os/kernelhwsrv/bsptemplate/asspandvariant/template_assp/iic/iic_master.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/bsptemplate/asspandvariant/template_assp/iic/iic_master.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,789 @@
     1.4 +/*
     1.5 +* Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
     1.6 +* All rights reserved.
     1.7 +* This component and the accompanying materials are made available
     1.8 +* under the terms of the License "Eclipse Public License v1.0"
     1.9 +* which accompanies this distribution, and is available
    1.10 +* at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.11 +*
    1.12 +* Initial Contributors:
    1.13 +* Nokia Corporation - initial contribution.
    1.14 +*
    1.15 +* Contributors:
    1.16 +*
    1.17 +* Description:
    1.18 +*
    1.19 +*/
    1.20 +
    1.21 +
    1.22 +#include <drivers/iic.h>
    1.23 +// #include <gpio.h>	// Include if using GPIO functionality
    1.24 +#include "iic_psl.h"
    1.25 +#include "iic_master.h"
    1.26 +
    1.27 +
    1.28 +// Method called when transmission activity is ended. The method is used to indicate
    1.29 +// the success or failure reported in the first parameter
    1.30 +//
    1.31 +// All timers are cancelled, relevant interrupts are disabled and the transaction
    1.32 +// request is completed by calling the relevant PIL method.
    1.33 +//
    1.34 +void DIicBusChannelMasterPsl::ExitComplete(TInt aErr, TBool aComplete /*= ETrue*/)
    1.35 +	{
    1.36 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::ExitComplete, aErr %d, aComplete %d", aErr, aComplete));
    1.37 +
    1.38 +	// Disable interrupts for the channel
    1.39 +	// with something similar to the following lines:
    1.40 +	//		Interrupt::Disable(iRxInterruptId);
    1.41 +	//		Interrupt::Disable(iTxInterruptId);
    1.42 +
    1.43 +	// Cancel timers and DFCs..
    1.44 +	CancelTimeOut();
    1.45 +	iHwGuardTimer.Cancel();
    1.46 +	iTransferEndDfc.Cancel();
    1.47 +
    1.48 +	// Change the channel state to EIdle so that subsequent transaction requests can be accepted
    1.49 +	// once the current one has been completed
    1.50 +	iState = EIdle;
    1.51 +
    1.52 +	// Call the PIL method to complete the request
    1.53 +	if(aComplete)
    1.54 +		{
    1.55 +		CompleteRequest(aErr);
    1.56 +		}
    1.57 +	}
    1.58 +
    1.59 +// Callback function for the iHwGuardTimer timer. 
    1.60 +//
    1.61 +// Called in ISR context if the iHwGuardTimer expires. Sets iTransactionStatus to KErrTimedOut
    1.62 +//
    1.63 +void DIicBusChannelMasterPsl::TimeoutCallback(TAny* aPtr)
    1.64 +	{
    1.65 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TimeoutCallback"));
    1.66 +	DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
    1.67 +	a->iTransactionStatus = KErrTimedOut;
    1.68 +	}
    1.69 +
    1.70 +// HandleSlaveTimeout
    1.71 +//
    1.72 +// This method is called by the PIL in the case of expiry of a timer started by the PSL. It is
    1.73 +// specificaly intended to guard against the Slave not responding within an expected time
    1.74 +//
    1.75 +// The PIL method StartSlaveTimeoutTimer is available for the PSL to start the timer (this is 
    1.76 +// called from ProcessNextTransfers, below).
    1.77 +// The PIL method CancelTimeOut is available for the PSL to cancel the same timer (this is called
    1.78 +// from ExitComplete, above)
    1.79 +//
    1.80 +// The PIL will call CompleteRequest() after this function returns, so the PSL needs only to clean-up
    1.81 +//
    1.82 +TInt DIicBusChannelMasterPsl::HandleSlaveTimeout()
    1.83 +	{
    1.84 +	__KTRACE_OPT(KIIC, Kern::Printf("HandleSlaveTimeout"));
    1.85 +
    1.86 +	// Ensure that the hardware has ceased transfers, with something similar to the following line:
    1.87 +	//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusDisableBit);
    1.88 +	//		GPIO::SetPinMode(aPinId, GPIO::EDisabled);
    1.89 +
    1.90 +	// Stop the PSL's operation, and inform the PIL of the timeout
    1.91 +	ExitComplete(KErrTimedOut, EFalse);
    1.92 +
    1.93 +	// Perform any further hardware manipulation necessary
    1.94 +	//
    1.95 +
    1.96 +	return KErrTimedOut;
    1.97 +	}
    1.98 +
    1.99 +
   1.100 +// DFC 
   1.101 +//
   1.102 +// For execution when a Rx buffer has been filled or a Tx buffer has been emptied
   1.103 +//
   1.104 +void DIicBusChannelMasterPsl::TransferEndDfc(TAny* aPtr)
   1.105 +	{
   1.106 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TransferEndDfc"));
   1.107 +	DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
   1.108 +
   1.109 +	//	Start of optional processing - not necessary for all implementations
   1.110 +	//
   1.111 +	// When operating full-duplex transfers, one of the Rx and Tx operations may have caused an interrupt
   1.112 +	// before the other has completed. For the example here, the Tx is assumed to have completed before the Rx
   1.113 +	// and a timer is used to ensure that the outstanding Rx operation completes within an expected time.
   1.114 +	//
   1.115 +	// If there has been no error so far, may want to check if we are still receiving the data
   1.116 +	if(a->iTransactionStatus == KErrNone)
   1.117 +		{
   1.118 +		// Use an active wait since this is likely to be a brief check.
   1.119 +		// Start the guard timer (which will update iTransactionStatus with KErrTimedOut if it expires)
   1.120 +		// while also polling the hardware to check if transmission has ceased.
   1.121 +		// 
   1.122 +		// Polling the hardware would be something like the line below
   1.123 +		//		(AsspRegister::Read32(a->aRegisterSetBaseAddress + KStatusRegisterOffset) & KTransmissionActive));
   1.124 +		// but for the template port will use a dummy condition (value of 1)
   1.125 +		//
   1.126 +		a->iHwGuardTimer.OneShot(NKern::TimerTicks(KTimeoutValue));
   1.127 +		while((a->iTransactionStatus == KErrNone) && 1);	// Replace 1 with a register read
   1.128 +		}
   1.129 +	//
   1.130 +	// Now the timer has expired, deactivate the slave select until the current state has been processed, but only
   1.131 +	// if this is not an extended transaction, in which case we want to leave the bus alone so that the multiple
   1.132 +	// transactions making up the extended transaction become one big transaction as far as the bus is concerned.
   1.133 +	// Do this with something similar to the following line:
   1.134 +	// if (!(a->iCurrTransaction->Flags() & KTransactionWithMultiTransc))
   1.135 +	//	{
   1.136 +	//	GPIO::SetPinMode(aPinId, GPIO::EDisabled);
   1.137 +	//	}
   1.138 +	//
   1.139 +	// Disable the hardware from further transmissions
   1.140 +	// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusDisableBit);
   1.141 +	//
   1.142 +	// Check if the guard timer expired
   1.143 +	if(a->iTransactionStatus != KErrNone)
   1.144 +		{
   1.145 +		__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TransferEndDfc(): error %d",a->iTransactionStatus));
   1.146 +		a->ExitComplete(a->iTransactionStatus); // report the error
   1.147 +		return;
   1.148 +		}
   1.149 +	else
   1.150 +		{
   1.151 +		// Transfer completed successfully, so just cancel the guard timer
   1.152 +		a->iHwGuardTimer.Cancel();
   1.153 +		}
   1.154 +	//	End of optional processing - not necessary for all implementations
   1.155 +
   1.156 +	// At this point, prepare for subsequent transfers by performing any necessary clean-up.
   1.157 +	// As stated above, for this example, it is assumed that any Rx or Tx transfer has completed - 
   1.158 +	// the following just checks if an Rx, Tx operation was started, and assumes that they completed.
   1.159 +
   1.160 +	if(a->iOperation.iOp.iIsReceiving)
   1.161 +		{
   1.162 +		// If the channel has been receiving data, may need to ensure that any FIFO used has been drained
   1.163 +		// The example here checks if one extra data item remains in the FIFO
   1.164 +		// To check if data remains in a FIFO, something similar to the following could be used:
   1.165 +		//		TInt8 dataRemains = AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxFifoLevel);
   1.166 +		// Reading data from the FIFO would be achieved with something like the line below
   1.167 +		//		value = AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxData);
   1.168 +		// but for the template port will just use a dummy values (data remains=1, value = 1)
   1.169 +		//
   1.170 +		TInt8 dataRemains = 1;	// Would be a check of a Rx FIFO level
   1.171 +
   1.172 +		// If data remains in the Rx FIFO and the Rx buffer is not full, copy the data to the buffer
   1.173 +		if(dataRemains && (a->iRxDataEnd - a->iRxData >= a->iWordSize) )
   1.174 +			{
   1.175 +			TUint8 value = 1;			// Would be a read of the Rx FIFO data
   1.176 +			*a->iRxData = value;		// For this example, assumes one byte of data has been read from the FIFO
   1.177 +										// but if operating in 16-bit mode, two "values" would be written the buffer
   1.178 +			a->iRxData += a->iWordSize;	// In this example, 8-bit mode is assumed (iWordSize=1)
   1.179 +										// but if operating in 16-bit mode a->iRxData would be incremented by 
   1.180 +										// the number of bytes specified in a->iWordSize
   1.181 +			}
   1.182 +		}
   1.183 +
   1.184 +	if(a->iOperation.iOp.iIsTransmitting)
   1.185 +		{
   1.186 +		// If the channel has been transmitting data, may need to ensure that any FIFO used has been flushed
   1.187 +		// To check if data remains in a FIFO, something similar to the following could be used:
   1.188 +		//		TInt8 dataRemains = AsspRegister::Read32(a->aRegisterSetBaseAddress + KTxFifoLevel);
   1.189 +		// The means to flush the FIFO will be platform specific, and so no example is given here.
   1.190 +		}
   1.191 +
   1.192 +	// Start the next transfer for this transaction, if any remain
   1.193 +	if(a->iState == EBusy)
   1.194 +		{
   1.195 +		TInt err = a->ProcessNextTransfers();
   1.196 +		if(err != KErrNone)
   1.197 +			{
   1.198 +			// If the next transfer could not be started, complete the transaction with
   1.199 +			// the returned error code
   1.200 +			a->ExitComplete(err);
   1.201 +			}
   1.202 +		}
   1.203 +	}
   1.204 +
   1.205 +
   1.206 +// ISR Handler
   1.207 +//
   1.208 +// If the channel is to be event driven, it will use interrupts that indicate the 
   1.209 +// hardware has received or transmitted. To support this an ISR is required.
   1.210 +//
   1.211 +void DIicBusChannelMasterPsl::IicIsr(TAny* aPtr)
   1.212 +	{
   1.213 +	DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
   1.214 +
   1.215 +	// The processing for Rx and Tx will differ, so must determine the status of the interrupts.
   1.216 +	// This will be PSL-specific, but is likely to achieved by reading a status register, in a
   1.217 +	// way similar to this:
   1.218 +	//		TUint32 status = AsspRegister::Read32(aRegisterSetBaseAddress + KStatusRegisterOffset);
   1.219 +	//
   1.220 +	// For the purposes of compiling the template port, just initialise status to zero.
   1.221 +	TUint32 status = 0;
   1.222 +
   1.223 +	if(status & KIicPslTxInterrupt)
   1.224 +		{
   1.225 +		// Tx interrupt processing
   1.226 +
   1.227 +		// Clear the interrupt source, with something similar to the following line:
   1.228 +		//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KStatusRegisterOffset, KIicPslTxInterrupt);
   1.229 +
   1.230 +		// Then check whether all the required data has been transmitted.
   1.231 +		if(a->iTxData == a->iTxDataEnd)
   1.232 +			{
   1.233 +			// All data sent, so disable the Tx interrupt and queue a DFC to handle the next steps.
   1.234 +			//		Interrupt::Disable(a->iTxInterruptId);
   1.235 +			a->iTransferEndDfc.Add();
   1.236 +			}
   1.237 +		else
   1.238 +			{
   1.239 +			if(a->iOperation.iOp.iIsTransmitting)
   1.240 +				{
   1.241 +				// Data remaining - copy the next value to send to the Tx register
   1.242 +
   1.243 +				// TUint8 nextTxValue = *a->iTxData;	// For this example, assumes one byte of data is to be transmitted
   1.244 +														// but if operating in 16-bit mode, bytes may need arranging for
   1.245 +														// endianness
   1.246 +
   1.247 +				// Write to the Tx register with something similar to the following:
   1.248 +				//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KTxRegisterOffset, nextTxValue);
   1.249 +
   1.250 +				a->iTxData += a->iWordSize;	// Then increment the pointer to the data. In this example, 8-bit mode is assumed
   1.251 +											// (iWordSize=1), but if operating in 16-bit mode a->iTxData would be incremented
   1.252 +											// by the number of bytes specified in a->iWordSize
   1.253 +				}
   1.254 +			}
   1.255 +		}
   1.256 +
   1.257 +	if(status & KIicPslRxInterrupt)
   1.258 +		{
   1.259 +		// Rx interrupt processing
   1.260 +
   1.261 +		// Copy the received data to the Rx buffer. 
   1.262 +		// Do this in a loop in case there are more than one units of data to be handled. Data availability
   1.263 +		// will be indicated by a PSL-specific register, and so may be handled by code similar to the following:
   1.264 +		//		while(AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxData))
   1.265 +		// 
   1.266 +		// But, to allow compilation of the template port, just use a dummy condition (while(1)):
   1.267 +		while(1)
   1.268 +			{
   1.269 +			// While there is space in the buffer, copy received data to it
   1.270 +			if((a->iRxDataEnd - a->iRxData) >= a->iWordSize)
   1.271 +				{
   1.272 +				TUint8 nextRxValue = 0;
   1.273 +				// Read from the Rx register with something similar to the following:
   1.274 +				//		TUint8 nextRxValue = AsspRegister::Read32(aRegisterSetBaseAddress + KRxRegisterOffset);
   1.275 +				*a->iRxData = nextRxValue;
   1.276 +				}
   1.277 +			else
   1.278 +				{
   1.279 +				// If there is no space left in the buffer an Overrun has occurred
   1.280 +				a->iTransactionStatus = KErrOverflow;
   1.281 +				break;
   1.282 +				}
   1.283 +
   1.284 +			// Increment the pointer to the received data
   1.285 +			a->iRxData += a->iWordSize;
   1.286 +			}
   1.287 +
   1.288 +		// If the Rx buffer is now full, finish the transmission.
   1.289 +		if(a->iRxDataEnd == a->iRxData)
   1.290 +			{
   1.291 +			// Disable the interrupt since it is no longer required
   1.292 +			//		Interrupt::Disable(a->iRxInterruptId);
   1.293 +
   1.294 +			// Then queue a DFC to perform the next steps
   1.295 +			a->iTransferEndDfc.Add();
   1.296 +			}
   1.297 +		
   1.298 +		// After processing the data, clear the interrupt source (do it last to prevent the ISR being
   1.299 +		// re-invoked before this ISR is finished), with something similar to the following line:
   1.300 +		//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KStatusRegisterOffset, KIicPslRxInterrupt);
   1.301 +		}
   1.302 +	}
   1.303 +
   1.304 +// Constructor, first stage
   1.305 +//
   1.306 +// The PSL is responsible for setting the channel number - this is passed as the first parameter to
   1.307 +// this overload of the base class constructor
   1.308 +//
   1.309 +DIicBusChannelMasterPsl::DIicBusChannelMasterPsl(TInt aChannelNumber, TBusType aBusType, TChannelDuplex aChanDuplex) :
   1.310 +	DIicBusChannelMaster(aBusType, aChanDuplex),				// Base class constructor
   1.311 +	iTransferEndDfc(TransferEndDfc, this, KIicPslDfcPriority),	// DFC to handle transfer completion
   1.312 +	iHwGuardTimer(TimeoutCallback, this)						// Timer to guard against hardware timeout
   1.313 +	{
   1.314 +	iChannelNumber = aChannelNumber;	// Set the iChannelNumber of the Base Class
   1.315 +	iState = EIdle;						// Initialise channel state machine
   1.316 +
   1.317 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::DIicBusChannelMasterPsl: iChannelNumber = %d", iChannelNumber));
   1.318 +	}
   1.319 +
   1.320 +// Second stage construction
   1.321 +//
   1.322 +// Allocate and initialise objects required by the PSL channel implementation
   1.323 +//
   1.324 +TInt DIicBusChannelMasterPsl::DoCreate()
   1.325 +	{
   1.326 +	__KTRACE_OPT(KIIC, Kern::Printf("\nDIicBusChannelMasterPsl::DoCreate() ch: %d \n", iChannelNumber));
   1.327 +
   1.328 +	TInt r = KErrNone;
   1.329 +
   1.330 +	// Interrupt IDs (such as iRxInterruptId, iTxInterruptId, used in this file)would be initialised here.
   1.331 +	//
   1.332 +	// Also, information relevant to the channel number (such as the base register address, 
   1.333 +	// aRegisterSetBaseAddress) would be initialised here.
   1.334 +
   1.335 +	// Create the DFCQ to be used by the channel
   1.336 +	if(!iDfcQ)
   1.337 +		{
   1.338 +		TBuf8<KMaxName> threadName (KIicPslThreadName);
   1.339 +		threadName.AppendNum(iChannelNumber);		// Optional: append the channel number to the name
   1.340 +		r = Kern::DfcQCreate(iDfcQ, KIicPslThreadPriority, &threadName);
   1.341 +		if(r != KErrNone)
   1.342 +			{
   1.343 +			__KTRACE_OPT(KIIC, Kern::Printf("DFC Queue creation failed, channel number: %d, r = %d\n", iChannelNumber, r));
   1.344 +			return r;
   1.345 +			}
   1.346 +		}
   1.347 +
   1.348 +	// PIL Base class initialization - this must be called prior to SetDfcQ(iDfcQ)
   1.349 +	r = Init();			
   1.350 +	if(r == KErrNone)
   1.351 +		{
   1.352 +		// Call base class function to set DFCQ pointers in the required objects
   1.353 +		// This also enables the channel to process transaction requests
   1.354 +		SetDfcQ(iDfcQ); 
   1.355 +
   1.356 +		// PSL DFCQ initialisation for local DFC
   1.357 +		iTransferEndDfc.SetDfcQ(iDfcQ); 
   1.358 +
   1.359 +#ifdef CPU_AFFINITY_ANY
   1.360 +		NKern::ThreadSetCpuAffinity((NThread*)(iDfcQ->iThread), KCpuAffinityAny);
   1.361 +#endif
   1.362 +		// Bind interrupts.
   1.363 +		// This would be with something similar to the following lines:
   1.364 +		//		iMasterIntId = Interrupt::Bind(interruptIdToUse, IicPslIsr, this);
   1.365 +		//
   1.366 +		// Interrupt::Bind returns interruptId or an error code (negative value)
   1.367 +		if(iMasterIntId < KErrNone)
   1.368 +			{
   1.369 +			__KTRACE_OPT(KIIC, Kern::Printf("ERROR: InterruptBind error.. %d", r));
   1.370 +			r = iMasterIntId;
   1.371 +			}
   1.372 +		}
   1.373 +	return r;
   1.374 +	}
   1.375 +
   1.376 +// New
   1.377 +//
   1.378 +// A static method used to construct the DIicBusChannelMasterPsl object.
   1.379 +DIicBusChannelMasterPsl* DIicBusChannelMasterPsl::New(TInt aChannelNumber, const TBusType aBusType, const TChannelDuplex aChanDuplex)
   1.380 +	{
   1.381 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::NewL(): ChannelNumber = %d, BusType =%d", aChannelNumber, aBusType));
   1.382 +	DIicBusChannelMasterPsl *pChan = new DIicBusChannelMasterPsl(aChannelNumber, aBusType, aChanDuplex);
   1.383 +
   1.384 +	TInt r = KErrNoMemory;
   1.385 +	if(pChan)
   1.386 +		{
   1.387 +		r = pChan->DoCreate();
   1.388 +		}
   1.389 +	if(r != KErrNone)
   1.390 +		{
   1.391 +		delete pChan;
   1.392 +		pChan = NULL;
   1.393 +		}
   1.394 +	return pChan;
   1.395 +	}
   1.396 +
   1.397 +// Optional method - that determines if the previous transaction header is different to the current one.
   1.398 +// If configuration is the same, the hardware may not need to be re-initialized. 
   1.399 +TBool DIicBusChannelMasterPsl::TransConfigDiffersFromPrev()
   1.400 +	{
   1.401 +	// 
   1.402 +	// The header will be specific to a particular bus type. Using a fictional
   1.403 +	// bus type Abc, code similar to the following could be used to compare each
   1.404 +	// member of the previous header with the current one
   1.405 +	// 
   1.406 +	//		TConfigAbcBufV01* oldHdrBuf = (TConfigAbcBufV01*) iPrevHeader;
   1.407 +	//		TConfigAbcV01 &oldHeader = (*oldHdrBuf)();
   1.408 +	//		TConfigAbcBufV01* newHdrBuf = (TConfigAbcBufV01*) iCurrHeader;
   1.409 +	//		TConfigAbcV01 &newHeader = (*newHdrBuf)();
   1.410 +	//		if(	(newHeader.iHeaderMember != oldHeader.iHeaderMember)	||
   1.411 +	//			... )
   1.412 +	//			{
   1.413 +	//			return EFalse;
   1.414 +	//			}
   1.415 +	return ETrue;
   1.416 +	}
   1.417 +
   1.418 +
   1.419 +// CheckHdr is called by the PIL when a transaction is queued, in function
   1.420 +// QueueTransaction. This is done in the context of the Client's thread.
   1.421 +//
   1.422 +// The PSL is required to check that the transaction header is valid for
   1.423 +// this channel.
   1.424 +//
   1.425 +// If the pointer to the header is NULL, return KErrArgument.
   1.426 +// If the content of the header is not valid for this channel, return KErrNotSupported.
   1.427 +//
   1.428 +TInt DIicBusChannelMasterPsl::CheckHdr(TDes8* aHdrBuff)
   1.429 +	{
   1.430 +	TInt r = KErrNone;
   1.431 +
   1.432 +	if(!aHdrBuff)
   1.433 +		{
   1.434 +		r = KErrArgument;
   1.435 +		}
   1.436 +	else
   1.437 +		{
   1.438 +		// Check that the contents of the header are valid
   1.439 +		//
   1.440 +		// The header will be specific to a particular bus type. Using a fictional
   1.441 +		// bus type Abc,code similar to the following could be used to validate each
   1.442 +		// member of the header:
   1.443 +		// 
   1.444 +		//		TConfigAbcBufV01* headerBuf = (TConfigAbcBufV01*) aHdrBuff;
   1.445 +		//		TConfigAbcV01 &abcHeader = (*headerBuf)();
   1.446 +		//		if(	(abcHeader.iHeaderMember < ESomeMinValue)	||
   1.447 +		//			(abcHeader.iHeaderMember > ESomeMaxValue))
   1.448 +		//			{
   1.449 +		//			__KTRACE_OPT(KIIC, Kern::Printf("iHeaderMember %d not supported",abcHeader.iHeaderMember));
   1.450 +		//			r = KErrNotSupported;
   1.451 +		//			}
   1.452 +		}
   1.453 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::CheckHdr() r %d", r));
   1.454 +	return r;
   1.455 +	}
   1.456 +
   1.457 +// Initialise the hardware with the data provided in the transaction and slave-address field
   1.458 +//
   1.459 +// If a specified configuration is not supported, return KErrNotSupported
   1.460 +// If a configuration is supported, but the implementing configuration fails, return KErrGeneral
   1.461 +//
   1.462 +TInt DIicBusChannelMasterPsl::ConfigureInterface()
   1.463 +	{
   1.464 +	__KTRACE_OPT(KIIC, Kern::Printf("ConfigureInterface()"));
   1.465 +
   1.466 +	// This method will be platform-specific and will configure the hardware as required to support
   1.467 +	// the current transacation. This will be supported with something similar to the following:
   1.468 +	//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
   1.469 +	//		GPIO::SetPinMode(aPinId, GPIO::EEnabled);
   1.470 +
   1.471 +	// Depending on the platform, timers (such as iHwGuardTimer) may be used to check that the hardware
   1.472 +	// responds in the required way within an allowed timeout. Since this is configuring the channel for
   1.473 +	// an operation, it is acceptable to perform an active wait, with something similar to the following:
   1.474 +	//		iTransactionStatus = KErrNone;
   1.475 +	//		iHwGuardTimer.OneShot(NKern::TimerTicks(KTimeoutValue));
   1.476 +	//		while((iTransactionStatus == KErrNone) &&
   1.477 +	//			AsspRegister::Read32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
   1.478 +	//		if(iTransactionStatus != KErrNone)
   1.479 +	//			{
   1.480 +	//			return KErrGeneral;
   1.481 +	//			}
   1.482 +	//		else
   1.483 +	//			{
   1.484 +	//			iHwGuardTimer.Cancel();
   1.485 +	//			}
   1.486 +	return KErrNone;
   1.487 +	}
   1.488 +
   1.489 +
   1.490 +// Method called by StartTransfer to actually initiate the transfers. It manipulates the hardware to
   1.491 +// perform the required tasks.
   1.492 +//
   1.493 +TInt DIicBusChannelMasterPsl::DoTransfer(TInt8 *aBuff, TUint aNumOfBytes, TUint8 aType)
   1.494 +	{
   1.495 +	__KTRACE_OPT(KIIC, Kern::Printf("\nDIicBusChannelMasterPsl::DoTransfer() - aBuff=0x%x, aNumOfBytes=0x%x\n",aBuff,aNumOfBytes));
   1.496 +
   1.497 +	TInt r = KErrNone;
   1.498 +
   1.499 +	// Validate the input arguments
   1.500 +	if((aBuff == NULL) || (aNumOfBytes == 0))
   1.501 +		{
   1.502 +		r = KErrArgument;
   1.503 +		}
   1.504 +	else
   1.505 +		{
   1.506 +		// This method will be platform-specific and will configure the hardware as required
   1.507 +		// This will likely be supported with calls similar to the following:
   1.508 +		//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
   1.509 +		//		GPIO::SetPinMode(aPinId, GPIO::EEnabled);
   1.510 +		//		Interrupt::Enable(aInterruptId);
   1.511 +		//
   1.512 +		// Steps that may be typically required are described below
   1.513 +
   1.514 +		switch(aType)
   1.515 +			{
   1.516 +			case TIicBusTransfer::EMasterWrite:
   1.517 +				{
   1.518 +				// If using a Tx FIFO, may wish to disable transmission until the FIFO has been filled to certain level
   1.519 +				// If using a Tx FIFO, may wish to flush it and re-initialise any counters or pointers used
   1.520 +
   1.521 +				// If using a FIFO, copy data to it until either the FIFO is full or all data has been copied
   1.522 +				// Checking the FIFO is full will be reading a flag in a status register, by use of code similar the following
   1.523 +				//		TUint32 status = AsspRegister::Read32(aRegisterSetBaseAddress + KStatusRegisterOffset);
   1.524 +				//		if(status & KTxFifoFullBitMask)
   1.525 +				//			... FIFO is full
   1.526 +				//
   1.527 +				// For this example base port, represent the FIFO full status by a dummy value (zero).
   1.528 +				TUint8 txFifoFull = 0;
   1.529 +				while(!txFifoFull && (iTxData != iTxDataEnd))
   1.530 +					{
   1.531 +					// TUint8 nextTxValue = *iTxData;	// For this example, assumes one byte of data is to be transmitted
   1.532 +															// but if operating in 16-bit mode, bytes may need arranging for
   1.533 +															// endianness
   1.534 +
   1.535 +					// Write to the Tx FIFO register with something similar to the following:
   1.536 +					//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KTxRegisterOffset, nextTxValue);
   1.537 +
   1.538 +					iTxData += iWordSize;	// Then increment the pointer to the data. In this example, 8-bit mode is assumed
   1.539 +												// (iWordSize=1), but if operating in 16-bit mode a->iTxData would be incremented
   1.540 +												// by the number of bytes specified in a->iWordSize
   1.541 +					}
   1.542 +				// May wish to enable transmission now - or wait until after the Read transfer has been initialised
   1.543 +				break;
   1.544 +				}
   1.545 +			case TIicBusTransfer::EMasterRead:
   1.546 +				{
   1.547 +				// If using an Rx FIFO, it will already have been drained at the end of the last transfer by TransferEndDfc
   1.548 +				// so no need to do it again here.
   1.549 +
   1.550 +				// May wish to enable reception now - or group with the code, below
   1.551 +				break;
   1.552 +				}
   1.553 +			default:
   1.554 +				{
   1.555 +				__KTRACE_OPT(KIIC, Kern::Printf("Unsupported TransactionType %x", aType));
   1.556 +				r = KErrArgument;
   1.557 +				break;
   1.558 +				}
   1.559 +			}
   1.560 +
   1.561 +		// Final stages of hardware preparation
   1.562 +		//
   1.563 +		// Enable hardware interrupts
   1.564 +		// Finally, enable (start) transmission and reception
   1.565 +		}
   1.566 +
   1.567 +	return r;
   1.568 +	}
   1.569 +
   1.570 +
   1.571 +// This method performs the initialisation required for either a read or write transfer
   1.572 +// and then invokes the next stage of the processing (DoTransfer)
   1.573 +//
   1.574 +TInt DIicBusChannelMasterPsl::StartTransfer(TIicBusTransfer* aTransferPtr, TUint8 aType)
   1.575 +	{
   1.576 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::StartTransfer() - aTransferPtr=0x%x, aType=%d",aTransferPtr,aType));
   1.577 +
   1.578 +	if(aTransferPtr == NULL)
   1.579 +		{
   1.580 +		__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::StartTransfer - NULL pointer\n"));
   1.581 +		return KErrArgument;
   1.582 +		}
   1.583 +
   1.584 +	TInt r = KErrNone;
   1.585 +
   1.586 +	switch(aType)
   1.587 +		{
   1.588 +		case TIicBusTransfer::EMasterWrite:
   1.589 +			{
   1.590 +			__KTRACE_OPT(KIIC, Kern::Printf("Starting EMasterWrite, duplex=%d", iFullDTransfer));
   1.591 +
   1.592 +			// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
   1.593 +			const TDes8* aBufPtr = GetTferBuffer(aTransferPtr);
   1.594 +
   1.595 +			__KTRACE_OPT(KIIC, Kern::Printf("Length %d, iWordSize %d", aBufPtr->Length(), iWordSize));
   1.596 +
   1.597 +			// Store the current address and ending address for Transmission - they are required by the ISR and DFC
   1.598 +			iTxData = (TInt8*) aBufPtr->Ptr();
   1.599 +			iTxDataEnd = (TInt8*) (iTxData + aBufPtr->Length());
   1.600 +
   1.601 +			__KTRACE_OPT(KIIC, Kern::Printf("Tx: Start: %x, End %x, bytes %d\n\n", iTxData, iTxDataEnd, aBufPtr->Length()));
   1.602 +
   1.603 +			// Set the flag to indicate that we'll be transmitting data
   1.604 +			iOperation.iOp.iIsTransmitting = ETrue;
   1.605 +
   1.606 +			// initiate the transmission..
   1.607 +			r = DoTransfer((TInt8 *) aBufPtr->Ptr(), aBufPtr->Length(), aType);
   1.608 +			if(r != KErrNone)
   1.609 +				{
   1.610 +				__KTRACE_OPT(KIIC, Kern::Printf("Starting Write failed, r = %d", r));
   1.611 +				}
   1.612 +			break;
   1.613 +			}
   1.614 +
   1.615 +		case TIicBusTransfer::EMasterRead:
   1.616 +			{
   1.617 +			__KTRACE_OPT(KIIC, Kern::Printf("Starting EMasterRead, duplex=%x", iFullDTransfer));
   1.618 +
   1.619 +			// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
   1.620 +			const TDes8* aBufPtr = GetTferBuffer(aTransferPtr);
   1.621 +
   1.622 +			// Store the current address and ending address for Reception - they are required by the ISR and DFC
   1.623 +			iRxData = (TInt8*) aBufPtr->Ptr();
   1.624 +			iRxDataEnd = (TInt8*) (iRxData + aBufPtr->Length());
   1.625 +
   1.626 +			__KTRACE_OPT(KIIC, Kern::Printf("Rx: Start: %x, End %x, bytes %d", iRxData, iRxDataEnd, aBufPtr->Length()));
   1.627 +
   1.628 +			// Set the flag to indicate that we'll be receiving data
   1.629 +			iOperation.iOp.iIsReceiving = ETrue;
   1.630 +
   1.631 +			// initiate the reception
   1.632 +			r = DoTransfer((TInt8 *) aBufPtr->Ptr(), aBufPtr->Length(), aType);
   1.633 +			if(r != KErrNone)
   1.634 +				{
   1.635 +				__KTRACE_OPT(KIIC, Kern::Printf("Starting Read failed, r = %d", r));
   1.636 +				}
   1.637 +			break;
   1.638 +			}
   1.639 +
   1.640 +		default:
   1.641 +			{
   1.642 +			__KTRACE_OPT(KIIC, Kern::Printf("Unsupported TransactionType %x", aType));
   1.643 +			r = KErrArgument;
   1.644 +			break;
   1.645 +			}
   1.646 +		}
   1.647 +
   1.648 +	return r;
   1.649 +	}
   1.650 +
   1.651 +// This method determines the next transfers to be processed, and passes them to the next stage
   1.652 +// in the processing (StartTransfer).
   1.653 +//
   1.654 +// This is called from DoRequest (for the first transfer) and TransferEndDfc (after a transfer
   1.655 +// has completed)
   1.656 +//
   1.657 +TInt DIicBusChannelMasterPsl::ProcessNextTransfers()
   1.658 +	{
   1.659 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::ProcessNextTransfers(),BUSY=%d", iState));
   1.660 +
   1.661 +	// Since new transfers are strating, clear exisiting flags
   1.662 +	iOperation.iValue = TIicOperationType::ENop;
   1.663 +
   1.664 +	// Some hardware preparation may be required before starting the transfer using something similar
   1.665 +	// to the following line:
   1.666 +	//		AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
   1.667 +
   1.668 +	// If this is the first transfer in the transaction the channel will be in state EIdle
   1.669 +	if(iState == EIdle)
   1.670 +		{
   1.671 +		// Get the pointer to half-duplex transfer object..
   1.672 +		iHalfDTransfer = GetTransHalfDuplexTferPtr(iCurrTransaction);
   1.673 +
   1.674 +		// Get the pointer to full-duplex transfer object..
   1.675 +		iFullDTransfer = GetTransFullDuplexTferPtr(iCurrTransaction);
   1.676 +
   1.677 +		// Update the channel state to EBusy and initialise the transaction status
   1.678 +		iState = EBusy;
   1.679 +		iTransactionStatus = KErrNone;
   1.680 +
   1.681 +		// Use the PIL funcitonality to start a timer that will timeout if the transaction
   1.682 +		// is not completed within a specified time period (the client may have specified a period
   1.683 +		// to use in the transaction header - some something similar tot he following could be used)
   1.684 +		//		StartSlaveTimeOutTimer(iCurrHeader->iTimeoutPeriod);
   1.685 +		//
   1.686 +		// If the timer expires, callback function HandleSlaveTimeout (implemented by the PSL, above)
   1.687 +		// will be called. This will ensure that the hardware ceases transfer activity, and calls ExitComplete
   1.688 +		// with KErrTImedOut, which will return the channel state to EIdle.
   1.689 +		}
   1.690 +	else
   1.691 +	// If not in state EIdle, process the next transfer in the linked-list held by the transaction
   1.692 +		{
   1.693 +		// Get the pointer the next half-duplex transfer object..
   1.694 +		iHalfDTransfer = GetTferNextTfer(iHalfDTransfer);
   1.695 +
   1.696 +		// Get the pointer to the next half-duplex transfer object..
   1.697 +		if(iFullDTransfer)
   1.698 +			{
   1.699 +			iFullDTransfer = GetTferNextTfer(iFullDTransfer);
   1.700 +			}
   1.701 +		}
   1.702 +
   1.703 +	TInt r = KErrNone;
   1.704 +	if(!iFullDTransfer && !iHalfDTransfer)
   1.705 +		{
   1.706 +		// If all of the transfers were completed, just notify the PIL and return.
   1.707 +		// (if either Rx or Tx has not finished properly ExitComplete() would have been called
   1.708 +		// from TransferEndDfc if there was an error during the transfer)
   1.709 +		__KTRACE_OPT(KIIC, Kern::Printf("All transfers completed successfully"));
   1.710 +
   1.711 +		ExitComplete(KErrNone);
   1.712 +		}
   1.713 +	else
   1.714 +		{
   1.715 +		// Transfers remain to be processed
   1.716 +		//
   1.717 +		// For full-duplex transfers, the order in which read and write transfers are started may be significant.
   1.718 +		// Below is an example where the read transfer is explicitly started before the write transfer.
   1.719 +		TInt8 hDTrType = (TInt8) GetTferType(iHalfDTransfer);
   1.720 +
   1.721 +		if(iFullDTransfer)
   1.722 +			{
   1.723 +			if(hDTrType == TIicBusTransfer::EMasterRead)
   1.724 +				{
   1.725 +				r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterRead);
   1.726 +				if(r != KErrNone)
   1.727 +					{
   1.728 +					return r;
   1.729 +					}
   1.730 +				r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterWrite);
   1.731 +				}
   1.732 +			else // hDTrType == TIicBusTransfer::EMasterWrite)
   1.733 +				{
   1.734 +				r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterRead);
   1.735 +				if(r != KErrNone)
   1.736 +					{
   1.737 +					return r;
   1.738 +					}
   1.739 +				r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterWrite);
   1.740 +				}
   1.741 +			}
   1.742 +		else
   1.743 +		// This is a HalfDuplex transfer - so just start it
   1.744 +			{
   1.745 +			r = StartTransfer(iHalfDTransfer, hDTrType);
   1.746 +			}
   1.747 +		}
   1.748 +	return r;
   1.749 +	}
   1.750 +
   1.751 +// The gateway function for PSL implementation
   1.752 +//
   1.753 +// This method is called by the PIL to initiate the transaction. After finishing it's processing,
   1.754 +// the PSL calls the PIL function CompleteRequest to indicate the success (or otherwise) of the request
   1.755 +//
   1.756 +TInt DIicBusChannelMasterPsl::DoRequest(TIicBusTransaction* aTransaction)
   1.757 +	{
   1.758 +	__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::DoRequest (aTransaction=0x%x)\n", aTransaction));
   1.759 +
   1.760 +	// If the pointer to the transaction passed in as a parameter, or its associated pointer to the
   1.761 +	// header information is NULL, return KErrArgument
   1.762 +	if(!aTransaction || !GetTransactionHeader(aTransaction))
   1.763 +		{
   1.764 +		return KErrArgument;
   1.765 +		}
   1.766 +
   1.767 +	// The PSL operates a simple state machine to ensure that only one transaction is processed
   1.768 +	// at a time - if the channel is currently busy, reject the request with KErrInUse.
   1.769 +	if(iState != EIdle)
   1.770 +		{
   1.771 +		return KErrInUse;
   1.772 +		}
   1.773 +
   1.774 +	// Make a copy of the pointer to the transaction
   1.775 +	iCurrTransaction = aTransaction;
   1.776 +
   1.777 +	// Configure the hardware to support the transaction
   1.778 +	TInt r = KErrNone;
   1.779 +	if(TransConfigDiffersFromPrev())	// Optional: check if hardware needs reconfiguration
   1.780 +		{
   1.781 +		r = ConfigureInterface();
   1.782 +		if(r != KErrNone)
   1.783 +			{
   1.784 +			return r;
   1.785 +			}
   1.786 +		}
   1.787 +
   1.788 +	// start processing transfers of this transaction.
   1.789 +	r = ProcessNextTransfers();
   1.790 +	return r;
   1.791 +	}
   1.792 +