_asm pop eax				// recover result sign
   1.494 +	_asm xor ecx, ecx			// exponent=0
   1.495 +	_asm mov cl, al				// sign into cl
   1.496 +	_asm xor edx, edx
   1.497 +	_asm xor ebx, ebx
   1.498 +	_asm mov eax, -10			// return KErrUnderflow
   1.499 +	_asm ret
   1.500 +
   1.501 +	// come here if either operand zero
   1.502 +	mulfp0:
   1.503 +	_asm and ecx, 1				// set exponent=0, keep sign
   1.504 +	_asm xor edx, edx
   1.505 +	_asm xor ebx, ebx
   1.506 +	_asm xor eax, eax			// return KErrNone
   1.507 +	_asm ret
   1.508 +
   1.509 +	// come here if destination operand NaN or infinity
   1.510 +	mulfpsd:
   1.511 +	_asm cmp edx, 0x80000000	// check for infinity
   1.512 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.513 +	_asm test ebx, ebx
   1.514 +	_ASM_jn(e,TRealXBinOpNaN)
   1.515 +	_asm cmp eax, 0xFFFF0000	// check second operand for NaN or infinity
   1.516 +	_asm jae short mulfpsd1		// branch if NaN or infinity
   1.517 +	_asm cmp eax, 0x10000		// check if second operand zero
   1.518 +	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
   1.519 +	_asm mov eax, -9			// else return dest (infinity) with xor sign and KErrOverflow
   1.520 +	_asm ret
   1.521 +	mulfpsd1:
   1.522 +	_asm mov ebp, [esi]			// source mantissa into edi:ebp
   1.523 +	_asm mov edi, [esi+4]
   1.524 +	_asm cmp edi, 0x80000000	// check for infinity
   1.525 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.526 +	_asm test ebp, ebp
   1.527 +	_ASM_jn(e,TRealXBinOpNaN)
   1.528 +	_asm mov eax, -9			// both operands infinity - return infinity with xor sign
   1.529 +	_asm ret					// and KErrOverflow
   1.530 +
   1.531 +	// come here if source operand NaN or infinity, destination finite
   1.532 +	mulfpss:
   1.533 +	_asm mov ebp, [esi]			// source mantissa into edi:ebp
   1.534 +	_asm mov edi, [esi+4]
   1.535 +	_asm cmp edi, 0x80000000	// check for infinity
   1.536 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.537 +	_asm test ebp, ebp
   1.538 +	_ASM_jn(e,TRealXBinOpNaN)
   1.539 +	_asm cmp ecx, 0x10000		// source=infinity, check if dest=0
   1.540 +	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
   1.541 +	_asm or ecx, 0xFFFF0000		// set exp=FFFF, leave xor sign in cl
   1.542 +	_asm mov edx, edi			// set mantissa for infinity
   1.543 +	_asm mov ebx, ebp
   1.544 +	_asm mov eax, -9			// return KErrOverflow
   1.545 +	_asm ret
   1.546 +	}
   1.547 +
   1.548 +// Divide 96-bit unsigned dividend EDX:EAX:0 by 64-bit unsigned divisor ECX:EBX
   1.549 +// Assume ECX bit 31 = 1, ie 2^63 <= divisor < 2^64
   1.550 +// Assume the quotient fits in 32 bits
   1.551 +// Return 32 bit quotient in EDI
   1.552 +// Return 64 bit remainder in EBP:ESI
   1.553 +__NAKED__ LOCAL_C void LongDivide(void)
   1.554 +	{
   1.555 +	_asm push edx				// save dividend
   1.556 +	_asm push eax				//
   1.557 +	_asm cmp edx, ecx			// check if truncation of divisor will overflow DIV instruction
   1.558 +	_asm jb short longdiv1		// skip if not
   1.559 +	_asm xor eax, eax			// else return quotient of 0xFFFFFFFF
   1.560 +	_asm dec eax				//
   1.561 +	_asm jmp short longdiv2		//
   1.562 +	longdiv1:
   1.563 +	_asm div ecx				// divide EDX:EAX by ECX to give approximate quotient in EAX
   1.564 +	longdiv2:
   1.565 +	_asm mov edi, eax			// save approx quotient
   1.566 +	_asm mul ebx				// multiply approx quotient by full divisor ECX:EBX
   1.567 +	_asm mov esi, eax			// first partial product into EBP:ESI
   1.568 +	_asm mov ebp, edx			//
   1.569 +	_asm mov eax, edi			// approx quotient back into eax
   1.570 +	_asm mul ecx				// upper partial product now in EDX:EAX
   1.571 +	_asm add eax, ebp			// add to form 96-bit product in EDX:EAX:ESI
   1.572 +	_asm adc edx, 0				//
   1.573 +	_asm neg esi				// remainder = dividend - approx quotient * divisor
   1.574 +	_asm mov ebp, [esp]			// fetch dividend bits 32-63
   1.575 +	_asm sbb ebp, eax			//
   1.576 +	_asm mov eax, [esp+4]		// fetch dividend bits 64-95
   1.577 +	_asm sbb eax, edx			// remainder is now in EAX:EBP:ESI
   1.578 +	_asm jns short longdiv4		// if remainder positive, quotient is correct, so exit
   1.579 +	longdiv3:
   1.580 +	_asm dec edi				// else quotient is too big, so decrement it
   1.581 +	_asm add esi, ebx			// and add divisor to remainder
   1.582 +	_asm adc ebp, ecx			//
   1.583 +	_asm adc eax, 0				//
   1.584 +	_asm js short longdiv3		// if still negative, repeat (requires <4 iterations)
   1.585 +	longdiv4:
   1.586 +	_asm add esp, 8				// remove dividend from stack
   1.587 +	_asm ret					// return with quotient in EDI, remainder in EBP:ESI
   1.588 +	}
   1.589 +
   1.590 +// Divide TRealX at [esi] / ecx,edx:ebx
   1.591 +// Result in ecx,edx:ebx
   1.592 +// Error code in eax
   1.593 +__NAKED__ LOCAL_C void TRealXDivide(void)
   1.594 +	{
   1.595 +	_asm xor ch, ch				// clear rounding flags
   1.596 +	_asm mov eax, [esi+8]		// fetch sign/exponent of dividend
   1.597 +	_asm xor cl, al				// xor signs
   1.598 +	_asm cmp eax, 0xFFFF0000	// check if dividend=NaN or infinity
   1.599 +	_asm jnc divfpss			// branch if it is
   1.600 +	_asm cmp ecx, 0xFFFF0000	// check if divisor=NaN or infinity
   1.601 +	_asm jnc divfpsd			// branch if it is
   1.602 +	_asm cmp ecx, 0x10000		// check if divisor=0
   1.603 +	_asm jc divfpdv0			// branch if it is
   1.604 +	_asm cmp eax, 0x10000		// check if dividend=0
   1.605 +	_asm jc divfpdd0			// branch if it is
   1.606 +	_asm push esi				// save pointer to dividend
   1.607 +	_asm push ecx				// save result sign
   1.608 +	_asm shr ecx, 16			// divisor exponent into cx
   1.609 +	_asm shr eax, 16			// dividend exponent into ax
   1.610 +	_asm sub eax, ecx			// subtract exponents
   1.611 +	_asm add eax, 0x7FFE		// eax now contains result exponent
   1.612 +	_asm push eax				// save it
   1.613 +	_asm mov ecx, edx			// divisor mantissa into ecx:ebx
   1.614 +	_asm mov edx, [esi+4]		// dividend mantissa into edx:eax
   1.615 +	_asm mov eax, [esi]
   1.616 +	_asm xor edi, edi			// clear edi initially
   1.617 +	_asm cmp edx, ecx			// compare EDX:EAX with ECX:EBX
   1.618 +	_asm jb short divfp1		// if EDX:EAX < ECX:EBX, leave everything as is
   1.619 +	_asm ja short divfp2		//
   1.620 +	_asm cmp eax, ebx			// if EDX=ECX, then compare ls dwords
   1.621 +	_asm jb short divfp1		// if dividend mant < divisor mant, leave everything as is
   1.622 +	divfp2:
   1.623 +	_asm sub eax, ebx			// else dividend mant -= divisor mant
   1.624 +	_asm sbb edx, ecx			//
   1.625 +	_asm inc edi				// and EDI=1 (bit 0 of EDI is the integer part of the result)
   1.626 +	_asm inc dword ptr [esp]	// also increment result exponent
   1.627 +	divfp1:
   1.628 +	_asm push edi				// save top bit of result
   1.629 +	_asm call LongDivide		// divide EDX:EAX:0 by ECX:EBX to give next 32 bits of result in EDI
   1.630 +	_asm push edi				// save next 32 bits of result
   1.631 +	_asm mov edx, ebp			// remainder from EBP:ESI into EDX:EAX
   1.632 +	_asm mov eax, esi			//
   1.633 +	_asm call LongDivide		// divide EDX:EAX:0 by ECX:EBX to give next 32 bits of result in EDI
   1.634 +	_asm test byte ptr [esp+4], 1	// test integer bit of result
   1.635 +	_asm jnz short divfp4		// if set, no need to calculate another bit
   1.636 +	_asm xor eax, eax			//
   1.637 +	_asm add esi, esi			// 2*remainder into EAX:EBP:ESI
   1.638 +	_asm adc ebp, ebp			//
   1.639 +	_asm adc eax, eax			//
   1.640 +	_asm sub esi, ebx			// subtract divisor to generate final quotient bit
   1.641 +	_asm sbb ebp, ecx			//
   1.642 +	_asm sbb eax, 0				//
   1.643 +	_asm jnc short divfp3		// skip if no borrow - in this case eax=0
   1.644 +	_asm add esi, ebx			// if borrow add back - final remainder now in EBP:ESI
   1.645 +	_asm adc ebp, ecx			//
   1.646 +	_asm adc eax, 0				// eax will be zero after this and carry will be set
   1.647 +	divfp3:
   1.648 +	_asm cmc					// final bit = 1-C
   1.649 +	_asm rcr eax, 1				// shift it into eax bit 31
   1.650 +	_asm mov ebx, edi			// result into EDX:EBX:EAX, remainder in EBP:ESI
   1.651 +	_asm pop edx
   1.652 +	_asm add esp, 4				// discard integer bit (zero)
   1.653 +	_asm jmp short divfp5		// branch to round
   1.654 +
   1.655 +	divfp4:						// integer bit was set
   1.656 +	_asm mov ebx, edi			// result into EDX:EBX:EAX
   1.657 +	_asm pop edx				//
   1.658 +	_asm pop eax				// integer part of result into eax (=1)
   1.659 +	_asm stc					// shift a 1 into top end of mantissa
   1.660 +	_asm rcr edx,1				//
   1.661 +	_asm rcr ebx,1				//
   1.662 +	_asm rcr eax,1				// bottom bit into eax bit 31
   1.663 +
   1.664 +	// when we get to here we have 65 bits of quotient mantissa in
   1.665 +	// EDX:EBX:EAX (bottom bit in eax bit 31)
   1.666 +	// and the remainder is in EBP:ESI
   1.667 +	divfp5:
   1.668 +	_asm pop ecx				// recover result exponent
   1.669 +	_asm add eax, eax			// test rounding bit
   1.670 +	_asm jnc short divfp6		// branch to round down
   1.671 +	_asm or ebp, esi			// test remainder to see if we are exactly half-way
   1.672 +	_asm jnz short divfp7		// if not, round up
   1.673 +	_asm test bl, 1				// exactly halfway - test LSB of mantissa
   1.674 +	_asm jz short divfp8		// round down if LSB=0 (round to even)
   1.675 +	divfp7:
   1.676 +	_asm add ebx, 1				// round up - increment mantissa
   1.677 +	_asm adc edx, 0
   1.678 +	_asm jnc short divfp7a
   1.679 +	_asm rcr edx, 1				// if carry, shift 1 into mantissa MSB
   1.680 +	_asm inc ecx				// and increment exponent
   1.681 +	divfp7a:
   1.682 +	_asm mov al, 2				// set rounded-up flag
   1.683 +	_asm jmp short divfp9
   1.684 +	divfp6:
   1.685 +	_asm xor al, al				// round down - first clear rounding flags
   1.686 +	_asm or ebp, esi			// test if result exact
   1.687 +	_asm jz short divfp9		// skip if exact
   1.688 +	divfp8:						// come here to round down when we know result is inexact
   1.689 +	_asm mov al, 1				// set rounded-down flag
   1.690 +	divfp9:						// final mantissa now in edx:ebx, exponent in ecx
   1.691 +	_asm cmp ecx, 0xFFFF		// check for overflow
   1.692 +	_asm jge short divfp10		// branch if overflow
   1.693 +	_asm cmp ecx, 0				// check for underflow
   1.694 +	_asm jle short divfp11		// branch if underflow
   1.695 +	_asm shl ecx, 16			// else exponent up to top end of ecx
   1.696 +	_asm mov ch, al				// rounding flags into ch
   1.697 +	_asm pop eax				// recover result sign
   1.698 +	_asm mov cl, al				// into cl
   1.699 +	_asm pop esi				// recover dividend pointer
   1.700 +	_asm xor eax, eax			// return KErrNone
   1.701 +	_asm ret
   1.702 +
   1.703 +	// come here if overflow
   1.704 +	divfp10:
   1.705 +	_asm pop eax				// recover result sign
   1.706 +	_asm mov ecx, 0xFFFF0000	// exponent=FFFF
   1.707 +	_asm mov cl, al				// sign into cl
   1.708 +	_asm mov edx, 0x80000000	// set mantissa to 80000000 00000000 for infinity
   1.709 +	_asm xor ebx, ebx
   1.710 +	_asm mov eax, -9			// return KErrOverflow
   1.711 +	_asm pop esi				// recover dividend pointer
   1.712 +	_asm ret
   1.713 +
   1.714 +	// come here if underflow
   1.715 +	divfp11:
   1.716 +	_asm pop eax				// recover result sign
   1.717 +	_asm xor ecx, ecx			// exponent=0
   1.718 +	_asm mov cl, al				// sign into cl
   1.719 +	_asm xor edx, edx
   1.720 +	_asm xor ebx, ebx
   1.721 +	_asm mov eax, -10			// return KErrUnderflow
   1.722 +	_asm pop esi				// recover dividend pointer
   1.723 +	_asm ret
   1.724 +
   1.725 +
   1.726 +	// come here if divisor=0, dividend finite
   1.727 +	divfpdv0:
   1.728 +	_asm cmp eax, 0x10000		// check if dividend also zero
   1.729 +	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
   1.730 +	_asm or ecx, 0xFFFF0000		// else set exponent=FFFF, leave xor sign in cl
   1.731 +	_asm mov edx, 0x80000000	// set mantissa for infinity
   1.732 +	_asm xor ebx, ebx
   1.733 +	_asm mov eax, -41			// return KErrDivideByZero
   1.734 +	_asm ret
   1.735 +
   1.736 +	// come here if dividend=0, divisor finite and nonzero
   1.737 +	divfpdd0:
   1.738 +	_asm and ecx, 1				// exponent=0, leave xor sign in cl
   1.739 +	_asm xor eax, eax			// return KErrNone
   1.740 +	_asm ret
   1.741 +
   1.742 +	// come here if dividend is a NaN or infinity
   1.743 +	divfpss:
   1.744 +	_asm mov ebp, [esi]			// dividend mantissa into edi:ebp
   1.745 +	_asm mov edi, [esi+4]
   1.746 +	_asm cmp edi, 0x80000000	// check for infinity
   1.747 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.748 +	_asm test ebp, ebp
   1.749 +	_ASM_jn(e,TRealXBinOpNaN)
   1.750 +	_asm cmp ecx, 0xFFFF0000	// check divisor for NaN or infinity
   1.751 +	_asm jae short divfpss1		// branch if NaN or infinity
   1.752 +	_asm or ecx, 0xFFFF0000		// infinity/finite - return infinity with xor sign
   1.753 +	_asm mov edx, 0x80000000
   1.754 +	_asm xor ebx, ebx
   1.755 +	_asm mov eax, -9			// return KErrOverflow
   1.756 +	_asm ret
   1.757 +	divfpss1:
   1.758 +	_asm cmp edx, 0x80000000	// check for infinity
   1.759 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.760 +	_asm test ebx, ebx
   1.761 +	_ASM_jn(e,TRealXBinOpNaN)
   1.762 +	_asm jmp TRealXRealIndefinite	// if both operands infinite, return 'real indefinite'
   1.763 +
   1.764 +	// come here if divisor is a NaN or infinity, dividend finite
   1.765 +	divfpsd:
   1.766 +	_asm cmp edx, 0x80000000	// check for infinity
   1.767 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.768 +	_asm test ebx, ebx
   1.769 +	_ASM_jn(e,TRealXBinOpNaN)
   1.770 +	_asm and ecx, 1				// dividend is finite, divisor=infinity, so return 0 with xor sign
   1.771 +	_asm xor edx, edx
   1.772 +	_asm xor ebx, ebx
   1.773 +	_asm xor eax, eax			// return KErrNone
   1.774 +	_asm ret
   1.775 +	}
   1.776 +
   1.777 +// TRealX modulo - dividend at [esi], divisor in ecx,edx:ebx
   1.778 +// Result in ecx,edx:ebx
   1.779 +// Error code in eax
   1.780 +__NAKED__ LOCAL_C void TRealXModulo(void)
   1.781 +	{
   1.782 +	_asm mov eax, [esi+8]		// fetch sign/exponent of dividend
   1.783 +	_asm mov cl, al				// result sign=dividend sign
   1.784 +	_asm xor ch, ch				// clear rounding flags
   1.785 +	_asm cmp eax, 0xFFFF0000	// check if dividend=NaN or infinity
   1.786 +	_asm jnc modfpss			// branch if it is
   1.787 +	_asm cmp ecx, 0xFFFF0000	// check if divisor=NaN or infinity
   1.788 +	_asm jnc modfpsd			// branch if it is
   1.789 +	_asm cmp ecx, 0x10000		// check if divisor=0
   1.790 +	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
   1.791 +	_asm shr eax, 16			// ax=dividend exponent
   1.792 +	_asm ror ecx, 16			// cx=divisor exponent
   1.793 +	_asm sub ax, cx				// ax=dividend exponent-divisor exponent
   1.794 +	_asm jc modfpdd0			// if dividend exponent is smaller, return dividend
   1.795 +	_asm cmp ax, 64				// check if exponents differ by >= 64 bits
   1.796 +	_asm jnc modfplp			// if so, underflow
   1.797 +	_asm mov ah, 0				// ah bit 0 acts as 65th accumulator bit
   1.798 +	_asm mov ebp, [esi]			// edi:ebp=dividend mantissa
   1.799 +	_asm mov edi, [esi+4]		//
   1.800 +	_asm jmp short modfp2		// skip left shift on first iteration
   1.801 +	modfp1:
   1.802 +	_asm add ebp, ebp			// shift accumulator left (65 bits)
   1.803 +	_asm adc edi, edi
   1.804 +	_asm adc ah, ah
   1.805 +	modfp2:
   1.806 +	_asm sub ebp, ebx			// subtract divisor from dividend
   1.807 +	_asm sbb edi, edx
   1.808 +	_asm sbb ah, 0
   1.809 +	_asm jnc short modfp3		// skip if no borrow
   1.810 +	_asm add ebp, ebx			// else add back
   1.811 +	_asm adc edi, edx
   1.812 +	_asm adc ah, 0
   1.813 +	modfp3:
   1.814 +	_asm dec al					// any more bits to do?
   1.815 +	_asm jns short modfp1		// loop if there are
   1.816 +	_asm mov edx, edi			// result mantissa (not yet normalised) into edx:ebx
   1.817 +	_asm mov ebx, ebp
   1.818 +	_asm or edi, ebx			// check for zero
   1.819 +	_asm jz modfp0				// jump if result zero
   1.820 +	_asm or edx, edx			// check if ms dword zero
   1.821 +	_asm jnz short modfp4
   1.822 +	_asm mov edx, ebx			// if so, shift left by 32
   1.823 +	_asm xor ebx, ebx
   1.824 +	_asm sub cx, 32				// and decrement exponent by 32
   1.825 +	_asm jbe modfpund			// if borrow or exponent zero, underflow
   1.826 +	modfp4:
   1.827 +	_asm mov edi, ecx			// preserve sign and exponent
   1.828 +	_asm bsr ecx, edx			// position of most significant 1 into ecx
   1.829 +	_asm neg ecx				//
   1.830 +	_asm add ecx, 31			// cl = 31-position of MS 1 = number of shifts to normalise
   1.831 +	_asm shld edx, ebx, cl		// shift edx:ebx left by cl bits
   1.832 +	_asm shl ebx, cl			//
   1.833 +	_asm mov ebp, ecx			// bit count into ebp for subtraction
   1.834 +	_asm mov ecx, edi			// exponent & sign back into ecx
   1.835 +	_asm sub cx, bp				// subtract shift count from exponent
   1.836 +	_asm jbe short modfpund		// if borrow or exponent 0, underflow
   1.837 +	_asm rol ecx, 16			// else ecx=exponent:sign
   1.838 +	_asm xor eax, eax			// normal exit, result in ecx,edx:ebx
   1.839 +	_asm ret
   1.840 +
   1.841 +	// dividend=NaN or infinity
   1.842 +	modfpss:
   1.843 +	_asm mov ebp, [esi]			// dividend mantissa into edi:ebp
   1.844 +	_asm mov edi, [esi+4]
   1.845 +	_asm cmp edi, 0x80000000	// check for infinity
   1.846 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.847 +	_asm test ebp, ebp
   1.848 +	_ASM_jn(e,TRealXBinOpNaN)
   1.849 +	_asm cmp ecx, 0xFFFF0000	// check divisor for NaN or infinity
   1.850 +	_ASM_j(b,TRealXRealIndefinite)	// infinity%finite - return 'real indefinite'
   1.851 +	_asm cmp edx, 0x80000000	// check for divisor=infinity
   1.852 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.853 +	_asm test ebx, ebx
   1.854 +	_ASM_jn(e,TRealXBinOpNaN)
   1.855 +	_asm jmp TRealXRealIndefinite	// if both operands infinite, return 'real indefinite'
   1.856 +
   1.857 +	// divisor=NaN or infinity, dividend finite
   1.858 +	modfpsd:
   1.859 +	_asm cmp edx, 0x80000000	// check for infinity
   1.860 +	_ASM_jn(e,TRealXBinOpNaN)	// branch if NaN
   1.861 +	_asm test ebx, ebx
   1.862 +	_ASM_jn(e,TRealXBinOpNaN)
   1.863 +	// finite%infinity - return dividend unaltered
   1.864 +
   1.865 +	modfpdd0:
   1.866 +	_asm mov ebx, [esi]			// normal exit, return dividend unaltered
   1.867 +	_asm mov edx, [esi+4]
   1.868 +	_asm mov ecx, [esi+8]
   1.869 +	_asm xor eax, eax
   1.870 +	_asm ret
   1.871 +
   1.872 +	modfp0:
   1.873 +	_asm shr ecx, 16			// normal exit, result 0
   1.874 +	_asm xor eax, eax
   1.875 +	_asm ret
   1.876 +
   1.877 +	modfpund:
   1.878 +	_asm shr ecx, 16			// underflow, result 0
   1.879 +	_asm mov eax, -10			// return KErrUnderflow
   1.880 +	_asm ret
   1.881 +
   1.882 +	modfplp:
   1.883 +	_asm shr ecx, 16			// loss of precision, result 0
   1.884 +	_asm mov eax, -7			// return KErrTotalLossOfPrecision
   1.885 +	_asm ret
   1.886 +	}
   1.887 +
   1.888 +
   1.889 +
   1.890 +
   1.891 +__NAKED__ EXPORT_C TRealX::TRealX()
   1.892 +/**
   1.893 +Constructs a default extended precision object.
   1.894 +
   1.895 +This sets the value to zero.
   1.896 +*/
   1.897 +	{
   1.898 +	_asm xor eax, eax
   1.899 +	_asm mov [ecx], eax			// set value to zero
   1.900 +	_asm mov [ecx+4], eax
   1.901 +	_asm mov [ecx+8], eax
   1.902 +	_asm mov eax, ecx			// must return this
   1.903 +	_asm ret
   1.904 +	}
   1.905 +
   1.906 +
   1.907 +
   1.908 +
   1.909 +__NAKED__ EXPORT_C TRealX::TRealX(TUint /*aExp*/, TUint /*aMantHi*/, TUint /*aMantLo*/)
   1.910 +/**
   1.911 +Constructs an extended precision object from an explicit exponent and
   1.912 +a 64 bit mantissa.
   1.913 +
   1.914 +@param aExp    The exponent 
   1.915 +@param aMantHi The high order 32 bits of the 64 bit mantissa 
   1.916 +@param aMantLo The low order 32 bits of the 64 bit mantissa 
   1.917 +*/
   1.918 +	{
   1.919 +	_asm mov eax, [esp+4]		// eax=aExp
   1.920 +	_asm mov [ecx+8], eax
   1.921 +	_asm mov eax, [esp+8]		// eax=aMantHi
   1.922 +	_asm mov [ecx+4], eax
   1.923 +	_asm mov eax, [esp+12]		// eax=aMantLo
   1.924 +	_asm mov [ecx], eax
   1.925 +	_asm mov eax, ecx			// must return this
   1.926 +	_asm ret 12
   1.927 +	}
   1.928 +
   1.929 +
   1.930 +
   1.931 +
   1.932 +__NAKED__ EXPORT_C TInt TRealX::Set(TInt /*aInt*/)
   1.933 +/**
   1.934 +Gives this extended precision object a new value taken
   1.935 +from a signed integer.
   1.936 +
   1.937 +@param aInt The signed integer value.
   1.938 +
   1.939 +@return KErrNone, always.
   1.940 +*/
   1.941 +	{
   1.942 +	// on entry ecx=this, [esp+4]=aInt, return code in eax
   1.943 +	_asm mov edx, [esp+4]		// edx=aInt
   1.944 +	_asm or edx, edx			// test sign/zero
   1.945 +	_asm mov eax, 0x7FFF
   1.946 +	_asm jz short trealxfromint0	// branch if 0
   1.947 +	_asm jns short trealxfromint1	// skip if positive
   1.948 +	_asm neg edx					// take absolute value
   1.949 +	_asm add eax, 0x10000			// sign bit in eax bit 16
   1.950 +	trealxfromint1:
   1.951 +	_asm push ecx					// save this
   1.952 +	_asm bsr ecx, edx				// bit number of edx MSB into ecx
   1.953 +	_asm add eax, ecx				// add to eax to form result exponent
   1.954 +	_asm neg cl
   1.955 +	_asm add cl, 31					// 31-bit number = number of shifts to normalise edx
   1.956 +	_asm shl edx, cl				// normalise edx
   1.957 +	_asm pop ecx					// this back into ecx
   1.958 +	_asm ror eax, 16				// sign/exponent into normal positions
   1.959 +	_asm mov [ecx+4], edx			// store mantissa high word
   1.960 +	_asm mov [ecx+8], eax			// store sign/exponent
   1.961 +	_asm xor eax, eax
   1.962 +	_asm mov [ecx], eax				// zero mantissa low word
   1.963 +	_asm ret 4						// return KErrNone
   1.964 +	trealxfromint0:
   1.965 +	_asm mov [ecx], edx
   1.966 +	_asm mov [ecx+4], edx			// store mantissa high word=0
   1.967 +	_asm mov [ecx+8], edx			// store sign/exponent=0
   1.968 +	_asm xor eax, eax				// return KErrNone
   1.969 +	_asm ret 4
   1.970 +	}
   1.971 +
   1.972 +
   1.973 +
   1.974 +
   1.975 +__NAKED__ EXPORT_C TInt TRealX::Set(TUint /*aInt*/)
   1.976 +/**
   1.977 +Gives this extended precision object a new value taken from
   1.978 +an unsigned integer.
   1.979 +
   1.980 +@param aInt The unsigned integer value.
   1.981 +
   1.982 +@return KErrNone, always.
   1.983 +*/
   1.984 +	{
   1.985 +	// on entry ecx=this, [esp+4]=aInt, return code in eax
   1.986 +	_asm mov edx, [esp+4]		// edx=aInt
   1.987 +	_asm mov eax, 0x7FFF
   1.988 +	_asm or edx, edx				// test for 0
   1.989 +	_asm jz short trealxfromuint0	// branch if 0
   1.990 +	_asm push ecx					// save this
   1.991 +	_asm bsr ecx, edx				// bit number of edx MSB into ecx
   1.992 +	_asm add eax, ecx				// add to eax to form result exponent
   1.993 +	_asm neg cl
   1.994 +	_asm add cl, 31					// 31-bit number = number of shifts to normalise edx
   1.995 +	_asm shl edx, cl				// normalise edx
   1.996 +	_asm pop ecx					// this back into ecx
   1.997 +	_asm shl eax, 16				// exponent into normal position
   1.998 +	_asm mov [ecx+4], edx			// store mantissa high word
   1.999 +	_asm mov [ecx+8], eax			// store exponent
  1.1000 +	_asm xor eax, eax
  1.1001 +	_asm mov [ecx], eax				// zero mantissa low word
  1.1002 +	_asm ret 4						// return KErrNone
  1.1003 +	trealxfromuint0:
  1.1004 +	_asm mov [ecx], edx
  1.1005 +	_asm mov [ecx+4], edx			// store mantissa high word=0
  1.1006 +	_asm mov [ecx+8], edx			// store sign/exponent=0
  1.1007 +	_asm xor eax, eax				// return KErrNone
  1.1008 +	_asm ret 4
  1.1009 +	}
  1.1010 +
  1.1011 +
  1.1012 +
  1.1013 +
  1.1014 +__NAKED__ LOCAL_C void TRealXFromTInt64(void)
  1.1015 +	{
  1.1016 +	// Convert TInt64 in edx:ebx to TRealX in ecx,edx:ebx
  1.1017 +	_asm mov eax, 0x7FFF
  1.1018 +	_asm or edx, edx				// test sign/zero
  1.1019 +	_asm jz short trealxfromtint64a	// branch if top word zero
  1.1020 +	_asm jns short trealxfromtint64b
  1.1021 +	_asm add eax, 0x10000			// sign bit into eax bit 16
  1.1022 +	_asm neg edx					// take absolute value
  1.1023 +	_asm neg ebx
  1.1024 +	_asm sbb edx, 0
  1.1025 +	_asm jz short trealxfromtint64d	// branch if top word zero
  1.1026 +	trealxfromtint64b:
  1.1027 +	_asm bsr ecx, edx				// ecx=bit number of edx MSB
  1.1028 +	_asm add eax, ecx				// add to exponent in eax
  1.1029 +	_asm add eax, 32
  1.1030 +	_asm neg cl
  1.1031 +	_asm add cl, 31					// 31-bit number = number of left shifts to normalise
  1.1032 +	_asm shld edx, ebx, cl			// shift left to normalise edx:ebx
  1.1033 +	_asm shl ebx, cl
  1.1034 +	_asm mov ecx, eax				// sign/exponent into ecx
  1.1035 +	_asm ror ecx, 16				// and into normal positions
  1.1036 +	_asm ret
  1.1037 +	trealxfromtint64a:				// come here if top word zero
  1.1038 +	_asm or ebx, ebx				// test for bottom word also zero
  1.1039 +	_asm jz short trealxfromtint64c	// branch if it is
  1.1040 +	trealxfromtint64d:				// come here if top word zero, bottom word not
  1.1041 +	_asm mov edx, ebx				// shift edx:ebx left 32
  1.1042 +	_asm xor ebx, ebx
  1.1043 +	_asm bsr ecx, edx				// ecx=bit number of edx MSB
  1.1044 +	_asm add eax, ecx				// add to exponent in eax
  1.1045 +	_asm neg cl
  1.1046 +	_asm add cl, 31					// 31-bit number = number of left shifts to normalise
  1.1047 +	_asm shl edx, cl				// normalise
  1.1048 +	_asm mov ecx, eax				// sign/exponent into ecx
  1.1049 +	_asm ror ecx, 16				// and into normal positions
  1.1050 +	_asm ret
  1.1051 +	trealxfromtint64c:				// entire number is zero
  1.1052 +	_asm xor ecx, ecx
  1.1053 +	_asm ret
  1.1054 +	}
  1.1055 +
  1.1056 +
  1.1057 +
  1.1058 +
  1.1059 +__NAKED__ EXPORT_C TInt TRealX::Set(const TInt64& /*aInt*/)
  1.1060 +/**
  1.1061 +Gives this extended precision object a new value taken from
  1.1062 +a 64 bit integer.
  1.1063 +
  1.1064 +@param aInt The 64 bit integer value.
  1.1065 +
  1.1066 +@return KErrNone, always.
  1.1067 +*/
  1.1068 +	{
  1.1069 +	// on entry ecx=this, [esp+4]=address of aInt, return code in eax
  1.1070 +	_asm push ebx
  1.1071 +	_asm push ecx
  1.1072 +	_asm mov edx, [esp+12]		// edx=address of aInt
  1.1073 +	_asm mov ebx, [edx]
  1.1074 +	_asm mov edx, [edx+4]		// edx:ebx=aInt
  1.1075 +	_asm call TRealXFromTInt64	// convert to TRealX in ecx,edx:ebx
  1.1076 +	_asm pop eax				// eax=this
  1.1077 +	_asm mov [eax], ebx			// store result
  1.1078 +	_asm mov [eax+4], edx
  1.1079 +	_asm mov [eax+8], ecx
  1.1080 +	_asm xor eax, eax			// return KErrNone
  1.1081 +	_asm pop ebx
  1.1082 +	_asm ret 4
  1.1083 +	}
  1.1084 +
  1.1085 +
  1.1086 +
  1.1087 +
  1.1088 +__NAKED__ LOCAL_C void __6TRealXi()
  1.1089 +	{
  1.1090 +	// common function for int to TRealX
  1.1091 +	_asm mov edx, [esp+4]		// edx=aInt
  1.1092 +	_asm or edx, edx			// test sign/zero
  1.1093 +	_asm mov eax, 0x7FFF
  1.1094 +	_asm jz short trealxfromint0	// branch if 0
  1.1095 +	_asm jns short trealxfromint1	// skip if positive
  1.1096 +	_asm neg edx					// take absolute value
  1.1097 +	_asm add eax, 0x10000			// sign bit in eax bit 16
  1.1098 +	trealxfromint1:
  1.1099 +	_asm push ecx					// save this
  1.1100 +	_asm bsr ecx, edx				// bit number of edx MSB into ecx
  1.1101 +	_asm add eax, ecx				// add to eax to form result exponent
  1.1102 +	_asm neg cl
  1.1103 +	_asm add cl, 31					// 31-bit number = number of shifts to normalise edx
  1.1104 +	_asm shl edx, cl				// normalise edx
  1.1105 +	_asm pop ecx					// this back into ecx
  1.1106 +	_asm ror eax, 16				// sign/exponent into normal positions
  1.1107 +	_asm mov [ecx+4], edx			// store mantissa high word
  1.1108 +	_asm mov [ecx+8], eax			// store sign/exponent
  1.1109 +	_asm xor eax, eax
  1.1110 +	_asm mov [ecx], eax				// zero mantissa low word
  1.1111 +	_asm mov eax, ecx				// return eax=this
  1.1112 +	_asm ret 4
  1.1113 +	trealxfromint0:
  1.1114 +	_asm mov [ecx], edx
  1.1115 +	_asm mov [ecx+4], edx			// store mantissa high word=0
  1.1116 +	_asm mov [ecx+8], edx			// store sign/exponent=0
  1.1117 +	_asm mov eax, ecx				// return eax=this
  1.1118 +	_asm ret 4
  1.1119 +	}
  1.1120 +
  1.1121 +
  1.1122 +
  1.1123 +
  1.1124 +__NAKED__ EXPORT_C TRealX::TRealX(TInt /*aInt*/)
  1.1125 +/**
  1.1126 +Constructs an extended precision object from a signed integer value.
  1.1127 +
  1.1128 +@param aInt The signed integer value.
  1.1129 +*/
  1.1130 +	{
  1.1131 +	// on entry ecx=this, [esp+4]=aInt, return eax=this
  1.1132 +	_asm jmp __6TRealXi
  1.1133 +	}
  1.1134 +
  1.1135 +
  1.1136 +
  1.1137 +
  1.1138 +__NAKED__ EXPORT_C TRealX& TRealX::operator=(TInt /*aInt*/)
  1.1139 +/**
  1.1140 +Assigns the specified signed integer value to this extended precision object.
  1.1141 +
  1.1142 +@param aInt The signed integer value.
  1.1143 +
  1.1144 +@return A reference to this extended precision object.
  1.1145 +*/
  1.1146 +	{
  1.1147 +	// on entry ecx=this, [esp+4]=aInt, return eax=this
  1.1148 +	_asm jmp __6TRealXi
  1.1149 +	}
  1.1150 +
  1.1151 +
  1.1152 +
  1.1153 +
  1.1154 +__NAKED__ LOCAL_C void __6TRealXui()
  1.1155 +	{
  1.1156 +	// common function for unsigned int to TRealX
  1.1157 +	_asm mov edx, [esp+4]		// edx=aInt
  1.1158 +	_asm mov eax, 0x7FFF
  1.1159 +	_asm or edx, edx				// test for zero
  1.1160 +	_asm jz short trealxfromuint0	// branch if 0
  1.1161 +	_asm push ecx					// save this
  1.1162 +	_asm bsr ecx, edx				// bit number of edx MSB into ecx
  1.1163 +	_asm add eax, ecx				// add to eax to form result exponent
  1.1164 +	_asm neg cl
  1.1165 +	_asm add cl, 31					// 31-bit number = number of shifts to normalise edx
  1.1166 +	_asm shl edx, cl				// normalise edx
  1.1167 +	_asm pop ecx					// this back into ecx
  1.1168 +	_asm shl eax, 16				// exponent into normal position
  1.1169 +	_asm mov [ecx+4], edx			// store mantissa high word
  1.1170 +	_asm mov [ecx+8], eax			// store exponent
  1.1171 +	_asm xor eax, eax
  1.1172 +	_asm mov [ecx], eax				// zero mantissa low word
  1.1173 +	_asm mov eax, ecx				// return eax=this
  1.1174 +	_asm ret 4
  1.1175 +	trealxfromuint0:
  1.1176 +	_asm mov [ecx], edx
  1.1177 +	_asm mov [ecx+4], edx			// store mantissa high word=0
  1.1178 +	_asm mov [ecx+8], edx			// store sign/exponent=0
  1.1179 +	_asm mov eax, ecx				// return eax=this
  1.1180 +	_asm ret 4
  1.1181 +	}
  1.1182 +
  1.1183 +
  1.1184 +
  1.1185 +
  1.1186 +__NAKED__ EXPORT_C TRealX::TRealX(TUint /*aInt*/)
  1.1187 +/**
  1.1188 +Constructs an extended precision object from an unsigned integer value.
  1.1189 +
  1.1190 +@param aInt The unsigned integer value.
  1.1191 +*/
  1.1192 +	{
  1.1193 +	// on entry ecx=this, [esp+4]=aInt, return eax=this
  1.1194 +	_asm jmp __6TRealXui
  1.1195 +	}
  1.1196 +
  1.1197 +
  1.1198 +
  1.1199 +
  1.1200 +__NAKED__ EXPORT_C TRealX& TRealX::operator=(TUint /*aInt*/)
  1.1201 +/**
  1.1202 +Assigns the specified unsigned integer value to this extended precision object.
  1.1203 +
  1.1204 +@param aInt The unsigned integer value.
  1.1205 +
  1.1206 +@return A reference to this extended precision object.
  1.1207 +*/
  1.1208 +	{
  1.1209 +	// on entry ecx=this, [esp+4]=aInt, return eax=this
  1.1210 +	_asm jmp __6TRealXui
  1.1211 +	}
  1.1212 +
  1.1213 +
  1.1214 +
  1.1215 +
  1.1216 +__NAKED__ LOCAL_C void __6TRealXRC6TInt64()
  1.1217 +	{
  1.1218 +	// common function for TInt64 to TRealX
  1.1219 +	_asm push ebx				// preserve ebx
  1.1220 +	_asm push ecx				// save this
  1.1221 +	_asm mov edx, [esp+12]		// edx=address of aInt
  1.1222 +	_asm mov ebx, [edx]
  1.1223 +	_asm mov edx, [edx+4]		// edx:ebx=aInt
  1.1224 +	_asm call TRealXFromTInt64	// convert to TRealX in ecx,edx:ebx
  1.1225 +	_asm pop eax				// eax=this
  1.1226 +	_asm mov [eax], ebx			// store result
  1.1227 +	_asm mov [eax+4], edx
  1.1228 +	_asm mov [eax+8], ecx
  1.1229 +	_asm pop ebx				// restore ebx
  1.1230 +	_asm ret 4					// return this in eax
  1.1231 +	}
  1.1232 +
  1.1233 +
  1.1234 +
  1.1235 +
  1.1236 +__NAKED__ EXPORT_C TRealX::TRealX(const TInt64& /*aInt*/)
  1.1237 +/**
  1.1238 +Constructs an extended precision object from a 64 bit integer.
  1.1239 +
  1.1240 +@param aInt A reference to a 64 bit integer. 
  1.1241 +*/
  1.1242 +	{
  1.1243 +	// on entry ecx=this, [esp+4]=address of aInt, return eax=this
  1.1244 +	_asm jmp __6TRealXRC6TInt64
  1.1245 +	}
  1.1246 +
  1.1247 +
  1.1248 +
  1.1249 +
  1.1250 +__NAKED__ EXPORT_C TRealX& TRealX::operator=(const TInt64& /*aInt*/)
  1.1251 +/**
  1.1252 +Assigns the specified 64 bit integer value to this extended precision object.
  1.1253 +
  1.1254 +@param aInt A reference to a 64 bit integer. 
  1.1255 +
  1.1256 +@return A reference to this extended precision object.
  1.1257 +*/
  1.1258 +	{
  1.1259 +	// on entry ecx=this, [esp+4]=address of aInt, return eax=this
  1.1260 +	_asm jmp __6TRealXRC6TInt64
  1.1261 +	}
  1.1262 +
  1.1263 +
  1.1264 +
  1.1265 +
  1.1266 +__NAKED__ LOCAL_C void ConvertTReal32ToTRealX(void)
  1.1267 +	{
  1.1268 +	// Convert TReal32 in edx to TRealX in ecx:edx,ebx
  1.1269 +	_asm xor ebx, ebx			// mant low always zero
  1.1270 +	_asm mov eax, edx
  1.1271 +	_asm shr eax, 23			// exponent now in al, sign in ah bit 0
  1.1272 +	_asm test al, al			// check for denormal/zero
  1.1273 +	_asm jz short treal32totrealx2	// branch if denormal/zero
  1.1274 +	_asm xor ecx, ecx
  1.1275 +	_asm mov cl, al
  1.1276 +	_asm add ecx, 0x7F80		// bias exponent correctly for TRealX
  1.1277 +	_asm cmp al, 0xFF			// check for infinity/NaN
  1.1278 +	_asm jnz short treal32totrealx1	// skip if neither
  1.1279 +	_asm mov cl, al				// else set TRealX exponent to FFFF
  1.1280 +	_asm mov ch, al
  1.1281 +	treal32totrealx1:
  1.1282 +	_asm shl edx, 8				// left-justify mantissa in edx
  1.1283 +	_asm or edx, 0x80000000		// put in implied integer bit
  1.1284 +	_asm shl ecx, 16			// exponent into ecx bits 16-31
  1.1285 +	_asm mov cl, ah				// sign into ecx bit 0
  1.1286 +	_asm ret
  1.1287 +	treal32totrealx2:			// come here if exponent 0
  1.1288 +	_asm shl edx, 9				// left-justify mantissa in edx (shift out integer bit as well)
  1.1289 +	_asm jnz short treal32totrealx3	// jump if denormal
  1.1290 +	_asm xor ecx, ecx			// else return 0
  1.1291 +	_asm mov cl, ah				// with same sign as input value
  1.1292 +	_asm ret
  1.1293 +	treal32totrealx3:			// come here if denormal
  1.1294 +	_asm bsr ecx, edx			// ecx=bit number of MSB of edx
  1.1295 +	_asm neg ecx
  1.1296 +	_asm add ecx, 31			// ecx=number of left shifts to normalise edx
  1.1297 +	_asm shl edx, cl			// normalise
  1.1298 +	_asm neg ecx
  1.1299 +	_asm add ecx, 0x7F80			// exponent=7F80-number of shifts
  1.1300 +	_asm shl ecx, 16			// exponent into ecx bits 16-31
  1.1301 +	_asm mov cl, ah				// sign into ecx bit 0
  1.1302 +	_asm ret
  1.1303 +	}
  1.1304 +
  1.1305 +__NAKED__ LOCAL_C void ConvertTReal64ToTRealX(void)
  1.1306 +	{
  1.1307 +	// Convert TReal64 in edx:ebx to TRealX in ecx:edx,ebx
  1.1308 +	_asm mov eax, edx
  1.1309 +	_asm shr eax, 20
  1.1310 +	_asm mov ecx, 0x7FF
  1.1311 +	_asm and ecx, eax				// ecx=exponent
  1.1312 +	_asm jz short treal64totrealx1	// branch if zero/denormal
  1.1313 +	_asm add ecx, 0x7C00			// else bias exponent correctly for TRealX
  1.1314 +	_asm cmp ecx, 0x83FF			// check for infinity/NaN
  1.1315 +	_asm jnz short treal64totrealx2
  1.1316 +	_asm mov ch, cl					// if so, set exponent to FFFF
  1.1317 +	treal64totrealx2:
  1.1318 +	_asm shl ecx, 16				// exponent into ecx bits 16-31
  1.1319 +	_asm mov cl, 11					// number of shifts needed to justify mantissa correctly
  1.1320 +	_asm shld edx, ebx, cl			// shift mantissa left
  1.1321 +	_asm shl ebx, cl
  1.1322 +	_asm or edx, 0x80000000			// put in implied integer bit
  1.1323 +	_asm shr eax, 11				// sign bit into al bit 0
  1.1324 +	_asm mov cl, al					// into ecx bit 0
  1.1325 +	_asm ret
  1.1326 +	treal64totrealx1:				// come here if zero/denormal
  1.1327 +	_asm mov cl, 12					// number of shifts needed to justify mantissa correctly
  1.1328 +	_asm shld edx, ebx, cl			// shift mantissa left
  1.1329 +	_asm shl ebx, cl
  1.1330 +	_asm test edx, edx				// check for zero
  1.1331 +	_asm jnz short treal64totrealx3
  1.1332 +	_asm test ebx, ebx
  1.1333 +	_asm jnz short treal64totrealx4
  1.1334 +	_asm shr eax, 11				// sign bit into eax bit 0, rest of eax=0
  1.1335 +	_asm mov ecx, eax				// return 0 result with correct sign
  1.1336 +	_asm ret
  1.1337 +	treal64totrealx4:				// come here if denormal, edx=0
  1.1338 +	_asm mov edx, ebx				// shift mantissa left 32
  1.1339 +	_asm xor ebx, ebx
  1.1340 +	_asm bsr ecx, edx				// ecx=bit number of MSB of edx
  1.1341 +	_asm neg ecx
  1.1342 +	_asm add ecx, 31				// ecx=number of left shifts to normalise edx
  1.1343 +	_asm shl edx, cl				// normalise
  1.1344 +	_asm neg ecx
  1.1345 +	_asm add ecx, 0x7BE0			// exponent=7BE0-number of shifts
  1.1346 +	_asm shl ecx, 16				// exponent into bits 16-31 of ecx
  1.1347 +	_asm shr eax, 11
  1.1348 +	_asm mov cl, al					// sign into bit 0 of ecx
  1.1349 +	_asm ret
  1.1350 +	treal64totrealx3:				// come here if denormal, edx nonzero
  1.1351 +	_asm bsr ecx, edx				// ecx=bit number of MSB of edx
  1.1352 +	_asm neg ecx
  1.1353 +	_asm add ecx, 31				// ecx=number of left shifts to normalise edx:ebx
  1.1354 +	_asm shld edx, ebx, cl			// normalise
  1.1355 +	_asm shl ebx, cl
  1.1356 +	_asm neg ecx
  1.1357 +	_asm add ecx, 0x7C00				// exponent=7C00-number of shifts
  1.1358 +	_asm shl ecx, 16				// exponent into bits 16-31 of ecx
  1.1359 +	_asm shr eax, 11
  1.1360 +	_asm mov cl, al					// sign into bit 0 of ecx
  1.1361 +	_asm ret
  1.1362 +	}
  1.1363 +
  1.1364 +
  1.1365 +
  1.1366 +
  1.1367 +__NAKED__ EXPORT_C TInt TRealX::Set(TReal32 /*aReal*/)
  1.1368 +/**
  1.1369 +Gives this extended precision object a new value taken from
  1.1370 +a single precision floating point number.
  1.1371 +
  1.1372 +@param aReal The single precision floating point value. 
  1.1373 +
  1.1374 +@return KErrNone, if a valid number;
  1.1375 +        KErrOverflow, if the number is infinite;
  1.1376 +        KErrArgument, if not a number.
  1.1377 +*/
  1.1378 +	{
  1.1379 +	// on entry, ecx=this and aReal is in [esp+4]
  1.1380 +	// on exit, error code in eax
  1.1381 +	_asm push ebx					// save ebx
  1.1382 +	_asm push ecx					// save this
  1.1383 +	_asm mov edx, [esp+12]			// aReal into edx
  1.1384 +	_asm call ConvertTReal32ToTRealX
  1.1385 +	_asm pop eax					// eax=this
  1.1386 +	_asm mov [eax], ebx				// store result
  1.1387 +	_asm mov [eax+4], edx
  1.1388 +	_asm mov [eax+8], ecx
  1.1389 +	_asm xor eax, eax				// error code=KErrNone initially
  1.1390 +	_asm cmp ecx, 0xFFFF0000		// check for infinity/NaN
  1.1391 +	_asm jb short trealxsettreal32a	// if neither, return KErrNone
  1.1392 +	_asm mov eax, -9				// eax=KErrOverflow
  1.1393 +	_asm cmp edx, 0x80000000			// check for infinity
  1.1394 +	_asm je short trealxsettreal32a	// if infinity, return KErrOverflow
  1.1395 +	_asm mov eax, -6				// if NaN, return KErrArgument
  1.1396 +	trealxsettreal32a:
  1.1397 +	_asm pop ebx
  1.1398 +	_asm ret 4
  1.1399 +	}
  1.1400 +
  1.1401 +
  1.1402 +
  1.1403 +
  1.1404 +__NAKED__ EXPORT_C TInt TRealX::Set(TReal64 /*aReal*/)
  1.1405 +/**
  1.1406 +Gives this extended precision object a new value taken from
  1.1407 +a double precision floating point number.
  1.1408 +
  1.1409 +@param aReal The double precision floating point value. 
  1.1410 +
  1.1411 +@return KErrNone, if a valid number;
  1.1412 +        KErrOverflow, if the number is infinite;
  1.1413 +        KErrArgument, if not a number.
  1.1414 +*/
  1.1415 +	{
  1.1416 +	// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
  1.1417 +	// on exit, error code in eax
  1.1418 +	_asm push ebx				// save ebx
  1.1419 +	_asm push ecx				// save this
  1.1420 +	_asm mov ebx, [esp+12]		// aReal into edx:ebx
  1.1421 +	_asm mov edx, [esp+16]
  1.1422 +	_asm call ConvertTReal64ToTRealX
  1.1423 +	_asm pop eax				// eax=this
  1.1424 +	_asm mov [eax], ebx			// store result
  1.1425 +	_asm mov [eax+4], edx
  1.1426 +	_asm mov [eax+8], ecx
  1.1427 +	_asm xor eax, eax				// error code=KErrNone initially
  1.1428 +	_asm cmp ecx, 0xFFFF0000		// check for infinity/NaN
  1.1429 +	_asm jb short trealxsettreal64a	// if neither, return KErrNone
  1.1430 +	_asm mov eax, -9				// eax=KErrOverflow
  1.1431 +	_asm cmp edx, 0x80000000			// check for infinity
  1.1432 +	_asm jne short trealxsettreal64b	// branch if NaN
  1.1433 +	_asm test ebx, ebx
  1.1434 +	_asm je short trealxsettreal64a		// if infinity, return KErrOverflow
  1.1435 +	trealxsettreal64b:
  1.1436 +	_asm mov eax, -6				// if NaN, return KErrArgument
  1.1437 +	trealxsettreal64a:
  1.1438 +	_asm pop ebx
  1.1439 +	_asm ret 8
  1.1440 +	}
  1.1441 +
  1.1442 +
  1.1443 +
  1.1444 +
  1.1445 +__NAKED__ LOCAL_C void __6TRealXf()
  1.1446 +	{
  1.1447 +	// common function for float to TRealX
  1.1448 +	_asm push ebx				// save ebx
  1.1449 +	_asm push ecx				// save this
  1.1450 +	_asm mov edx, [esp+12]		// aReal into edx
  1.1451 +	_asm call ConvertTReal32ToTRealX
  1.1452 +	_asm pop eax				// eax=this
  1.1453 +	_asm mov [eax], ebx			// store result
  1.1454 +	_asm mov [eax+4], edx
  1.1455 +	_asm mov [eax+8], ecx
  1.1456 +	_asm pop ebx
  1.1457 +	_asm ret 4
  1.1458 +	}
  1.1459 +
  1.1460 +
  1.1461 +
  1.1462 +
  1.1463 +__NAKED__ EXPORT_C TRealX::TRealX(TReal32 /*aReal*/)
  1.1464 +/**
  1.1465 +Constructs an extended precision object from
  1.1466 +a single precision floating point number.
  1.1467 +
  1.1468 +@param aReal The single precision floating point value.
  1.1469 +*/
  1.1470 +	{
  1.1471 +	// on entry, ecx=this and aReal is in [esp+4]
  1.1472 +	// on exit, eax=this
  1.1473 +	_asm jmp __6TRealXf
  1.1474 +	}
  1.1475 +
  1.1476 +
  1.1477 +
  1.1478 +
  1.1479 +__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal32 /*aReal*/)
  1.1480 +/**
  1.1481 +Assigns the specified single precision floating point number to
  1.1482 +this extended precision object.
  1.1483 +
  1.1484 +@param aReal The single precision floating point value.
  1.1485 +
  1.1486 +@return A reference to this extended precision object.
  1.1487 +*/
  1.1488 +	{
  1.1489 +	// on entry, ecx=this and aReal is in [esp+4]
  1.1490 +	// on exit, eax=this
  1.1491 +	_asm jmp __6TRealXf
  1.1492 +	}
  1.1493 +
  1.1494 +
  1.1495 +
  1.1496 +
  1.1497 +__NAKED__ LOCAL_C void __6TRealXd()
  1.1498 +	{
  1.1499 +	// common function for double to TRealX
  1.1500 +	_asm push ebx				// save ebx
  1.1501 +	_asm push ecx				// save this
  1.1502 +	_asm mov ebx, [esp+12]		// aReal into edx:ebx
  1.1503 +	_asm mov edx, [esp+16]
  1.1504 +	_asm call ConvertTReal64ToTRealX
  1.1505 +	_asm pop eax				// eax=this
  1.1506 +	_asm mov [eax], ebx			// store result
  1.1507 +	_asm mov [eax+4], edx
  1.1508 +	_asm mov [eax+8], ecx
  1.1509 +	_asm pop ebx
  1.1510 +	_asm ret 8
  1.1511 +	}
  1.1512 +
  1.1513 +
  1.1514 +
  1.1515 +
  1.1516 +__NAKED__ EXPORT_C TRealX::TRealX(TReal64 /*aReal*/)
  1.1517 +/**
  1.1518 +Constructs an extended precision object from
  1.1519 +a double precision floating point number.
  1.1520 +
  1.1521 +@param aReal The double precision floating point value.
  1.1522 +*/
  1.1523 +	{
  1.1524 +	// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
  1.1525 +	// on exit, eax=this
  1.1526 +	_asm jmp __6TRealXd
  1.1527 +	}
  1.1528 +
  1.1529 +
  1.1530 +
  1.1531 +
  1.1532 +__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal64 /*aReal*/)
  1.1533 +/**
  1.1534 +Assigns the specified double precision floating point number to
  1.1535 +this extended precision object.
  1.1536 +
  1.1537 +@param aReal The double precision floating point value.
  1.1538 +
  1.1539 +@return A reference to this extended precision object.
  1.1540 +*/
  1.1541 +	{
  1.1542 +	// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
  1.1543 +	// on exit, eax=this
  1.1544 +	_asm jmp __6TRealXd
  1.1545 +	}
  1.1546 +
  1.1547 +
  1.1548 +
  1.1549 +
  1.1550 +__NAKED__ EXPORT_C TRealX::operator TInt() const
  1.1551 +/**
  1.1552 +Gets the extended precision value as a signed integer value.
  1.1553 +
  1.1554 +The operator returns:
  1.1555 +
  1.1556 +1. zero , if the extended precision value is not a number
  1.1557 +
  1.1558 +2. 0x7FFFFFFF, if the value is positive and too big to fit into a TInt.
  1.1559 +
  1.1560 +3. 0x80000000, if the value is negative and too big to fit into a TInt.
  1.1561 +*/
  1.1562 +	{
  1.1563 +	// on entry ecx=this, return value in eax
  1.1564 +	_asm mov edx, [ecx]			// edx=mantissa low
  1.1565 +	_asm mov eax, [ecx+4]		// eax=mantissa high
  1.1566 +	_asm mov ecx, [ecx+8]		// ecx=exponent/sign
  1.1567 +	_asm ror ecx, 16			// exponent into cx
  1.1568 +	_asm cmp cx, 0xFFFF
  1.1569 +	_asm jz short trealxtoint1	// branch if exp=FFFF
  1.1570 +	_asm mov dx, cx
  1.1571 +	_asm mov cx, 0x801E
  1.1572 +	_asm sub cx, dx				// cx=number of right shifts needed to convert mantissa to int
  1.1573 +	_asm jbe short trealxtoint2	// if exp>=801E, saturate result
  1.1574 +	_asm cmp cx, 31				// more than 31 shifts needed?
  1.1575 +	_asm ja short trealxtoint0	// if so, underflow to zero
  1.1576 +	_asm shr eax, cl			// else ABS(result)=eax>>cl
  1.1577 +	_asm test ecx, 0x10000		// test sign
  1.1578 +	_asm jz short trealxtoint3	// skip if +
  1.1579 +	_asm neg eax
  1.1580 +	trealxtoint3:
  1.1581 +	_asm ret
  1.1582 +	trealxtoint1:			// come here if exponent=FFFF
  1.1583 +	_asm cmp eax, 0x80000000		// check for infinity
  1.1584 +	_asm jnz short trealxtoint0	// if NaN, return 0
  1.1585 +	_asm test edx, edx
  1.1586 +	_asm jnz short trealxtoint0	// if NaN, return 0
  1.1587 +	trealxtoint2:			// come here if argument too big for 32-bit integer
  1.1588 +	_asm mov eax, 0x7FFFFFFF
  1.1589 +	_asm shr ecx, 17			// sign bit into carry flag
  1.1590 +	_asm adc eax, 0				// eax=7FFFFFFF if +, 80000000 if -
  1.1591 +	_asm ret					// return saturated value
  1.1592 +	trealxtoint0:			// come here if INT(argument)=0 or NaN
  1.1593 +	_asm xor eax, eax			// return 0
  1.1594 +	_asm ret
  1.1595 +	}
  1.1596 +
  1.1597 +
  1.1598 +
  1.1599 +
  1.1600 +__NAKED__ EXPORT_C TRealX::operator TUint() const
  1.1601 +/**
  1.1602 +Returns the extended precision value as an unsigned signed integer value.
  1.1603 +
  1.1604 +The operator returns:
  1.1605 +
  1.1606 +1. zero, if the extended precision value is not a number
  1.1607 +
  1.1608 +2. 0xFFFFFFFF, if the value is positive and too big to fit into a TUint.
  1.1609 +
  1.1610 +3. zero, if the value is negative and too big to fit into a TUint.
  1.1611 +*/
  1.1612 +	{
  1.1613 +	// on entry ecx=this, return value in eax
  1.1614 +	_asm mov edx, [ecx]			// edx=mantissa low
  1.1615 +	_asm mov eax, [ecx+4]		// eax=mantissa high
  1.1616 +	_asm mov ecx, [ecx+8]		// ecx=exponent/sign
  1.1617 +	_asm ror ecx, 16			// exponent into cx
  1.1618 +	_asm cmp cx, 0xFFFF
  1.1619 +	_asm jz short trealxtouint1	// branch if exp=FFFF
  1.1620 +	_asm mov dx, cx
  1.1621 +	_asm mov cx, 0x801E
  1.1622 +	_asm sub cx, dx				// cx=number of right shifts needed to convert mantissa to int
  1.1623 +	_asm jb short trealxtouint2	// if exp>801E, saturate result
  1.1624 +	_asm cmp cx, 31				// more than 31 shifts needed?
  1.1625 +	_asm ja short trealxtouint0	// if so, underflow to zero
  1.1626 +	_asm test ecx, 0x10000		// test sign
  1.1627 +	_asm jnz short trealxtouint0	// if -, return 0
  1.1628 +	_asm shr eax, cl			// else result=eax>>cl
  1.1629 +	_asm ret
  1.1630 +	trealxtouint1:			// come here if exponent=FFFF
  1.1631 +	_asm cmp eax, 0x80000000		// check for infinity
  1.1632 +	_asm jnz short trealxtouint0	// if NaN, return 0
  1.1633 +	_asm test edx, edx
  1.1634 +	_asm jnz short trealxtouint0	// if NaN, return 0
  1.1635 +	trealxtouint2:			// come here if argument too big for 32-bit integer
  1.1636 +	_asm mov eax, 0xFFFFFFFF
  1.1637 +	_asm shr ecx, 17			// sign bit into carry flag
  1.1638 +	_asm adc eax, 0				// eax=FFFFFFFF if +, 0 if -
  1.1639 +	_asm ret					// return saturated value
  1.1640 +	trealxtouint0:			// come here if INT(argument)=0 or NaN
  1.1641 +	_asm xor eax, eax			// return 0
  1.1642 +	_asm ret
  1.1643 +	}
  1.1644 +
  1.1645 +
  1.1646 +
  1.1647 +
  1.1648 +__NAKED__ LOCAL_C void ConvertTRealXToTInt64(void)
  1.1649 +	{
  1.1650 +	// Convert TRealX in ecx,edx:ebx to TInt64 in edx:ebx
  1.1651 +	_asm ror ecx, 16				// exponent into cx
  1.1652 +	_asm cmp cx, 0xFFFF
  1.1653 +	_asm jz short trealxtoint64a	// branch if exp=FFFF
  1.1654 +	_asm mov ax, cx
  1.1655 +	_asm mov cx, 0x803E
  1.1656 +	_asm sub cx, ax					// cx=number of right shifts needed to convert mantissa to int
  1.1657 +	_asm jbe short trealxtoint64b	// if exp>=803E, saturate result
  1.1658 +	_asm cmp cx, 63					// more than 63 shifts needed?
  1.1659 +	_asm ja short trealxtoint64z	// if so, underflow to zero
  1.1660 +	_asm cmp cl, 31					// more than 31 shifts needed?
  1.1661 +	_asm jbe short trealxtoint64d	// branch if not
  1.1662 +	_asm sub cl, 32					// cl=shift count - 32
  1.1663 +	_asm mov ebx, edx				// shift right by 32
  1.1664 +	_asm xor edx, edx
  1.1665 +	trealxtoint64d:
  1.1666 +	_asm shrd ebx, edx, cl			// shift edx:ebx right by cl to give ABS(result)
  1.1667 +	_asm shr edx, cl
  1.1668 +	_asm test ecx, 0x10000			// test sign
  1.1669 +	_asm jz short trealxtoint64c	// skip if +
  1.1670 +	_asm neg edx					// if -, negate
  1.1671 +	_asm neg ebx
  1.1672 +	_asm sbb edx, 0
  1.1673 +	trealxtoint64c:
  1.1674 +	_asm ret
  1.1675 +	trealxtoint64a:			// come here if exponent=FFFF
  1.1676 +	_asm cmp edx, 0x80000000			// check for infinity
  1.1677 +	_asm jnz short trealxtoint64z	// if NaN, return 0
  1.1678 +	_asm test ebx, ebx
  1.1679 +	_asm jnz short trealxtoint64z	// if NaN, return 0
  1.1680 +	trealxtoint64b:			// come here if argument too big for 32-bit integer
  1.1681 +	_asm mov edx, 0x7FFFFFFF
  1.1682 +	_asm mov ebx, 0xFFFFFFFF
  1.1683 +	_asm shr ecx, 17				// sign bit into carry flag
  1.1684 +	_asm adc ebx, 0					// edx:ebx=7FFFFFFF FFFFFFFF if +,
  1.1685 +	_asm adc edx, 0					// or 80000000 00000000 if -
  1.1686 +	_asm ret						// return saturated value
  1.1687 +	trealxtoint64z:			// come here if INT(argument)=0 or NaN
  1.1688 +	_asm xor edx, edx				// return 0
  1.1689 +	_asm xor ebx, ebx
  1.1690 +	_asm ret
  1.1691 +	}
  1.1692 +
  1.1693 +
  1.1694 +
  1.1695 +
  1.1696 +/**
  1.1697 +Returns the extended precision value as a 64 bit integer value.
  1.1698 +
  1.1699 +The operator returns:
  1.1700 +
  1.1701 +1. zero, if the extended precision value is not a number
  1.1702 +
  1.1703 +2. 0x7FFFFFFF FFFFFFFF, if the value is positive and too big to fit
  1.1704 +   into a TInt64
  1.1705 +
  1.1706 +3. 0x80000000 00000000, if the value is negative and too big to fit
  1.1707 +   into a TInt64.
  1.1708 +*/
  1.1709 +__NAKED__ EXPORT_C TRealX::operator TInt64() const
  1.1710 +	{
  1.1711 +	// on entry, ecx=this, return value in edx:eax
  1.1712 +	_asm push ebx
  1.1713 +	_asm mov ebx, [ecx]			// get TRealX value into ecx,edx:ebx
  1.1714 +	_asm mov edx, [ecx+4]
  1.1715 +	_asm mov ecx, [ecx+8]
  1.1716 +	_asm call ConvertTRealXToTInt64
  1.1717 +	_asm mov eax, ebx			// store low result into eax
  1.1718 +	_asm pop ebx
  1.1719 +	_asm ret
  1.1720 +	}
  1.1721 +
  1.1722 +
  1.1723 +
  1.1724 +
  1.1725 +__NAKED__ LOCAL_C void TRealXGetTReal32(void)
  1.1726 +	{
  1.1727 +	// Convert TRealX in ecx,edx:ebx to TReal32 in edx
  1.1728 +	// Return error code in eax
  1.1729 +	_asm cmp ecx, 0xFFFF0000		// check for infinity/NaN
  1.1730 +	_asm jnc short trealxgettreal32a
  1.1731 +	_asm xor eax, eax
  1.1732 +	_asm ror ecx, 16				// exponent into cx
  1.1733 +	_asm sub cx, 0x7F80				// cx=result exponent if normalised
  1.1734 +	_asm jbe short trealxgettreal32b	// jump if denormal, zero or underflow
  1.1735 +	_asm cmp cx, 0xFF				// check if overflow
  1.1736 +	_asm jb short trealxgettreal32c	// jump if not
  1.1737 +	trealxgettreal32d:			// come here if overflow
  1.1738 +	_asm xor edx, edx				// set mantissa=0 to generate infinity
  1.1739 +	_asm ror ecx, 16				// ecx back to normal format
  1.1740 +	trealxgettreal32a:			// come here if infinity or NaN
  1.1741 +	_asm shr edx, 7
  1.1742 +	_asm or edx, 0xFF000000			// set exponent to FF
  1.1743 +	_asm shr ecx, 1					// sign bit -> carry
  1.1744 +	_asm rcr edx, 1					// sign bit -> MSB of result
  1.1745 +	_asm mov eax, edx
  1.1746 +	_asm shl eax, 9					// test for infinity or NaN
  1.1747 +	_asm mov eax, -9				// eax=KErrOverflow
  1.1748 +	_asm jz short trealxgettreal32e
  1.1749 +	_asm mov eax, -6				// if NaN, eax=KErrArgument
  1.1750 +	trealxgettreal32e:
  1.1751 +	_asm ret
  1.1752 +	trealxgettreal32b:			// come here if exponent<=7F80
  1.1753 +	_asm cmp cx, -24				// check for zero or total underflow
  1.1754 +	_asm jle short trealxgettreal32z
  1.1755 +	_asm neg cl
  1.1756 +	_asm inc cl						// cl=number of right shifts to form denormal mantissa
  1.1757 +	_asm shrd eax, ebx, cl			// shift mantissa right into eax
  1.1758 +	_asm shrd ebx, edx, cl
  1.1759 +	_asm shr edx, cl
  1.1760 +	_asm or edx, 0x80000000			// set top bit to ensure correct rounding up
  1.1761 +	_asm xor cl, cl					// cl=result exponent=0
  1.1762 +	trealxgettreal32c:			// come here if result normalised
  1.1763 +	_asm cmp dl, 0x80				// check rounding bits
  1.1764 +	_asm ja short trealxgettreal32f	// branch to round up
  1.1765 +	_asm jb short trealxgettreal32g	// branch to round down
  1.1766 +	_asm test ebx, ebx
  1.1767 +	_asm jnz short trealxgettreal32f	// branch to round up
  1.1768 +	_asm test eax, eax
  1.1769 +	_asm jnz short trealxgettreal32f	// branch to round up
  1.1770 +	_asm test ecx, 0x01000000			// check rounded-down flag
  1.1771 +	_asm jnz short trealxgettreal32f	// branch to round up
  1.1772 +	_asm test ecx, 0x02000000			// check rounded-up flag
  1.1773 +	_asm jnz short trealxgettreal32g	// branch to round down
  1.1774 +	_asm test dh, 1						// else round to even
  1.1775 +	_asm jz short trealxgettreal32g		// branch to round down if LSB=0
  1.1776 +	trealxgettreal32f:				// come here to round up
  1.1777 +	_asm add edx, 0x100					// increment mantissa
  1.1778 +	_asm jnc short trealxgettreal32g
  1.1779 +	_asm rcr edx, 1
  1.1780 +	_asm inc cl							// if carry, increment exponent
  1.1781 +	_asm cmp cl, 0xFF					// and check for overflow
  1.1782 +	_asm jz short trealxgettreal32d		// branch out if overflow
  1.1783 +	trealxgettreal32g:				// come here to round down
  1.1784 +	_asm xor dl, dl
  1.1785 +	_asm add edx, edx					// shift out integer bit
  1.1786 +	_asm mov dl, cl
  1.1787 +	_asm ror edx, 8						// exponent->edx bits 24-31, mantissa in 23-1
  1.1788 +	_asm test edx, edx					// check if underflow
  1.1789 +	_asm jz short trealxgettreal32h		// branch out if underflow
  1.1790 +	_asm shr ecx, 17					// sign bit->carry
  1.1791 +	_asm rcr edx, 1						// ->edx bit 31, exp->edx bits 23-30, mant->edx bits 22-0
  1.1792 +	_asm xor eax, eax					// return KErrNone
  1.1793 +	_asm ret
  1.1794 +	trealxgettreal32z:				// come here if zero or underflow
  1.1795 +	_asm xor eax, eax
  1.1796 +	_asm cmp cx, 0x8080					// check for zero
  1.1797 +	_asm jz short trealxgettreal32y		// if zero, return KErrNone
  1.1798 +	trealxgettreal32h:				// come here if underflow after rounding
  1.1799 +	_asm mov eax, -10					// eax=KErrUnderflow
  1.1800 +	trealxgettreal32y:
  1.1801 +	_asm xor edx, edx
  1.1802 +	_asm shr ecx, 17
  1.1803 +	_asm rcr edx, 1						// sign bit into edx bit 31, rest of edx=0
  1.1804 +	_asm ret
  1.1805 +	}
  1.1806 +
  1.1807 +
  1.1808 +
  1.1809 +
  1.1810 +__NAKED__ LOCAL_C void TRealXGetTReal64(void)
  1.1811 +	{
  1.1812 +	// Convert TRealX in ecx,edx:ebx to TReal64 in edx:ebx
  1.1813 +	// Return error code in eax
  1.1814 +	// edi, esi also modified
  1.1815 +	_asm ror ecx, 16				// exponent into cx
  1.1816 +	_asm cmp cx, 0xFFFF				// check for infinity/NaN
  1.1817 +	_asm jnc short trealxgettreal64a
  1.1818 +	_asm xor eax, eax
  1.1819 +	_asm xor edi, edi
  1.1820 +	_asm sub cx, 0x7C00				// cx=result exponent if normalised
  1.1821 +	_asm jbe short trealxgettreal64b	// jump if denormal, zero or underflow
  1.1822 +	_asm cmp cx, 0x07FF				// check if overflow
  1.1823 +	_asm jb short trealxgettreal64c	// jump if not
  1.1824 +	trealxgettreal64d:			// come here if overflow
  1.1825 +	_asm xor edx, edx				// set mantissa=0 to generate infinity
  1.1826 +	_asm xor ebx, ebx
  1.1827 +	trealxgettreal64a:			// come here if infinity or NaN
  1.1828 +	_asm mov cl, 10
  1.1829 +	_asm shrd ebx, edx, cl
  1.1830 +	_asm shr edx, cl
  1.1831 +	_asm or edx, 0xFFE00000			// set exponent to 7FF
  1.1832 +	_asm shr ecx, 17				// sign bit -> carry
  1.1833 +	_asm rcr edx, 1					// sign bit -> MSB of result
  1.1834 +	_asm rcr ebx, 1
  1.1835 +	_asm mov eax, edx
  1.1836 +	_asm shl eax, 12				// test for infinity or NaN
  1.1837 +	_asm mov eax, -9				// eax=KErrOverflow
  1.1838 +	_asm jnz short trealxgettreal64n
  1.1839 +	_asm test ebx, ebx
  1.1840 +	_asm jz short trealxgettreal64e
  1.1841 +	trealxgettreal64n:
  1.1842 +	_asm mov eax, -6				// if NaN, eax=KErrArgument
  1.1843 +	trealxgettreal64e:
  1.1844 +	_asm ret
  1.1845 +	trealxgettreal64b:			// come here if exponent<=7C00
  1.1846 +	_asm cmp cx, -53				// check for zero or total underflow
  1.1847 +	_asm jle trealxgettreal64z
  1.1848 +	_asm neg cl
  1.1849 +	_asm inc cl						// cl=number of right shifts to form denormal mantissa
  1.1850 +	_asm cmp cl, 32
  1.1851 +	_asm jb trealxgettreal64x
  1.1852 +	_asm mov eax, ebx				// if >=32 shifts, do 32 shifts and decrement count by 32
  1.1853 +	_asm mov ebx, edx
  1.1854 +	_asm xor edx, edx
  1.1855 +	trealxgettreal64x:
  1.1856 +	_asm shrd edi, eax, cl
  1.1857 +	_asm shrd eax, ebx, cl			// shift mantissa right into eax
  1.1858 +	_asm shrd ebx, edx, cl
  1.1859 +	_asm shr edx, cl
  1.1860 +	_asm or edx, 0x80000000			// set top bit to ensure correct rounding up
  1.1861 +	_asm xor cx, cx					// cx=result exponent=0
  1.1862 +	trealxgettreal64c:			// come here if result normalised
  1.1863 +	_asm mov esi, ebx
  1.1864 +	_asm and esi, 0x7FF				// esi=rounding bits
  1.1865 +	_asm cmp esi, 0x400				// check rounding bits
  1.1866 +	_asm ja short trealxgettreal64f	// branch to round up
  1.1867 +	_asm jb short trealxgettreal64g	// branch to round down
  1.1868 +	_asm test eax, eax
  1.1869 +	_asm jnz short trealxgettreal64f	// branch to round up
  1.1870 +	_asm test edi, edi
  1.1871 +	_asm jnz short trealxgettreal64f	// branch to round up
  1.1872 +	_asm test ecx, 0x01000000			// check rounded-down flag
  1.1873 +	_asm jnz short trealxgettreal64f	// branch to round up
  1.1874 +	_asm test ecx, 0x02000000			// check rounded-up flag
  1.1875 +	_asm jnz short trealxgettreal64g	// branch to round down
  1.1876 +	_asm test ebx, 0x800					// else round to even
  1.1877 +	_asm jz short trealxgettreal64g		// branch to round down if LSB=0
  1.1878 +	trealxgettreal64f:				// come here to round up
  1.1879 +	_asm add ebx, 0x800					// increment mantissa
  1.1880 +	_asm adc edx, 0
  1.1881 +	_asm jnc short trealxgettreal64g
  1.1882 +	_asm rcr edx, 1
  1.1883 +	_asm inc cx							// if carry, increment exponent
  1.1884 +	_asm cmp cx, 0x7FF					// and check for overflow
  1.1885 +	_asm jz trealxgettreal64d			// branch out if overflow
  1.1886 +	trealxgettreal64g:				// come here to round down
  1.1887 +	_asm xor bl, bl						// clear rounding bits
  1.1888 +	_asm and bh, 0xF8
  1.1889 +	_asm mov di, cx						// save exponent
  1.1890 +	_asm mov cl, 10
  1.1891 +	_asm and edx, 0x7FFFFFFF				// clear integer bit
  1.1892 +	_asm shrd ebx, edx, cl				// shift mantissa right by 10
  1.1893 +	_asm shr edx, cl
  1.1894 +	_asm shl edi, 21					// exponent into edi bits 21-31
  1.1895 +	_asm or edx, edi					// into edx bits 21-31
  1.1896 +	_asm test edx, edx					// check if underflow
  1.1897 +	_asm jnz short trealxgettreal64i
  1.1898 +	_asm test ebx, ebx
  1.1899 +	_asm jz short trealxgettreal64h		// branch out if underflow
  1.1900 +	trealxgettreal64i:
  1.1901 +	_asm shr ecx, 17					// sign bit->carry
  1.1902 +	_asm rcr edx, 1						// ->edx bit 31, exp->edx bits 20-30, mant->edx bits 20-0
  1.1903 +	_asm rcr ebx, 1
  1.1904 +	_asm xor eax, eax					// return KErrNone
  1.1905 +	_asm ret
  1.1906 +	trealxgettreal64z:				// come here if zero or underflow
  1.1907 +	_asm xor eax, eax
  1.1908 +	_asm cmp cx, 0x8400					// check for zero
  1.1909 +	_asm jz short trealxgettreal64y		// if zero, return KErrNone
  1.1910 +	trealxgettreal64h:				// come here if underflow after rounding
  1.1911 +	_asm mov eax, -10					// eax=KErrUnderflow
  1.1912 +	trealxgettreal64y:
  1.1913 +	_asm xor edx, edx
  1.1914 +	_asm xor ebx, ebx
  1.1915 +	_asm shr ecx, 17
  1.1916 +	_asm rcr edx, 1						// sign bit into edx bit 31, rest of edx=0, ebx=0
  1.1917 +	_asm ret
  1.1918 +	}
  1.1919 +
  1.1920 +
  1.1921 +
  1.1922 +
  1.1923 +__NAKED__ EXPORT_C TRealX::operator TReal32() const
  1.1924 +/**
  1.1925 +Returns the extended precision value as
  1.1926 +a single precision floating point value.
  1.1927 +*/
  1.1928 +	{
  1.1929 +	// On entry, ecx=this
  1.1930 +	// On exit, TReal32 value on top of FPU stack
  1.1931 +	_asm push ebx
  1.1932 +	_asm mov ebx, [ecx]			// *this into ecx,edx:ebx
  1.1933 +	_asm mov edx, [ecx+4]
  1.1934 +	_asm mov ecx, [ecx+8]
  1.1935 +	_asm call TRealXGetTReal32	// Convert to TReal32 in edx
  1.1936 +	_asm push edx				// push TReal32 onto stack
  1.1937 +	_asm fld dword ptr [esp]	// push TReal32 onto FPU stack
  1.1938 +	_asm pop edx
  1.1939 +	_asm pop ebx
  1.1940 +	_asm ret
  1.1941 +	}
  1.1942 +
  1.1943 +
  1.1944 +
  1.1945 +
  1.1946 +__NAKED__ EXPORT_C TRealX::operator TReal64() const
  1.1947 +/**
  1.1948 +Returns the extended precision value as
  1.1949 +a double precision floating point value.
  1.1950 +*/
  1.1951 +	{
  1.1952 +	// On entry, ecx=this
  1.1953 +	// On exit, TReal64 value on top of FPU stack
  1.1954 +	_asm push ebx
  1.1955 +	_asm push esi
  1.1956 +	_asm push edi
  1.1957 +	_asm mov ebx, [ecx]			// *this into ecx,edx:ebx
  1.1958 +	_asm mov edx, [ecx+4]
  1.1959 +	_asm mov ecx, [ecx+8]
  1.1960 +	_asm call TRealXGetTReal64	// Convert to TReal32 in edx:ebx
  1.1961 +	_asm push edx				// push TReal64 onto stack
  1.1962 +	_asm push ebx
  1.1963 +	_asm fld qword ptr [esp]	// push TReal64 onto FPU stack
  1.1964 +	_asm add esp, 8
  1.1965 +	_asm pop edi
  1.1966 +	_asm pop esi
  1.1967 +	_asm pop ebx
  1.1968 +	_asm ret
  1.1969 +	}
  1.1970 +
  1.1971 +
  1.1972 +
  1.1973 +
  1.1974 +__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal32& /*aVal*/) const
  1.1975 +/**
  1.1976 +Extracts the extended precision value as
  1.1977 +a single precision floating point value.
  1.1978 +
  1.1979 +@param aVal A reference to a single precision object which contains
  1.1980 +            the result of the operation.
  1.1981 +
  1.1982 +@return KErrNone, if the operation is successful;
  1.1983 +        KErrOverflow, if the operation results in overflow;
  1.1984 +        KErrUnderflow, if the operation results in underflow.
  1.1985 +*/
  1.1986 +	{
  1.1987 +	// On entry, ecx=this, [esp+4]=address of aVal
  1.1988 +	// On exit, eax=return code
  1.1989 +	_asm push ebx
  1.1990 +	_asm mov ebx, [ecx]			// *this into ecx,edx:ebx
  1.1991 +	_asm mov edx, [ecx+4]
  1.1992 +	_asm mov ecx, [ecx+8]
  1.1993 +	_asm call TRealXGetTReal32
  1.1994 +	_asm mov ecx, [esp+8]		// ecx=address of aVal
  1.1995 +	_asm mov [ecx], edx			// store result
  1.1996 +	_asm pop ebx
  1.1997 +	_asm ret 4					// return with error code in eax
  1.1998 +	}
  1.1999 +
  1.2000 +
  1.2001 +
  1.2002 +
  1.2003 +__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal64& /*aVal*/) const
  1.2004 +/**
  1.2005 +Extracts the extended precision value as
  1.2006 +a double precision floating point value.
  1.2007 +
  1.2008 +@param aVal A reference to a double precision object which
  1.2009 +            contains the result of the operation.
  1.2010 +
  1.2011 +@return KErrNone, if the operation is successful;
  1.2012 +        KErrOverflow, if the operation results in overflow;
  1.2013 +        KErrUnderflow, if the operation results in underflow.
  1.2014 +*/
  1.2015 +	{
  1.2016 +	// On entry, ecx=this, [esp+4]=address of aVal
  1.2017 +	// On exit, eax=return code
  1.2018 +	_asm push ebx
  1.2019 +	_asm push esi
  1.2020 +	_asm push edi
  1.2021 +	_asm mov ebx, [ecx]			// *this into ecx,edx:ebx
  1.2022 +	_asm mov edx, [ecx+4]
  1.2023 +	_asm mov ecx, [ecx+8]
  1.2024 +	_asm call TRealXGetTReal64
  1.2025 +	_asm mov ecx, [esp+16]		// ecx=address of aVal
  1.2026 +	_asm mov [ecx], ebx			// store result
  1.2027 +	_asm mov [ecx+4], edx
  1.2028 +	_asm pop edi
  1.2029 +	_asm pop esi
  1.2030 +	_asm pop ebx
  1.2031 +	_asm ret 4					// return with error code in eax
  1.2032 +	}
  1.2033 +
  1.2034 +
  1.2035 +
  1.2036 +
  1.2037 +__NAKED__ EXPORT_C void TRealX::SetZero(TBool /*aNegative*/)
  1.2038 +/**
  1.2039 +Sets the value of this extended precision object to zero.
  1.2040 +
  1.2041 +@param aNegative ETrue, the value is a negative zero;
  1.2042 +                 EFalse, the value is a positive zero, this is the default.
  1.2043 +*/
  1.2044 +	{
  1.2045 +	_asm mov edx, [esp+4]		// aNegative into edx
  1.2046 +	_asm xor eax, eax			// eax=0
  1.2047 +	_asm mov [ecx], eax
  1.2048 +	_asm mov [ecx+4], eax
  1.2049 +	_asm test edx, edx
  1.2050 +	_asm jz short setzero1
  1.2051 +	_asm inc eax				// eax=1 if aNegative!=0
  1.2052 +	setzero1:
  1.2053 +	_asm mov [ecx+8], eax		// generate positive or negative zero
  1.2054 +	_asm ret 4
  1.2055 +	}
  1.2056 +
  1.2057 +
  1.2058 +
  1.2059 +
  1.2060 +__NAKED__ EXPORT_C void TRealX::SetNaN()
  1.2061 +/**
  1.2062 +Sets the value of this extended precision object to 'not a number'.
  1.2063 +*/
  1.2064 +	{
  1.2065 +	_asm xor eax, eax			// set *this to 'real indefinite'
  1.2066 +	_asm mov [ecx], eax
  1.2067 +	_asm mov eax, 0xC0000000
  1.2068 +	_asm mov [ecx+4], eax
  1.2069 +	_asm mov eax, 0xFFFF0001
  1.2070 +	_asm mov [ecx+8], eax
  1.2071 +	_asm ret
  1.2072 +	}
  1.2073 +
  1.2074 +
  1.2075 +
  1.2076 +
  1.2077 +__NAKED__ EXPORT_C void TRealX::SetInfinite(TBool /*aNegative*/)
  1.2078 +/**
  1.2079 +Sets the value of this extended precision object to infinity.
  1.2080 +
  1.2081 +@param aNegative ETrue, the value is a negative zero;
  1.2082 +                 EFalse, the value is a positive zero.
  1.2083 +*/
  1.2084 +	{
  1.2085 +	_asm mov edx, [esp+4]		// aNegative into edx
  1.2086 +	_asm mov eax, 0xFFFF0000	// exponent=FFFF, sign=0 initially
  1.2087 +	_asm test edx, edx
  1.2088 +	_asm jz short setinf1
  1.2089 +	_asm inc eax				// sign=1 if aNegative!=0
  1.2090 +	setinf1:
  1.2091 +	_asm mov [ecx+8], eax		// generate positive or negative infinity
  1.2092 +	_asm mov eax, 0x80000000
  1.2093 +	_asm mov [ecx+4], eax
  1.2094 +	_asm xor eax, eax
  1.2095 +	_asm mov [ecx], eax
  1.2096 +	_asm ret 4
  1.2097 +	}
  1.2098 +
  1.2099 +
  1.2100 +
  1.2101 +
  1.2102 +__NAKED__ EXPORT_C TBool TRealX::IsZero() const
  1.2103 +/**
  1.2104 +Determines whether the extended precision value is zero.
  1.2105 +
  1.2106 +@return True, if the extended precision value is zero, false, otherwise.
  1.2107 +*/
  1.2108 +	{
  1.2109 +	_asm mov eax, [ecx+8]		// check exponent
  1.2110 +	_asm shr eax, 16			// move exponent into ax
  1.2111 +	_asm jz short iszero1		// branch if zero
  1.2112 +	_asm xor eax, eax			// else return 0
  1.2113 +	_asm ret
  1.2114 +	iszero1:
  1.2115 +	_asm inc eax				// if zero, return 1
  1.2116 +	_asm ret
  1.2117 +	}
  1.2118 +
  1.2119 +
  1.2120 +
  1.2121 +
  1.2122 +__NAKED__ EXPORT_C TBool TRealX::IsNaN() const
  1.2123 +/**
  1.2124 +Determines whether the extended precision value is 'not a number'.
  1.2125 +
  1.2126 +@return True, if the extended precision value is 'not a number',
  1.2127 +        false, otherwise.
  1.2128 +*/
  1.2129 +	{
  1.2130 +	_asm mov eax, [ecx+8]		// check exponent
  1.2131 +	_asm cmp eax, 0xFFFF0000
  1.2132 +	_asm jc short isnan0		// branch if not FFFF
  1.2133 +	_asm mov eax, [ecx+4]
  1.2134 +	_asm cmp eax, 0x80000000		// check for infinity
  1.2135 +	_asm jne short isnan1
  1.2136 +	_asm mov eax, [ecx]
  1.2137 +	_asm test eax, eax
  1.2138 +	_asm jne short isnan1
  1.2139 +	isnan0:
  1.2140 +	_asm xor eax, eax			// return 0 if not NaN
  1.2141 +	_asm ret
  1.2142 +	isnan1:
  1.2143 +	_asm mov eax, 1				// return 1 if NaN
  1.2144 +	_asm ret
  1.2145 +	}
  1.2146 +
  1.2147 +
  1.2148 +
  1.2149 +
  1.2150 +__NAKED__ EXPORT_C TBool TRealX::IsInfinite() const
  1.2151 +/**
  1.2152 +Determines whether the extended precision value has a finite value.
  1.2153 +
  1.2154 +@return True, if the extended precision value is finite,
  1.2155 +        false, if the value is 'not a number' or is infinite,
  1.2156 +*/
  1.2157 +	{
  1.2158 +	_asm mov eax, [ecx+8]		// check exponent
  1.2159 +	_asm cmp eax, 0xFFFF0000
  1.2160 +	_asm jc short isinf0		// branch if not FFFF
  1.2161 +	_asm mov eax, [ecx+4]
  1.2162 +	_asm cmp eax, 0x80000000		// check for infinity
  1.2163 +	_asm jne short isinf0
  1.2164 +	_asm mov eax, [ecx]
  1.2165 +	_asm test eax, eax
  1.2166 +	_asm jne short isinf0
  1.2167 +	_asm inc eax				// return 1 if infinity
  1.2168 +	_asm ret
  1.2169 +	isinf0:
  1.2170 +	_asm xor eax, eax			// return 0 if not infinity
  1.2171 +	_asm ret
  1.2172 +	}
  1.2173 +
  1.2174 +
  1.2175 +
  1.2176 +
  1.2177 +__NAKED__ EXPORT_C TBool TRealX::IsFinite() const
  1.2178 +/**
  1.2179 +Determines whether the extended precision value has a finite value.
  1.2180 +
  1.2181 +@return True, if the extended precision value is finite,
  1.2182 +        false, if the value is 'not a number' or is infinite,
  1.2183 +*/
  1.2184 +	{
  1.2185 +	_asm mov eax, [ecx+8]		// check exponent
  1.2186 +	_asm cmp eax, 0xFFFF0000	// check for NaN or infinity
  1.2187 +	_asm jnc short isfinite0	// branch if NaN or infinity
  1.2188 +	_asm mov eax, 1				// return 1 if finite
  1.2189 +	_asm ret
  1.2190 +	isfinite0:
  1.2191 +	_asm xor eax, eax			// return 0 if NaN or infinity
  1.2192 +	_asm ret
  1.2193 +	}
  1.2194 +
  1.2195 +
  1.2196 +
  1.2197 +
  1.2198 +__NAKED__ EXPORT_C const TRealX& TRealX::operator+=(const TRealX& /*aVal*/)
  1.2199 +/**
  1.2200 +Adds an extended precision value to this extended precision number.
  1.2201 +
  1.2202 +@param aVal The extended precision value to be added.
  1.2203 +
  1.2204 +@return A reference to this object.
  1.2205 +
  1.2206 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2207 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2208 +*/
  1.2209 +	{
  1.2210 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2211 +	_asm push ebx				// save registers
  1.2212 +	_asm push ebp
  1.2213 +	_asm push esi
  1.2214 +	_asm push edi
  1.2215 +	_asm mov esi, ecx			// this into esi
  1.2216 +	_asm mov ecx, [esp+20]		// address of aVal into ecx
  1.2217 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2218 +	_asm mov edx, [ecx+4]
  1.2219 +	_asm mov ecx, [ecx+8]
  1.2220 +	_asm call TRealXAdd			// do addition, result in ecx,edx:ebx, error code in eax
  1.2221 +	_asm mov [esi], ebx			// store result in *this
  1.2222 +	_asm mov [esi+4], edx
  1.2223 +	_asm mov [esi+8], ecx
  1.2224 +	_asm test eax, eax
  1.2225 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2226 +	_asm mov eax, esi			// return this in eax
  1.2227 +	_asm pop edi				// restore registers
  1.2228 +	_asm pop esi
  1.2229 +	_asm pop ebp
  1.2230 +	_asm pop ebx
  1.2231 +	_asm ret 4
  1.2232 +	}
  1.2233 +
  1.2234 +
  1.2235 +
  1.2236 +
  1.2237 +__NAKED__ EXPORT_C const TRealX& TRealX::operator-=(const TRealX& /*aVal*/)
  1.2238 +/**
  1.2239 +Subtracts an extended precision value from this extended precision number. 
  1.2240 +
  1.2241 +@param aVal The extended precision value to be subtracted.
  1.2242 +
  1.2243 +@return A reference to this object.
  1.2244 +
  1.2245 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2246 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2247 +*/
  1.2248 +	{
  1.2249 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2250 +	_asm push ebx				// save registers
  1.2251 +	_asm push ebp
  1.2252 +	_asm push esi
  1.2253 +	_asm push edi
  1.2254 +	_asm mov esi, ecx			// this into esi
  1.2255 +	_asm mov ecx, [esp+20]		// address of aVal into ecx
  1.2256 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2257 +	_asm mov edx, [ecx+4]
  1.2258 +	_asm mov ecx, [ecx+8]
  1.2259 +	_asm call TRealXSubtract	// do subtraction, result in ecx,edx:ebx, error code in eax
  1.2260 +	_asm mov [esi], ebx			// store result in *this
  1.2261 +	_asm mov [esi+4], edx
  1.2262 +	_asm mov [esi+8], ecx
  1.2263 +	_asm test eax, eax
  1.2264 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2265 +	_asm mov eax, esi			// return this in eax
  1.2266 +	_asm pop edi				// restore registers
  1.2267 +	_asm pop esi
  1.2268 +	_asm pop ebp
  1.2269 +	_asm pop ebx
  1.2270 +	_asm ret 4
  1.2271 +	}
  1.2272 +
  1.2273 +
  1.2274 +
  1.2275 +
  1.2276 +__NAKED__ EXPORT_C const TRealX& TRealX::operator*=(const TRealX& /*aVal*/)
  1.2277 +/**
  1.2278 +Multiplies this extended precision number by an extended precision value.
  1.2279 +
  1.2280 +@param aVal The extended precision value to be subtracted.
  1.2281 +
  1.2282 +@return A reference to this object.
  1.2283 +
  1.2284 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2285 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2286 +*/
  1.2287 +	{
  1.2288 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2289 +	_asm push ebx				// save registers
  1.2290 +	_asm push ebp
  1.2291 +	_asm push esi
  1.2292 +	_asm push edi
  1.2293 +	_asm mov esi, ecx			// this into esi
  1.2294 +	_asm mov ecx, [esp+20]		// address of aVal into ecx
  1.2295 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2296 +	_asm mov edx, [ecx+4]
  1.2297 +	_asm mov ecx, [ecx+8]
  1.2298 +	_asm call TRealXMultiply	// do multiplication, result in ecx,edx:ebx, error code in eax
  1.2299 +	_asm mov [esi], ebx			// store result in *this
  1.2300 +	_asm mov [esi+4], edx
  1.2301 +	_asm mov [esi+8], ecx
  1.2302 +	_asm test eax, eax
  1.2303 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2304 +	_asm mov eax, esi			// return this in eax
  1.2305 +	_asm pop edi				// restore registers
  1.2306 +	_asm pop esi
  1.2307 +	_asm pop ebp
  1.2308 +	_asm pop ebx
  1.2309 +	_asm ret 4
  1.2310 +	}
  1.2311 +
  1.2312 +
  1.2313 +
  1.2314 +
  1.2315 +__NAKED__ EXPORT_C const TRealX& TRealX::operator/=(const TRealX& /*aVal*/)
  1.2316 +/**
  1.2317 +Divides this extended precision number by an extended precision value.
  1.2318 +
  1.2319 +@param aVal The extended precision value to be used as the divisor. 
  1.2320 +
  1.2321 +@return A reference to this object.
  1.2322 +
  1.2323 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2324 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2325 +@panic MATHX KErrDivideByZero if the divisor is zero.
  1.2326 +*/
  1.2327 +	{
  1.2328 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2329 +	_asm push ebx				// save registers
  1.2330 +	_asm push ebp
  1.2331 +	_asm push esi
  1.2332 +	_asm push edi
  1.2333 +	_asm mov esi, ecx			// this into esi
  1.2334 +	_asm mov ecx, [esp+20]		// address of aVal into ecx
  1.2335 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2336 +	_asm mov edx, [ecx+4]
  1.2337 +	_asm mov ecx, [ecx+8]
  1.2338 +	_asm call TRealXDivide		// do division, result in ecx,edx:ebx, error code in eax
  1.2339 +	_asm mov [esi], ebx			// store result in *this
  1.2340 +	_asm mov [esi+4], edx
  1.2341 +	_asm mov [esi+8], ecx
  1.2342 +	_asm test eax, eax
  1.2343 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2344 +	_asm mov eax, esi			// return this in eax
  1.2345 +	_asm pop edi				// restore registers
  1.2346 +	_asm pop esi
  1.2347 +	_asm pop ebp
  1.2348 +	_asm pop ebx
  1.2349 +	_asm ret 4
  1.2350 +	}
  1.2351 +
  1.2352 +
  1.2353 +
  1.2354 +
  1.2355 +__NAKED__ EXPORT_C const TRealX& TRealX::operator%=(const TRealX& /*aVal*/)
  1.2356 +/**
  1.2357 +Modulo-divides this extended precision number by an extended precision value.
  1.2358 +
  1.2359 +@param aVal The extended precision value to be used as the divisor. 
  1.2360 +
  1.2361 +@return A reference to this object.
  1.2362 +
  1.2363 +@panic MATHX KErrTotalLossOfPrecision panic if precision is lost.
  1.2364 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2365 +*/
  1.2366 +	{
  1.2367 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2368 +	_asm push ebx				// save registers
  1.2369 +	_asm push ebp
  1.2370 +	_asm push esi
  1.2371 +	_asm push edi
  1.2372 +	_asm mov esi, ecx			// this into esi
  1.2373 +	_asm mov ecx, [esp+20]		// address of aVal into ecx
  1.2374 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2375 +	_asm mov edx, [ecx+4]
  1.2376 +	_asm mov ecx, [ecx+8]
  1.2377 +	_asm call TRealXModulo		// do modulo, result in ecx,edx:ebx, error code in eax
  1.2378 +	_asm mov [esi], ebx			// store result in *this
  1.2379 +	_asm mov [esi+4], edx
  1.2380 +	_asm mov [esi+8], ecx
  1.2381 +	_asm test eax, eax
  1.2382 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2383 +	_asm mov eax, esi			// return this in eax
  1.2384 +	_asm pop edi				// restore registers
  1.2385 +	_asm pop esi
  1.2386 +	_asm pop ebp
  1.2387 +	_asm pop ebx
  1.2388 +	_asm ret 4
  1.2389 +	}
  1.2390 +
  1.2391 +
  1.2392 +
  1.2393 +
  1.2394 +__NAKED__ EXPORT_C TInt TRealX::AddEq(const TRealX& /*aVal*/)
  1.2395 +/**
  1.2396 +Adds an extended precision value to this extended precision number.
  1.2397 +
  1.2398 +@param aVal The extended precision value to be added.
  1.2399 +
  1.2400 +@return KErrNone, if the operation is successful;
  1.2401 +        KErrOverflow,if the operation results in overflow;
  1.2402 +        KErrUnderflow, if the operation results in underflow. 
  1.2403 +*/
  1.2404 +	{
  1.2405 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2406 +	_asm push ebx				// save registers
  1.2407 +	_asm push ebp
  1.2408 +	_asm push esi
  1.2409 +	_asm push edi
  1.2410 +	_asm mov esi, ecx			// this into esi
  1.2411 +	_asm mov ecx, [esp+20]		// address of aVal into ecx
  1.2412 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2413 +	_asm mov edx, [ecx+4]
  1.2414 +	_asm mov ecx, [ecx+8]
  1.2415 +	_asm call TRealXAdd			// do addition, result in ecx,edx:ebx, error code in eax
  1.2416 +	_asm mov [esi], ebx			// store result
  1.2417 +	_asm mov [esi+4], edx
  1.2418 +	_asm mov [esi+8], ecx
  1.2419 +	_asm pop edi				// restore registers
  1.2420 +	_asm pop esi
  1.2421 +	_asm pop ebp
  1.2422 +	_asm pop ebx
  1.2423 +	_asm ret 4					// return with error code in eax
  1.2424 +	}
  1.2425 +
  1.2426 +
  1.2427 +
  1.2428 +
  1.2429 +__NAKED__ EXPORT_C TInt TRealX::SubEq(const TRealX& /*aVal*/)
  1.2430 +/**
  1.2431 +Subtracts an extended precision value from this extended precision number.
  1.2432 +
  1.2433 +@param aVal The extended precision value to be subtracted.
  1.2434 +
  1.2435 +@return KErrNone, if the operation is successful;
  1.2436 +        KErrOverflow, if the operation results in overflow;
  1.2437 +        KErrUnderflow, if the operation results in underflow.
  1.2438 +*/
  1.2439 +	{
  1.2440 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2441 +	_asm push ebx				// save registers
  1.2442 +	_asm push ebp
  1.2443 +	_asm push esi
  1.2444 +	_asm push edi
  1.2445 +	_asm mov esi, ecx			// this into esi
  1.2446 +	_asm mov ecx, [esp+20]		// address of aVal into ecx
  1.2447 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2448 +	_asm mov edx, [ecx+4]
  1.2449 +	_asm mov ecx, [ecx+8]
  1.2450 +	_asm call TRealXSubtract	// do subtraction, result in ecx,edx:ebx, error code in eax
  1.2451 +	_asm mov [esi], ebx			// store result
  1.2452 +	_asm mov [esi+4], edx
  1.2453 +	_asm mov [esi+8], ecx
  1.2454 +	_asm pop edi				// restore registers
  1.2455 +	_asm pop esi
  1.2456 +	_asm pop ebp
  1.2457 +	_asm pop ebx
  1.2458 +	_asm ret 4					// return with error code in eax
  1.2459 +	}
  1.2460 +
  1.2461 +
  1.2462 +
  1.2463 +
  1.2464 +__NAKED__ EXPORT_C TInt TRealX::MultEq(const TRealX& /*aVal*/)
  1.2465 +/**
  1.2466 +Multiplies this extended precision number by an extended precision value.
  1.2467 +
  1.2468 +@param aVal The extended precision value to be used as the multiplier.
  1.2469 +
  1.2470 +@return KErrNone, if the operation is successful;
  1.2471 +        KErrOverflow, if the operation results in overflow;
  1.2472 +        KErrUnderflow, if the operation results in underflow
  1.2473 +*/
  1.2474 +	{
  1.2475 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2476 +	_asm push ebx				// save registers
  1.2477 +	_asm push ebp
  1.2478 +	_asm push esi
  1.2479 +	_asm push edi
  1.2480 +	_asm mov esi, ecx			// this into esi
  1.2481 +	_asm mov ecx, [esp+20]		// address of aVal into ecx
  1.2482 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2483 +	_asm mov edx, [ecx+4]
  1.2484 +	_asm mov ecx, [ecx+8]
  1.2485 +	_asm call TRealXMultiply	// do multiplication, result in ecx,edx:ebx, error code in eax
  1.2486 +	_asm mov [esi], ebx			// store result
  1.2487 +	_asm mov [esi+4], edx
  1.2488 +	_asm mov [esi+8], ecx
  1.2489 +	_asm pop edi				// restore registers
  1.2490 +	_asm pop esi
  1.2491 +	_asm pop ebp
  1.2492 +	_asm pop ebx
  1.2493 +	_asm ret 4					// return with error code in eax
  1.2494 +	}
  1.2495 +
  1.2496 +
  1.2497 +
  1.2498 +
  1.2499 +__NAKED__ EXPORT_C TInt TRealX::DivEq(const TRealX& /*aVal*/)
  1.2500 +/**
  1.2501 +Divides this extended precision number by an extended precision value.
  1.2502 +
  1.2503 +@param aVal The extended precision value to be used as the divisor.
  1.2504 +
  1.2505 +@return KErrNone, if the operation is successful;
  1.2506 +        KErrOverflow, if the operation results in overflow;
  1.2507 +        KErrUnderflow, if the operation results in underflow;
  1.2508 +        KErrDivideByZero, if the divisor is zero. 
  1.2509 +*/
  1.2510 +	{
  1.2511 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2512 +	_asm push ebx				// save registers
  1.2513 +	_asm push ebp
  1.2514 +	_asm push esi
  1.2515 +	_asm push edi
  1.2516 +	_asm mov esi, ecx			// this into esi
  1.2517 +	_asm mov ecx, [esp+20]		// address of aVal into ecx
  1.2518 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2519 +	_asm mov edx, [ecx+4]
  1.2520 +	_asm mov ecx, [ecx+8]
  1.2521 +	_asm call TRealXDivide		// do division, result in ecx,edx:ebx, error code in eax
  1.2522 +	_asm mov [esi], ebx			// store result
  1.2523 +	_asm mov [esi+4], edx
  1.2524 +	_asm mov [esi+8], ecx
  1.2525 +	_asm pop edi				// restore registers
  1.2526 +	_asm pop esi
  1.2527 +	_asm pop ebp
  1.2528 +	_asm pop ebx
  1.2529 +	_asm ret 4					// return with error code in eax
  1.2530 +	}
  1.2531 +
  1.2532 +
  1.2533 +
  1.2534 +
  1.2535 +__NAKED__ EXPORT_C TInt TRealX::ModEq(const TRealX& /*aVal*/)
  1.2536 +/**
  1.2537 +Modulo-divides this extended precision number by an extended precision value.
  1.2538 +
  1.2539 +@param aVal The extended precision value to be used as the divisor. 
  1.2540 +
  1.2541 +@return KErrNone, if the operation is successful;
  1.2542 +        KErrTotalLossOfPrecision, if precision is lost;
  1.2543 +        KErrUnderflow, if the operation results in underflow.
  1.2544 +*/
  1.2545 +	{
  1.2546 +	// on entry ecx=this, [esp+4]=address of aVal
  1.2547 +	_asm push ebx				// save registers
  1.2548 +	_asm push ebp
  1.2549 +	_asm push esi
  1.2550 +	_asm push edi
  1.2551 +	_asm mov esi, ecx			// this into esi
  1.2552 +	_asm mov ecx, [esp+20]		// address of aVal into ecx
  1.2553 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2554 +	_asm mov edx, [ecx+4]
  1.2555 +	_asm mov ecx, [ecx+8]
  1.2556 +	_asm call TRealXModulo		// do modulo, result in ecx,edx:ebx, error code in eax
  1.2557 +	_asm mov [esi], ebx			// store result
  1.2558 +	_asm mov [esi+4], edx
  1.2559 +	_asm mov [esi+8], ecx
  1.2560 +	_asm pop edi				// restore registers
  1.2561 +	_asm pop esi
  1.2562 +	_asm pop ebp
  1.2563 +	_asm pop ebx
  1.2564 +	_asm ret 4					// return with error code in eax
  1.2565 +	}
  1.2566 +
  1.2567 +
  1.2568 +
  1.2569 +
  1.2570 +__NAKED__ EXPORT_C TRealX TRealX::operator+() const
  1.2571 +/**
  1.2572 +Returns this extended precision number unchanged.
  1.2573 +
  1.2574 +Note that this may also be referred to as a unary plus operator. 
  1.2575 +
  1.2576 +@return The extended precision number.
  1.2577 +*/
  1.2578 +	{
  1.2579 +	_asm mov eax, [esp+4]		// eax=address to write return value
  1.2580 +	_asm mov edx, [ecx]
  1.2581 +	_asm mov [eax], edx
  1.2582 +	_asm mov edx, [ecx+4]
  1.2583 +	_asm mov [eax+4], edx
  1.2584 +	_asm mov edx, [ecx+8]
  1.2585 +	_asm mov [eax+8], edx
  1.2586 +	_asm ret 4					// return address of return value in eax
  1.2587 +	}
  1.2588 +
  1.2589 +
  1.2590 +
  1.2591 +
  1.2592 +__NAKED__ EXPORT_C TRealX TRealX::operator-() const
  1.2593 +/**
  1.2594 +Negates this extended precision number.
  1.2595 +
  1.2596 +This may also be referred to as a unary minus operator.
  1.2597 +
  1.2598 +@return The negative of the extended precision number.
  1.2599 +*/
  1.2600 +	{
  1.2601 +	_asm mov eax, [esp+4]		// eax=address to write return value
  1.2602 +	_asm mov edx, [ecx]
  1.2603 +	_asm mov [eax], edx
  1.2604 +	_asm mov edx, [ecx+4]
  1.2605 +	_asm mov [eax+4], edx
  1.2606 +	_asm mov edx, [ecx+8]
  1.2607 +	_asm xor dl, 1				// change sign bit
  1.2608 +	_asm mov [eax+8], edx
  1.2609 +	_asm ret 4					// return address of return value in eax
  1.2610 +	}
  1.2611 +
  1.2612 +
  1.2613 +
  1.2614 +
  1.2615 +__NAKED__ EXPORT_C TRealX& TRealX::operator++()
  1.2616 +/**
  1.2617 +Increments this extended precision number by one,
  1.2618 +and then returns a reference to it.
  1.2619 +
  1.2620 +This is also referred to as a prefix operator. 
  1.2621 +
  1.2622 +@return A reference to this object.
  1.2623 +
  1.2624 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2625 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2626 +*/
  1.2627 +	{
  1.2628 +	// pre-increment
  1.2629 +	// on entry ecx=this, return this in eax
  1.2630 +	_asm push ebx				// save registers
  1.2631 +	_asm push ebp
  1.2632 +	_asm push esi
  1.2633 +	_asm push edi
  1.2634 +	_asm mov esi, ecx			// this into esi
  1.2635 +	_asm mov ecx, 0x7FFF0000	// set ecx,edx:ebx to 1.0
  1.2636 +	_asm mov edx, 0x80000000
  1.2637 +	_asm xor ebx, ebx
  1.2638 +	_asm call TRealXAdd			// add 1 to *this
  1.2639 +	_asm mov [esi], ebx			// store result
  1.2640 +	_asm mov [esi+4], edx
  1.2641 +	_asm mov [esi+8], ecx
  1.2642 +	_asm test eax, eax			// check error code
  1.2643 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2644 +	_asm mov eax, esi			// else return this in eax
  1.2645 +	_asm pop edi
  1.2646 +	_asm pop esi
  1.2647 +	_asm pop ebp
  1.2648 +	_asm pop ebx
  1.2649 +	_asm ret
  1.2650 +	}
  1.2651 +
  1.2652 +
  1.2653 +
  1.2654 +
  1.2655 +__NAKED__ EXPORT_C TRealX TRealX::operator++(TInt)
  1.2656 +/**
  1.2657 +Returns this extended precision number before incrementing it by one.
  1.2658 +
  1.2659 +This is also referred to as a postfix operator. 
  1.2660 +
  1.2661 +@return A reference to this object.
  1.2662 +
  1.2663 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2664 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2665 +*/
  1.2666 +	{
  1.2667 +	// post-increment
  1.2668 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=dummy int
  1.2669 +	_asm push ebx				// save registers
  1.2670 +	_asm push ebp
  1.2671 +	_asm push esi
  1.2672 +	_asm push edi
  1.2673 +	_asm mov esi, ecx			// this into esi
  1.2674 +	_asm mov edi, [esp+20]		// address of return value into edi
  1.2675 +	_asm mov eax, [ecx]			// copy initial value of *this into [edi]
  1.2676 +	_asm mov [edi], eax
  1.2677 +	_asm mov eax, [ecx+4]
  1.2678 +	_asm mov [edi+4], eax
  1.2679 +	_asm mov eax, [ecx+8]
  1.2680 +	_asm mov [edi+8], eax
  1.2681 +	_asm mov ecx, 0x7FFF0000	// set ecx,edx:ebx to 1.0
  1.2682 +	_asm mov edx, 0x80000000
  1.2683 +	_asm xor ebx, ebx
  1.2684 +	_asm call TRealXAdd			// add 1 to *this
  1.2685 +	_asm mov [esi], ebx			// store result in *this
  1.2686 +	_asm mov [esi+4], edx
  1.2687 +	_asm mov [esi+8], ecx
  1.2688 +	_asm test eax, eax			// check error code
  1.2689 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2690 +	_asm mov eax, [esp+20]		// address of return value into eax
  1.2691 +	_asm pop edi
  1.2692 +	_asm pop esi
  1.2693 +	_asm pop ebp
  1.2694 +	_asm pop ebx
  1.2695 +	_asm ret 8
  1.2696 +	}
  1.2697 +
  1.2698 +
  1.2699 +
  1.2700 +
  1.2701 +__NAKED__ EXPORT_C TRealX& TRealX::operator--()
  1.2702 +/**
  1.2703 +Decrements this extended precision number by one,
  1.2704 +and then returns a reference to it.
  1.2705 +
  1.2706 +This is also referred to as a prefix operator. 
  1.2707 +
  1.2708 +@return A reference to this object.
  1.2709 +
  1.2710 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2711 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2712 +*/
  1.2713 +	{
  1.2714 +	// pre-decrement
  1.2715 +	// on entry ecx=this, return this in eax
  1.2716 +	_asm push ebx				// save registers
  1.2717 +	_asm push ebp
  1.2718 +	_asm push esi
  1.2719 +	_asm push edi
  1.2720 +	_asm mov esi, ecx			// this into esi
  1.2721 +	_asm mov ecx, 0x7FFF0001		// set ecx,edx:ebx to -1.0
  1.2722 +	_asm mov edx, 0x80000000
  1.2723 +	_asm xor ebx, ebx
  1.2724 +	_asm call TRealXAdd			// add -1 to *this
  1.2725 +	_asm mov [esi], ebx			// store result
  1.2726 +	_asm mov [esi+4], edx
  1.2727 +	_asm mov [esi+8], ecx
  1.2728 +	_asm test eax, eax			// check error code
  1.2729 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2730 +	_asm mov eax, esi			// else return this in eax
  1.2731 +	_asm pop edi
  1.2732 +	_asm pop esi
  1.2733 +	_asm pop ebp
  1.2734 +	_asm pop ebx
  1.2735 +	_asm ret
  1.2736 +	}
  1.2737 +
  1.2738 +
  1.2739 +
  1.2740 +
  1.2741 +__NAKED__ EXPORT_C TRealX TRealX::operator--(TInt)
  1.2742 +/**
  1.2743 +Returns this extended precision number before decrementing it by one.
  1.2744 +
  1.2745 +This is also referred to as a postfix operator. 
  1.2746 +
  1.2747 +@return A reference to this object.
  1.2748 +
  1.2749 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2750 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2751 +*/
  1.2752 +	{
  1.2753 +	// post-decrement
  1.2754 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=dummy int
  1.2755 +	_asm push ebx				// save registers
  1.2756 +	_asm push ebp
  1.2757 +	_asm push esi
  1.2758 +	_asm push edi
  1.2759 +	_asm mov esi, ecx			// this into esi
  1.2760 +	_asm mov edi, [esp+20]		// address of return value into edi
  1.2761 +	_asm mov eax, [ecx]			// copy initial value of *this into [edi]
  1.2762 +	_asm mov [edi], eax
  1.2763 +	_asm mov eax, [ecx+4]
  1.2764 +	_asm mov [edi+4], eax
  1.2765 +	_asm mov eax, [ecx+8]
  1.2766 +	_asm mov [edi+8], eax
  1.2767 +	_asm mov ecx, 0x7FFF0001		// set ecx,edx:ebx to -1.0
  1.2768 +	_asm mov edx, 0x80000000
  1.2769 +	_asm xor ebx, ebx
  1.2770 +	_asm call TRealXAdd			// add -1 to *this
  1.2771 +	_asm mov [esi], ebx			// store result in *this
  1.2772 +	_asm mov [esi+4], edx
  1.2773 +	_asm mov [esi+8], ecx
  1.2774 +	_asm test eax, eax			// check error code
  1.2775 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2776 +	_asm mov eax, [esp+20]		// address of return value into eax
  1.2777 +	_asm pop edi
  1.2778 +	_asm pop esi
  1.2779 +	_asm pop ebp
  1.2780 +	_asm pop ebx
  1.2781 +	_asm ret 8
  1.2782 +	}
  1.2783 +
  1.2784 +
  1.2785 +
  1.2786 +
  1.2787 +__NAKED__ EXPORT_C TRealX TRealX::operator+(const TRealX& /*aVal*/) const
  1.2788 +/**
  1.2789 +Adds an extended precision value to this extended precision number.
  1.2790 +
  1.2791 +@param aVal The extended precision value to be added. 
  1.2792 +
  1.2793 +@return An extended precision object containing the result.
  1.2794 +
  1.2795 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2796 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2797 +*/
  1.2798 +	{
  1.2799 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
  1.2800 +	_asm push ebx				// save registers
  1.2801 +	_asm push ebp
  1.2802 +	_asm push esi
  1.2803 +	_asm push edi
  1.2804 +	_asm mov esi, ecx			// this into esi
  1.2805 +	_asm mov ecx, [esp+24]		// address of aVal into ecx
  1.2806 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2807 +	_asm mov edx, [ecx+4]
  1.2808 +	_asm mov ecx, [ecx+8]
  1.2809 +	_asm call TRealXAdd			// do addition, result in ecx,edx:ebx, error code in eax
  1.2810 +	_asm mov esi, [esp+20]		// esi=address of return value
  1.2811 +	_asm mov [esi], ebx			// store result
  1.2812 +	_asm mov [esi+4], edx
  1.2813 +	_asm mov [esi+8], ecx
  1.2814 +	_asm test eax, eax
  1.2815 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2816 +	_asm mov eax, esi			// return address of return value in eax
  1.2817 +	_asm pop edi				// restore registers
  1.2818 +	_asm pop esi
  1.2819 +	_asm pop ebp
  1.2820 +	_asm pop ebx
  1.2821 +	_asm ret 8
  1.2822 +	}
  1.2823 +
  1.2824 +
  1.2825 +
  1.2826 +
  1.2827 +__NAKED__ EXPORT_C TRealX TRealX::operator-(const TRealX& /*aVal*/) const
  1.2828 +/**
  1.2829 +Subtracts an extended precision value from this extended precision number. 
  1.2830 +
  1.2831 +@param aVal The extended precision value to be subtracted. 
  1.2832 +
  1.2833 +@return An extended precision object containing the result. 
  1.2834 +
  1.2835 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2836 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2837 +*/
  1.2838 +	{
  1.2839 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
  1.2840 +	_asm push ebx				// save registers
  1.2841 +	_asm push ebp
  1.2842 +	_asm push esi
  1.2843 +	_asm push edi
  1.2844 +	_asm mov esi, ecx			// this into esi
  1.2845 +	_asm mov ecx, [esp+24]		// address of aVal into ecx
  1.2846 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2847 +	_asm mov edx, [ecx+4]
  1.2848 +	_asm mov ecx, [ecx+8]
  1.2849 +	_asm call TRealXSubtract	// do subtraction, result in ecx,edx:ebx, error code in eax
  1.2850 +	_asm mov esi, [esp+20]		// esi=address of return value
  1.2851 +	_asm mov [esi], ebx			// store result
  1.2852 +	_asm mov [esi+4], edx
  1.2853 +	_asm mov [esi+8], ecx
  1.2854 +	_asm test eax, eax
  1.2855 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2856 +	_asm mov eax, esi			// return address of return value in eax
  1.2857 +	_asm pop edi				// restore registers
  1.2858 +	_asm pop esi
  1.2859 +	_asm pop ebp
  1.2860 +	_asm pop ebx
  1.2861 +	_asm ret 8
  1.2862 +	}
  1.2863 +
  1.2864 +
  1.2865 +
  1.2866 +
  1.2867 +__NAKED__ EXPORT_C TRealX TRealX::operator*(const TRealX& /*aVal*/) const
  1.2868 +/**
  1.2869 +Multiplies this extended precision number by an extended precision value.
  1.2870 +
  1.2871 +@param aVal The extended precision value to be used as the multiplier. 
  1.2872 +
  1.2873 +@return An extended precision object containing the result. 
  1.2874 +
  1.2875 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2876 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2877 +*/
  1.2878 +	{
  1.2879 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
  1.2880 +	_asm push ebx				// save registers
  1.2881 +	_asm push ebp
  1.2882 +	_asm push esi
  1.2883 +	_asm push edi
  1.2884 +	_asm mov esi, ecx			// this into esi
  1.2885 +	_asm mov ecx, [esp+24]		// address of aVal into ecx
  1.2886 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2887 +	_asm mov edx, [ecx+4]
  1.2888 +	_asm mov ecx, [ecx+8]
  1.2889 +	_asm call TRealXMultiply	// do multiplication, result in ecx,edx:ebx, error code in eax
  1.2890 +	_asm mov esi, [esp+20]		// esi=address of return value
  1.2891 +	_asm mov [esi], ebx			// store result
  1.2892 +	_asm mov [esi+4], edx
  1.2893 +	_asm mov [esi+8], ecx
  1.2894 +	_asm test eax, eax
  1.2895 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2896 +	_asm mov eax, esi			// return address of return value in eax
  1.2897 +	_asm pop edi				// restore registers
  1.2898 +	_asm pop esi
  1.2899 +	_asm pop ebp
  1.2900 +	_asm pop ebx
  1.2901 +	_asm ret 8
  1.2902 +	}
  1.2903 +
  1.2904 +
  1.2905 +
  1.2906 +
  1.2907 +__NAKED__ EXPORT_C TRealX TRealX::operator/(const TRealX& /*aVal*/) const
  1.2908 +/**
  1.2909 +Divides this extended precision number by an extended precision value.
  1.2910 +
  1.2911 +@param aVal The extended precision value to be used as the divisor. 
  1.2912 +
  1.2913 +@return An extended precision object containing the result. 
  1.2914 +
  1.2915 +@panic MATHX KErrOverflow if the operation results in overflow.
  1.2916 +@panic MATHX KErrUnderflow if  the operation results in underflow.
  1.2917 +@panic MATHX KErrDivideByZero if the divisor is zero.
  1.2918 +*/
  1.2919 +	{
  1.2920 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
  1.2921 +	_asm push ebx				// save registers
  1.2922 +	_asm push ebp
  1.2923 +	_asm push esi
  1.2924 +	_asm push edi
  1.2925 +	_asm mov esi, ecx			// this into esi
  1.2926 +	_asm mov ecx, [esp+24]		// address of aVal into ecx
  1.2927 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2928 +	_asm mov edx, [ecx+4]
  1.2929 +	_asm mov ecx, [ecx+8]
  1.2930 +	_asm call TRealXDivide		// do division, result in ecx,edx:ebx, error code in eax
  1.2931 +	_asm mov esi, [esp+20]		// esi=address of return value
  1.2932 +	_asm mov [esi], ebx			// store result
  1.2933 +	_asm mov [esi+4], edx
  1.2934 +	_asm mov [esi+8], ecx
  1.2935 +	_asm test eax, eax
  1.2936 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2937 +	_asm mov eax, esi			// return address of return value in eax
  1.2938 +	_asm pop edi				// restore registers
  1.2939 +	_asm pop esi
  1.2940 +	_asm pop ebp
  1.2941 +	_asm pop ebx
  1.2942 +	_asm ret 8
  1.2943 +	}
  1.2944 +
  1.2945 +
  1.2946 +
  1.2947 +
  1.2948 +__NAKED__ EXPORT_C TRealX TRealX::operator%(const TRealX& /*aVal*/) const
  1.2949 +/**
  1.2950 +Modulo-divides this extended precision number by an extended precision value.
  1.2951 +
  1.2952 +@param aVal The extended precision value to be used as the divisor. 
  1.2953 +
  1.2954 +@return An extended precision object containing the result. 
  1.2955 +
  1.2956 +@panic MATHX KErrTotalLossOfPrecision if precision is lost.
  1.2957 +@panic MATHX KErrUnderflow if the operation results in underflow.
  1.2958 +*/
  1.2959 +	{
  1.2960 +	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
  1.2961 +	_asm push ebx				// save registers
  1.2962 +	_asm push ebp
  1.2963 +	_asm push esi
  1.2964 +	_asm push edi
  1.2965 +	_asm mov esi, ecx			// this into esi
  1.2966 +	_asm mov ecx, [esp+24]		// address of aVal into ecx
  1.2967 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.2968 +	_asm mov edx, [ecx+4]
  1.2969 +	_asm mov ecx, [ecx+8]
  1.2970 +	_asm call TRealXModulo		// do modulo, result in ecx,edx:ebx, error code in eax
  1.2971 +	_asm mov esi, [esp+20]		// esi=address of return value
  1.2972 +	_asm mov [esi], ebx			// store result
  1.2973 +	_asm mov [esi+4], edx
  1.2974 +	_asm mov [esi+8], ecx
  1.2975 +	_asm test eax, eax
  1.2976 +	_ASM_jn(z,TRealXPanicEax)	// panic if error
  1.2977 +	_asm mov eax, esi			// return address of return value in eax
  1.2978 +	_asm pop edi				// restore registers
  1.2979 +	_asm pop esi
  1.2980 +	_asm pop ebp
  1.2981 +	_asm pop ebx
  1.2982 +	_asm ret 8
  1.2983 +	}
  1.2984 +
  1.2985 +
  1.2986 +
  1.2987 +
  1.2988 +__NAKED__ EXPORT_C TInt TRealX::Add(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
  1.2989 +/**
  1.2990 +Adds an extended precision value to this extended precision number.
  1.2991 +
  1.2992 +@param aResult On return, a reference to an extended precision object
  1.2993 +               containing the result of the operation.
  1.2994 +@param aVal    The extended precision value to be added. 
  1.2995 +
  1.2996 +@return KErrNone, if the operation is successful;
  1.2997 +        KErrOverflow, if the operation results in overflow;
  1.2998 +        KErrUnderflow, if the operation results in underflow. 
  1.2999 +*/
  1.3000 +	{
  1.3001 +	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
  1.3002 +	_asm push ebx				// save registers
  1.3003 +	_asm push ebp
  1.3004 +	_asm push esi
  1.3005 +	_asm push edi
  1.3006 +	_asm mov esi, ecx			// this into esi
  1.3007 +	_asm mov ecx, [esp+24]		// address of aVal into ecx
  1.3008 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.3009 +	_asm mov edx, [ecx+4]
  1.3010 +	_asm mov ecx, [ecx+8]
  1.3011 +	_asm call TRealXAdd			// do addition, result in ecx,edx:ebx, error code in eax
  1.3012 +	_asm mov esi, [esp+20]		// esi=address of aResult
  1.3013 +	_asm mov [esi], ebx			// store result
  1.3014 +	_asm mov [esi+4], edx
  1.3015 +	_asm mov [esi+8], ecx
  1.3016 +	_asm pop edi				// restore registers
  1.3017 +	_asm pop esi
  1.3018 +	_asm pop ebp
  1.3019 +	_asm pop ebx
  1.3020 +	_asm ret 8					// return with error code in eax
  1.3021 +	}
  1.3022 +
  1.3023 +
  1.3024 +
  1.3025 +
  1.3026 +__NAKED__ EXPORT_C TInt TRealX::Sub(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
  1.3027 +/**
  1.3028 +Subtracts an extended precision value from this extended precision number.
  1.3029 +
  1.3030 +@param aResult On return, a reference to an extended precision object
  1.3031 +               containing the result of the operation.
  1.3032 +@param aVal    The extended precision value to be subtracted. 
  1.3033 +
  1.3034 +@return KErrNone, if the operation is successful;
  1.3035 +        KErrOverflow, if the operation results in overflow;
  1.3036 +        KErrUnderflow, if the operation results in underflow. 
  1.3037 +*/
  1.3038 +	{
  1.3039 +	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
  1.3040 +	_asm push ebx				// save registers
  1.3041 +	_asm push ebp
  1.3042 +	_asm push esi
  1.3043 +	_asm push edi
  1.3044 +	_asm mov esi, ecx			// this into esi
  1.3045 +	_asm mov ecx, [esp+24]		// address of aVal into ecx
  1.3046 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.3047 +	_asm mov edx, [ecx+4]
  1.3048 +	_asm mov ecx, [ecx+8]
  1.3049 +	_asm call TRealXSubtract	// do subtraction, result in ecx,edx:ebx, error code in eax
  1.3050 +	_asm mov esi, [esp+20]		// esi=address of aResult
  1.3051 +	_asm mov [esi], ebx			// store result
  1.3052 +	_asm mov [esi+4], edx
  1.3053 +	_asm mov [esi+8], ecx
  1.3054 +	_asm pop edi				// restore registers
  1.3055 +	_asm pop esi
  1.3056 +	_asm pop ebp
  1.3057 +	_asm pop ebx
  1.3058 +	_asm ret 8					// return with error code in eax
  1.3059 +	}
  1.3060 +
  1.3061 +
  1.3062 +
  1.3063 +
  1.3064 +__NAKED__ EXPORT_C TInt TRealX::Mult(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
  1.3065 +/**
  1.3066 +Multiplies this extended precision number by an extended precision value.
  1.3067 +
  1.3068 +@param aResult On return, a reference to an extended precision object
  1.3069 +               containing the result of the operation.
  1.3070 +@param aVal    The extended precision value to be used as the multiplier. 
  1.3071 +
  1.3072 +@return KErrNone, if the operation is successful;
  1.3073 +        KErrOverflow, if the operation results in overflow;
  1.3074 +        KErrUnderflow, if the operation results in underflow. 
  1.3075 +*/
  1.3076 +	{
  1.3077 +	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
  1.3078 +	_asm push ebx				// save registers
  1.3079 +	_asm push ebp
  1.3080 +	_asm push esi
  1.3081 +	_asm push edi
  1.3082 +	_asm mov esi, ecx			// this into esi
  1.3083 +	_asm mov ecx, [esp+24]		// address of aVal into ecx
  1.3084 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.3085 +	_asm mov edx, [ecx+4]
  1.3086 +	_asm mov ecx, [ecx+8]
  1.3087 +	_asm call TRealXMultiply	// do multiplication, result in ecx,edx:ebx, error code in eax
  1.3088 +	_asm mov esi, [esp+20]		// esi=address of aResult
  1.3089 +	_asm mov [esi], ebx			// store result
  1.3090 +	_asm mov [esi+4], edx
  1.3091 +	_asm mov [esi+8], ecx
  1.3092 +	_asm pop edi				// restore registers
  1.3093 +	_asm pop esi
  1.3094 +	_asm pop ebp
  1.3095 +	_asm pop ebx
  1.3096 +	_asm ret 8					// return with error code in eax
  1.3097 +	}
  1.3098 +
  1.3099 +
  1.3100 +
  1.3101 +
  1.3102 +__NAKED__ EXPORT_C TInt TRealX::Div(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
  1.3103 +/**
  1.3104 +Divides this extended precision number by an extended precision value.
  1.3105 +
  1.3106 +@param aResult On return, a reference to an extended precision object
  1.3107 +               containing the result of the operation.
  1.3108 +@param aVal    The extended precision value to be used as the divisor.
  1.3109 +
  1.3110 +@return KErrNone, if the operation is successful;
  1.3111 +        KErrOverflow, if the operation results in overflow;
  1.3112 +        KErrUnderflow, if the operation results in underflow;
  1.3113 +        KErrDivideByZero, if the divisor is zero.
  1.3114 +*/
  1.3115 +	{
  1.3116 +	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
  1.3117 +	_asm push ebx				// save registers
  1.3118 +	_asm push ebp
  1.3119 +	_asm push esi
  1.3120 +	_asm push edi
  1.3121 +	_asm mov esi, ecx			// this into esi
  1.3122 +	_asm mov ecx, [esp+24]		// address of aVal into ecx
  1.3123 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.3124 +	_asm mov edx, [ecx+4]
  1.3125 +	_asm mov ecx, [ecx+8]
  1.3126 +	_asm call TRealXDivide		// do division, result in ecx,edx:ebx, error code in eax
  1.3127 +	_asm mov esi, [esp+20]		// esi=address of aResult
  1.3128 +	_asm mov [esi], ebx			// store result
  1.3129 +	_asm mov [esi+4], edx
  1.3130 +	_asm mov [esi+8], ecx
  1.3131 +	_asm pop edi				// restore registers
  1.3132 +	_asm pop esi
  1.3133 +	_asm pop ebp
  1.3134 +	_asm pop ebx
  1.3135 +	_asm ret 8					// return with error code in eax
  1.3136 +	}
  1.3137 +
  1.3138 +
  1.3139 +
  1.3140 +
  1.3141 +__NAKED__ EXPORT_C TInt TRealX::Mod(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
  1.3142 +/**
  1.3143 +Modulo-divides this extended precision number by an extended precision value.
  1.3144 +
  1.3145 +@param aResult On return, a reference to an extended precision object
  1.3146 +               containing the result of the operation.
  1.3147 +
  1.3148 +@param aVal    The extended precision value to be used as the divisor. 
  1.3149 +
  1.3150 +@return KErrNone, if the operation is successful;
  1.3151 +        KErrTotalLossOfPrecision, if precision is lost;
  1.3152 +        KErrUnderflow, if the operation results in underflow.
  1.3153 +*/
  1.3154 +	{
  1.3155 +	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
  1.3156 +	_asm push ebx				// save registers
  1.3157 +	_asm push ebp
  1.3158 +	_asm push esi
  1.3159 +	_asm push edi
  1.3160 +	_asm mov esi, ecx			// this into esi
  1.3161 +	_asm mov ecx, [esp+24]		// address of aVal into ecx
  1.3162 +	_asm mov ebx, [ecx]			// aVal into ecx,edx:ebx
  1.3163 +	_asm mov edx, [ecx+4]
  1.3164 +	_asm mov ecx, [ecx+8]
  1.3165 +	_asm call TRealXModulo		// do modulo, result in ecx,edx:ebx, error code in eax
  1.3166 +	_asm mov esi, [esp+20]		// esi=address of aResult
  1.3167 +	_asm mov [esi], ebx			// store result
  1.3168 +	_asm mov [esi+4], edx
  1.3169 +	_asm mov [esi+8], ecx
  1.3170 +	_asm pop edi				// restore registers
  1.3171 +	_asm pop esi
  1.3172 +	_asm pop ebp
  1.3173 +	_asm pop ebx
  1.3174 +	_asm ret 8					// return with error code in eax
  1.3175 +	}
  1.3176 +
  1.3177 +// Compare TRealX in ecx,edx:ebx (op1) to TRealX at [esi] (op2)
  1.3178 +// Return 1 if op1<op2
  1.3179 +// Return 2 if op1=op2
  1.3180 +// Return 4 if op1>op2
  1.3181 +// Return 8 if unordered
  1.3182 +// Return value in eax
  1.3183 +__NAKED__ LOCAL_C void TRealXCompare(void)
  1.3184 +	{
  1.3185 +	_asm cmp ecx, 0xFFFF0000	// check if op1=NaN or infinity
  1.3186 +	_asm jc short fpcmp1		// branch if not
  1.3187 +	_asm cmp edx, 0x80000000		// check for infinity
  1.3188 +	_asm jnz short fpcmpunord	// branch if NaN
  1.3189 +	_asm test ebx, ebx
  1.3190 +	_asm jz short fpcmp1		// if infinity, process normally
  1.3191 +	fpcmpunord:					// come here if unordered
  1.3192 +	_asm mov eax, 8				// return 8
  1.3193 +	_asm ret
  1.3194 +	fpcmp1:						// op1 is not a NaN
  1.3195 +	_asm mov eax, [esi+8]		// get op2 into eax,edi:ebp
  1.3196 +	_asm mov edi, [esi+4]
  1.3197 +	_asm mov ebp, [esi]
  1.3198 +	_asm cmp eax, 0xFFFF0000	// check for NaN or infinity
  1.3199 +	_asm jc short fpcmp2		// branch if neither
  1.3200 +	_asm cmp edi, 0x80000000		// check for infinity
  1.3201 +	_asm jnz short fpcmpunord	// branch if NaN
  1.3202 +	_asm test ebp, ebp
  1.3203 +	_asm jnz short fpcmpunord
  1.3204 +	fpcmp2:						// neither operand is a NaN
  1.3205 +	_asm cmp ecx, 0x10000		// check if op1=0
  1.3206 +	_asm jc short fpcmpop1z		// branch if it is
  1.3207 +	_asm cmp eax, 0x10000		// check if op2=0
  1.3208 +	_asm jc short fpcmp4		// branch if it is
  1.3209 +	_asm xor al, cl				// check if signs the same
  1.3210 +	_asm test al, 1
  1.3211 +	_asm jnz short fpcmp4		// branch if different
  1.3212 +	_asm push ecx
  1.3213 +	_asm shr ecx, 16			// op1 exponent into cx
  1.3214 +	_asm shr eax, 16			// op2 exponent into ax
  1.3215 +	_asm cmp ecx, eax			// compare exponents
  1.3216 +	_asm pop ecx
  1.3217 +	_asm ja short fpcmp4		// if op1 exp > op2 exp op1>op2 if +ve
  1.3218 +	_asm jb short fpcmp5		// if op1 exp < op2 exp op1<op2 if +ve
  1.3219 +	_asm cmp edx, edi			// else compare mantissa high words
  1.3220 +	_asm ja short fpcmp4
  1.3221 +	_asm jb short fpcmp5
  1.3222 +	_asm cmp ebx, ebp			// if equal compare mantissa low words
  1.3223 +	_asm ja short fpcmp4
  1.3224 +	_asm jb short fpcmp5
  1.3225 +	fpcmp0:
  1.3226 +	_asm mov eax, 2				// numbers exactly equal
  1.3227 +	_asm ret
  1.3228 +	fpcmp4:						// come here if ABS(op1)>ABS(op2) or if signs different
  1.3229 +								// or if op2 zero, op1 nonzero
  1.3230 +	_asm mov eax, 4				// return 4 if +ve
  1.3231 +	_asm test cl, 1				// check sign
  1.3232 +	_asm jz short fpcmp4a		// skip if +
  1.3233 +	_asm mov al, 1				// return 1 if -ve
  1.3234 +	fpcmp4a:
  1.3235 +	_asm ret
  1.3236 +	fpcmp5:						// come here if ABS(op1)<ABS(op2)
  1.3237 +	_asm mov eax, 1				// return 1 if +ve
  1.3238 +	_asm test cl, 1				// check sign
  1.3239 +	_asm jz short fpcmp5a		// skip if +
  1.3240 +	_asm mov al, 4				// return 4 if -ve
  1.3241 +	fpcmp5a:
  1.3242 +	_asm ret
  1.3243 +	fpcmpop1z:					// come here if op1=0
  1.3244 +	_asm cmp eax, 0x10000		// check if op2 also zero
  1.3245 +	_asm jc short fpcmp0		// if so, they are equal
  1.3246 +	_asm test al, 1				// test sign of op 2
  1.3247 +	_asm mov eax, 4				// if -, return 4
  1.3248 +	_asm jnz short fpcmpop1z2n	// skip if -
  1.3249 +	_asm mov al, 1				// else return 1
  1.3250 +	fpcmpop1z2n:
  1.3251 +	_asm ret
  1.3252 +	}
  1.3253 +
  1.3254 +
  1.3255 +
  1.3256 +
  1.3257 +__NAKED__ EXPORT_C TRealX::TRealXOrder TRealX::Compare(const TRealX& /*aVal*/) const
  1.3258 +/**
  1.3259 +*/
  1.3260 +	{
  1.3261 +	// On entry ecx=this, [esp+4]=address of aVal
  1.3262 +	_asm push ebx				// save registers
  1.3263 +	_asm push ebp
  1.3264 +	_asm push esi
  1.3265 +	_asm push edi
  1.3266 +	_asm mov esi, [esp+20]		// address of aVal into esi
  1.3267 +	_asm mov ebx, [ecx]			// *this into ecx,edx:ebx
  1.3268 +	_asm mov edx, [ecx+4]
  1.3269 +	_asm mov ecx, [ecx+8]
  1.3270 +	_asm call TRealXCompare		// result in eax
  1.3271 +	_asm pop edi
  1.3272 +	_asm pop esi
  1.3273 +	_asm pop ebp
  1.3274 +	_asm pop ebx
  1.3275 +	_asm ret 4
  1.3276 +	}
  1.3277 +
  1.3278 +
  1.3279 +
  1.3280 +
  1.3281 +#pragma warning (default : 4100)	// unreferenced formal parameter
  1.3282 +#pragma warning (default : 4414)	// short jump converted to near
  1.3283 +#pragma warning (default : 4700)	// local variable 'this' used without having been initialised
  1.3284 +