os/kernelhwsrv/bsptemplate/asspandvariant/template_assp/iic/iic_slave.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/bsptemplate/asspandvariant/template_assp/iic/iic_slave.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,803 @@
     1.4 +/*
     1.5 +* Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
     1.6 +* All rights reserved.
     1.7 +* This component and the accompanying materials are made available
     1.8 +* under the terms of the License "Eclipse Public License v1.0"
     1.9 +* which accompanies this distribution, and is available
    1.10 +* at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.11 +*
    1.12 +* Initial Contributors:
    1.13 +* Nokia Corporation - initial contribution.
    1.14 +*
    1.15 +* Contributors:
    1.16 +*
    1.17 +* Description:
    1.18 +*
    1.19 +*/
    1.20 +
    1.21 +
    1.22 +#include <drivers/iic.h>
    1.23 +#include <drivers/iic_channel.h>
    1.24 +// #include <gpio.h>	// Include if using GPIO functionality
    1.25 +#include "iic_psl.h"
    1.26 +#include "iic_slave.h"
    1.27 +
    1.28 +// The timeout period to wait for a response from the client, expressed in milliseconds
    1.29 +// This is converted to timer ticks by the PIL, so the maximum value is 2147483.
    1.30 +// The value should be selected to allow for the longest, slowest transfer
    1.31 +// const TInt KClientWaitTime = 2; // 2mS, when debugging might set up to KMaxWaitTime
    1.32 +
    1.33 +
    1.34 +// In an SMP system, use a spin lock to guard access to member variables iTrigger and iInProgress
    1.35 +#ifdef __SMP__
    1.36 +static TSpinLock IicPslSpinLock = TSpinLock(TSpinLock::EOrderGenericIrqLow3);
    1.37 +#endif
    1.38 +
    1.39 +// Callback function for the iHwGuardTimer timer. 
    1.40 +//
    1.41 +// Called in ISR context if the iHwGuardTimer expires. Sets iTransactionStatus to KErrTimedOut
    1.42 +//
    1.43 +void DIicBusChannelSlavePsl::TimeoutCallback(TAny* aPtr)
    1.44 +	{
    1.45 +	__KTRACE_OPT(KIIC, Kern::Printf("DCsiChannelMaster::TimeoutCallback"));
    1.46 +	DIicBusChannelSlavePsl *a = (DIicBusChannelSlavePsl*) aPtr;
    1.47 +	a->iTransactionStatus = KErrTimedOut;
    1.48 +	}
    1.49 +
    1.50 +
    1.51 +// Static method called by the ISR when the Master has ended a transfer
    1.52 +//
    1.53 +// The method checks and reports the Rx and Tx status to the PIL by calling NotifyClient with a bitmask described as follows:.
    1.54 +// - If a Tx transfer has ended before all the data was transmitted, bitmask = (ETxAllBytes | ETxOverrun)
    1.55 +// - If a Tx transfer has ended and all the data was transmitted, bitmask = ETxAllBytes
    1.56 +// - If a Rx transfer has ended before the expected amount of data was received, bitmask = (ERxAllBytes | ERxUnderrun)
    1.57 +// - If a Rx transfer has ended and the expected amount of data was received, bitmask = ERxAllBytes
    1.58 +//
    1.59 +void DIicBusChannelSlavePsl::NotifyClientEnd(DIicBusChannelSlavePsl* aPtr)
    1.60 +	{
    1.61 +	__KTRACE_OPT(KIIC, Kern::Printf("NotifyClientEnd, iTrigger %x", aPtr->iTrigger));
    1.62 +
    1.63 +	// Since a transfer has ended, may wish to disable interrupts at this point
    1.64 +	// This will likely be supported with calls similar to the following:
    1.65 +	//		AsspRegister::Write32(aPtr->iChannelBase + KBusInterruptEnableOffset, KIicPslBusDisableBitMask);
    1.66 +	//		Interrupt::Disable(aPtr->iRxInterruptId);
    1.67 +	//		Interrupt::Disable(aPtr->iTxInterruptId);
    1.68 +
    1.69 +	// iTrigger will have bits ETransmit and EReceive set according to the operation requested in the call to DoRequest
    1.70 +	// Use variable flag for the bitmask to pass into the PIL method NotifyClient
    1.71 +	TInt flag = 0;
    1.72 +	if(aPtr->iTrigger & EReceive)
    1.73 +		{
    1.74 +		// Requested Rx operation has ended - check for RxUnderrun
    1.75 +		flag = ERxAllBytes;
    1.76 +		if(aPtr->iRxDataEnd != aPtr->iRxData)
    1.77 +			{
    1.78 +			flag |= ERxUnderrun;
    1.79 +			}
    1.80 +		}
    1.81 +	if(aPtr->iTrigger & ETransmit)
    1.82 +		{
    1.83 +		// Requested Tx operation has ended - check for RxOverrun
    1.84 +		flag |= ETxAllBytes;
    1.85 +		if(aPtr->iTxDataEnd != aPtr->iTxData)
    1.86 +			{
    1.87 +			flag |= ETxOverrun;
    1.88 +			}
    1.89 +		}
    1.90 +	aPtr->NotifyClient(flag);
    1.91 +	}
    1.92 +
    1.93 +
    1.94 +// ISR Handler
    1.95 +//
    1.96 +// The ISR handler identifies the cause of the interrupt that lead to its invocation:
    1.97 +// if the cause was transfer-related, it calls the PIL function NotifyClient to report a summary of the transfer status;
    1.98 +// if the cause was completion of asynchronous channel capture, PIL function ChanCaptureCallback is called 
    1.99 +//
   1.100 +// The ISR also clears the source of the interrupt, and (for transfer-related interrupts) transfers the next data 
   1.101 +// between buffers and the hardware and updates the member variable iInProgress to indicate if a transfer has started or
   1.102 +// ended. If a transfer has ended before the expected amount of data has been transfered it calls function NotifyClientEnd.
   1.103 +//
   1.104 +void DIicBusChannelSlavePsl::IicPslIsr(TAny* /*aPtr*/)
   1.105 +	{
   1.106 +	//		DIicBusChannelSlavePsl *a = (DIicBusChannelSlavePsl*) aPtr;
   1.107 +
   1.108 +	//		TInt intState = 0;	// Variable to support use of spin lock
   1.109 +
   1.110 +	//		TInt trigger = 0; // Record the Rx and Tx transfers
   1.111 +
   1.112 +	//		TUint32 intStatus = 0; // Record of the interrupts that are being reported
   1.113 +
   1.114 +	// Identify the cause of the interrupt. If this can be achieved by reading a single register,
   1.115 +	// code similar to the following could be used:
   1.116 +	//		intStatus = AsspRegister::Read32(a->iChannelBase + KIntStatusOffset);
   1.117 +
   1.118 +	// Optional (not required if asynchronous channel capture is not supported)
   1.119 +	// If the cause of the interrupt is completion of asynchronous channel capture, the ISR will check the appropriate
   1.120 +	// indicator for confirmation of success - for a real PSL, this may be by querying a bitmask in a register. For the template PSL,
   1.121 +	// however, a dummy member variable (iAsyncConfig) has been used to represent the asynchronous operation instead.
   1.122 +	//
   1.123 +	//		if(iAsyncConfig == 1)	// Replace with a check of the indicator that the interrupt was due to asynchrous channel capture
   1.124 +	//			{
   1.125 +	//			// The PIL function ChanCaptureCallback is now to be invoked. It takes as an argument either KErrNone or a
   1.126 +	//			// system-wide error code to indicate the cause of failure. For a real PSL, the argument would likely be determined
   1.127 +	//			// by reading a bitmask in a status register - but for the template port, just use KErrNone.
   1.128 +	//			//
   1.129 +	//			a->ChanCaptureCallback(KErrNone);
   1.130 +	//			return;
   1.131 +	//			}
   1.132 +
   1.133 +	// If an interrupt indicates that a transfer has started, or that it has now ended, (such as a chip select 
   1.134 +	// line transition for a SPI bus the member variable iInProgress should be modified accordingly. This should
   1.135 +	// be done under the guard of spin lock macros since iInProgress can be accessed in the context of the Client
   1.136 +	// thread (in DoRequest, ProcessData and InitTransfer). The following structure should be adopted:
   1.137 +	//		intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.138 +	//		<access a->iInProgress>
   1.139 +	//		__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.140 +	//
   1.141 +	// If a transfer has ended before the expected amount of data has been transfered, function NotifyClientEnd
   1.142 +	// should be called, as follows:
   1.143 +	//		a->NotifyClientEnd(a);
   1.144 +	//		return;	// Return now - the interrupt indicated transfer end, not receipt or transmission of data.
   1.145 +
   1.146 +	// The transfers that had been started are indicated by the bitmask held in member variable iTrigger.
   1.147 +	// This must be accessed under the guard of a spin lock since it can be accessed in the context of the
   1.148 +	// Client thread (in DoRequest, ProcessData and InitTransfer). The following structure should be adopted:
   1.149 +	//		intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.150 +	//		trigger = a->iTrigger;
   1.151 +	//		__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.152 +
   1.153 +	// If the interrupt was raised for a Tx event, and a Tx transfer had been started (so the interrupt was not spurious)
   1.154 +	// then either prepare the next data to send, or, if all the data has been sent, call the PIL function NotifyClient
   1.155 +	// with bitmask (ETxAllBytes | ETxUnderrun) so that, if the Client specified a ETxUnderrun notification, it will be alerted
   1.156 +	// and can determine whether another buffer of data should be provide for transmission.
   1.157 +	// Code similar to the following could be used:
   1.158 +	//		if(intStatus & KTxInterruptBitMask)
   1.159 +	//			{
   1.160 +	//			if(trigger & ETransmit)
   1.161 +	//				{
   1.162 +	//				// Interrupt was not spurious
   1.163 +	//				if(a->iTxData == a->iTxDataEnd)
   1.164 +	//					{
   1.165 +	//					// All the data to be transmitted has been sent, so call the PIL method NotifyClient
   1.166 +	//					a->NotifyClient(ETxAllBytes | ETxUnderrun);
   1.167 +	//					}
   1.168 +	//				else
   1.169 +	//					{
   1.170 +	//					// There is more data to be sent
   1.171 +	//					// TUint8 nextTxValue = *iTxData;	// For this example, assumes one byte of data is to be transmitted
   1.172 +	//														// but if operating in 16-bit mode, bytes may need arranging for
   1.173 +	//														// endianness
   1.174 +	//
   1.175 +	//					// Write to the Tx register with something similar to the following:
   1.176 +	//					//		AsspRegister::Write32(iChannelBase + KTxFifoOffset, nextTxValue);
   1.177 +	//
   1.178 +	//					iTxData += iWordSize;	// Then increment the pointer to the data. In this example, 8-bit mode is assumed
   1.179 +	//											// (iWordSize=1), but if operating in 16-bit mode iTxData would be incremented
   1.180 +	//											// by the number of bytes specified in iWordSize
   1.181 +	//					}
   1.182 +	//				}
   1.183 +	//			}
   1.184 +
   1.185 +	// If the interrupt was raised for a Rx event, and a Rx transfer had been started (so the interrupt was not spurious)
   1.186 +	// read the received data from the hardware to the buffer. If a Rx FIFO is being used, use a loop to drain it - until
   1.187 +	// the FIFO is empty or the buffer is full. If data remains after the buffer is full, an RxOverrun condition has occurred
   1.188 +	// - so the PIL function NotifyClient should be called with bitmask (ERxAllBytes | ERxOverrun) so that, if the Client specified
   1.189 +	// a ERxOverrun notification, it will be alerted and can determine whether another buffer should be provided to continue reception.
   1.190 +	// Code similar to the following could be used:
   1.191 +	//		if(intStatus & KRxInterruptBitMask)
   1.192 +	//			{
   1.193 +	//			if(trigger & EReceive)
   1.194 +	//				{
   1.195 +	//				// Interrupt was not spurious
   1.196 +	//				while(AsspRegister::Read32(a->iChannelBase + KRxFifoLevelOffset))
   1.197 +	//					{
   1.198 +	//					if((a->iRxData - a->iRxDataEnd) >= a->iWordSize)
   1.199 +	//						{
   1.200 +	//						// Space remains in the buffer, so copy the received data to it
   1.201 +	//						TUint8 nextRxValue = AsspRegister::Read32(a->iChannelBase + KRxFifoOffset);
   1.202 +	//						*a->iRxData = nextRxValue;	// For this example, assumes one byte of data is to be transmitted
   1.203 +	//													// but if operating in 16-bit mode, bytes may need arranging for
   1.204 +	//													// endianness
   1.205 +	//
   1.206 +	//						a->iRxData += a->iWordSize;	// Then increment the pointer to the data. In this example, 8-bit mode is assumed
   1.207 +	//													// (iWordSize=1), but if operating in 16-bit mode iRxData would be incremented
   1.208 +	//													// by the number of bytes specified in iWordSize
   1.209 +	//						}
   1.210 +	//					else
   1.211 +	//						{
   1.212 +	//						// The buffer is full but more data has been received - so there is an RxOverrun condition
   1.213 +	//						// Disable the hardware from receiving any more data and call the PIL function NotifyClient
   1.214 +	//						// with bitmask (ERxAllBytes | ERxOverrun).
   1.215 +	//						AsspRegister::Write32(a->iChannelBase + KRxFifoControl, KRxFifoDisableBitMask);
   1.216 +	//						a->NotifyClient(ERxAllBytes | ERxOverrun);
   1.217 +	//						break;
   1.218 +	//						}
   1.219 +	//					}
   1.220 +	//				}
   1.221 +	//			else
   1.222 +	//				{
   1.223 +	//				// If the interrupt was spurious, ignore the data, and reset the FIFO
   1.224 +	//				AsspRegister::Write32(a->iChannelBase + KRxFifoControl, KRxFifoClearBitMask);
   1.225 +	//				}
   1.226 +
   1.227 +	// Once the interrupts have been processed, clear the source. If this can be achieve by writing to
   1.228 +	// a single register, code similar to the following could be used:
   1.229 +	//		AsspRegister::Write32(a->iChannelBase + KIntStatusOffset, KAIntBitMask);
   1.230 +
   1.231 +	}
   1.232 +
   1.233 +
   1.234 +// Constructor, first stage
   1.235 +//
   1.236 +// The PSL is responsible for setting the channel number - this is passed as the first parameter to
   1.237 +// this overload of the base class constructor
   1.238 +//
   1.239 +DIicBusChannelSlavePsl::DIicBusChannelSlavePsl(TInt aChannelNumber, TBusType aBusType, TChannelDuplex aChanDuplex) :
   1.240 +	DIicBusChannelSlave(aBusType, aChanDuplex, 0),	// Base class constructor. Initalise channel ID to zero.
   1.241 +	iHwGuardTimer(TimeoutCallback, this)			// Timer to guard against hardware timeout
   1.242 +	{
   1.243 +	iChannelNumber = aChannelNumber;
   1.244 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelSlavePsl::DIicBusChannelSlavePsl, iChannelNumber = %d\n", iChannelNumber));
   1.245 +	}
   1.246 +
   1.247 +
   1.248 +// Second stage construction
   1.249 +//
   1.250 +// Allocate and initialise objects required by the PSL channel implementation
   1.251 +//
   1.252 +TInt DIicBusChannelSlavePsl::DoCreate()
   1.253 +	{
   1.254 +	__KTRACE_OPT(KIIC, Kern::Printf("\nDIicBusChannelSlavePsl::DoCreate, ch: %d \n", iChannelNumber));
   1.255 +
   1.256 +	TInt r = KErrNone;
   1.257 +
   1.258 +	// PIL Base class initialization.
   1.259 +	r = Init();
   1.260 +	if(r == KErrNone)
   1.261 +		{
   1.262 +		// At a minimum, this function must set the channel's unique channel ID.
   1.263 +		// When the channel is captured, this value will be combined with an instance count
   1.264 +		// provided by the PIL to generate a value that will be used by a client as a unique
   1.265 +		// identifer in subsequent calls to the Slave API.
   1.266 +		//
   1.267 +		// There is no set format for the ID, it just needs to be unique.
   1.268 +		// Un-comment and complete the following line:
   1.269 +//		iChannelId = 
   1.270 +		
   1.271 +		// This method may also be concerned with setting the base register address iChannelBase), and allocating
   1.272 +		// any objects that will be required to support operaton until the channel is deleted.
   1.273 +		//
   1.274 +		// Un-comment and complete the following line:
   1.275 +//		iChannelBase = 
   1.276 +		}
   1.277 +	return r;
   1.278 +	}
   1.279 +
   1.280 +// static method used to construct the DIicBusChannelSlavePsl object.
   1.281 +DIicBusChannelSlavePsl* DIicBusChannelSlavePsl::New(TInt aChannelNumber, const TBusType aBusType, const TChannelDuplex aChanDuplex)
   1.282 +	{
   1.283 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelSlavePsl::NewL(): aChannelNumber = %d, BusType =%d", aChannelNumber, aBusType));
   1.284 +	DIicBusChannelSlavePsl *pChan = new DIicBusChannelSlavePsl(aChannelNumber, aBusType, aChanDuplex);
   1.285 +
   1.286 +	TInt r = KErrNoMemory;
   1.287 +	if (pChan)
   1.288 +		{
   1.289 +		r = pChan->DoCreate();
   1.290 +		}
   1.291 +	if (r != KErrNone)
   1.292 +		{
   1.293 +		delete pChan;
   1.294 +		pChan = NULL;
   1.295 +		}
   1.296 +
   1.297 +	return pChan;
   1.298 +	}
   1.299 +
   1.300 +
   1.301 +// Validates the configuration information specified by the client when capturing the channel
   1.302 +//
   1.303 +// Called by the PIL as part of the Slave CaptureChannel processing
   1.304 +//
   1.305 +// If the pointer to the header is NULL, return KErrArgument.
   1.306 +// If the content of the header is not valid for this channel, return KErrNotSupported.
   1.307 +// 
   1.308 +TInt DIicBusChannelSlavePsl::CheckHdr(TDes8* aHdrBuff)
   1.309 +	{
   1.310 +	TInt r = KErrNone;
   1.311 +
   1.312 +	if(!aHdrBuff)
   1.313 +		{
   1.314 +		r = KErrArgument;
   1.315 +		}
   1.316 +	else
   1.317 +		{
   1.318 +		// Check that the contents of the header are valid
   1.319 +		//
   1.320 +		// The header will be specific to a particular bus type. Using a fictional
   1.321 +		// bus type Abc,code similar to the following could be used to validate each
   1.322 +		// member of the header:
   1.323 +		// 
   1.324 +		//		TConfigAbcBufV01* headerBuf = (TConfigAbcBufV01*) aHdrBuff;
   1.325 +		//		TConfigAbcV01 &abcHeader = (*headerBuf)();
   1.326 +		//		if(	(abcHeader.iHeaderMember < ESomeMinValue)	||
   1.327 +		//			(abcHeader.iHeaderMember > ESomeMaxValue))
   1.328 +		//			{
   1.329 +		//			__KTRACE_OPT(KIIC, Kern::Printf("iHeaderMember %d not supported",abcHeader.iHeaderMember));
   1.330 +		//			r = KErrNotSupported;
   1.331 +		//			}
   1.332 +
   1.333 +		}
   1.334 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelSlavePsl::CheckHdr() r %d", r));
   1.335 +
   1.336 +	return r;
   1.337 +	}
   1.338 +
   1.339 +
   1.340 +// Method called in the context of the client thread, as a consequence of the PSL invocation of the 
   1.341 +// PIL method NotifyClient when a bus event occurs.
   1.342 +//
   1.343 +// This method updates the bitmask of requested operations (held in member variable iTrigger) and the
   1.344 +// PIL counts of data received and transmitted. If the event was a bus error, the bitmask of requested operations
   1.345 +// is cleared.
   1.346 +//
   1.347 +void DIicBusChannelSlavePsl::ProcessData(TInt aTrigger, TIicBusSlaveCallback* aCb)
   1.348 +	{
   1.349 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelSlavePsl::ProcessData(), trigger: %x\n", aTrigger));
   1.350 +
   1.351 +	TInt intState;
   1.352 +
   1.353 +	// If using the iInProgress member variable to indicate transitions on a chip-select line, and an interrupt
   1.354 +	// occurred as a transfer was to end, then must ensure the transmission of data has ceased.
   1.355 +	//
   1.356 +	// Must use spin lock to guard access since iInProgress is accessed by the ISR
   1.357 +	//
   1.358 +	TInt inProgress;
   1.359 +	intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.360 +	inProgress = iInProgress;
   1.361 +	__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.362 +	//
   1.363 +	if(!inProgress &&								// Transfer has now ended
   1.364 +	   (aTrigger & (ERxAllBytes | ETxAllBytes)))	// Master has not yet finished transferring data
   1.365 +		{
   1.366 +		// Use the guard timer to make sure that transfer ends with an expected time - if this does not cease 
   1.367 +		// before the timer expires, iTransactionStatus will be set to KErrTimedOut by the callback function TimeoutCallback
   1.368 +		//
   1.369 +		// Poll the relevant register to check for transfer activity, using code similar to the following:
   1.370 +		//		TInt8 transferring = AsspRegister::Read32(iChannelBase + KStatusRegisterOffset) & KTransferringBitMask);
   1.371 +		// For the template port, use a dummy variable instead of the register access (transferring = 1)
   1.372 +		//
   1.373 +		TInt8 transferring = 1;
   1.374 +		iTransactionStatus = KErrNone;
   1.375 +		iHwGuardTimer.OneShot(NKern::TimerTicks(KTimeoutValue));
   1.376 +
   1.377 +		while((iTransactionStatus == KErrNone) &&
   1.378 +		      transferring);		// Replace transferring with a register read, as described above
   1.379 +
   1.380 +		// At this point, either the transfer has ceased, or the timer expired - in either case, may disable the interrupt
   1.381 +		// for the transfer now, using code similar to the following:
   1.382 +		//		AsspRegister::Write32(iChannelBase + KIntEnableRegisterOffset, KIntDisableBitMask);
   1.383 +
   1.384 +		// Check for guard timer expiry
   1.385 +		if(iTransactionStatus != KErrNone)
   1.386 +			{
   1.387 +			__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelSlavePsl::ProcessData - Transaction timed-out"));
   1.388 +			return;
   1.389 +			}
   1.390 +		else
   1.391 +			{
   1.392 +			iHwGuardTimer.Cancel();
   1.393 +			}
   1.394 +
   1.395 +		// If all transfer activity has now ceased, clear iTrigger
   1.396 +		// Must use spin lock to guard access since iInProgress is accessed by the ISR
   1.397 +		//
   1.398 +		intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.399 +		iTrigger = 0;
   1.400 +		__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.401 +		}
   1.402 +
   1.403 +	// If the PSL called the PIL function NotifyClient to indicate transfer activity (or error), the reason
   1.404 +	// will be specified as a bitmask in aTrigger
   1.405 +	//  - if a Rx event occurred, the ERxAllBytes flag will be set
   1.406 +	//  - if a Tx event occurred, the ETxAllBytes flag will be set
   1.407 +	//  - if a bus error occurred, the EGeneralBusError flag will be set
   1.408 +	//
   1.409 +	if(aTrigger & ERxAllBytes)
   1.410 +		{
   1.411 +		__KTRACE_OPT(KIIC, Kern::Printf("ProcessData - Rx Buf:    %x\n", iRxData));
   1.412 +		__KTRACE_OPT(KIIC, Kern::Printf("ProcessData - Rx Bufend: %x\n", iRxDataEnd));
   1.413 +
   1.414 +		// Clear the internal EReceive flag
   1.415 +		// This must be done under guard of a spin lock since iTrigger is accessed by the ISR
   1.416 +		intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.417 +		iTrigger &= ~EReceive;
   1.418 +		__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.419 +
   1.420 +		// Update the PIL count of Rx data (in the Callback object)
   1.421 +		aCb->SetRxWords(iNumRxWords - ((iRxDataEnd - iRxData) / iWordSize));
   1.422 +		}
   1.423 +	// 
   1.424 +	if(aTrigger & ETxAllBytes)
   1.425 +		{
   1.426 +		__KTRACE_OPT(KIIC, Kern::Printf("ProcessData - Tx Buf:    %x\n", iTxData));
   1.427 +		__KTRACE_OPT(KIIC, Kern::Printf("ProcessData - Tx Bufend: %x\n", iTxDataEnd));
   1.428 +
   1.429 +		// Clear the internal ETransmit flag..
   1.430 +		// This must be done under guard of a spin lock since iTrigger is accessed by the ISR
   1.431 +		intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.432 +		iTrigger &= ~ETransmit;
   1.433 +		__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.434 +
   1.435 +		// Update the PIL count of Tx data (in the Callback object)
   1.436 +		aCb->SetTxWords(iNumTxWords - ((iTxDataEnd - iTxData) / iWordSize));
   1.437 +		}
   1.438 +	//
   1.439 +	if(aTrigger & EGeneralBusError)
   1.440 +		{
   1.441 +		__KTRACE_OPT(KIIC, Kern::Printf("BusError.."));
   1.442 +
   1.443 +		// Clear and disable relevant interrupts, possibly using code similar to the following:
   1.444 +		//		AsspRegister::Write32(iChannelBase + KIntEnableRegisterOffset, KIntDisableBitMask);
   1.445 +
   1.446 +		// Clear internal flags
   1.447 +		// This must be done under guard of a spin lock since iTrigger is accessed by the ISR
   1.448 +		intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.449 +		iTrigger = 0;
   1.450 +		__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.451 +		}
   1.452 +
   1.453 +	// Set the callback's trigger, for use by the PIL
   1.454 +	aCb->SetTrigger(aTrigger | aCb->GetTrigger());
   1.455 +	}
   1.456 +
   1.457 +
   1.458 +
   1.459 +// Method to initialise the hardware in accordance with the data provided by the Client
   1.460 +// in the configuration header when capturing the channel
   1.461 +//
   1.462 +// This method is called from DoRequest and is expected to return a value to indicate success
   1.463 +// or a system wide error code to inform of the failure
   1.464 +//
   1.465 +TInt DIicBusChannelSlavePsl::ConfigureInterface()
   1.466 +	{
   1.467 +	__KTRACE_OPT(KIIC, Kern::Printf("ConfigureInterface()"));
   1.468 +
   1.469 +	TInt r = KErrNone;
   1.470 +
   1.471 +	// The header is stored in member variable iConfigHeader, and will be specific to a particular bus type.
   1.472 +	// Using a fictional bus type Abc, code similar to the following could be used to access each
   1.473 +	// member of the header:
   1.474 +	// 
   1.475 +	//		TConfigAbcBufV01* headerBuf = (TConfigAbcBufV01*) iConfigHeader;
   1.476 +	//		TConfigAbcV01 &abcHeader = (*headerBuf)();
   1.477 +	//		TInt value = abcHeader.iTintMember;
   1.478 +
   1.479 +	// Initialising the hardware may be achieved with calls similar to the following:
   1.480 +	//		AsspRegister::Write32(a->iChannelBase + KBusModeControlOffset, KIicPslModeControlBitMask);
   1.481 +	//		GPIO::SetPinMode(aPinId, GPIO::EEnabled);
   1.482 +
   1.483 +	// Binding an ISR may be achieved with calls similar to the following:
   1.484 +	//		r = Interrupt::Bind(iRxInterruptId, DIicBusChannelSlavePsl::IicPslIsr, this);
   1.485 +	//		r = Interrupt::Bind(iTxInterruptId, DIicBusChannelSlavePsl::IicPslIsr, this);
   1.486 +	// Enabling interrupts may be achieved with calls similar to the following:
   1.487 +	//		r = Interrupt::Enable(iRxInterruptId);
   1.488 +	//		r = Interrupt::Enable(iTxInterruptId);
   1.489 +
   1.490 +	// Modifying a hardware register may not be a zero-delay operation. The member variable iHwGuardTimer could be used to guard a
   1.491 +	// continuous poll of the hardware register that checks for the required change in the setting; TimeoutCallback is already 
   1.492 +	// assigned as the callback function for iHwGaurdTimer, and it modifies member variable iTransactionStatus to indicate a timeout
   1.493 +	// - so the two could be used together as follows:
   1.494 +	//		iTransactionStatus = KErrNone;
   1.495 +	//		iHwGuardTimer.OneShot(NKern::TimerTicks(KTimeoutValue));
   1.496 +	//		while((iTransactionStatus == KErrNone) &&
   1.497 +	//		       AsspRegister::Read32(iChannelBase + KRegisterOffset) & KRegisterFlagBitMask);
   1.498 +	//		if(iTransactionStatus != KErrNone)
   1.499 +	//			{
   1.500 +	//			r = KErrGeneral;
   1.501 +	//			}
   1.502 +	//		else
   1.503 +	//			{
   1.504 +	//			iHwGuardTimer.Cancel();
   1.505 +	//			}
   1.506 +
   1.507 +	// DoRequest checks the return value so the variable r should be modified in the event of failure with a system-wide error code
   1.508 +	// for example, if a register could not be modified,
   1.509 +	//			r = KErrGeneral;
   1.510 +	//			__KTRACE_OPT(KIIC, Kern::Printf("ConfigureInterface failed with error %d\n",r));
   1.511 +	return r;
   1.512 +	}
   1.513 +
   1.514 +
   1.515 +// Method to start asynchronous initialisation of the hardware, in accordance with the data provided by the Client
   1.516 +// in the configuration header when capturing the channel. This differs from ConfigureInterface in that it
   1.517 +// merely starts the initialisation, then returns immediately; 
   1.518 +//
   1.519 +// The PSL is expected to be implemented as an asynchronous state machine, where events (for example hardware 
   1.520 +// interrupts, or timer expiry) invoke callback functions that advance the state machine to the next state. Once
   1.521 +// all the required states have been transitioned, so that the PSL part of the CaptureChannel processing is 
   1.522 +// complete, the ISR should be invoked, which will then call PIL method ChanCaptureCallback
   1.523 +//
   1.524 +// This method is called from DoRequest and is expected to return a value to indicate success
   1.525 +// or a system wide error code to inform of the failure
   1.526 +//
   1.527 +TInt DIicBusChannelSlavePsl::AsynchConfigureInterface()
   1.528 +	{
   1.529 +	__KTRACE_OPT(KIIC, Kern::Printf("ConfigureInterface()"));
   1.530 +
   1.531 +//	TInt r = KErrNone;	// A real implementation would use this as the return value to indicate success / failure
   1.532 +
   1.533 +	// Precisely what processing is done to 'start' the asynchronous processing is entirely platform-specific;
   1.534 +	// it may be the set-up and activation of a long-running operation that completes asynchronously. Regardless of what
   1.535 +	// is done, its completion is expected to result in the ISR being run.
   1.536 +	//
   1.537 +	// Whatever the operation, there must be some means of the ISR recognising that an asynchronous initialisation has
   1.538 +	// been performed
   1.539 +	// In a real PSL, this may be be checking a bitmask in a status register. For the template PSL, however,
   1.540 +	// a dummy class member will be used (iAsyncConfig)
   1.541 +	// Since this member will be accessed by the ISR, it should, strictly speaking, be accessed under the guard of a spin lock
   1.542 +	TInt intState;
   1.543 +	intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.544 +	iAsyncConfig = 1;
   1.545 +	__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.546 +
   1.547 +	return KErrNone;	// A real implementation would return an indication of success / failure
   1.548 +	}
   1.549 +
   1.550 +// Method called from DoRequest to start Tx and-or Rx transfer.
   1.551 +//
   1.552 +// The method will initialise the hardware and pointers used to manage transfers, before returning a value to report success
   1.553 +// (KErrNone) or a system-wide error code that indicates the cause of failure.
   1.554 +//
   1.555 +TInt DIicBusChannelSlavePsl::InitTransfer()
   1.556 +	{
   1.557 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelSlavePsl::InitTransfer()"));
   1.558 +
   1.559 +	TInt r = KErrNone;
   1.560 +
   1.561 +	// Local copies of member variables that must be accessed in a synchronised manner
   1.562 +	TInt inProgress;
   1.563 +	TInt trigger;
   1.564 +
   1.565 +	TInt intState;
   1.566 +
   1.567 +	// Check if a transfer is already in progress. 
   1.568 +	// If variable iInProgress is being used, this must be determined in a synchronised manner because the ISR modifies it.
   1.569 +	// Bus types that do not rely on chip-select transitions may use an alternative method to indicate if a transfer is in
   1.570 +	// progress
   1.571 +	intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.572 +	inProgress = iInProgress;
   1.573 +	__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.574 +
   1.575 +	if(!inProgress)
   1.576 +		{
   1.577 +		// If no transfers are in progress, it may be necessary to initialise the hardware to support those that
   1.578 +		// are being requested. This may include FIFO and interrupt initialisation, 
   1.579 +		//
   1.580 +		// Initialising the hardware may be achieved with calls similar to the following:
   1.581 +		//		AsspRegister::Write32(iChannelBase + KBusModeControlOffset, KIicPslModeControlBitMask);
   1.582 +		//		GPIO::SetPinMode(aPinId, GPIO::EEnabled);
   1.583 +		}
   1.584 +
   1.585 +	// Check the current operations. This must be determined in a synchronised manner because ProcessData
   1.586 +	// runs in the context of the Client thread and it modifies the value of iTrigger
   1.587 +	intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.588 +	trigger = iTrigger;
   1.589 +	__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.590 +
   1.591 +	if(trigger & ETransmit)
   1.592 +		{
   1.593 +		// If Tx transfers were not previously active, it may be necessary to initialise the Tx hardware here, e.g.
   1.594 +		//		AsspRegister::Write32(iChannelBase + KBusModeControlOffset, KIicPslTxModeBitMask);
   1.595 +		
   1.596 +		// Initialise the Tx pointers
   1.597 +		iTxData = iTxBuf + (iWordSize * iTxOffset);
   1.598 +		iTxDataEnd = iTxData + (iWordSize * iNumTxWords);
   1.599 +
   1.600 +		__KTRACE_OPT(KIIC, Kern::Printf("Tx Buf:    %x", iTxData));
   1.601 +		__KTRACE_OPT(KIIC, Kern::Printf("Tx Bufend: %x", iTxDataEnd));
   1.602 +
   1.603 +		// If using a FIFO, copy the data to it until either the FIFO is full or all the data has been copied
   1.604 +		// This could be achieved with something similar to the following lines:
   1.605 +		//		while(AsspRegister::Read32(iChannelBase + KFifoLevelOffset) <= (KFifoMaxLevel - iWordSize) &&
   1.606 +		//		      iTxData != iTxDataEnd)
   1.607 +		// For the template port, will just use a dummy variable (dummyFifoLvlChk )in place of the register read
   1.608 +		TInt dummyFifoLvlChk = 0;
   1.609 +		while((dummyFifoLvlChk)	&&	// Replace this dummy variable with a read of the hardware
   1.610 +			(iTxData != iTxDataEnd))
   1.611 +			{
   1.612 +			// TUint8 nextTxValue = *iTxData;	// For this example, assumes one byte of data is to be transmitted
   1.613 +												// but if operating in 16-bit mode, bytes may need arranging for
   1.614 +												// endianness
   1.615 +
   1.616 +			// Write to the Tx register with something similar to the following:
   1.617 +			//		AsspRegister::Write32(iChannelBase + KTxFifoOffset, nextTxValue);
   1.618 +
   1.619 +			iTxData += iWordSize;	// Then increment the pointer to the data. In this example, 8-bit mode is assumed
   1.620 +									// (iWordSize=1), but if operating in 16-bit mode iTxData would be incremented
   1.621 +									// by the number of bytes specified in iWordSize
   1.622 +			}
   1.623 +		// If a Tx FIFO is not being used, a single Tx value would be written - in which case the above loop would be replaced
   1.624 +	
   1.625 +		__KTRACE_OPT(KIIC, Kern::Printf("After adding:\n\rTx Buf:    %x", iTxData));
   1.626 +		__KTRACE_OPT(KIIC, Kern::Printf("Tx Bufend: %x", iTxDataEnd));
   1.627 +		}
   1.628 +
   1.629 +	if(trigger & EReceive) 
   1.630 +		{
   1.631 +		// Initialise the Rx pointers
   1.632 +		iRxData = iRxBuf + (iWordSize * iRxOffset);
   1.633 +		iRxDataEnd = iRxData + (iWordSize * iNumRxWords);
   1.634 +
   1.635 +		__KTRACE_OPT(KIIC, Kern::Printf("Rx Buffer:  %x", iRxData));
   1.636 +		__KTRACE_OPT(KIIC, Kern::Printf("Rx Bufend: %x", iRxDataEnd));
   1.637 +
   1.638 +		// If Rx transfers were not previously active, it may be necessary to initialise the Rx hardware here, e.g.
   1.639 +		//		AsspRegister::Write32(iChannelBase + KBusModeControlOffset, KIicPslRxModeBitMask);
   1.640 +		}
   1.641 +
   1.642 +	// If there is some common configuration required to support Rx, Tx transfers, may do it here
   1.643 +
   1.644 +	return r;
   1.645 +	}
   1.646 +
   1.647 +
   1.648 +// The gateway function for PSL implementation
   1.649 +//
   1.650 +// This method is called by the PIL to perform one or more operations indicated in the bitmask aOperation,
   1.651 +// which corresponds to members of the TPslOperation enumeration.
   1.652 +//
   1.653 +TInt DIicBusChannelSlavePsl::DoRequest(TInt aOperation)
   1.654 +	{
   1.655 +	__KTRACE_OPT(KIIC, Kern::Printf("\nDIicBusChannelSlavePsl::DoRequest, Operation 0x%x\n", aOperation));
   1.656 +
   1.657 +	TInt r = KErrNone;
   1.658 +	TInt intState;
   1.659 +
   1.660 +	if (aOperation & EAsyncConfigPwrUp)
   1.661 +		{
   1.662 +		// The PIL has requested asynchronous operation of CaptureChannel.
   1.663 +		// The PSL should start the processing required for a channel to be captured, and then return immediately with
   1.664 +		// error code KErrNone (if the processing was started without error), so that the client thread will be unblocked. 
   1.665 +		// The PSL is expected to be implemented as an asynchronous state machine, where events (for example hardware 
   1.666 +		// interrupts, or timer expiry) invoke callback functions that advance the state machine to the next state. Once
   1.667 +		// all the required states have been transitioned, so that the PSL part of the CaptureChannel processing is 
   1.668 +		// complete, the PSL should call the PIL function ChanCaptureCallback - this will lead to the Client-provided
   1.669 +		// callback being executed in the context of the client thread
   1.670 +		// 
   1.671 +		__KTRACE_OPT(KIIC, Kern::Printf("EAsyncConfigPwrUp"));
   1.672 +		r = AsynchConfigureInterface();
   1.673 +		if (r != KErrNone)
   1.674 +			{
   1.675 +			__KTRACE_OPT(KIIC, Kern::Printf("AsynchConfigureInterface returned %d\n", r));
   1.676 +			}
   1.677 +		return r;
   1.678 +		}
   1.679 +
   1.680 +	if (aOperation & ESyncConfigPwrUp)
   1.681 +		{
   1.682 +		// The PIL has requested synchronous operation of CaptureChannel.
   1.683 +		// The PSL should perform the processing required for a channel to be captured, and return a system-wide error
   1.684 +		// code when this is complete to indicate the status of the capture.
   1.685 +		// Capturing a channel is expected to include initialisation of the hardware to enable operation in accordance
   1.686 +		// with the configuration specified in the PIL member variable iConfigHeader, which holds the configuration
   1.687 +		// specified by the Client.
   1.688 +		//
   1.689 +		__KTRACE_OPT(KIIC, Kern::Printf("ESyncConfigPwrUp"));
   1.690 +		r = ConfigureInterface();
   1.691 +		if (r != KErrNone)
   1.692 +			{
   1.693 +			__KTRACE_OPT(KIIC, Kern::Printf("ConfigureInterface returned %d\n", r));
   1.694 +			return r;
   1.695 +			}
   1.696 +		}
   1.697 +
   1.698 +	if (aOperation & ETransmit)
   1.699 +		{
   1.700 +		// The PIL has requested that a Tx operation be started. 
   1.701 +		// Since the SPL may support simultaneous Rx and Tx operations, just set the flag in the iTrigger bitmask to 
   1.702 +		// indicate what has been requested. If both Rx and Tx operations are requested, and one completes ahead of the other,
   1.703 +		// requiring the Client to provide a new buffer and associated call to DoRequest (as is the case if the Master wishes
   1.704 +		// to transfer more data than the Slave buffer supported), it is possible that the other transfer could complete while
   1.705 +		// this function is running; consequently, it may attempt to access iTrigger, and so cause data corruption. To cater for
   1.706 +		// such situations, use a spin lock to guard access to iTrigger.
   1.707 +		// When the same check has been performed for Rx, call the InitTransfer function to start the required transfers.
   1.708 +		//
   1.709 +		__KTRACE_OPT(KIIC, Kern::Printf("ETransmit"));
   1.710 +		intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.711 +		iTrigger |= ETransmit;
   1.712 +		__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.713 +		}
   1.714 +
   1.715 +	if (aOperation & EReceive)
   1.716 +		{
   1.717 +		// The PIL has requested that a Rx operation be started. 
   1.718 +		// Since the SPL may support simultaneous Rx and Tx operations, just set the flag in the iTrigger bitmask to 
   1.719 +		// indicate what has been requested. If both Rx and Tx operations are requested, and one completes ahead of the other,
   1.720 +		// requiring the Client to provide a new buffer and associated call to DoRequest (as is the case if the Master wishes
   1.721 +		// to transfer more data than the Slave buffer supported), it is possible that the other transfer could complete while
   1.722 +		// this function is running; consequently, it may attempt to access iTrigger, and so cause data corruption. To cater for
   1.723 +		// such situations, use a spin lock to guard access to iTrigger.
   1.724 +		// When the same check has been performed for Tx, call the InitTransfer function to start the required transfers.
   1.725 +		//
   1.726 +		__KTRACE_OPT(KIIC, Kern::Printf("EReceive"));
   1.727 +		intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.728 +		iTrigger |= EReceive;
   1.729 +		__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.730 +		}
   1.731 +
   1.732 +	if (aOperation & (EReceive | ETransmit))
   1.733 +		{
   1.734 +		// This code should only be executed once it has been checked whether Rx and Tx operations are required.
   1.735 +		r = InitTransfer();
   1.736 +		}
   1.737 +
   1.738 +	if (aOperation & EAbort)
   1.739 +		{
   1.740 +		// The PIL has requested that the current transaction be aborted.
   1.741 +		// This is the case if the Client has not responded within an expected time to specify the next steps in
   1.742 +		// the transaction processing. The time allowed is specified by calling PIL function SetClientWaitTime, otherwise 
   1.743 +		// the time defaults to KSlaveDefCWaitTime.
   1.744 +		// If the PSL is able to satisfy this request it should, at a minimum, disable interrupts and update the member 
   1.745 +		// variables that indicate a transaction is in progress. If the PSL is unable to satisfy the request then the same
   1.746 +		// behaviour will follow as if this request had not been made, so there is no point in modifying the state variables.
   1.747 +		// If both Rx and Tx operations had been requested, and one completes ahead of the other, it is possible that the other 
   1.748 +		// transfer could complete while this function is running; consequently, it may attempt to access iTrigger and iInProgress,
   1.749 +		// and so cause data corruption. To cater for such situations, use a spin lock to guard access to iTrigger.
   1.750 +		// The PIL makes no assumptions of whether the PSL can support this request or not, and does not check the return 
   1.751 +		// value - so there is no need to set one.
   1.752 +		//
   1.753 +		TUint8 dummyCanAbort = 1;	// Dummy variable to represent a check of if it is possible to abort the current transaction
   1.754 +		__KTRACE_OPT(KIIC, Kern::Printf("EAbort"));
   1.755 +		intState = __SPIN_LOCK_IRQSAVE(IicPslSpinLock);
   1.756 +		if(dummyCanAbort)
   1.757 +			{
   1.758 +			// The spin lock has been acquired, so it is safe to modify data and hardware registers that may be accessed as part of 
   1.759 +			// interrupt processing performed by an ISR - this is assuming that the ISR has been written to acquire the same spin lock.
   1.760 +			// Limit the processing to only that which is necessary to be processed under spin lock control, so as to not delay other
   1.761 +			// threads of execution that are waiting for the spin lock to be freed.
   1.762 +			// Hardware may be configured using code similar to the following:
   1.763 +			//		AsspRegister::Write32(iChannelBase + KBusInterruptEnableOffset, KIicPslBusDisableBitMask);
   1.764 +			iInProgress = EFalse;
   1.765 +			iTrigger = 0;
   1.766 +			}
   1.767 +		__SPIN_UNLOCK_IRQRESTORE(IicPslSpinLock, intState);
   1.768 +		// Having released the spin lock, now perform any actions that are not affected by pre-emption by an ISR, this may include code
   1.769 +		// such as the following
   1.770 +		//		Interrupt::Disable(iRxInterruptId);
   1.771 +		//		Interrupt::Disable(iTxInterruptId);
   1.772 +		}
   1.773 +
   1.774 +	if (aOperation & EPowerDown)
   1.775 +		{
   1.776 +		// The PIL has requested that the channel be released.
   1.777 +		// If this channel is not part of a MasterSlave channel, the next Client will operate in Slave mode. In this case, it may only
   1.778 +		// be necessary to disable interrupts, and reset the channel hardware.
   1.779 +		// If this channel represents the Slave of a MasterSlave channel, it is possible that some of the hardware is shared between the
   1.780 +		// Master and Slave sub-channels. Since it may not be known whether the next Client of the parent channel will require operation
   1.781 +		// in either Master or Slave mode, some additional processing may be required to allow for subsequent Master operation (for example.
   1.782 +		// unbinding an interrupt).
   1.783 +		//
   1.784 +		__KTRACE_OPT(KIIC, Kern::Printf("EPowerDown"));
   1.785 +
   1.786 +		// Resetting the hardware may be achieved with calls similar to the following:
   1.787 +		//		AsspRegister::Write32(iChannelBase + KBusInterruptEnableOffset, KIicPslBusDisableBitMask);
   1.788 +		//		GPIO::SetPinMode(aPinId, GPIO::EDisabled);
   1.789 +
   1.790 +		// Disable interrupts may be achieved with calls similar to the following:
   1.791 +		//		Interrupt::Disable(iRxInterruptId);
   1.792 +		//		Interrupt::Disable(iTxInterruptId);
   1.793 +
   1.794 +		// Unbinding an ISR may be achieved with calls similar to the following:
   1.795 +		//		Interrupt::Unbind(iRxInterruptId);
   1.796 +		//		Interrupt::Unbind(iTxInterruptId);
   1.797 +
   1.798 +		// The PIL checks the return value so the variable r should be modified in the event of failure with a system-wide error code
   1.799 +		// for example, if a register could not be modified,
   1.800 +		//		r = KErrGeneral;
   1.801 +		//		__KTRACE_OPT(KIIC, Kern::Printf("EPowerDown failed with error %d\n",r));
   1.802 +
   1.803 +		}
   1.804 +	return r;
   1.805 +	}
   1.806 +