sl@0
|
1 |
// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
// f32\sfat32\sl_fatcache.cpp
|
sl@0
|
15 |
// FAT12 and FAT16 cache implementation
|
sl@0
|
16 |
//
|
sl@0
|
17 |
//
|
sl@0
|
18 |
|
sl@0
|
19 |
/**
|
sl@0
|
20 |
@file
|
sl@0
|
21 |
*/
|
sl@0
|
22 |
|
sl@0
|
23 |
#include "sl_std.h"
|
sl@0
|
24 |
#include "sl_fatcache.h"
|
sl@0
|
25 |
|
sl@0
|
26 |
|
sl@0
|
27 |
//#################################################################################################################################
|
sl@0
|
28 |
// CFatCacheBase implementation
|
sl@0
|
29 |
// Base class for all types of FAT cache
|
sl@0
|
30 |
//#################################################################################################################################
|
sl@0
|
31 |
|
sl@0
|
32 |
CFatCacheBase::~CFatCacheBase()
|
sl@0
|
33 |
{
|
sl@0
|
34 |
Close(ETrue); //-- deallocate cache's memory discarding any dirty data
|
sl@0
|
35 |
}
|
sl@0
|
36 |
|
sl@0
|
37 |
CFatCacheBase::CFatCacheBase()
|
sl@0
|
38 |
{
|
sl@0
|
39 |
iCurrentFatNo = KInvalidFatNo;
|
sl@0
|
40 |
SetDirty(EFalse);
|
sl@0
|
41 |
}
|
sl@0
|
42 |
|
sl@0
|
43 |
|
sl@0
|
44 |
/**
|
sl@0
|
45 |
FAT cache initialisation.
|
sl@0
|
46 |
|
sl@0
|
47 |
@param aOwner pointer to the owning FAT mount
|
sl@0
|
48 |
*/
|
sl@0
|
49 |
void CFatCacheBase::InitialiseL(CFatMountCB* aOwner)
|
sl@0
|
50 |
{
|
sl@0
|
51 |
ASSERT(aOwner);
|
sl@0
|
52 |
|
sl@0
|
53 |
Close(ETrue); //-- deallocate cache's memory discarding any dirty data
|
sl@0
|
54 |
|
sl@0
|
55 |
//-- populate parameters from the owning mount
|
sl@0
|
56 |
iFatType = aOwner->FatType();
|
sl@0
|
57 |
__ASSERT_ALWAYS((iFatType == EFat12 || iFatType == EFat16 || iFatType == EFat32), User::Leave(KErrCorrupt));
|
sl@0
|
58 |
|
sl@0
|
59 |
ipDrive = &aOwner->DriveInterface();
|
sl@0
|
60 |
iFatStartPos = aOwner->FirstFatSector() << aOwner->SectorSizeLog2();
|
sl@0
|
61 |
iFatSize = aOwner->FatSizeInBytes();
|
sl@0
|
62 |
iNumFATs = (TUint16)aOwner->NumberOfFats();
|
sl@0
|
63 |
iFatSecSzLog2 = (TUint16)aOwner->SectorSizeLog2();
|
sl@0
|
64 |
iFatClustSzLog2 = (TUint16)aOwner->ClusterSizeLog2();
|
sl@0
|
65 |
|
sl@0
|
66 |
__ASSERT_ALWAYS(iNumFATs >=1, User::Leave(KErrCorrupt));
|
sl@0
|
67 |
|
sl@0
|
68 |
__PRINT3(_L("#-CFatCacheBase::InitialiseL() FatStart:%u, FatSz:%d, drv:%d"),iFatStartPos, iFatSize, aOwner->DriveNumber());
|
sl@0
|
69 |
}
|
sl@0
|
70 |
|
sl@0
|
71 |
//-----------------------------------------------------------------------------
|
sl@0
|
72 |
/**
|
sl@0
|
73 |
This method shall be called to check if we are allowed to invalidate dirty cache, i.e. discard non-flushed data.
|
sl@0
|
74 |
The behaviour is hardcoded (see KAllowInvalidateDirtyCache constant)
|
sl@0
|
75 |
|
sl@0
|
76 |
@return ETrue if invalidating dirty cache is allowed. Otherwise panics the current thread
|
sl@0
|
77 |
*/
|
sl@0
|
78 |
TBool CFatCacheBase::CheckInvalidatingDirtyCache() const
|
sl@0
|
79 |
{
|
sl@0
|
80 |
|
sl@0
|
81 |
//-- If not EFalse, invalidating dirty cache (pages) is allowed. This shall be OK, because
|
sl@0
|
82 |
//-- invalidating the cache is required only after direct media writes to the FAT by RawWrite, which can corrupt it anyway.
|
sl@0
|
83 |
TBool KAllowInvalidateDirtyCache = ETrue;
|
sl@0
|
84 |
|
sl@0
|
85 |
if(!IsDirty())
|
sl@0
|
86 |
return KAllowInvalidateDirtyCache;
|
sl@0
|
87 |
|
sl@0
|
88 |
__PRINT(_L("#-CFatCacheBase::Invalidating dirty cache !"));
|
sl@0
|
89 |
|
sl@0
|
90 |
if(!KAllowInvalidateDirtyCache)
|
sl@0
|
91 |
{
|
sl@0
|
92 |
__ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData));
|
sl@0
|
93 |
}
|
sl@0
|
94 |
|
sl@0
|
95 |
return KAllowInvalidateDirtyCache;
|
sl@0
|
96 |
}
|
sl@0
|
97 |
|
sl@0
|
98 |
//-----------------------------------------------------------------------------
|
sl@0
|
99 |
|
sl@0
|
100 |
/**
|
sl@0
|
101 |
Read portion of raw data from 1st FAT copy.
|
sl@0
|
102 |
|
sl@0
|
103 |
@param aPos media position in the _FIRST_ FAT to start reading with
|
sl@0
|
104 |
@param aLen number of bytes to read
|
sl@0
|
105 |
@param aData data descriptor
|
sl@0
|
106 |
|
sl@0
|
107 |
@return standard error code.
|
sl@0
|
108 |
*/
|
sl@0
|
109 |
TInt CFatCacheBase::ReadFatData(TUint32 aPos, TUint32 aLen, TDes8& aData) const
|
sl@0
|
110 |
{
|
sl@0
|
111 |
//__PRINT2(_L("#-CFatCacheNew::ReadFatData() pos:%u, Len:%d"), aPos, aLen);
|
sl@0
|
112 |
|
sl@0
|
113 |
//-- this method can pick up data corresponding to invalid FAT entries, like FAT[0], FAT[1] and
|
sl@0
|
114 |
//-- the last portion beyond FAT because of read granularity. This isn't a problem, because the data there
|
sl@0
|
115 |
//-- won't be written on disk.
|
sl@0
|
116 |
ASSERT(aPos >= FatStartPos());
|
sl@0
|
117 |
|
sl@0
|
118 |
return ipDrive->ReadNonCritical(aPos, aLen, aData);
|
sl@0
|
119 |
}
|
sl@0
|
120 |
|
sl@0
|
121 |
//-----------------------------------------------------------------------------
|
sl@0
|
122 |
|
sl@0
|
123 |
/**
|
sl@0
|
124 |
Writes data to the FAT table, which number is set in iCurrentFatNo member variable.
|
sl@0
|
125 |
@param aPos data media position in the _FIRST_ FAT copy
|
sl@0
|
126 |
@param aData data descriptor
|
sl@0
|
127 |
@return standard error code.
|
sl@0
|
128 |
*/
|
sl@0
|
129 |
TInt CFatCacheBase::WriteFatData(TUint32 aPos, const TDesC8& aData) const
|
sl@0
|
130 |
{
|
sl@0
|
131 |
//__PRINT3(_L("#-CFatCacheBase::WriteFatData() pos:%u, Len:%d, FAT:%d"), aPos, aData.Length(), iCurrentFatNo);
|
sl@0
|
132 |
|
sl@0
|
133 |
#ifdef _DEBUG
|
sl@0
|
134 |
//-- FAT[0] and FAT[1] entries are reserved and we must not write data there. It's up to the caller of this method to
|
sl@0
|
135 |
//-- calculate correct data position in FAT
|
sl@0
|
136 |
TInt reserved_Entries_Offset=0;
|
sl@0
|
137 |
switch(iFatType)
|
sl@0
|
138 |
{
|
sl@0
|
139 |
case EFat32: reserved_Entries_Offset = KFatFirstSearchCluster*sizeof(TFat32Entry); break; //-- FAT32
|
sl@0
|
140 |
case EFat16: reserved_Entries_Offset = KFatFirstSearchCluster*sizeof(TFat16Entry); break; //-- FAT16
|
sl@0
|
141 |
case EFat12: reserved_Entries_Offset = 3; break; //-- FAT12
|
sl@0
|
142 |
default: ASSERT(0); break;
|
sl@0
|
143 |
}
|
sl@0
|
144 |
ASSERT(aPos >= FatStartPos()+reserved_Entries_Offset);
|
sl@0
|
145 |
ASSERT((aPos+aData.Length()) <= FatStartPos()+FatSize());
|
sl@0
|
146 |
ASSERT(iCurrentFatNo < iNumFATs);
|
sl@0
|
147 |
#endif
|
sl@0
|
148 |
|
sl@0
|
149 |
//-- goto the required FAT copy. iCurrentFatNo shall contain FAT number we are writing to.
|
sl@0
|
150 |
aPos+=iCurrentFatNo*FatSize();
|
sl@0
|
151 |
|
sl@0
|
152 |
return ipDrive->WriteCritical(aPos, aData);
|
sl@0
|
153 |
}
|
sl@0
|
154 |
|
sl@0
|
155 |
//-----------------------------------------------------------------------------
|
sl@0
|
156 |
/**
|
sl@0
|
157 |
get a pointer to the CFatBitCache interface.
|
sl@0
|
158 |
@return NULL because it is not present here
|
sl@0
|
159 |
*/
|
sl@0
|
160 |
CFatBitCache* CFatCacheBase::BitCacheInterface()
|
sl@0
|
161 |
{
|
sl@0
|
162 |
return NULL;
|
sl@0
|
163 |
}
|
sl@0
|
164 |
|
sl@0
|
165 |
|
sl@0
|
166 |
//#################################################################################################################################
|
sl@0
|
167 |
// CFatPagedCacheBase implementation
|
sl@0
|
168 |
// Base class for all paged FAT caches
|
sl@0
|
169 |
//#################################################################################################################################
|
sl@0
|
170 |
|
sl@0
|
171 |
CFatPagedCacheBase::CFatPagedCacheBase()
|
sl@0
|
172 |
:CFatCacheBase()
|
sl@0
|
173 |
{
|
sl@0
|
174 |
}
|
sl@0
|
175 |
|
sl@0
|
176 |
|
sl@0
|
177 |
//#################################################################################################################################
|
sl@0
|
178 |
// CFatCachePageBase implementation
|
sl@0
|
179 |
// Base class for FAT cache pages (FAT16 fixed and FAT32 LRU)
|
sl@0
|
180 |
//#################################################################################################################################
|
sl@0
|
181 |
|
sl@0
|
182 |
CFatCachePageBase::CFatCachePageBase(CFatPagedCacheBase& aCache)
|
sl@0
|
183 |
:iCache(aCache)
|
sl@0
|
184 |
{
|
sl@0
|
185 |
ASSERT(IsPowerOf2(aCache.PageSize()));
|
sl@0
|
186 |
iStartIndexInFAT = KMaxTUint;
|
sl@0
|
187 |
|
sl@0
|
188 |
//-- calculate number of FAT entries in the page, it depends on FAT type
|
sl@0
|
189 |
switch(aCache.FatType())
|
sl@0
|
190 |
{
|
sl@0
|
191 |
case EFat32:
|
sl@0
|
192 |
iFatEntriesInPage = PageSize() >> KFat32EntrySzLog2;
|
sl@0
|
193 |
break;
|
sl@0
|
194 |
|
sl@0
|
195 |
case EFat16:
|
sl@0
|
196 |
iFatEntriesInPage = PageSize() >> KFat16EntrySzLog2;
|
sl@0
|
197 |
break;
|
sl@0
|
198 |
|
sl@0
|
199 |
default:
|
sl@0
|
200 |
ASSERT(0);
|
sl@0
|
201 |
Fault(EFatCache_BadFatType);
|
sl@0
|
202 |
break;
|
sl@0
|
203 |
|
sl@0
|
204 |
};
|
sl@0
|
205 |
|
sl@0
|
206 |
SetState(EInvalid);
|
sl@0
|
207 |
}
|
sl@0
|
208 |
|
sl@0
|
209 |
CFatCachePageBase::~CFatCachePageBase()
|
sl@0
|
210 |
{
|
sl@0
|
211 |
iData.Close();
|
sl@0
|
212 |
}
|
sl@0
|
213 |
|
sl@0
|
214 |
//-----------------------------------------------------------------------------
|
sl@0
|
215 |
/**
|
sl@0
|
216 |
Mark the page as "invalid". I.e containing inalid data.
|
sl@0
|
217 |
On the first read/write access to such page it will be re-read from the media
|
sl@0
|
218 |
|
sl@0
|
219 |
@param aIgnoreDirtyData if ETrue, it is allowed to ignore the fact that the page contains dirty (not flushed) data.
|
sl@0
|
220 |
*/
|
sl@0
|
221 |
void CFatCachePageBase::Invalidate(TBool aIgnoreDirtyData /*= EFalse*/)
|
sl@0
|
222 |
{
|
sl@0
|
223 |
if(!aIgnoreDirtyData && IsDirty())
|
sl@0
|
224 |
{
|
sl@0
|
225 |
__PRINT1(_L("#-CFatCachePageBase::Invalidate() dirty page! FAT idx:%d"), iStartIndexInFAT);
|
sl@0
|
226 |
__ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData));
|
sl@0
|
227 |
}
|
sl@0
|
228 |
|
sl@0
|
229 |
iDirtySectors.Clear(); //-- clear dirty sectors bitmap
|
sl@0
|
230 |
SetState(EInvalid);
|
sl@0
|
231 |
}
|
sl@0
|
232 |
|
sl@0
|
233 |
//-----------------------------------------------------------------------------
|
sl@0
|
234 |
/**
|
sl@0
|
235 |
Flush all dirty page sectors to the media and mark the page as "clean" if required.
|
sl@0
|
236 |
If the page is "clean" i.e doesn't contain changed data, does nothing.
|
sl@0
|
237 |
|
sl@0
|
238 |
@param aKeepDirty if ETrue, the "dirty" flag isn't reset after page flushing.
|
sl@0
|
239 |
*/
|
sl@0
|
240 |
void CFatCachePageBase::FlushL(TBool aKeepDirty)
|
sl@0
|
241 |
{
|
sl@0
|
242 |
if(!IsDirty())
|
sl@0
|
243 |
return;
|
sl@0
|
244 |
|
sl@0
|
245 |
if(!IsValid())
|
sl@0
|
246 |
{
|
sl@0
|
247 |
__PRINT1(_L("#-CFatCachePageBase::FlushL() Invalid page! FAT idx:%d"), iStartIndexInFAT);
|
sl@0
|
248 |
ASSERT(0);
|
sl@0
|
249 |
User::Leave(KErrCorrupt);
|
sl@0
|
250 |
return;
|
sl@0
|
251 |
}
|
sl@0
|
252 |
|
sl@0
|
253 |
//__PRINT1(_L("#-CFatCachePageBase::FlushL() FAT idx:%d"), iStartIndexInFAT);
|
sl@0
|
254 |
|
sl@0
|
255 |
//-- write dirty FAT sectors to the media one by one.
|
sl@0
|
256 |
//-- merging adjacent dirty subsectors into larger clusters and writing them at once looks like a good idea, but
|
sl@0
|
257 |
//-- in reality it showed FAT performance degradation, at least on MMC/SD media.
|
sl@0
|
258 |
|
sl@0
|
259 |
const TInt MaxSectors = iCache.SectorsInPage();
|
sl@0
|
260 |
|
sl@0
|
261 |
for(TInt i=0; i<MaxSectors; ++i)
|
sl@0
|
262 |
{
|
sl@0
|
263 |
if(iDirtySectors[i])
|
sl@0
|
264 |
{
|
sl@0
|
265 |
DoWriteSectorL(i);
|
sl@0
|
266 |
}
|
sl@0
|
267 |
}
|
sl@0
|
268 |
|
sl@0
|
269 |
//-- All data flushed; mark page as clean if it isn't required not to do.
|
sl@0
|
270 |
if(!aKeepDirty)
|
sl@0
|
271 |
SetClean();
|
sl@0
|
272 |
|
sl@0
|
273 |
}
|
sl@0
|
274 |
|
sl@0
|
275 |
|
sl@0
|
276 |
//#################################################################################################################################
|
sl@0
|
277 |
// CFat16FixedCache implementation
|
sl@0
|
278 |
// Fixed cache (caches all FAT16) but organised as an array of pages
|
sl@0
|
279 |
//#################################################################################################################################
|
sl@0
|
280 |
|
sl@0
|
281 |
CFat16FixedCache::CFat16FixedCache()
|
sl@0
|
282 |
:CFatPagedCacheBase(),iPages(1) //-- array granularity is 1
|
sl@0
|
283 |
{
|
sl@0
|
284 |
}
|
sl@0
|
285 |
|
sl@0
|
286 |
//-----------------------------------------------------------------------------
|
sl@0
|
287 |
/**
|
sl@0
|
288 |
FAT16 fixed cache factory function.
|
sl@0
|
289 |
@param aOwner pointer to the owning FAT mount
|
sl@0
|
290 |
@param aFatSize size of the FAT table in bytes
|
sl@0
|
291 |
@param aRdGranularityLog2 Log2(read granularity)
|
sl@0
|
292 |
@param aWrGranularityLog2 Log2(write granularity)
|
sl@0
|
293 |
|
sl@0
|
294 |
@return pointer to the constructed object.
|
sl@0
|
295 |
*/
|
sl@0
|
296 |
CFat16FixedCache* CFat16FixedCache::NewL(CFatMountCB* aOwner, TUint32 aFatSize, TUint32 aRdGranularityLog2, TUint32 aWrGranularityLog2)
|
sl@0
|
297 |
{
|
sl@0
|
298 |
__PRINT(_L("#-CFat16FixedCache::NewL()"));
|
sl@0
|
299 |
|
sl@0
|
300 |
CFat16FixedCache* pSelf = NULL;
|
sl@0
|
301 |
pSelf = new (ELeave) CFat16FixedCache;
|
sl@0
|
302 |
|
sl@0
|
303 |
CleanupStack::PushL(pSelf);
|
sl@0
|
304 |
pSelf->InitialiseL(aOwner, aFatSize, aRdGranularityLog2, aWrGranularityLog2);
|
sl@0
|
305 |
CleanupStack::Pop();
|
sl@0
|
306 |
|
sl@0
|
307 |
return pSelf;
|
sl@0
|
308 |
}
|
sl@0
|
309 |
|
sl@0
|
310 |
//-----------------------------------------------------------------------------
|
sl@0
|
311 |
/**
|
sl@0
|
312 |
FAT16 fixed cache initialisation.
|
sl@0
|
313 |
@param aOwner pointer to the owning FAT mount
|
sl@0
|
314 |
@param aFatSize size of the FAT table in bytes
|
sl@0
|
315 |
@param aRdGranularityLog2 Log2(read granularity)
|
sl@0
|
316 |
@param aWrGranularityLog2 Log2(write granularity)
|
sl@0
|
317 |
*/
|
sl@0
|
318 |
void CFat16FixedCache::InitialiseL(CFatMountCB* aOwner, TUint32 aFatSize, TUint32 aRdGranularityLog2, TUint32 aWrGranularityLog2)
|
sl@0
|
319 |
{
|
sl@0
|
320 |
const TUint32 ReadGranularity = Pow2(aRdGranularityLog2);
|
sl@0
|
321 |
const TUint32 WriteGranularity = Pow2(aWrGranularityLog2);
|
sl@0
|
322 |
|
sl@0
|
323 |
__PRINT3(_L("#-CFat16FixedCache::InitialiseL FatSz:%u, RdGr:%d, WrGr:%d"),aFatSize, ReadGranularity, WriteGranularity);
|
sl@0
|
324 |
(void)ReadGranularity;
|
sl@0
|
325 |
(void)WriteGranularity;
|
sl@0
|
326 |
|
sl@0
|
327 |
TBool bParamsValid = (aRdGranularityLog2 >= aWrGranularityLog2) && (aWrGranularityLog2 >= KDefSectorSzLog2);
|
sl@0
|
328 |
__ASSERT_ALWAYS(bParamsValid, Fault(EFatCache_BadGranularity));
|
sl@0
|
329 |
|
sl@0
|
330 |
CFatPagedCacheBase::InitialiseL(aOwner);
|
sl@0
|
331 |
|
sl@0
|
332 |
ASSERT(FatType() == EFat16);
|
sl@0
|
333 |
|
sl@0
|
334 |
//-- See FAT specs, and round up the limit to the FAT sector boundary
|
sl@0
|
335 |
const TUint32 KMaxFat16Size = ((65524*sizeof(TFat16Entry)+FAT_SectorSz()-1) >> FAT_SectorSzLog2()) << FAT_SectorSzLog2();
|
sl@0
|
336 |
const TUint32 KMinFat16Size = 4086*sizeof(TFat16Entry); //-- See FAT specs
|
sl@0
|
337 |
|
sl@0
|
338 |
bParamsValid = aFatSize >= KMinFat16Size && aFatSize <= KMaxFat16Size;
|
sl@0
|
339 |
__ASSERT_ALWAYS(bParamsValid, User::Leave(KErrCorrupt));
|
sl@0
|
340 |
|
sl@0
|
341 |
//-- cache page size is (2^aRdGranularityLog2) bytes and consists of 2^(aRdGranularityLog2-aWrGranularity) sectors.
|
sl@0
|
342 |
iPageSizeLog2 = aRdGranularityLog2;
|
sl@0
|
343 |
iSectorSizeLog2 = aWrGranularityLog2; //-- Log2(number of sectors in cache page)
|
sl@0
|
344 |
|
sl@0
|
345 |
__ASSERT_ALWAYS(SectorsInPage() < KMaxSectorsInPage, Fault(EFatCache_BadGranularity));
|
sl@0
|
346 |
|
sl@0
|
347 |
const TUint numPages = (aFatSize+(PageSize()-1)) >> iPageSizeLog2;
|
sl@0
|
348 |
__PRINT1(_L("#-CFat16FixedCache Num Pages:%d"), numPages);
|
sl@0
|
349 |
|
sl@0
|
350 |
//-- prepare pointer array for pages. NULL entry in the array means that the page at this index isn't allocated.
|
sl@0
|
351 |
for(TUint i=0; i<numPages; ++i)
|
sl@0
|
352 |
iPages.Append(NULL);
|
sl@0
|
353 |
|
sl@0
|
354 |
}
|
sl@0
|
355 |
|
sl@0
|
356 |
|
sl@0
|
357 |
//-----------------------------------------------------------------------------
|
sl@0
|
358 |
/**
|
sl@0
|
359 |
Close the cache and deallocate its memory.
|
sl@0
|
360 |
@param aDiscardDirtyData if ETrue, will ignore dirty data. If EFalse, will panic on atempt to close dirty cache.
|
sl@0
|
361 |
*/
|
sl@0
|
362 |
void CFat16FixedCache::Close(TBool aDiscardDirtyData)
|
sl@0
|
363 |
{
|
sl@0
|
364 |
__PRINT1(_L("#-CFat16FixedCache::Close(%d)"), aDiscardDirtyData);
|
sl@0
|
365 |
|
sl@0
|
366 |
TInt cnt = iPages.Count();
|
sl@0
|
367 |
while(cnt--)
|
sl@0
|
368 |
{//-- delete pages
|
sl@0
|
369 |
CFat16FixedCachePage *pPage = iPages[cnt];
|
sl@0
|
370 |
if(pPage && (pPage->IsDirty()))
|
sl@0
|
371 |
{//-- trying to destroy the cache that has dirty pages
|
sl@0
|
372 |
__PRINT1(_L("#-CFat16FixedCache::Close() The page is dirty! Start idx:%d"), pPage->StartFatIndex());
|
sl@0
|
373 |
if(!aDiscardDirtyData)
|
sl@0
|
374 |
{
|
sl@0
|
375 |
__ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData));
|
sl@0
|
376 |
}
|
sl@0
|
377 |
//-- ignore this fact if requested.
|
sl@0
|
378 |
}
|
sl@0
|
379 |
|
sl@0
|
380 |
delete pPage;
|
sl@0
|
381 |
}
|
sl@0
|
382 |
|
sl@0
|
383 |
iPages.Close();
|
sl@0
|
384 |
SetDirty(EFalse);
|
sl@0
|
385 |
}
|
sl@0
|
386 |
|
sl@0
|
387 |
//-----------------------------------------------------------------------------
|
sl@0
|
388 |
/**
|
sl@0
|
389 |
Read FAT entry from the cache.
|
sl@0
|
390 |
|
sl@0
|
391 |
@param aIndex FAT entry index to read
|
sl@0
|
392 |
@return FAT entry value at the index "aIndex"
|
sl@0
|
393 |
*/
|
sl@0
|
394 |
TUint32 CFat16FixedCache::ReadEntryL(TUint32 aIndex)
|
sl@0
|
395 |
{
|
sl@0
|
396 |
//__PRINT1(_L("#-CFat16FixedCache::ReadEntryL() FAT idx:%d"), aIndex);
|
sl@0
|
397 |
ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() >> KFat16EntrySzLog2));
|
sl@0
|
398 |
|
sl@0
|
399 |
//-- calculate page index in the array
|
sl@0
|
400 |
const TInt pgIdx = aIndex >> (PageSizeLog2()-KFat16EntrySzLog2);
|
sl@0
|
401 |
CFat16FixedCachePage *pPage = iPages[pgIdx];
|
sl@0
|
402 |
|
sl@0
|
403 |
TUint32 entry = KMaxTUint;
|
sl@0
|
404 |
|
sl@0
|
405 |
if(!pPage)
|
sl@0
|
406 |
{//-- page at this position isn't allocated yet
|
sl@0
|
407 |
pPage = CFat16FixedCachePage::NewL(*this);
|
sl@0
|
408 |
iPages[pgIdx] = pPage;
|
sl@0
|
409 |
|
sl@0
|
410 |
//-- read the page from media
|
sl@0
|
411 |
entry = pPage->ReadFromMediaL(aIndex);
|
sl@0
|
412 |
}
|
sl@0
|
413 |
else
|
sl@0
|
414 |
{//-- get cached entry from the page
|
sl@0
|
415 |
TBool bRes = pPage->ReadCachedEntryL(aIndex, entry);
|
sl@0
|
416 |
ASSERT(bRes);
|
sl@0
|
417 |
(void)bRes;
|
sl@0
|
418 |
}
|
sl@0
|
419 |
|
sl@0
|
420 |
return entry;
|
sl@0
|
421 |
}
|
sl@0
|
422 |
|
sl@0
|
423 |
//-----------------------------------------------------------------------------
|
sl@0
|
424 |
/**
|
sl@0
|
425 |
Write FAT entry to the cache.
|
sl@0
|
426 |
Appropriate FAT cache sector will be marked as "dirty" and will be eventually flushed to the media.
|
sl@0
|
427 |
|
sl@0
|
428 |
@param aIndex FAT entry index
|
sl@0
|
429 |
@param aEntry FAT entry value
|
sl@0
|
430 |
*/
|
sl@0
|
431 |
void CFat16FixedCache::WriteEntryL(TUint32 aIndex, TUint32 aEntry)
|
sl@0
|
432 |
{
|
sl@0
|
433 |
//__PRINT2(_L("#-CFat16FixedCache::WriteEntryL() FAT idx:%d, val:%d"), aIndex, aEntry);
|
sl@0
|
434 |
|
sl@0
|
435 |
ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() >> KFat16EntrySzLog2));
|
sl@0
|
436 |
|
sl@0
|
437 |
SetDirty(ETrue);
|
sl@0
|
438 |
|
sl@0
|
439 |
//-- calculate page index in the array
|
sl@0
|
440 |
const TInt pgIdx = aIndex >> (PageSizeLog2()-KFat16EntrySzLog2);
|
sl@0
|
441 |
CFat16FixedCachePage *pPage = iPages[pgIdx];
|
sl@0
|
442 |
|
sl@0
|
443 |
if(!pPage)
|
sl@0
|
444 |
{//-- page at this position isn't allocated yet
|
sl@0
|
445 |
pPage = CFat16FixedCachePage::NewL(*this);
|
sl@0
|
446 |
iPages[pgIdx] = pPage;
|
sl@0
|
447 |
|
sl@0
|
448 |
//-- read the page from media
|
sl@0
|
449 |
pPage->ReadFromMediaL(aIndex);
|
sl@0
|
450 |
}
|
sl@0
|
451 |
|
sl@0
|
452 |
//-- overwrite entry in cache
|
sl@0
|
453 |
TBool bRes = pPage->WriteCachedEntryL(aIndex, aEntry);
|
sl@0
|
454 |
ASSERT(bRes);
|
sl@0
|
455 |
(void)bRes;
|
sl@0
|
456 |
}
|
sl@0
|
457 |
|
sl@0
|
458 |
/**
|
sl@0
|
459 |
A debug method that asserts that the cache is really clean
|
sl@0
|
460 |
*/
|
sl@0
|
461 |
void CFat16FixedCache::AssertCacheReallyClean() const
|
sl@0
|
462 |
{
|
sl@0
|
463 |
#ifdef _DEBUG
|
sl@0
|
464 |
for(TUint i=0; i<NumPages(); ++i)
|
sl@0
|
465 |
{
|
sl@0
|
466 |
CFat16FixedCachePage* pPage = iPages[i];
|
sl@0
|
467 |
if(pPage && pPage->IsDirty())
|
sl@0
|
468 |
{
|
sl@0
|
469 |
__PRINT(_L("#-CFat16FixedCache::AssertCacheReallyClean()"));
|
sl@0
|
470 |
ASSERT(0);
|
sl@0
|
471 |
}
|
sl@0
|
472 |
}
|
sl@0
|
473 |
#endif
|
sl@0
|
474 |
}
|
sl@0
|
475 |
|
sl@0
|
476 |
|
sl@0
|
477 |
//-----------------------------------------------------------------------------
|
sl@0
|
478 |
/**
|
sl@0
|
479 |
Flushes all dirty data to the media.
|
sl@0
|
480 |
*/
|
sl@0
|
481 |
void CFat16FixedCache::FlushL()
|
sl@0
|
482 |
{
|
sl@0
|
483 |
if(!IsDirty())
|
sl@0
|
484 |
{
|
sl@0
|
485 |
AssertCacheReallyClean();
|
sl@0
|
486 |
return;
|
sl@0
|
487 |
}
|
sl@0
|
488 |
|
sl@0
|
489 |
|
sl@0
|
490 |
//-- flush dirty data to all copies of FAT
|
sl@0
|
491 |
for(iCurrentFatNo=0; iCurrentFatNo < NumFATs(); ++iCurrentFatNo)
|
sl@0
|
492 |
{
|
sl@0
|
493 |
const TInt nPages = NumPages();
|
sl@0
|
494 |
for(TInt i=0; i<nPages; ++i)
|
sl@0
|
495 |
{
|
sl@0
|
496 |
const TBool keepDirty = iCurrentFatNo < (NumFATs() - 1);
|
sl@0
|
497 |
|
sl@0
|
498 |
CFat16FixedCachePage* pPage = iPages[i];
|
sl@0
|
499 |
if(pPage)
|
sl@0
|
500 |
pPage->FlushL(keepDirty);
|
sl@0
|
501 |
}
|
sl@0
|
502 |
|
sl@0
|
503 |
}
|
sl@0
|
504 |
|
sl@0
|
505 |
iCurrentFatNo = KInvalidFatNo;
|
sl@0
|
506 |
SetDirty(EFalse);
|
sl@0
|
507 |
}
|
sl@0
|
508 |
|
sl@0
|
509 |
//-----------------------------------------------------------------------------
|
sl@0
|
510 |
/**
|
sl@0
|
511 |
Invalidate whole cache. All pages will be marked as invalid and will be re-read from the media on first access to them.
|
sl@0
|
512 |
@return always KErrNone
|
sl@0
|
513 |
*/
|
sl@0
|
514 |
TInt CFat16FixedCache::Invalidate()
|
sl@0
|
515 |
{
|
sl@0
|
516 |
__PRINT(_L("#-CFat16FixedCache::Invalidate()"));
|
sl@0
|
517 |
const TBool bIgnoreDirtyData = CheckInvalidatingDirtyCache();
|
sl@0
|
518 |
|
sl@0
|
519 |
//-- iterate through the array of pages marking invalidating every page
|
sl@0
|
520 |
TInt cnt = iPages.Count();
|
sl@0
|
521 |
while(cnt--)
|
sl@0
|
522 |
{//-- delete pages
|
sl@0
|
523 |
CFat16FixedCachePage *pPage = iPages[cnt];
|
sl@0
|
524 |
if(pPage)
|
sl@0
|
525 |
pPage->Invalidate(bIgnoreDirtyData);
|
sl@0
|
526 |
}
|
sl@0
|
527 |
|
sl@0
|
528 |
|
sl@0
|
529 |
SetDirty(EFalse);
|
sl@0
|
530 |
|
sl@0
|
531 |
return KErrNone;
|
sl@0
|
532 |
}
|
sl@0
|
533 |
|
sl@0
|
534 |
//-----------------------------------------------------------------------------
|
sl@0
|
535 |
/**
|
sl@0
|
536 |
Invalidate FAT cache pages that contain FAT entries from aStartIndex to (aStartIndex+aNumEntries)
|
sl@0
|
537 |
These pages will be marked as invalid and will be re-read from the media on first access to them.
|
sl@0
|
538 |
|
sl@0
|
539 |
@param aStartIndex FAT start index of the region being invalidated
|
sl@0
|
540 |
@param aNumEntries number of entries to invalidate
|
sl@0
|
541 |
@return always KErrNone
|
sl@0
|
542 |
*/
|
sl@0
|
543 |
TInt CFat16FixedCache::InvalidateRegion(TUint32 aStartIndex, TUint32 aNumEntries)
|
sl@0
|
544 |
{
|
sl@0
|
545 |
__PRINT2(_L("#-CFat16FixedCache::InvalidateRegion() startIndex:%d, entries:%d"),aStartIndex, aNumEntries);
|
sl@0
|
546 |
ASSERT(aStartIndex >= KFatFirstSearchCluster && aStartIndex < (FatSize() >> KFat16EntrySzLog2));
|
sl@0
|
547 |
|
sl@0
|
548 |
if(!aNumEntries)
|
sl@0
|
549 |
{
|
sl@0
|
550 |
ASSERT(0);
|
sl@0
|
551 |
return KErrNone;
|
sl@0
|
552 |
}
|
sl@0
|
553 |
|
sl@0
|
554 |
const TBool bIgnoreDirtyData = CheckInvalidatingDirtyCache();
|
sl@0
|
555 |
const TUint startPgIdx = aStartIndex >> (PageSizeLog2()-KFat16EntrySzLog2);
|
sl@0
|
556 |
const TUint nPagesToInv = 1+(aNumEntries >> (PageSizeLog2()-KFat16EntrySzLog2));
|
sl@0
|
557 |
|
sl@0
|
558 |
TUint i;
|
sl@0
|
559 |
//-- invalidate pages that contain [aStartIndex ... aStartIndex+aNumEntries] entries
|
sl@0
|
560 |
for(i=0; i<nPagesToInv; ++i)
|
sl@0
|
561 |
{
|
sl@0
|
562 |
const TUint pageIdx = i+startPgIdx;
|
sl@0
|
563 |
if(pageIdx >= NumPages())
|
sl@0
|
564 |
break;
|
sl@0
|
565 |
|
sl@0
|
566 |
CFat16FixedCachePage* pPage = iPages[pageIdx];
|
sl@0
|
567 |
if(pPage)
|
sl@0
|
568 |
pPage->Invalidate(bIgnoreDirtyData);
|
sl@0
|
569 |
}
|
sl@0
|
570 |
|
sl@0
|
571 |
SetDirty(EFalse);
|
sl@0
|
572 |
|
sl@0
|
573 |
//-- check if the cache still has dirty pages
|
sl@0
|
574 |
for(i=0; i<NumPages(); ++i)
|
sl@0
|
575 |
{
|
sl@0
|
576 |
CFat16FixedCachePage* pPage = iPages[i];
|
sl@0
|
577 |
if(pPage && pPage->IsDirty())
|
sl@0
|
578 |
{
|
sl@0
|
579 |
SetDirty(ETrue);
|
sl@0
|
580 |
break;
|
sl@0
|
581 |
}
|
sl@0
|
582 |
}
|
sl@0
|
583 |
|
sl@0
|
584 |
return KErrNone;
|
sl@0
|
585 |
}
|
sl@0
|
586 |
|
sl@0
|
587 |
//#################################################################################################################################
|
sl@0
|
588 |
// CFat16FixedCachePage implementation
|
sl@0
|
589 |
// Page for the FAT16 fixed cache
|
sl@0
|
590 |
//#################################################################################################################################
|
sl@0
|
591 |
|
sl@0
|
592 |
//-----------------------------------------------------------------------------
|
sl@0
|
593 |
|
sl@0
|
594 |
CFat16FixedCachePage::CFat16FixedCachePage(CFatPagedCacheBase& aCache)
|
sl@0
|
595 |
:CFatCachePageBase(aCache)
|
sl@0
|
596 |
{
|
sl@0
|
597 |
ASSERT(IsPowerOf2(EntriesInPage()));
|
sl@0
|
598 |
}
|
sl@0
|
599 |
|
sl@0
|
600 |
|
sl@0
|
601 |
/**
|
sl@0
|
602 |
Factory function.
|
sl@0
|
603 |
@param aCache reference to the owning cache.
|
sl@0
|
604 |
@return pointer to the constructed object or NULL on error
|
sl@0
|
605 |
*/
|
sl@0
|
606 |
CFat16FixedCachePage* CFat16FixedCachePage::NewL(CFatPagedCacheBase& aCache)
|
sl@0
|
607 |
{
|
sl@0
|
608 |
CFat16FixedCachePage* pSelf = NULL;
|
sl@0
|
609 |
pSelf = new (ELeave) CFat16FixedCachePage(aCache);
|
sl@0
|
610 |
|
sl@0
|
611 |
CleanupStack::PushL(pSelf);
|
sl@0
|
612 |
|
sl@0
|
613 |
pSelf->iData.CreateMaxL(aCache.PageSize()); //-- allocate memory for the page
|
sl@0
|
614 |
|
sl@0
|
615 |
CleanupStack::Pop();
|
sl@0
|
616 |
|
sl@0
|
617 |
return pSelf;
|
sl@0
|
618 |
}
|
sl@0
|
619 |
|
sl@0
|
620 |
|
sl@0
|
621 |
//-----------------------------------------------------------------------------
|
sl@0
|
622 |
/**
|
sl@0
|
623 |
Read FAT16 entry from the cache.
|
sl@0
|
624 |
|
sl@0
|
625 |
1. If page's data are valid, just extracts data from the page buffer.
|
sl@0
|
626 |
2. If page's data are invalid firstly reads data from the media and goto 1
|
sl@0
|
627 |
|
sl@0
|
628 |
@param aFatIndex entry's absolute FAT index (from the FAT start)
|
sl@0
|
629 |
@param aResult on sucess there will be FAT16 entry value
|
sl@0
|
630 |
@return ETrue, because FAT16 cache pages never get eviched.
|
sl@0
|
631 |
*/
|
sl@0
|
632 |
TBool CFat16FixedCachePage::ReadCachedEntryL (TUint32 aFatIndex, TUint32& aResult)
|
sl@0
|
633 |
{
|
sl@0
|
634 |
if(IsValid())
|
sl@0
|
635 |
{//-- read entry directly from page buffer, the cached data are valid
|
sl@0
|
636 |
aResult = (*GetEntryPtr(aFatIndex)) & KFat16EntryMask;
|
sl@0
|
637 |
}
|
sl@0
|
638 |
else
|
sl@0
|
639 |
{//-- aFatIndex belongs to this page, but the page is invalid and needs to be read from the media
|
sl@0
|
640 |
//__PRINT(_L("#-CFat16FixedCachePage::ReadCachedEntry() The page is invalid, reading from the media"));
|
sl@0
|
641 |
aResult = ReadFromMediaL(aFatIndex);
|
sl@0
|
642 |
}
|
sl@0
|
643 |
|
sl@0
|
644 |
return ETrue;
|
sl@0
|
645 |
}
|
sl@0
|
646 |
|
sl@0
|
647 |
//-----------------------------------------------------------------------------
|
sl@0
|
648 |
|
sl@0
|
649 |
/**
|
sl@0
|
650 |
Writes FAT cache page sector to the media (to all copies of the FAT)
|
sl@0
|
651 |
@param aSector sector number winthin this page
|
sl@0
|
652 |
*/
|
sl@0
|
653 |
void CFat16FixedCachePage::DoWriteSectorL(TUint32 aSector)
|
sl@0
|
654 |
{
|
sl@0
|
655 |
//__PRINT1(_L("#-CFat16FixedCachePage::DoWriteSectorL() startSec:%d, cnt:%d"), aSector);
|
sl@0
|
656 |
|
sl@0
|
657 |
ASSERT(aSector < iCache.SectorsInPage());
|
sl@0
|
658 |
|
sl@0
|
659 |
TInt offset = 0;
|
sl@0
|
660 |
|
sl@0
|
661 |
if(iStartIndexInFAT == 0 && aSector == 0)
|
sl@0
|
662 |
{//-- this is the very beginning of FAT16. We must skip FAT[0] & FAT[1] entries and do not write them to media.
|
sl@0
|
663 |
offset = KFatFirstSearchCluster << KFat16EntrySzLog2;
|
sl@0
|
664 |
}
|
sl@0
|
665 |
|
sl@0
|
666 |
const TUint8* pData = iData.Ptr()+offset+(aSector << iCache.SectorSizeLog2());
|
sl@0
|
667 |
|
sl@0
|
668 |
TUint32 dataLen = (1 << iCache.SectorSizeLog2()) - offset;
|
sl@0
|
669 |
|
sl@0
|
670 |
const TUint32 mediaPosStart = iCache.FatStartPos() + (iStartIndexInFAT << KFat16EntrySzLog2) + (aSector << iCache.SectorSizeLog2()) + offset;
|
sl@0
|
671 |
const TUint32 mediaPosEnd = mediaPosStart + dataLen;
|
sl@0
|
672 |
|
sl@0
|
673 |
//-- check if we are going to write beyond FAT. It can happen if the write granularity is bigger that the sector size.
|
sl@0
|
674 |
const TUint32 posFatEnd = iCache.FatStartPos() + iCache.FatSize();
|
sl@0
|
675 |
if(mediaPosEnd > posFatEnd)
|
sl@0
|
676 |
{//-- correct the leength of the data to write.
|
sl@0
|
677 |
dataLen -= (mediaPosEnd-posFatEnd);
|
sl@0
|
678 |
}
|
sl@0
|
679 |
|
sl@0
|
680 |
TPtrC8 ptrData(pData, dataLen); //-- source data descriptor
|
sl@0
|
681 |
|
sl@0
|
682 |
TInt nRes = iCache.WriteFatData(mediaPosStart, ptrData);
|
sl@0
|
683 |
|
sl@0
|
684 |
if(nRes != KErrNone)
|
sl@0
|
685 |
{
|
sl@0
|
686 |
__PRINT1(_L("#-CFat16FixedCachePage::DoWriteSectorsL() failed! code:%d"), nRes);
|
sl@0
|
687 |
User::Leave(nRes);
|
sl@0
|
688 |
}
|
sl@0
|
689 |
|
sl@0
|
690 |
}
|
sl@0
|
691 |
|
sl@0
|
692 |
//-----------------------------------------------------------------------------
|
sl@0
|
693 |
/**
|
sl@0
|
694 |
Write FAT16 entry at aFatIndex to the cache. Note that the data are not written to the media, only to the cache page.
|
sl@0
|
695 |
Corresponding page sector is marked as dirty and will be flushed on FlushL() call later.
|
sl@0
|
696 |
|
sl@0
|
697 |
1. If page's data are valid, copies data to the page buffer and marks sector as dirty.
|
sl@0
|
698 |
2. If page's data are invalid, firstly reads data from the media and goto 1
|
sl@0
|
699 |
|
sl@0
|
700 |
@param aFatIndex entry's absolute FAT index (from the FAT start)
|
sl@0
|
701 |
@param aFatEntry FAT16 entry value
|
sl@0
|
702 |
@return ETrue because FAT16 cache pages never get eviched.
|
sl@0
|
703 |
*/
|
sl@0
|
704 |
TBool CFat16FixedCachePage::WriteCachedEntryL(TUint32 aFatIndex, TUint32 aFatEntry)
|
sl@0
|
705 |
{
|
sl@0
|
706 |
|
sl@0
|
707 |
ASSERT(IsEntryCached(aFatIndex));
|
sl@0
|
708 |
|
sl@0
|
709 |
if(!IsValid())
|
sl@0
|
710 |
{//-- we are trying to write data to the page that has invalid data. //-- read the data from the media first.
|
sl@0
|
711 |
ReadFromMediaL(aFatIndex);
|
sl@0
|
712 |
}
|
sl@0
|
713 |
|
sl@0
|
714 |
TFat16Entry* pEntry = GetEntryPtr(aFatIndex);
|
sl@0
|
715 |
|
sl@0
|
716 |
const TFat16Entry orgEntry = *pEntry;
|
sl@0
|
717 |
*pEntry = (TFat16Entry)((orgEntry & ~KFat16EntryMask) | (aFatEntry & KFat16EntryMask));
|
sl@0
|
718 |
|
sl@0
|
719 |
//-- mark corresponding sector of the cache page as dirty
|
sl@0
|
720 |
const TUint entryIndexInPage = aFatIndex & (EntriesInPage()-1); //-- number of entries in page is always a power of 2
|
sl@0
|
721 |
const TUint dirtySectorNum = entryIndexInPage >> (iCache.SectorSizeLog2() - KFat16EntrySzLog2);
|
sl@0
|
722 |
|
sl@0
|
723 |
ASSERT(dirtySectorNum < iCache.SectorsInPage());
|
sl@0
|
724 |
|
sl@0
|
725 |
iDirtySectors.SetBit(dirtySectorNum);
|
sl@0
|
726 |
SetState(EDirty); //-- mark page as dirty.
|
sl@0
|
727 |
|
sl@0
|
728 |
return ETrue;
|
sl@0
|
729 |
}
|
sl@0
|
730 |
|
sl@0
|
731 |
//-----------------------------------------------------------------------------
|
sl@0
|
732 |
|
sl@0
|
733 |
/**
|
sl@0
|
734 |
Get a pointer to the FAT16 entry in the page buffer.
|
sl@0
|
735 |
The page 's data shall be valid and the entry shall belong to this page.
|
sl@0
|
736 |
|
sl@0
|
737 |
@param aFatIndex absolute FAT index (from the FAT start) of the entry
|
sl@0
|
738 |
@return pointer to the FAT16 entry in the page buffer.
|
sl@0
|
739 |
*/
|
sl@0
|
740 |
TFat16Entry* CFat16FixedCachePage::GetEntryPtr(TUint32 aFatIndex) const
|
sl@0
|
741 |
{
|
sl@0
|
742 |
ASSERT(IsValid() && IsEntryCached(aFatIndex));
|
sl@0
|
743 |
|
sl@0
|
744 |
const TUint KEntryIndexInPage = aFatIndex & (EntriesInPage()-1); //-- number of entries in page is always a power of 2
|
sl@0
|
745 |
TFat16Entry* pEntry = ((TFat16Entry*)iData.Ptr()) + KEntryIndexInPage;
|
sl@0
|
746 |
|
sl@0
|
747 |
return pEntry;
|
sl@0
|
748 |
}
|
sl@0
|
749 |
|
sl@0
|
750 |
//-----------------------------------------------------------------------------
|
sl@0
|
751 |
/**
|
sl@0
|
752 |
Read the FAT16 cache page from the media and returns required FAT16 entry.
|
sl@0
|
753 |
|
sl@0
|
754 |
@param aFatIndex entry's absolute FAT index (from the FAT start)
|
sl@0
|
755 |
@return entry value at aFatIndex.
|
sl@0
|
756 |
*/
|
sl@0
|
757 |
TUint32 CFat16FixedCachePage::ReadFromMediaL(TUint32 aFatIndex)
|
sl@0
|
758 |
{
|
sl@0
|
759 |
//__PRINT1(_L("#-CFat16FixedCachePage::ReadFromMediaL() FAT idx:%d"), aFatIndex);
|
sl@0
|
760 |
const TUint KFat16EntriesInPageLog2 = iCache.PageSizeLog2()-KFat16EntrySzLog2; //-- number of FAT16 entries in page is always a power of 2
|
sl@0
|
761 |
|
sl@0
|
762 |
//-- find out index in FAT this page starts from
|
sl@0
|
763 |
iStartIndexInFAT = (aFatIndex >> KFat16EntriesInPageLog2) << KFat16EntriesInPageLog2;
|
sl@0
|
764 |
SetState(EInvalid); //-- mark the page as invalid just in case if the read fails.
|
sl@0
|
765 |
|
sl@0
|
766 |
//-- read page from the media
|
sl@0
|
767 |
const TUint32 pageStartPos = iCache.FatStartPos() + (iStartIndexInFAT << KFat16EntrySzLog2);
|
sl@0
|
768 |
|
sl@0
|
769 |
TInt nRes = iCache.ReadFatData(pageStartPos, iCache.PageSize(), iData);
|
sl@0
|
770 |
if(nRes != KErrNone)
|
sl@0
|
771 |
{
|
sl@0
|
772 |
__PRINT1(_L("#-CFat16FixedCachePage::ReadFromMediaL() failed! code:%d"), nRes);
|
sl@0
|
773 |
User::Leave(nRes);
|
sl@0
|
774 |
}
|
sl@0
|
775 |
|
sl@0
|
776 |
SetClean(); //-- mark this page as clean
|
sl@0
|
777 |
|
sl@0
|
778 |
const TFat16Entry entry = (TFat16Entry)((*GetEntryPtr(aFatIndex)) & KFat16EntryMask);
|
sl@0
|
779 |
|
sl@0
|
780 |
return entry;
|
sl@0
|
781 |
}
|
sl@0
|
782 |
|
sl@0
|
783 |
|
sl@0
|
784 |
//-----------------------------------------------------------------------------
|
sl@0
|
785 |
|
sl@0
|
786 |
//#################################################################################################################################
|
sl@0
|
787 |
// CFat12Cache implementation
|
sl@0
|
788 |
// FAT12 non-paged fixed cache. This cache consists from only 1 page, logically divided up to 32 sectors (write granularity unit)
|
sl@0
|
789 |
//#################################################################################################################################
|
sl@0
|
790 |
|
sl@0
|
791 |
CFat12Cache::CFat12Cache()
|
sl@0
|
792 |
:CFatCacheBase()
|
sl@0
|
793 |
{
|
sl@0
|
794 |
}
|
sl@0
|
795 |
|
sl@0
|
796 |
//-----------------------------------------------------------------------------
|
sl@0
|
797 |
/**
|
sl@0
|
798 |
FAT12 fixed cache factory function.
|
sl@0
|
799 |
@param aOwner pointer to the owning FAT mount
|
sl@0
|
800 |
@param aFatSize size of the FAT table in bytes
|
sl@0
|
801 |
|
sl@0
|
802 |
@return pointer to the constructed object.
|
sl@0
|
803 |
*/
|
sl@0
|
804 |
CFat12Cache* CFat12Cache::NewL(CFatMountCB* aOwner, TUint32 aFatSize)
|
sl@0
|
805 |
{
|
sl@0
|
806 |
__PRINT(_L("#-CFat12Cache::NewL()"));
|
sl@0
|
807 |
CFat12Cache* pSelf = NULL;
|
sl@0
|
808 |
pSelf = new (ELeave) CFat12Cache;
|
sl@0
|
809 |
|
sl@0
|
810 |
CleanupStack::PushL(pSelf);
|
sl@0
|
811 |
pSelf->InitialiseL(aOwner, aFatSize);
|
sl@0
|
812 |
CleanupStack::Pop();
|
sl@0
|
813 |
|
sl@0
|
814 |
return pSelf;
|
sl@0
|
815 |
}
|
sl@0
|
816 |
|
sl@0
|
817 |
//-----------------------------------------------------------------------------
|
sl@0
|
818 |
/**
|
sl@0
|
819 |
FAT16 fixed cache initialisation.
|
sl@0
|
820 |
@param aOwner pointer to the owning FAT mount
|
sl@0
|
821 |
@param aFatSize size of the FAT table in bytes
|
sl@0
|
822 |
*/
|
sl@0
|
823 |
void CFat12Cache::InitialiseL(CFatMountCB* aOwner, TUint32 aFatSize)
|
sl@0
|
824 |
{
|
sl@0
|
825 |
__PRINT1(_L("#-CFat12Cache::InitialiseL FatSz:%u"),aFatSize);
|
sl@0
|
826 |
|
sl@0
|
827 |
CFatCacheBase::InitialiseL(aOwner);
|
sl@0
|
828 |
ASSERT(FatType() == EFat12);
|
sl@0
|
829 |
|
sl@0
|
830 |
//-- see FAT specs; 4084 is a max. number of clusters, fat12 entry is 1.5 bytes; but we need to round up FAT12 size to the sector size
|
sl@0
|
831 |
const TUint32 KMaxFat12Size = ( ((TUint32)(4084*1.5+FAT_SectorSz()-1)) >> FAT_SectorSzLog2()) << FAT_SectorSzLog2();
|
sl@0
|
832 |
const TUint32 KMinFat12Size = FAT_SectorSz(); //-- 1 FAT sector
|
sl@0
|
833 |
__ASSERT_ALWAYS(aFatSize >= KMinFat12Size && aFatSize <= KMaxFat12Size, User::Leave(KErrCorrupt));
|
sl@0
|
834 |
(void)KMaxFat12Size;
|
sl@0
|
835 |
(void)KMinFat12Size;
|
sl@0
|
836 |
|
sl@0
|
837 |
//-- as soon as FAT12 max size is 4084 entries or 6126 bytes, the cache is contiguous and divided
|
sl@0
|
838 |
//-- to logical sectors (write granularity).
|
sl@0
|
839 |
|
sl@0
|
840 |
//-- calculate number write cache sector in the cache
|
sl@0
|
841 |
iSectorsInCache = (aFatSize + (FAT_SectorSz()-1)) >> FAT_SectorSzLog2();
|
sl@0
|
842 |
__ASSERT_ALWAYS(NumSectors() <= KMaxSectorsInCache, Fault(EFatCache_BadGranularity));
|
sl@0
|
843 |
|
sl@0
|
844 |
//-- round up cache size to write granularity (sector size)
|
sl@0
|
845 |
const TUint32 cacheSize = NumSectors() << FAT_SectorSzLog2();
|
sl@0
|
846 |
|
sl@0
|
847 |
//-- create buffer for the whole FAT12
|
sl@0
|
848 |
iData.CreateMaxL(cacheSize);
|
sl@0
|
849 |
|
sl@0
|
850 |
//-- this will read whole FAT into the cache
|
sl@0
|
851 |
User::LeaveIfError(Invalidate());
|
sl@0
|
852 |
}
|
sl@0
|
853 |
|
sl@0
|
854 |
//-----------------------------------------------------------------------------
|
sl@0
|
855 |
/**
|
sl@0
|
856 |
Close the cache and deallocate its memory.
|
sl@0
|
857 |
@param aDiscardDirtyData if ETrue, will ignore dirty data. If EFalse, will panic on atempt to close dirty cache.
|
sl@0
|
858 |
*/
|
sl@0
|
859 |
void CFat12Cache::Close(TBool aDiscardDirtyData)
|
sl@0
|
860 |
{
|
sl@0
|
861 |
__PRINT1(_L("#-CFat12Cache::Close(%d)"), aDiscardDirtyData);
|
sl@0
|
862 |
|
sl@0
|
863 |
for(TUint32 i=0; i<NumSectors(); ++i)
|
sl@0
|
864 |
{
|
sl@0
|
865 |
if(iDirtySectors[i])
|
sl@0
|
866 |
{//-- trying to destroy the cache that has dirty sectors
|
sl@0
|
867 |
__PRINT1(_L("#-CFat12Cache::Close() The cache is dirty! cache sector:%d"), i);
|
sl@0
|
868 |
if(!aDiscardDirtyData)
|
sl@0
|
869 |
{
|
sl@0
|
870 |
__ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData));
|
sl@0
|
871 |
}
|
sl@0
|
872 |
//-- ignore this fact if requested.
|
sl@0
|
873 |
}
|
sl@0
|
874 |
}
|
sl@0
|
875 |
|
sl@0
|
876 |
iData.Close();
|
sl@0
|
877 |
SetDirty(EFalse);
|
sl@0
|
878 |
}
|
sl@0
|
879 |
|
sl@0
|
880 |
//-----------------------------------------------------------------------------
|
sl@0
|
881 |
/**
|
sl@0
|
882 |
Read FAT entry from the cache.
|
sl@0
|
883 |
|
sl@0
|
884 |
@param aIndex FAT entry index to read
|
sl@0
|
885 |
@return FAT entry value at the index "aIndex"
|
sl@0
|
886 |
*/
|
sl@0
|
887 |
TUint32 CFat12Cache::ReadEntryL(TUint32 aIndex)
|
sl@0
|
888 |
{
|
sl@0
|
889 |
//__PRINT1(_L("#-CFat12Cache::ReadEntryL() FAT idx:%d"), aIndex);
|
sl@0
|
890 |
ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() + FatSize()/2)); //-- FAT12 entry is 1.5 bytes long
|
sl@0
|
891 |
|
sl@0
|
892 |
TUint32 entry;
|
sl@0
|
893 |
|
sl@0
|
894 |
if(aIndex & 0x01)
|
sl@0
|
895 |
{//-- odd index
|
sl@0
|
896 |
--aIndex;
|
sl@0
|
897 |
const TUint32 byteIdx = 1 + aIndex + (aIndex >> 1); //-- byteIdx = 1+(aIndex-1)*1.5
|
sl@0
|
898 |
Mem::Copy(&entry, iData.Ptr()+byteIdx, 2);
|
sl@0
|
899 |
entry >>= 4;
|
sl@0
|
900 |
}
|
sl@0
|
901 |
else
|
sl@0
|
902 |
{//-- even index
|
sl@0
|
903 |
const TUint32 byteIdx = aIndex + (aIndex >> 1); //-- byteIdx = aIndex*1.5
|
sl@0
|
904 |
Mem::Copy(&entry, iData.Ptr()+byteIdx, 2);
|
sl@0
|
905 |
}
|
sl@0
|
906 |
|
sl@0
|
907 |
entry &= KFat12EntryMask;
|
sl@0
|
908 |
|
sl@0
|
909 |
return entry;
|
sl@0
|
910 |
}
|
sl@0
|
911 |
|
sl@0
|
912 |
//-----------------------------------------------------------------------------
|
sl@0
|
913 |
/**
|
sl@0
|
914 |
Write FAT entry to the cache.
|
sl@0
|
915 |
Appropriate FAT cache sector will be marked as "dirty" and will be eventually flushed to the media.
|
sl@0
|
916 |
|
sl@0
|
917 |
@param aIndex FAT entry index
|
sl@0
|
918 |
@param aEntry FAT entry value
|
sl@0
|
919 |
*/
|
sl@0
|
920 |
void CFat12Cache::WriteEntryL(TUint32 aIndex, TUint32 aEntry)
|
sl@0
|
921 |
{
|
sl@0
|
922 |
//__PRINT2(_L("#-CFat12Cache::WriteEntryL() FAT idx:%d, entry:%u"), aIndex, aEntry);
|
sl@0
|
923 |
ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() + FatSize()/2)); //-- FAT12 entry is 1.5 bytes long
|
sl@0
|
924 |
|
sl@0
|
925 |
aEntry &= KFat12EntryMask;
|
sl@0
|
926 |
|
sl@0
|
927 |
TUint32 byteIdx = 0;
|
sl@0
|
928 |
TUint8 tmp;
|
sl@0
|
929 |
|
sl@0
|
930 |
if(aIndex & 0x01)
|
sl@0
|
931 |
{//-- odd index
|
sl@0
|
932 |
--aIndex;
|
sl@0
|
933 |
byteIdx = 1 + aIndex + (aIndex >> 1); //-- byteIdx = 1+(aIndex-1)*1.5
|
sl@0
|
934 |
tmp = (TUint8)(iData[byteIdx] & 0x0F); //-- we modifying a higher nibble
|
sl@0
|
935 |
tmp |= (TUint8) ((aEntry & 0x0F)<<4);
|
sl@0
|
936 |
iData[byteIdx] = tmp;
|
sl@0
|
937 |
|
sl@0
|
938 |
iData[byteIdx+1] = (TUint8)(aEntry >> 4);
|
sl@0
|
939 |
}
|
sl@0
|
940 |
else
|
sl@0
|
941 |
{//-- even index
|
sl@0
|
942 |
byteIdx = aIndex + (aIndex >> 1); //-- byteIdx = aIndex*1.5
|
sl@0
|
943 |
iData[byteIdx] = (TUint8)aEntry;
|
sl@0
|
944 |
|
sl@0
|
945 |
const TUint32 nextIdx = byteIdx+1;
|
sl@0
|
946 |
tmp = (TUint8)(iData[nextIdx] & 0xF0); //-- we modifying a lower nibble
|
sl@0
|
947 |
tmp |= (TUint8)((aEntry >> 8) & 0x0F);
|
sl@0
|
948 |
iData[nextIdx] = tmp;
|
sl@0
|
949 |
|
sl@0
|
950 |
}
|
sl@0
|
951 |
|
sl@0
|
952 |
//-- mark changed sectors dirty. We modified 2 bytes at [byteIdx] and [byteIdx+1]
|
sl@0
|
953 |
iDirtySectors.SetBit(byteIdx >> FAT_SectorSzLog2());
|
sl@0
|
954 |
iDirtySectors.SetBit((byteIdx+1) >> FAT_SectorSzLog2());
|
sl@0
|
955 |
|
sl@0
|
956 |
SetDirty(ETrue);
|
sl@0
|
957 |
}
|
sl@0
|
958 |
|
sl@0
|
959 |
//-----------------------------------------------------------------------------
|
sl@0
|
960 |
/**
|
sl@0
|
961 |
A debug method that asserts that the cache is really clean
|
sl@0
|
962 |
*/
|
sl@0
|
963 |
void CFat12Cache::AssertCacheReallyClean() const
|
sl@0
|
964 |
{
|
sl@0
|
965 |
#ifdef _DEBUG
|
sl@0
|
966 |
if(iDirtySectors.HasBitsSet())
|
sl@0
|
967 |
{
|
sl@0
|
968 |
__PRINT(_L("#-CFat12Cache::AssertCacheReallyClean()"));
|
sl@0
|
969 |
ASSERT(0);
|
sl@0
|
970 |
}
|
sl@0
|
971 |
|
sl@0
|
972 |
#endif
|
sl@0
|
973 |
}
|
sl@0
|
974 |
|
sl@0
|
975 |
//-----------------------------------------------------------------------------
|
sl@0
|
976 |
/**
|
sl@0
|
977 |
Flushes all dirty data to the media.
|
sl@0
|
978 |
Walks through all sectors in this cache and flushes dirty ones.
|
sl@0
|
979 |
*/
|
sl@0
|
980 |
void CFat12Cache::FlushL()
|
sl@0
|
981 |
{
|
sl@0
|
982 |
if(!IsDirty())
|
sl@0
|
983 |
{
|
sl@0
|
984 |
AssertCacheReallyClean();
|
sl@0
|
985 |
return;
|
sl@0
|
986 |
}
|
sl@0
|
987 |
|
sl@0
|
988 |
//-- write all dirty sectors to the media (into all copies of FAT)
|
sl@0
|
989 |
for(iCurrentFatNo=0; iCurrentFatNo < NumFATs(); ++iCurrentFatNo)
|
sl@0
|
990 |
{
|
sl@0
|
991 |
for(TUint secNo=0; secNo<NumSectors(); ++secNo)
|
sl@0
|
992 |
{
|
sl@0
|
993 |
if(iDirtySectors[secNo])
|
sl@0
|
994 |
{//-- this sector is dirty, write it to the media
|
sl@0
|
995 |
|
sl@0
|
996 |
TInt offset = 0;
|
sl@0
|
997 |
if(secNo == 0)
|
sl@0
|
998 |
{//-- this is a first sector in FAT. We must skip FAT[0] & FAT[1] entries and do not write them to the media.
|
sl@0
|
999 |
offset = 3; //-- 2 FAT12 entries
|
sl@0
|
1000 |
}
|
sl@0
|
1001 |
|
sl@0
|
1002 |
const TUint32 secPos = secNo << FAT_SectorSzLog2(); //-- relative sector position in FAT
|
sl@0
|
1003 |
const TUint8* pData = iData.Ptr()+offset+secPos; //-- pointer to the data in cache buffer
|
sl@0
|
1004 |
const TUint32 len = FAT_SectorSz() - offset;
|
sl@0
|
1005 |
TPtrC8 ptrData(pData, len); //-- source data descriptor
|
sl@0
|
1006 |
const TUint32 mediaPos = FatStartPos() + secPos + offset;
|
sl@0
|
1007 |
|
sl@0
|
1008 |
TInt nRes = WriteFatData(mediaPos, ptrData);
|
sl@0
|
1009 |
|
sl@0
|
1010 |
if(nRes != KErrNone)
|
sl@0
|
1011 |
{
|
sl@0
|
1012 |
__PRINT1(_L("#-CFat12Cache::FlushL() failed! code:%d"), nRes);
|
sl@0
|
1013 |
User::Leave(nRes);
|
sl@0
|
1014 |
}
|
sl@0
|
1015 |
|
sl@0
|
1016 |
}//if(iDirtySectors[secNo])
|
sl@0
|
1017 |
}
|
sl@0
|
1018 |
|
sl@0
|
1019 |
}
|
sl@0
|
1020 |
|
sl@0
|
1021 |
iCurrentFatNo = KInvalidFatNo;
|
sl@0
|
1022 |
|
sl@0
|
1023 |
//-- mark the cache as clean
|
sl@0
|
1024 |
iDirtySectors.Clear();
|
sl@0
|
1025 |
SetDirty(EFalse);
|
sl@0
|
1026 |
|
sl@0
|
1027 |
}
|
sl@0
|
1028 |
|
sl@0
|
1029 |
//-----------------------------------------------------------------------------
|
sl@0
|
1030 |
/**
|
sl@0
|
1031 |
Invalidates whole cache. Because FAT12 is tiny, just re-reads data from the media to the cache
|
sl@0
|
1032 |
@return Media read result code.
|
sl@0
|
1033 |
*/
|
sl@0
|
1034 |
TInt CFat12Cache::Invalidate()
|
sl@0
|
1035 |
{
|
sl@0
|
1036 |
__PRINT(_L("#-CFat12Cache::Invalidate()"));
|
sl@0
|
1037 |
CheckInvalidatingDirtyCache();
|
sl@0
|
1038 |
|
sl@0
|
1039 |
//-- read whole cache from the media
|
sl@0
|
1040 |
const TUint32 posStart = FatStartPos();
|
sl@0
|
1041 |
const TUint32 len = NumSectors() << FAT_SectorSzLog2();
|
sl@0
|
1042 |
|
sl@0
|
1043 |
TInt nRes = ReadFatData(posStart, len, iData);
|
sl@0
|
1044 |
if(nRes != KErrNone)
|
sl@0
|
1045 |
return nRes;
|
sl@0
|
1046 |
|
sl@0
|
1047 |
//-- mark the cache as clean
|
sl@0
|
1048 |
SetDirty(EFalse);
|
sl@0
|
1049 |
iDirtySectors.Clear();
|
sl@0
|
1050 |
|
sl@0
|
1051 |
return KErrNone;
|
sl@0
|
1052 |
}
|
sl@0
|
1053 |
|
sl@0
|
1054 |
//-----------------------------------------------------------------------------
|
sl@0
|
1055 |
/**
|
sl@0
|
1056 |
Invalidate wholes cache. Because FAT12 is tiny, just re-reads data from the media to the cache
|
sl@0
|
1057 |
@param aStartIndex ignored
|
sl@0
|
1058 |
@param aNumEntries ignored
|
sl@0
|
1059 |
@return Media read result code.
|
sl@0
|
1060 |
*/
|
sl@0
|
1061 |
TInt CFat12Cache::InvalidateRegion(TUint32 aStartIndex, TUint32 aNumEntries)
|
sl@0
|
1062 |
{
|
sl@0
|
1063 |
__PRINT2(_L("#-CFat12Cache::InvalidateRegion() startIndex:%d, entries:%d"),aStartIndex, aNumEntries);
|
sl@0
|
1064 |
ASSERT(aStartIndex >= KFatFirstSearchCluster && aStartIndex < (FatSize() + FatSize()/2)); //-- FAT12 entry is 1.5 bytes long
|
sl@0
|
1065 |
(void)aStartIndex;
|
sl@0
|
1066 |
(void)aNumEntries;
|
sl@0
|
1067 |
|
sl@0
|
1068 |
//-- just re-read all FAT12, it is just 6K max and isn't worth calculating invalid sectors
|
sl@0
|
1069 |
return Invalidate();
|
sl@0
|
1070 |
}
|
sl@0
|
1071 |
|
sl@0
|
1072 |
|
sl@0
|
1073 |
|
sl@0
|
1074 |
|
sl@0
|
1075 |
|
sl@0
|
1076 |
|
sl@0
|
1077 |
|
sl@0
|
1078 |
|
sl@0
|
1079 |
|
sl@0
|
1080 |
|
sl@0
|
1081 |
|
sl@0
|
1082 |
|
sl@0
|
1083 |
|
sl@0
|
1084 |
|
sl@0
|
1085 |
|
sl@0
|
1086 |
|
sl@0
|
1087 |
|
sl@0
|
1088 |
|
sl@0
|
1089 |
|
sl@0
|
1090 |
|
sl@0
|
1091 |
|
sl@0
|
1092 |
|
sl@0
|
1093 |
|
sl@0
|
1094 |
|
sl@0
|
1095 |
|
sl@0
|
1096 |
|
sl@0
|
1097 |
|
sl@0
|
1098 |
|
sl@0
|
1099 |
|
sl@0
|
1100 |
|
sl@0
|
1101 |
|
sl@0
|
1102 |
|
sl@0
|
1103 |
|
sl@0
|
1104 |
|
sl@0
|
1105 |
|
sl@0
|
1106 |
|
sl@0
|
1107 |
|
sl@0
|
1108 |
|
sl@0
|
1109 |
|
sl@0
|
1110 |
|
sl@0
|
1111 |
|
sl@0
|
1112 |
|
sl@0
|
1113 |
|