sl@0
|
1 |
/*
|
sl@0
|
2 |
* tclWinTime.c --
|
sl@0
|
3 |
*
|
sl@0
|
4 |
* Contains Windows specific versions of Tcl functions that
|
sl@0
|
5 |
* obtain time values from the operating system.
|
sl@0
|
6 |
*
|
sl@0
|
7 |
* Copyright 1995-1998 by Sun Microsystems, Inc.
|
sl@0
|
8 |
*
|
sl@0
|
9 |
* See the file "license.terms" for information on usage and redistribution
|
sl@0
|
10 |
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
|
sl@0
|
11 |
*
|
sl@0
|
12 |
* RCS: @(#) $Id: tclWinTime.c,v 1.14.2.11 2007/04/21 19:52:15 kennykb Exp $
|
sl@0
|
13 |
*/
|
sl@0
|
14 |
|
sl@0
|
15 |
#include "tclWinInt.h"
|
sl@0
|
16 |
|
sl@0
|
17 |
#define SECSPERDAY (60L * 60L * 24L)
|
sl@0
|
18 |
#define SECSPERYEAR (SECSPERDAY * 365L)
|
sl@0
|
19 |
#define SECSPER4YEAR (SECSPERYEAR * 4L + SECSPERDAY)
|
sl@0
|
20 |
|
sl@0
|
21 |
/*
|
sl@0
|
22 |
* Number of samples over which to estimate the performance counter
|
sl@0
|
23 |
*/
|
sl@0
|
24 |
#define SAMPLES 64
|
sl@0
|
25 |
|
sl@0
|
26 |
/*
|
sl@0
|
27 |
* The following arrays contain the day of year for the last day of
|
sl@0
|
28 |
* each month, where index 1 is January.
|
sl@0
|
29 |
*/
|
sl@0
|
30 |
|
sl@0
|
31 |
static int normalDays[] = {
|
sl@0
|
32 |
-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364
|
sl@0
|
33 |
};
|
sl@0
|
34 |
|
sl@0
|
35 |
static int leapDays[] = {
|
sl@0
|
36 |
-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365
|
sl@0
|
37 |
};
|
sl@0
|
38 |
|
sl@0
|
39 |
typedef struct ThreadSpecificData {
|
sl@0
|
40 |
char tzName[64]; /* Time zone name */
|
sl@0
|
41 |
struct tm tm; /* time information */
|
sl@0
|
42 |
} ThreadSpecificData;
|
sl@0
|
43 |
static Tcl_ThreadDataKey dataKey;
|
sl@0
|
44 |
|
sl@0
|
45 |
/*
|
sl@0
|
46 |
* Data for managing high-resolution timers.
|
sl@0
|
47 |
*/
|
sl@0
|
48 |
|
sl@0
|
49 |
typedef struct TimeInfo {
|
sl@0
|
50 |
|
sl@0
|
51 |
CRITICAL_SECTION cs; /* Mutex guarding this structure */
|
sl@0
|
52 |
|
sl@0
|
53 |
int initialized; /* Flag == 1 if this structure is
|
sl@0
|
54 |
* initialized. */
|
sl@0
|
55 |
|
sl@0
|
56 |
int perfCounterAvailable; /* Flag == 1 if the hardware has a
|
sl@0
|
57 |
* performance counter */
|
sl@0
|
58 |
|
sl@0
|
59 |
HANDLE calibrationThread; /* Handle to the thread that keeps the
|
sl@0
|
60 |
* virtual clock calibrated. */
|
sl@0
|
61 |
|
sl@0
|
62 |
HANDLE readyEvent; /* System event used to
|
sl@0
|
63 |
* trigger the requesting thread
|
sl@0
|
64 |
* when the clock calibration procedure
|
sl@0
|
65 |
* is initialized for the first time */
|
sl@0
|
66 |
|
sl@0
|
67 |
HANDLE exitEvent; /* Event to signal out of an exit handler
|
sl@0
|
68 |
* to tell the calibration loop to
|
sl@0
|
69 |
* terminate */
|
sl@0
|
70 |
|
sl@0
|
71 |
LARGE_INTEGER nominalFreq; /* Nominal frequency of the system
|
sl@0
|
72 |
* performance counter, that is, the value
|
sl@0
|
73 |
* returned from QueryPerformanceFrequency. */
|
sl@0
|
74 |
|
sl@0
|
75 |
/*
|
sl@0
|
76 |
* The following values are used for calculating virtual time.
|
sl@0
|
77 |
* Virtual time is always equal to:
|
sl@0
|
78 |
* lastFileTime + (current perf counter - lastCounter)
|
sl@0
|
79 |
* * 10000000 / curCounterFreq
|
sl@0
|
80 |
* and lastFileTime and lastCounter are updated any time that
|
sl@0
|
81 |
* virtual time is returned to a caller.
|
sl@0
|
82 |
*/
|
sl@0
|
83 |
|
sl@0
|
84 |
ULARGE_INTEGER fileTimeLastCall;
|
sl@0
|
85 |
LARGE_INTEGER perfCounterLastCall;
|
sl@0
|
86 |
LARGE_INTEGER curCounterFreq;
|
sl@0
|
87 |
|
sl@0
|
88 |
/*
|
sl@0
|
89 |
* Data used in developing the estimate of performance counter
|
sl@0
|
90 |
* frequency
|
sl@0
|
91 |
*/
|
sl@0
|
92 |
Tcl_WideUInt fileTimeSample[SAMPLES];
|
sl@0
|
93 |
/* Last 64 samples of system time */
|
sl@0
|
94 |
Tcl_WideInt perfCounterSample[SAMPLES];
|
sl@0
|
95 |
/* Last 64 samples of performance counter */
|
sl@0
|
96 |
int sampleNo; /* Current sample number */
|
sl@0
|
97 |
|
sl@0
|
98 |
|
sl@0
|
99 |
} TimeInfo;
|
sl@0
|
100 |
|
sl@0
|
101 |
static TimeInfo timeInfo = {
|
sl@0
|
102 |
{ NULL },
|
sl@0
|
103 |
0,
|
sl@0
|
104 |
0,
|
sl@0
|
105 |
(HANDLE) NULL,
|
sl@0
|
106 |
(HANDLE) NULL,
|
sl@0
|
107 |
(HANDLE) NULL,
|
sl@0
|
108 |
#ifdef HAVE_CAST_TO_UNION
|
sl@0
|
109 |
(LARGE_INTEGER) (Tcl_WideInt) 0,
|
sl@0
|
110 |
(ULARGE_INTEGER) (DWORDLONG) 0,
|
sl@0
|
111 |
(LARGE_INTEGER) (Tcl_WideInt) 0,
|
sl@0
|
112 |
(LARGE_INTEGER) (Tcl_WideInt) 0,
|
sl@0
|
113 |
#else
|
sl@0
|
114 |
0,
|
sl@0
|
115 |
0,
|
sl@0
|
116 |
0,
|
sl@0
|
117 |
0,
|
sl@0
|
118 |
#endif
|
sl@0
|
119 |
{ 0 },
|
sl@0
|
120 |
{ 0 },
|
sl@0
|
121 |
0
|
sl@0
|
122 |
};
|
sl@0
|
123 |
|
sl@0
|
124 |
CONST static FILETIME posixEpoch = { 0xD53E8000, 0x019DB1DE };
|
sl@0
|
125 |
|
sl@0
|
126 |
/*
|
sl@0
|
127 |
* Declarations for functions defined later in this file.
|
sl@0
|
128 |
*/
|
sl@0
|
129 |
|
sl@0
|
130 |
static struct tm * ComputeGMT _ANSI_ARGS_((const time_t *tp));
|
sl@0
|
131 |
static void StopCalibration _ANSI_ARGS_(( ClientData ));
|
sl@0
|
132 |
static DWORD WINAPI CalibrationThread _ANSI_ARGS_(( LPVOID arg ));
|
sl@0
|
133 |
static void UpdateTimeEachSecond _ANSI_ARGS_(( void ));
|
sl@0
|
134 |
static void ResetCounterSamples _ANSI_ARGS_((
|
sl@0
|
135 |
Tcl_WideUInt fileTime,
|
sl@0
|
136 |
Tcl_WideInt perfCounter,
|
sl@0
|
137 |
Tcl_WideInt perfFreq
|
sl@0
|
138 |
));
|
sl@0
|
139 |
static Tcl_WideInt AccumulateSample _ANSI_ARGS_((
|
sl@0
|
140 |
Tcl_WideInt perfCounter,
|
sl@0
|
141 |
Tcl_WideUInt fileTime
|
sl@0
|
142 |
));
|
sl@0
|
143 |
|
sl@0
|
144 |
/*
|
sl@0
|
145 |
*----------------------------------------------------------------------
|
sl@0
|
146 |
*
|
sl@0
|
147 |
* TclpGetSeconds --
|
sl@0
|
148 |
*
|
sl@0
|
149 |
* This procedure returns the number of seconds from the epoch.
|
sl@0
|
150 |
* On most Unix systems the epoch is Midnight Jan 1, 1970 GMT.
|
sl@0
|
151 |
*
|
sl@0
|
152 |
* Results:
|
sl@0
|
153 |
* Number of seconds from the epoch.
|
sl@0
|
154 |
*
|
sl@0
|
155 |
* Side effects:
|
sl@0
|
156 |
* None.
|
sl@0
|
157 |
*
|
sl@0
|
158 |
*----------------------------------------------------------------------
|
sl@0
|
159 |
*/
|
sl@0
|
160 |
|
sl@0
|
161 |
unsigned long
|
sl@0
|
162 |
TclpGetSeconds()
|
sl@0
|
163 |
{
|
sl@0
|
164 |
Tcl_Time t;
|
sl@0
|
165 |
Tcl_GetTime( &t );
|
sl@0
|
166 |
return t.sec;
|
sl@0
|
167 |
}
|
sl@0
|
168 |
|
sl@0
|
169 |
/*
|
sl@0
|
170 |
*----------------------------------------------------------------------
|
sl@0
|
171 |
*
|
sl@0
|
172 |
* TclpGetClicks --
|
sl@0
|
173 |
*
|
sl@0
|
174 |
* This procedure returns a value that represents the highest
|
sl@0
|
175 |
* resolution clock available on the system. There are no
|
sl@0
|
176 |
* guarantees on what the resolution will be. In Tcl we will
|
sl@0
|
177 |
* call this value a "click". The start time is also system
|
sl@0
|
178 |
* dependant.
|
sl@0
|
179 |
*
|
sl@0
|
180 |
* Results:
|
sl@0
|
181 |
* Number of clicks from some start time.
|
sl@0
|
182 |
*
|
sl@0
|
183 |
* Side effects:
|
sl@0
|
184 |
* None.
|
sl@0
|
185 |
*
|
sl@0
|
186 |
*----------------------------------------------------------------------
|
sl@0
|
187 |
*/
|
sl@0
|
188 |
|
sl@0
|
189 |
unsigned long
|
sl@0
|
190 |
TclpGetClicks()
|
sl@0
|
191 |
{
|
sl@0
|
192 |
/*
|
sl@0
|
193 |
* Use the Tcl_GetTime abstraction to get the time in microseconds,
|
sl@0
|
194 |
* as nearly as we can, and return it.
|
sl@0
|
195 |
*/
|
sl@0
|
196 |
|
sl@0
|
197 |
Tcl_Time now; /* Current Tcl time */
|
sl@0
|
198 |
unsigned long retval; /* Value to return */
|
sl@0
|
199 |
|
sl@0
|
200 |
Tcl_GetTime( &now );
|
sl@0
|
201 |
retval = ( now.sec * 1000000 ) + now.usec;
|
sl@0
|
202 |
return retval;
|
sl@0
|
203 |
|
sl@0
|
204 |
}
|
sl@0
|
205 |
|
sl@0
|
206 |
/*
|
sl@0
|
207 |
*----------------------------------------------------------------------
|
sl@0
|
208 |
*
|
sl@0
|
209 |
* TclpGetTimeZone --
|
sl@0
|
210 |
*
|
sl@0
|
211 |
* Determines the current timezone. The method varies wildly
|
sl@0
|
212 |
* between different Platform implementations, so its hidden in
|
sl@0
|
213 |
* this function.
|
sl@0
|
214 |
*
|
sl@0
|
215 |
* Results:
|
sl@0
|
216 |
* Minutes west of GMT.
|
sl@0
|
217 |
*
|
sl@0
|
218 |
* Side effects:
|
sl@0
|
219 |
* None.
|
sl@0
|
220 |
*
|
sl@0
|
221 |
*----------------------------------------------------------------------
|
sl@0
|
222 |
*/
|
sl@0
|
223 |
|
sl@0
|
224 |
int
|
sl@0
|
225 |
TclpGetTimeZone (currentTime)
|
sl@0
|
226 |
Tcl_WideInt currentTime;
|
sl@0
|
227 |
{
|
sl@0
|
228 |
int timeZone;
|
sl@0
|
229 |
|
sl@0
|
230 |
tzset();
|
sl@0
|
231 |
timeZone = _timezone / 60;
|
sl@0
|
232 |
|
sl@0
|
233 |
return timeZone;
|
sl@0
|
234 |
}
|
sl@0
|
235 |
|
sl@0
|
236 |
/*
|
sl@0
|
237 |
*----------------------------------------------------------------------
|
sl@0
|
238 |
*
|
sl@0
|
239 |
* Tcl_GetTime --
|
sl@0
|
240 |
*
|
sl@0
|
241 |
* Gets the current system time in seconds and microseconds
|
sl@0
|
242 |
* since the beginning of the epoch: 00:00 UCT, January 1, 1970.
|
sl@0
|
243 |
*
|
sl@0
|
244 |
* Results:
|
sl@0
|
245 |
* Returns the current time in timePtr.
|
sl@0
|
246 |
*
|
sl@0
|
247 |
* Side effects:
|
sl@0
|
248 |
* On the first call, initializes a set of static variables to
|
sl@0
|
249 |
* keep track of the base value of the performance counter, the
|
sl@0
|
250 |
* corresponding wall clock (obtained through ftime) and the
|
sl@0
|
251 |
* frequency of the performance counter. Also spins a thread
|
sl@0
|
252 |
* whose function is to wake up periodically and monitor these
|
sl@0
|
253 |
* values, adjusting them as necessary to correct for drift
|
sl@0
|
254 |
* in the performance counter's oscillator.
|
sl@0
|
255 |
*
|
sl@0
|
256 |
*----------------------------------------------------------------------
|
sl@0
|
257 |
*/
|
sl@0
|
258 |
|
sl@0
|
259 |
void
|
sl@0
|
260 |
Tcl_GetTime(timePtr)
|
sl@0
|
261 |
Tcl_Time *timePtr; /* Location to store time information. */
|
sl@0
|
262 |
{
|
sl@0
|
263 |
struct timeb t;
|
sl@0
|
264 |
|
sl@0
|
265 |
int useFtime = 1; /* Flag == TRUE if we need to fall back
|
sl@0
|
266 |
* on ftime rather than using the perf
|
sl@0
|
267 |
* counter */
|
sl@0
|
268 |
|
sl@0
|
269 |
/* Initialize static storage on the first trip through. */
|
sl@0
|
270 |
|
sl@0
|
271 |
/*
|
sl@0
|
272 |
* Note: Outer check for 'initialized' is a performance win
|
sl@0
|
273 |
* since it avoids an extra mutex lock in the common case.
|
sl@0
|
274 |
*/
|
sl@0
|
275 |
|
sl@0
|
276 |
if ( !timeInfo.initialized ) {
|
sl@0
|
277 |
TclpInitLock();
|
sl@0
|
278 |
if ( !timeInfo.initialized ) {
|
sl@0
|
279 |
timeInfo.perfCounterAvailable
|
sl@0
|
280 |
= QueryPerformanceFrequency( &timeInfo.nominalFreq );
|
sl@0
|
281 |
|
sl@0
|
282 |
/*
|
sl@0
|
283 |
* Some hardware abstraction layers use the CPU clock
|
sl@0
|
284 |
* in place of the real-time clock as a performance counter
|
sl@0
|
285 |
* reference. This results in:
|
sl@0
|
286 |
* - inconsistent results among the processors on
|
sl@0
|
287 |
* multi-processor systems.
|
sl@0
|
288 |
* - unpredictable changes in performance counter frequency
|
sl@0
|
289 |
* on "gearshift" processors such as Transmeta and
|
sl@0
|
290 |
* SpeedStep.
|
sl@0
|
291 |
*
|
sl@0
|
292 |
* There seems to be no way to test whether the performance
|
sl@0
|
293 |
* counter is reliable, but a useful heuristic is that
|
sl@0
|
294 |
* if its frequency is 1.193182 MHz or 3.579545 MHz, it's
|
sl@0
|
295 |
* derived from a colorburst crystal and is therefore
|
sl@0
|
296 |
* the RTC rather than the TSC.
|
sl@0
|
297 |
*
|
sl@0
|
298 |
* A sloppier but serviceable heuristic is that the RTC crystal
|
sl@0
|
299 |
* is normally less than 15 MHz while the TSC crystal is
|
sl@0
|
300 |
* virtually assured to be greater than 100 MHz. Since Win98SE
|
sl@0
|
301 |
* appears to fiddle with the definition of the perf counter
|
sl@0
|
302 |
* frequency (perhaps in an attempt to calibrate the clock?)
|
sl@0
|
303 |
* we use the latter rule rather than an exact match.
|
sl@0
|
304 |
*/
|
sl@0
|
305 |
|
sl@0
|
306 |
if ( timeInfo.perfCounterAvailable
|
sl@0
|
307 |
/* The following lines would do an exact match on
|
sl@0
|
308 |
* crystal frequency:
|
sl@0
|
309 |
* && timeInfo.nominalFreq.QuadPart != (Tcl_WideInt) 1193182
|
sl@0
|
310 |
* && timeInfo.nominalFreq.QuadPart != (Tcl_WideInt) 3579545
|
sl@0
|
311 |
*/
|
sl@0
|
312 |
&& timeInfo.nominalFreq.QuadPart > (Tcl_WideInt) 15000000 ) {
|
sl@0
|
313 |
|
sl@0
|
314 |
/*
|
sl@0
|
315 |
* As an exception, if every logical processor on the system
|
sl@0
|
316 |
* is on the same chip, we use the performance counter anyway,
|
sl@0
|
317 |
* presuming that everyone's TSC is locked to the same
|
sl@0
|
318 |
* oscillator.
|
sl@0
|
319 |
*/
|
sl@0
|
320 |
|
sl@0
|
321 |
SYSTEM_INFO systemInfo;
|
sl@0
|
322 |
unsigned int regs[4];
|
sl@0
|
323 |
GetSystemInfo( &systemInfo );
|
sl@0
|
324 |
if ( TclWinCPUID( 0, regs ) == TCL_OK
|
sl@0
|
325 |
|
sl@0
|
326 |
&& regs[1] == 0x756e6547 /* "Genu" */
|
sl@0
|
327 |
&& regs[3] == 0x49656e69 /* "ineI" */
|
sl@0
|
328 |
&& regs[2] == 0x6c65746e /* "ntel" */
|
sl@0
|
329 |
|
sl@0
|
330 |
&& TclWinCPUID( 1, regs ) == TCL_OK
|
sl@0
|
331 |
|
sl@0
|
332 |
&& ( (regs[0] & 0x00000F00) == 0x00000F00 /* Pentium 4 */
|
sl@0
|
333 |
|| ( (regs[0] & 0x00F00000) /* Extended family */
|
sl@0
|
334 |
&& (regs[3] & 0x10000000) ) ) /* Hyperthread */
|
sl@0
|
335 |
&& ( ( ( regs[1] & 0x00FF0000 ) >> 16 ) /* CPU count */
|
sl@0
|
336 |
== systemInfo.dwNumberOfProcessors )
|
sl@0
|
337 |
|
sl@0
|
338 |
) {
|
sl@0
|
339 |
timeInfo.perfCounterAvailable = TRUE;
|
sl@0
|
340 |
} else {
|
sl@0
|
341 |
timeInfo.perfCounterAvailable = FALSE;
|
sl@0
|
342 |
}
|
sl@0
|
343 |
|
sl@0
|
344 |
}
|
sl@0
|
345 |
|
sl@0
|
346 |
/*
|
sl@0
|
347 |
* If the performance counter is available, start a thread to
|
sl@0
|
348 |
* calibrate it.
|
sl@0
|
349 |
*/
|
sl@0
|
350 |
|
sl@0
|
351 |
if ( timeInfo.perfCounterAvailable ) {
|
sl@0
|
352 |
DWORD id;
|
sl@0
|
353 |
InitializeCriticalSection( &timeInfo.cs );
|
sl@0
|
354 |
timeInfo.readyEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
|
sl@0
|
355 |
timeInfo.exitEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
|
sl@0
|
356 |
timeInfo.calibrationThread = CreateThread( NULL,
|
sl@0
|
357 |
256,
|
sl@0
|
358 |
CalibrationThread,
|
sl@0
|
359 |
(LPVOID) NULL,
|
sl@0
|
360 |
0,
|
sl@0
|
361 |
&id );
|
sl@0
|
362 |
SetThreadPriority( timeInfo.calibrationThread,
|
sl@0
|
363 |
THREAD_PRIORITY_HIGHEST );
|
sl@0
|
364 |
|
sl@0
|
365 |
/*
|
sl@0
|
366 |
* Wait for the thread just launched to start running,
|
sl@0
|
367 |
* and create an exit handler that kills it so that it
|
sl@0
|
368 |
* doesn't outlive unloading tclXX.dll
|
sl@0
|
369 |
*/
|
sl@0
|
370 |
|
sl@0
|
371 |
WaitForSingleObject( timeInfo.readyEvent, INFINITE );
|
sl@0
|
372 |
CloseHandle( timeInfo.readyEvent );
|
sl@0
|
373 |
Tcl_CreateExitHandler( StopCalibration, (ClientData) NULL );
|
sl@0
|
374 |
}
|
sl@0
|
375 |
timeInfo.initialized = TRUE;
|
sl@0
|
376 |
}
|
sl@0
|
377 |
TclpInitUnlock();
|
sl@0
|
378 |
}
|
sl@0
|
379 |
|
sl@0
|
380 |
if ( timeInfo.perfCounterAvailable ) {
|
sl@0
|
381 |
/*
|
sl@0
|
382 |
* Query the performance counter and use it to calculate the
|
sl@0
|
383 |
* current time.
|
sl@0
|
384 |
*/
|
sl@0
|
385 |
|
sl@0
|
386 |
LARGE_INTEGER curCounter;
|
sl@0
|
387 |
/* Current performance counter */
|
sl@0
|
388 |
|
sl@0
|
389 |
Tcl_WideInt curFileTime;
|
sl@0
|
390 |
/* Current estimated time, expressed
|
sl@0
|
391 |
* as 100-ns ticks since the Windows epoch */
|
sl@0
|
392 |
|
sl@0
|
393 |
static LARGE_INTEGER posixEpoch;
|
sl@0
|
394 |
/* Posix epoch expressed as 100-ns ticks
|
sl@0
|
395 |
* since the windows epoch */
|
sl@0
|
396 |
|
sl@0
|
397 |
Tcl_WideInt usecSincePosixEpoch;
|
sl@0
|
398 |
/* Current microseconds since Posix epoch */
|
sl@0
|
399 |
|
sl@0
|
400 |
posixEpoch.LowPart = 0xD53E8000;
|
sl@0
|
401 |
posixEpoch.HighPart = 0x019DB1DE;
|
sl@0
|
402 |
|
sl@0
|
403 |
EnterCriticalSection( &timeInfo.cs );
|
sl@0
|
404 |
|
sl@0
|
405 |
QueryPerformanceCounter( &curCounter );
|
sl@0
|
406 |
|
sl@0
|
407 |
/*
|
sl@0
|
408 |
* If it appears to be more than 1.1 seconds since the last trip
|
sl@0
|
409 |
* through the calibration loop, the performance counter may
|
sl@0
|
410 |
* have jumped forward. (See MSDN Knowledge Base article
|
sl@0
|
411 |
* Q274323 for a description of the hardware problem that makes
|
sl@0
|
412 |
* this test necessary.) If the counter jumps, we don't want
|
sl@0
|
413 |
* to use it directly. Instead, we must return system time.
|
sl@0
|
414 |
* Eventually, the calibration loop should recover.
|
sl@0
|
415 |
*/
|
sl@0
|
416 |
if ( curCounter.QuadPart - timeInfo.perfCounterLastCall.QuadPart
|
sl@0
|
417 |
< 11 * timeInfo.curCounterFreq.QuadPart / 10 ) {
|
sl@0
|
418 |
|
sl@0
|
419 |
curFileTime = timeInfo.fileTimeLastCall.QuadPart
|
sl@0
|
420 |
+ ( ( curCounter.QuadPart - timeInfo.perfCounterLastCall.QuadPart )
|
sl@0
|
421 |
* 10000000 / timeInfo.curCounterFreq.QuadPart );
|
sl@0
|
422 |
timeInfo.fileTimeLastCall.QuadPart = curFileTime;
|
sl@0
|
423 |
timeInfo.perfCounterLastCall.QuadPart = curCounter.QuadPart;
|
sl@0
|
424 |
usecSincePosixEpoch = ( curFileTime - posixEpoch.QuadPart ) / 10;
|
sl@0
|
425 |
timePtr->sec = (long) ( usecSincePosixEpoch / 1000000 );
|
sl@0
|
426 |
timePtr->usec = (unsigned long ) ( usecSincePosixEpoch % 1000000 );
|
sl@0
|
427 |
useFtime = 0;
|
sl@0
|
428 |
}
|
sl@0
|
429 |
|
sl@0
|
430 |
LeaveCriticalSection( &timeInfo.cs );
|
sl@0
|
431 |
}
|
sl@0
|
432 |
|
sl@0
|
433 |
if ( useFtime ) {
|
sl@0
|
434 |
/* High resolution timer is not available. Just use ftime */
|
sl@0
|
435 |
|
sl@0
|
436 |
ftime(&t);
|
sl@0
|
437 |
timePtr->sec = (long)t.time;
|
sl@0
|
438 |
timePtr->usec = t.millitm * 1000;
|
sl@0
|
439 |
}
|
sl@0
|
440 |
}
|
sl@0
|
441 |
|
sl@0
|
442 |
/*
|
sl@0
|
443 |
*----------------------------------------------------------------------
|
sl@0
|
444 |
*
|
sl@0
|
445 |
* StopCalibration --
|
sl@0
|
446 |
*
|
sl@0
|
447 |
* Turns off the calibration thread in preparation for exiting the
|
sl@0
|
448 |
* process.
|
sl@0
|
449 |
*
|
sl@0
|
450 |
* Results:
|
sl@0
|
451 |
* None.
|
sl@0
|
452 |
*
|
sl@0
|
453 |
* Side effects:
|
sl@0
|
454 |
* Sets the 'exitEvent' event in the 'timeInfo' structure to ask
|
sl@0
|
455 |
* the thread in question to exit, and waits for it to do so.
|
sl@0
|
456 |
*
|
sl@0
|
457 |
*----------------------------------------------------------------------
|
sl@0
|
458 |
*/
|
sl@0
|
459 |
|
sl@0
|
460 |
static void
|
sl@0
|
461 |
StopCalibration( ClientData unused )
|
sl@0
|
462 |
/* Client data is unused */
|
sl@0
|
463 |
{
|
sl@0
|
464 |
SetEvent( timeInfo.exitEvent );
|
sl@0
|
465 |
WaitForSingleObject( timeInfo.calibrationThread, INFINITE );
|
sl@0
|
466 |
CloseHandle( timeInfo.exitEvent );
|
sl@0
|
467 |
CloseHandle( timeInfo.calibrationThread );
|
sl@0
|
468 |
}
|
sl@0
|
469 |
|
sl@0
|
470 |
/*
|
sl@0
|
471 |
*----------------------------------------------------------------------
|
sl@0
|
472 |
*
|
sl@0
|
473 |
* TclpGetTZName --
|
sl@0
|
474 |
*
|
sl@0
|
475 |
* Gets the current timezone string.
|
sl@0
|
476 |
*
|
sl@0
|
477 |
* Results:
|
sl@0
|
478 |
* Returns a pointer to a static string, or NULL on failure.
|
sl@0
|
479 |
*
|
sl@0
|
480 |
* Side effects:
|
sl@0
|
481 |
* None.
|
sl@0
|
482 |
*
|
sl@0
|
483 |
*----------------------------------------------------------------------
|
sl@0
|
484 |
*/
|
sl@0
|
485 |
|
sl@0
|
486 |
char *
|
sl@0
|
487 |
TclpGetTZName(int dst)
|
sl@0
|
488 |
{
|
sl@0
|
489 |
size_t len;
|
sl@0
|
490 |
char *zone, *p;
|
sl@0
|
491 |
TIME_ZONE_INFORMATION tz;
|
sl@0
|
492 |
Tcl_Encoding encoding;
|
sl@0
|
493 |
ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey);
|
sl@0
|
494 |
char *name = tsdPtr->tzName;
|
sl@0
|
495 |
|
sl@0
|
496 |
/*
|
sl@0
|
497 |
* tzset() under Borland doesn't seem to set up tzname[] at all.
|
sl@0
|
498 |
* tzset() under MSVC has the following weird observed behavior:
|
sl@0
|
499 |
* First time we call "clock format [clock seconds] -format %Z -gmt 1"
|
sl@0
|
500 |
* we get "GMT", but on all subsequent calls we get the current time
|
sl@0
|
501 |
* zone string, even though env(TZ) is GMT and the variable _timezone
|
sl@0
|
502 |
* is 0.
|
sl@0
|
503 |
*/
|
sl@0
|
504 |
|
sl@0
|
505 |
name[0] = '\0';
|
sl@0
|
506 |
|
sl@0
|
507 |
zone = getenv("TZ");
|
sl@0
|
508 |
if (zone != NULL) {
|
sl@0
|
509 |
/*
|
sl@0
|
510 |
* TZ is of form "NST-4:30NDT", where "NST" would be the
|
sl@0
|
511 |
* name of the standard time zone for this area, "-4:30" is
|
sl@0
|
512 |
* the offset from GMT in hours, and "NDT is the name of
|
sl@0
|
513 |
* the daylight savings time zone in this area. The offset
|
sl@0
|
514 |
* and DST strings are optional.
|
sl@0
|
515 |
*/
|
sl@0
|
516 |
|
sl@0
|
517 |
len = strlen(zone);
|
sl@0
|
518 |
if (len > 3) {
|
sl@0
|
519 |
len = 3;
|
sl@0
|
520 |
}
|
sl@0
|
521 |
if (dst != 0) {
|
sl@0
|
522 |
/*
|
sl@0
|
523 |
* Skip the offset string and get the DST string.
|
sl@0
|
524 |
*/
|
sl@0
|
525 |
|
sl@0
|
526 |
p = zone + len;
|
sl@0
|
527 |
p += strspn(p, "+-:0123456789");
|
sl@0
|
528 |
if (*p != '\0') {
|
sl@0
|
529 |
zone = p;
|
sl@0
|
530 |
len = strlen(zone);
|
sl@0
|
531 |
if (len > 3) {
|
sl@0
|
532 |
len = 3;
|
sl@0
|
533 |
}
|
sl@0
|
534 |
}
|
sl@0
|
535 |
}
|
sl@0
|
536 |
Tcl_ExternalToUtf(NULL, NULL, zone, (int)len, 0, NULL, name,
|
sl@0
|
537 |
sizeof(tsdPtr->tzName), NULL, NULL, NULL);
|
sl@0
|
538 |
}
|
sl@0
|
539 |
if (name[0] == '\0') {
|
sl@0
|
540 |
if (GetTimeZoneInformation(&tz) == TIME_ZONE_ID_UNKNOWN) {
|
sl@0
|
541 |
/*
|
sl@0
|
542 |
* MSDN: On NT this is returned if DST is not used in
|
sl@0
|
543 |
* the current TZ
|
sl@0
|
544 |
*/
|
sl@0
|
545 |
dst = 0;
|
sl@0
|
546 |
}
|
sl@0
|
547 |
encoding = Tcl_GetEncoding(NULL, "unicode");
|
sl@0
|
548 |
Tcl_ExternalToUtf(NULL, encoding,
|
sl@0
|
549 |
(char *) ((dst) ? tz.DaylightName : tz.StandardName), -1,
|
sl@0
|
550 |
0, NULL, name, sizeof(tsdPtr->tzName), NULL, NULL, NULL);
|
sl@0
|
551 |
Tcl_FreeEncoding(encoding);
|
sl@0
|
552 |
}
|
sl@0
|
553 |
return name;
|
sl@0
|
554 |
}
|
sl@0
|
555 |
|
sl@0
|
556 |
/*
|
sl@0
|
557 |
*----------------------------------------------------------------------
|
sl@0
|
558 |
*
|
sl@0
|
559 |
* TclpGetDate --
|
sl@0
|
560 |
*
|
sl@0
|
561 |
* This function converts between seconds and struct tm. If
|
sl@0
|
562 |
* useGMT is true, then the returned date will be in Greenwich
|
sl@0
|
563 |
* Mean Time (GMT). Otherwise, it will be in the local time zone.
|
sl@0
|
564 |
*
|
sl@0
|
565 |
* Results:
|
sl@0
|
566 |
* Returns a static tm structure.
|
sl@0
|
567 |
*
|
sl@0
|
568 |
* Side effects:
|
sl@0
|
569 |
* None.
|
sl@0
|
570 |
*
|
sl@0
|
571 |
*----------------------------------------------------------------------
|
sl@0
|
572 |
*/
|
sl@0
|
573 |
|
sl@0
|
574 |
struct tm *
|
sl@0
|
575 |
TclpGetDate(t, useGMT)
|
sl@0
|
576 |
TclpTime_t t;
|
sl@0
|
577 |
int useGMT;
|
sl@0
|
578 |
{
|
sl@0
|
579 |
const time_t *tp = (const time_t *) t;
|
sl@0
|
580 |
struct tm *tmPtr;
|
sl@0
|
581 |
time_t time;
|
sl@0
|
582 |
|
sl@0
|
583 |
if (!useGMT) {
|
sl@0
|
584 |
tzset();
|
sl@0
|
585 |
|
sl@0
|
586 |
/*
|
sl@0
|
587 |
* If we are in the valid range, let the C run-time library
|
sl@0
|
588 |
* handle it. Otherwise we need to fake it. Note that this
|
sl@0
|
589 |
* algorithm ignores daylight savings time before the epoch.
|
sl@0
|
590 |
*/
|
sl@0
|
591 |
|
sl@0
|
592 |
if (*tp >= 0) {
|
sl@0
|
593 |
return localtime(tp);
|
sl@0
|
594 |
}
|
sl@0
|
595 |
|
sl@0
|
596 |
time = *tp - _timezone;
|
sl@0
|
597 |
|
sl@0
|
598 |
/*
|
sl@0
|
599 |
* If we aren't near to overflowing the long, just add the bias and
|
sl@0
|
600 |
* use the normal calculation. Otherwise we will need to adjust
|
sl@0
|
601 |
* the result at the end.
|
sl@0
|
602 |
*/
|
sl@0
|
603 |
|
sl@0
|
604 |
if (*tp < (LONG_MAX - 2 * SECSPERDAY)
|
sl@0
|
605 |
&& *tp > (LONG_MIN + 2 * SECSPERDAY)) {
|
sl@0
|
606 |
tmPtr = ComputeGMT(&time);
|
sl@0
|
607 |
} else {
|
sl@0
|
608 |
tmPtr = ComputeGMT(tp);
|
sl@0
|
609 |
|
sl@0
|
610 |
tzset();
|
sl@0
|
611 |
|
sl@0
|
612 |
/*
|
sl@0
|
613 |
* Add the bias directly to the tm structure to avoid overflow.
|
sl@0
|
614 |
* Propagate seconds overflow into minutes, hours and days.
|
sl@0
|
615 |
*/
|
sl@0
|
616 |
|
sl@0
|
617 |
time = tmPtr->tm_sec - _timezone;
|
sl@0
|
618 |
tmPtr->tm_sec = (int)(time % 60);
|
sl@0
|
619 |
if (tmPtr->tm_sec < 0) {
|
sl@0
|
620 |
tmPtr->tm_sec += 60;
|
sl@0
|
621 |
time -= 60;
|
sl@0
|
622 |
}
|
sl@0
|
623 |
|
sl@0
|
624 |
time = tmPtr->tm_min + time/60;
|
sl@0
|
625 |
tmPtr->tm_min = (int)(time % 60);
|
sl@0
|
626 |
if (tmPtr->tm_min < 0) {
|
sl@0
|
627 |
tmPtr->tm_min += 60;
|
sl@0
|
628 |
time -= 60;
|
sl@0
|
629 |
}
|
sl@0
|
630 |
|
sl@0
|
631 |
time = tmPtr->tm_hour + time/60;
|
sl@0
|
632 |
tmPtr->tm_hour = (int)(time % 24);
|
sl@0
|
633 |
if (tmPtr->tm_hour < 0) {
|
sl@0
|
634 |
tmPtr->tm_hour += 24;
|
sl@0
|
635 |
time -= 24;
|
sl@0
|
636 |
}
|
sl@0
|
637 |
|
sl@0
|
638 |
time /= 24;
|
sl@0
|
639 |
tmPtr->tm_mday += (int)time;
|
sl@0
|
640 |
tmPtr->tm_yday += (int)time;
|
sl@0
|
641 |
tmPtr->tm_wday = (tmPtr->tm_wday + (int)time) % 7;
|
sl@0
|
642 |
}
|
sl@0
|
643 |
} else {
|
sl@0
|
644 |
tmPtr = ComputeGMT(tp);
|
sl@0
|
645 |
}
|
sl@0
|
646 |
return tmPtr;
|
sl@0
|
647 |
}
|
sl@0
|
648 |
|
sl@0
|
649 |
/*
|
sl@0
|
650 |
*----------------------------------------------------------------------
|
sl@0
|
651 |
*
|
sl@0
|
652 |
* ComputeGMT --
|
sl@0
|
653 |
*
|
sl@0
|
654 |
* This function computes GMT given the number of seconds since
|
sl@0
|
655 |
* the epoch (midnight Jan 1 1970).
|
sl@0
|
656 |
*
|
sl@0
|
657 |
* Results:
|
sl@0
|
658 |
* Returns a (per thread) statically allocated struct tm.
|
sl@0
|
659 |
*
|
sl@0
|
660 |
* Side effects:
|
sl@0
|
661 |
* Updates the values of the static struct tm.
|
sl@0
|
662 |
*
|
sl@0
|
663 |
*----------------------------------------------------------------------
|
sl@0
|
664 |
*/
|
sl@0
|
665 |
|
sl@0
|
666 |
static struct tm *
|
sl@0
|
667 |
ComputeGMT(tp)
|
sl@0
|
668 |
const time_t *tp;
|
sl@0
|
669 |
{
|
sl@0
|
670 |
struct tm *tmPtr;
|
sl@0
|
671 |
long tmp, rem;
|
sl@0
|
672 |
int isLeap;
|
sl@0
|
673 |
int *days;
|
sl@0
|
674 |
ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey);
|
sl@0
|
675 |
|
sl@0
|
676 |
tmPtr = &tsdPtr->tm;
|
sl@0
|
677 |
|
sl@0
|
678 |
/*
|
sl@0
|
679 |
* Compute the 4 year span containing the specified time.
|
sl@0
|
680 |
*/
|
sl@0
|
681 |
|
sl@0
|
682 |
tmp = (long)(*tp / SECSPER4YEAR);
|
sl@0
|
683 |
rem = (LONG)(*tp % SECSPER4YEAR);
|
sl@0
|
684 |
|
sl@0
|
685 |
/*
|
sl@0
|
686 |
* Correct for weird mod semantics so the remainder is always positive.
|
sl@0
|
687 |
*/
|
sl@0
|
688 |
|
sl@0
|
689 |
if (rem < 0) {
|
sl@0
|
690 |
tmp--;
|
sl@0
|
691 |
rem += SECSPER4YEAR;
|
sl@0
|
692 |
}
|
sl@0
|
693 |
|
sl@0
|
694 |
/*
|
sl@0
|
695 |
* Compute the year after 1900 by taking the 4 year span and adjusting
|
sl@0
|
696 |
* for the remainder. This works because 2000 is a leap year, and
|
sl@0
|
697 |
* 1900/2100 are out of the range.
|
sl@0
|
698 |
*/
|
sl@0
|
699 |
|
sl@0
|
700 |
tmp = (tmp * 4) + 70;
|
sl@0
|
701 |
isLeap = 0;
|
sl@0
|
702 |
if (rem >= SECSPERYEAR) { /* 1971, etc. */
|
sl@0
|
703 |
tmp++;
|
sl@0
|
704 |
rem -= SECSPERYEAR;
|
sl@0
|
705 |
if (rem >= SECSPERYEAR) { /* 1972, etc. */
|
sl@0
|
706 |
tmp++;
|
sl@0
|
707 |
rem -= SECSPERYEAR;
|
sl@0
|
708 |
if (rem >= SECSPERYEAR + SECSPERDAY) { /* 1973, etc. */
|
sl@0
|
709 |
tmp++;
|
sl@0
|
710 |
rem -= SECSPERYEAR + SECSPERDAY;
|
sl@0
|
711 |
} else {
|
sl@0
|
712 |
isLeap = 1;
|
sl@0
|
713 |
}
|
sl@0
|
714 |
}
|
sl@0
|
715 |
}
|
sl@0
|
716 |
tmPtr->tm_year = tmp;
|
sl@0
|
717 |
|
sl@0
|
718 |
/*
|
sl@0
|
719 |
* Compute the day of year and leave the seconds in the current day in
|
sl@0
|
720 |
* the remainder.
|
sl@0
|
721 |
*/
|
sl@0
|
722 |
|
sl@0
|
723 |
tmPtr->tm_yday = rem / SECSPERDAY;
|
sl@0
|
724 |
rem %= SECSPERDAY;
|
sl@0
|
725 |
|
sl@0
|
726 |
/*
|
sl@0
|
727 |
* Compute the time of day.
|
sl@0
|
728 |
*/
|
sl@0
|
729 |
|
sl@0
|
730 |
tmPtr->tm_hour = rem / 3600;
|
sl@0
|
731 |
rem %= 3600;
|
sl@0
|
732 |
tmPtr->tm_min = rem / 60;
|
sl@0
|
733 |
tmPtr->tm_sec = rem % 60;
|
sl@0
|
734 |
|
sl@0
|
735 |
/*
|
sl@0
|
736 |
* Compute the month and day of month.
|
sl@0
|
737 |
*/
|
sl@0
|
738 |
|
sl@0
|
739 |
days = (isLeap) ? leapDays : normalDays;
|
sl@0
|
740 |
for (tmp = 1; days[tmp] < tmPtr->tm_yday; tmp++) {
|
sl@0
|
741 |
}
|
sl@0
|
742 |
tmPtr->tm_mon = --tmp;
|
sl@0
|
743 |
tmPtr->tm_mday = tmPtr->tm_yday - days[tmp];
|
sl@0
|
744 |
|
sl@0
|
745 |
/*
|
sl@0
|
746 |
* Compute day of week. Epoch started on a Thursday.
|
sl@0
|
747 |
*/
|
sl@0
|
748 |
|
sl@0
|
749 |
tmPtr->tm_wday = (long)(*tp / SECSPERDAY) + 4;
|
sl@0
|
750 |
if ((*tp % SECSPERDAY) < 0) {
|
sl@0
|
751 |
tmPtr->tm_wday--;
|
sl@0
|
752 |
}
|
sl@0
|
753 |
tmPtr->tm_wday %= 7;
|
sl@0
|
754 |
if (tmPtr->tm_wday < 0) {
|
sl@0
|
755 |
tmPtr->tm_wday += 7;
|
sl@0
|
756 |
}
|
sl@0
|
757 |
|
sl@0
|
758 |
return tmPtr;
|
sl@0
|
759 |
}
|
sl@0
|
760 |
|
sl@0
|
761 |
/*
|
sl@0
|
762 |
*----------------------------------------------------------------------
|
sl@0
|
763 |
*
|
sl@0
|
764 |
* CalibrationThread --
|
sl@0
|
765 |
*
|
sl@0
|
766 |
* Thread that manages calibration of the hi-resolution time
|
sl@0
|
767 |
* derived from the performance counter, to keep it synchronized
|
sl@0
|
768 |
* with the system clock.
|
sl@0
|
769 |
*
|
sl@0
|
770 |
* Parameters:
|
sl@0
|
771 |
* arg -- Client data from the CreateThread call. This parameter
|
sl@0
|
772 |
* points to the static TimeInfo structure.
|
sl@0
|
773 |
*
|
sl@0
|
774 |
* Return value:
|
sl@0
|
775 |
* None. This thread embeds an infinite loop.
|
sl@0
|
776 |
*
|
sl@0
|
777 |
* Side effects:
|
sl@0
|
778 |
* At an interval of 1 s, this thread performs virtual time discipline.
|
sl@0
|
779 |
*
|
sl@0
|
780 |
* Note: When this thread is entered, TclpInitLock has been called
|
sl@0
|
781 |
* to safeguard the static storage. There is therefore no synchronization
|
sl@0
|
782 |
* in the body of this procedure.
|
sl@0
|
783 |
*
|
sl@0
|
784 |
*----------------------------------------------------------------------
|
sl@0
|
785 |
*/
|
sl@0
|
786 |
|
sl@0
|
787 |
static DWORD WINAPI
|
sl@0
|
788 |
CalibrationThread( LPVOID arg )
|
sl@0
|
789 |
{
|
sl@0
|
790 |
FILETIME curFileTime;
|
sl@0
|
791 |
DWORD waitResult;
|
sl@0
|
792 |
|
sl@0
|
793 |
/* Get initial system time and performance counter */
|
sl@0
|
794 |
|
sl@0
|
795 |
GetSystemTimeAsFileTime( &curFileTime );
|
sl@0
|
796 |
QueryPerformanceCounter( &timeInfo.perfCounterLastCall );
|
sl@0
|
797 |
QueryPerformanceFrequency( &timeInfo.curCounterFreq );
|
sl@0
|
798 |
timeInfo.fileTimeLastCall.LowPart = curFileTime.dwLowDateTime;
|
sl@0
|
799 |
timeInfo.fileTimeLastCall.HighPart = curFileTime.dwHighDateTime;
|
sl@0
|
800 |
|
sl@0
|
801 |
ResetCounterSamples( timeInfo.fileTimeLastCall.QuadPart,
|
sl@0
|
802 |
timeInfo.perfCounterLastCall.QuadPart,
|
sl@0
|
803 |
timeInfo.curCounterFreq.QuadPart );
|
sl@0
|
804 |
|
sl@0
|
805 |
/*
|
sl@0
|
806 |
* Wake up the calling thread. When it wakes up, it will release the
|
sl@0
|
807 |
* initialization lock.
|
sl@0
|
808 |
*/
|
sl@0
|
809 |
|
sl@0
|
810 |
SetEvent( timeInfo.readyEvent );
|
sl@0
|
811 |
|
sl@0
|
812 |
/* Run the calibration once a second */
|
sl@0
|
813 |
|
sl@0
|
814 |
for ( ; ; ) {
|
sl@0
|
815 |
|
sl@0
|
816 |
/* If the exitEvent is set, break out of the loop. */
|
sl@0
|
817 |
|
sl@0
|
818 |
waitResult = WaitForSingleObjectEx(timeInfo.exitEvent, 1000, FALSE);
|
sl@0
|
819 |
if ( waitResult == WAIT_OBJECT_0 ) {
|
sl@0
|
820 |
break;
|
sl@0
|
821 |
}
|
sl@0
|
822 |
UpdateTimeEachSecond();
|
sl@0
|
823 |
}
|
sl@0
|
824 |
|
sl@0
|
825 |
/* lint */
|
sl@0
|
826 |
return (DWORD) 0;
|
sl@0
|
827 |
}
|
sl@0
|
828 |
|
sl@0
|
829 |
/*
|
sl@0
|
830 |
*----------------------------------------------------------------------
|
sl@0
|
831 |
*
|
sl@0
|
832 |
* UpdateTimeEachSecond --
|
sl@0
|
833 |
*
|
sl@0
|
834 |
* Callback from the waitable timer in the clock calibration thread
|
sl@0
|
835 |
* that updates system time.
|
sl@0
|
836 |
*
|
sl@0
|
837 |
* Parameters:
|
sl@0
|
838 |
* info -- Pointer to the static TimeInfo structure
|
sl@0
|
839 |
*
|
sl@0
|
840 |
* Results:
|
sl@0
|
841 |
* None.
|
sl@0
|
842 |
*
|
sl@0
|
843 |
* Side effects:
|
sl@0
|
844 |
* Performs virtual time calibration discipline.
|
sl@0
|
845 |
*
|
sl@0
|
846 |
*----------------------------------------------------------------------
|
sl@0
|
847 |
*/
|
sl@0
|
848 |
|
sl@0
|
849 |
static void
|
sl@0
|
850 |
UpdateTimeEachSecond()
|
sl@0
|
851 |
{
|
sl@0
|
852 |
|
sl@0
|
853 |
LARGE_INTEGER curPerfCounter;
|
sl@0
|
854 |
/* Current value returned from
|
sl@0
|
855 |
* QueryPerformanceCounter */
|
sl@0
|
856 |
|
sl@0
|
857 |
FILETIME curSysTime; /* Current system time */
|
sl@0
|
858 |
|
sl@0
|
859 |
LARGE_INTEGER curFileTime; /* File time at the time this callback
|
sl@0
|
860 |
* was scheduled. */
|
sl@0
|
861 |
|
sl@0
|
862 |
Tcl_WideInt estFreq; /* Estimated perf counter frequency */
|
sl@0
|
863 |
|
sl@0
|
864 |
Tcl_WideInt vt0; /* Tcl time right now */
|
sl@0
|
865 |
Tcl_WideInt vt1; /* Tcl time one second from now */
|
sl@0
|
866 |
|
sl@0
|
867 |
Tcl_WideInt tdiff; /* Difference between system clock and
|
sl@0
|
868 |
* Tcl time. */
|
sl@0
|
869 |
|
sl@0
|
870 |
Tcl_WideInt driftFreq; /* Frequency needed to drift virtual time
|
sl@0
|
871 |
* into step over 1 second */
|
sl@0
|
872 |
|
sl@0
|
873 |
/*
|
sl@0
|
874 |
* Sample performance counter and system time.
|
sl@0
|
875 |
*/
|
sl@0
|
876 |
|
sl@0
|
877 |
QueryPerformanceCounter( &curPerfCounter );
|
sl@0
|
878 |
GetSystemTimeAsFileTime( &curSysTime );
|
sl@0
|
879 |
curFileTime.LowPart = curSysTime.dwLowDateTime;
|
sl@0
|
880 |
curFileTime.HighPart = curSysTime.dwHighDateTime;
|
sl@0
|
881 |
|
sl@0
|
882 |
EnterCriticalSection( &timeInfo.cs );
|
sl@0
|
883 |
|
sl@0
|
884 |
/*
|
sl@0
|
885 |
* Several things may have gone wrong here that have to
|
sl@0
|
886 |
* be checked for.
|
sl@0
|
887 |
* (1) The performance counter may have jumped.
|
sl@0
|
888 |
* (2) The system clock may have been reset.
|
sl@0
|
889 |
*
|
sl@0
|
890 |
* In either case, we'll need to reinitialize the circular buffer
|
sl@0
|
891 |
* with samples relative to the current system time and the NOMINAL
|
sl@0
|
892 |
* performance frequency (not the actual, because the actual has
|
sl@0
|
893 |
* probably run slow in the first case). Our estimated frequency
|
sl@0
|
894 |
* will be the nominal frequency.
|
sl@0
|
895 |
*/
|
sl@0
|
896 |
|
sl@0
|
897 |
/*
|
sl@0
|
898 |
* Store the current sample into the circular buffer of samples,
|
sl@0
|
899 |
* and estimate the performance counter frequency.
|
sl@0
|
900 |
*/
|
sl@0
|
901 |
|
sl@0
|
902 |
estFreq = AccumulateSample( curPerfCounter.QuadPart,
|
sl@0
|
903 |
(Tcl_WideUInt) curFileTime.QuadPart );
|
sl@0
|
904 |
|
sl@0
|
905 |
/*
|
sl@0
|
906 |
* We want to adjust things so that time appears to be continuous.
|
sl@0
|
907 |
* Virtual file time, right now, is
|
sl@0
|
908 |
*
|
sl@0
|
909 |
* vt0 = 10000000 * ( curPerfCounter - perfCounterLastCall )
|
sl@0
|
910 |
* / curCounterFreq
|
sl@0
|
911 |
* + fileTimeLastCall
|
sl@0
|
912 |
*
|
sl@0
|
913 |
* Ideally, we would like to drift the clock into place over a
|
sl@0
|
914 |
* period of 2 sec, so that virtual time 2 sec from now will be
|
sl@0
|
915 |
*
|
sl@0
|
916 |
* vt1 = 20000000 + curFileTime
|
sl@0
|
917 |
*
|
sl@0
|
918 |
* The frequency that we need to use to drift the counter back into
|
sl@0
|
919 |
* place is estFreq * 20000000 / ( vt1 - vt0 )
|
sl@0
|
920 |
*/
|
sl@0
|
921 |
|
sl@0
|
922 |
vt0 = 10000000 * ( curPerfCounter.QuadPart
|
sl@0
|
923 |
- timeInfo.perfCounterLastCall.QuadPart )
|
sl@0
|
924 |
/ timeInfo.curCounterFreq.QuadPart
|
sl@0
|
925 |
+ timeInfo.fileTimeLastCall.QuadPart;
|
sl@0
|
926 |
vt1 = 20000000 + curFileTime.QuadPart;
|
sl@0
|
927 |
|
sl@0
|
928 |
/*
|
sl@0
|
929 |
* If we've gotten more than a second away from system time,
|
sl@0
|
930 |
* then drifting the clock is going to be pretty hopeless.
|
sl@0
|
931 |
* Just let it jump. Otherwise, compute the drift frequency and
|
sl@0
|
932 |
* fill in everything.
|
sl@0
|
933 |
*/
|
sl@0
|
934 |
|
sl@0
|
935 |
tdiff = vt0 - curFileTime.QuadPart;
|
sl@0
|
936 |
if ( tdiff > 10000000 || tdiff < -10000000 ) {
|
sl@0
|
937 |
timeInfo.fileTimeLastCall.QuadPart = curFileTime.QuadPart;
|
sl@0
|
938 |
timeInfo.curCounterFreq.QuadPart = estFreq;
|
sl@0
|
939 |
} else {
|
sl@0
|
940 |
driftFreq = estFreq * 20000000 / ( vt1 - vt0 );
|
sl@0
|
941 |
if ( driftFreq > 1003 * estFreq / 1000 ) {
|
sl@0
|
942 |
driftFreq = 1003 * estFreq / 1000;
|
sl@0
|
943 |
}
|
sl@0
|
944 |
if ( driftFreq < 997 * estFreq / 1000 ) {
|
sl@0
|
945 |
driftFreq = 997 * estFreq / 1000;
|
sl@0
|
946 |
}
|
sl@0
|
947 |
timeInfo.fileTimeLastCall.QuadPart = vt0;
|
sl@0
|
948 |
timeInfo.curCounterFreq.QuadPart = driftFreq;
|
sl@0
|
949 |
}
|
sl@0
|
950 |
|
sl@0
|
951 |
timeInfo.perfCounterLastCall.QuadPart = curPerfCounter.QuadPart;
|
sl@0
|
952 |
|
sl@0
|
953 |
LeaveCriticalSection( &timeInfo.cs );
|
sl@0
|
954 |
|
sl@0
|
955 |
}
|
sl@0
|
956 |
|
sl@0
|
957 |
/*
|
sl@0
|
958 |
*----------------------------------------------------------------------
|
sl@0
|
959 |
*
|
sl@0
|
960 |
* ResetCounterSamples --
|
sl@0
|
961 |
*
|
sl@0
|
962 |
* Fills the sample arrays in 'timeInfo' with dummy values that will
|
sl@0
|
963 |
* yield the current performance counter and frequency.
|
sl@0
|
964 |
*
|
sl@0
|
965 |
* Results:
|
sl@0
|
966 |
* None.
|
sl@0
|
967 |
*
|
sl@0
|
968 |
* Side effects:
|
sl@0
|
969 |
* The array of samples is filled in so that it appears that there
|
sl@0
|
970 |
* are SAMPLES samples at one-second intervals, separated by precisely
|
sl@0
|
971 |
* the given frequency.
|
sl@0
|
972 |
*
|
sl@0
|
973 |
*----------------------------------------------------------------------
|
sl@0
|
974 |
*/
|
sl@0
|
975 |
|
sl@0
|
976 |
static void
|
sl@0
|
977 |
ResetCounterSamples( Tcl_WideUInt fileTime,
|
sl@0
|
978 |
/* Current file time */
|
sl@0
|
979 |
Tcl_WideInt perfCounter,
|
sl@0
|
980 |
/* Current performance counter */
|
sl@0
|
981 |
Tcl_WideInt perfFreq )
|
sl@0
|
982 |
/* Target performance frequency */
|
sl@0
|
983 |
{
|
sl@0
|
984 |
int i;
|
sl@0
|
985 |
for ( i = SAMPLES-1; i >= 0; --i ) {
|
sl@0
|
986 |
timeInfo.perfCounterSample[i] = perfCounter;
|
sl@0
|
987 |
timeInfo.fileTimeSample[i] = fileTime;
|
sl@0
|
988 |
perfCounter -= perfFreq;
|
sl@0
|
989 |
fileTime -= 10000000;
|
sl@0
|
990 |
}
|
sl@0
|
991 |
timeInfo.sampleNo = 0;
|
sl@0
|
992 |
}
|
sl@0
|
993 |
|
sl@0
|
994 |
/*
|
sl@0
|
995 |
*----------------------------------------------------------------------
|
sl@0
|
996 |
*
|
sl@0
|
997 |
* AccumulateSample --
|
sl@0
|
998 |
*
|
sl@0
|
999 |
* Updates the circular buffer of performance counter and system
|
sl@0
|
1000 |
* time samples with a new data point.
|
sl@0
|
1001 |
*
|
sl@0
|
1002 |
* Results:
|
sl@0
|
1003 |
* None.
|
sl@0
|
1004 |
*
|
sl@0
|
1005 |
* Side effects:
|
sl@0
|
1006 |
* The new data point replaces the oldest point in the circular
|
sl@0
|
1007 |
* buffer, and the descriptive statistics are updated to accumulate
|
sl@0
|
1008 |
* the new point.
|
sl@0
|
1009 |
*
|
sl@0
|
1010 |
* Several things may have gone wrong here that have to
|
sl@0
|
1011 |
* be checked for.
|
sl@0
|
1012 |
* (1) The performance counter may have jumped.
|
sl@0
|
1013 |
* (2) The system clock may have been reset.
|
sl@0
|
1014 |
*
|
sl@0
|
1015 |
* In either case, we'll need to reinitialize the circular buffer
|
sl@0
|
1016 |
* with samples relative to the current system time and the NOMINAL
|
sl@0
|
1017 |
* performance frequency (not the actual, because the actual has
|
sl@0
|
1018 |
* probably run slow in the first case).
|
sl@0
|
1019 |
*/
|
sl@0
|
1020 |
|
sl@0
|
1021 |
static Tcl_WideInt
|
sl@0
|
1022 |
AccumulateSample( Tcl_WideInt perfCounter,
|
sl@0
|
1023 |
Tcl_WideUInt fileTime )
|
sl@0
|
1024 |
{
|
sl@0
|
1025 |
Tcl_WideUInt workFTSample; /* File time sample being removed
|
sl@0
|
1026 |
* from or added to the circular buffer */
|
sl@0
|
1027 |
|
sl@0
|
1028 |
Tcl_WideInt workPCSample; /* Performance counter sample being
|
sl@0
|
1029 |
* removed from or added to the circular
|
sl@0
|
1030 |
* buffer */
|
sl@0
|
1031 |
|
sl@0
|
1032 |
Tcl_WideUInt lastFTSample; /* Last file time sample recorded */
|
sl@0
|
1033 |
|
sl@0
|
1034 |
Tcl_WideInt lastPCSample; /* Last performance counter sample recorded */
|
sl@0
|
1035 |
|
sl@0
|
1036 |
Tcl_WideInt FTdiff; /* Difference between last FT and current */
|
sl@0
|
1037 |
|
sl@0
|
1038 |
Tcl_WideInt PCdiff; /* Difference between last PC and current */
|
sl@0
|
1039 |
|
sl@0
|
1040 |
Tcl_WideInt estFreq; /* Estimated performance counter frequency */
|
sl@0
|
1041 |
|
sl@0
|
1042 |
/* Test for jumps and reset the samples if we have one. */
|
sl@0
|
1043 |
|
sl@0
|
1044 |
if ( timeInfo.sampleNo == 0 ) {
|
sl@0
|
1045 |
lastPCSample = timeInfo.perfCounterSample[ timeInfo.sampleNo
|
sl@0
|
1046 |
+ SAMPLES - 1 ];
|
sl@0
|
1047 |
lastFTSample = timeInfo.fileTimeSample[ timeInfo.sampleNo
|
sl@0
|
1048 |
+ SAMPLES - 1 ];
|
sl@0
|
1049 |
} else {
|
sl@0
|
1050 |
lastPCSample = timeInfo.perfCounterSample[ timeInfo.sampleNo - 1 ];
|
sl@0
|
1051 |
lastFTSample = timeInfo.fileTimeSample[ timeInfo.sampleNo - 1 ];
|
sl@0
|
1052 |
}
|
sl@0
|
1053 |
PCdiff = perfCounter - lastPCSample;
|
sl@0
|
1054 |
FTdiff = fileTime - lastFTSample;
|
sl@0
|
1055 |
if ( PCdiff < timeInfo.nominalFreq.QuadPart * 9 / 10
|
sl@0
|
1056 |
|| PCdiff > timeInfo.nominalFreq.QuadPart * 11 / 10
|
sl@0
|
1057 |
|| FTdiff < 9000000
|
sl@0
|
1058 |
|| FTdiff > 11000000 ) {
|
sl@0
|
1059 |
ResetCounterSamples( fileTime, perfCounter,
|
sl@0
|
1060 |
timeInfo.nominalFreq.QuadPart );
|
sl@0
|
1061 |
return timeInfo.nominalFreq.QuadPart;
|
sl@0
|
1062 |
|
sl@0
|
1063 |
} else {
|
sl@0
|
1064 |
|
sl@0
|
1065 |
/* Estimate the frequency */
|
sl@0
|
1066 |
|
sl@0
|
1067 |
workPCSample = timeInfo.perfCounterSample[ timeInfo.sampleNo ];
|
sl@0
|
1068 |
workFTSample = timeInfo.fileTimeSample[ timeInfo.sampleNo ];
|
sl@0
|
1069 |
estFreq = 10000000 * ( perfCounter - workPCSample )
|
sl@0
|
1070 |
/ ( fileTime - workFTSample );
|
sl@0
|
1071 |
timeInfo.perfCounterSample[ timeInfo.sampleNo ] = perfCounter;
|
sl@0
|
1072 |
timeInfo.fileTimeSample[ timeInfo.sampleNo ] = (Tcl_WideInt) fileTime;
|
sl@0
|
1073 |
|
sl@0
|
1074 |
/* Advance the sample number */
|
sl@0
|
1075 |
|
sl@0
|
1076 |
if ( ++timeInfo.sampleNo >= SAMPLES ) {
|
sl@0
|
1077 |
timeInfo.sampleNo = 0;
|
sl@0
|
1078 |
}
|
sl@0
|
1079 |
|
sl@0
|
1080 |
return estFreq;
|
sl@0
|
1081 |
}
|
sl@0
|
1082 |
}
|
sl@0
|
1083 |
|
sl@0
|
1084 |
/*
|
sl@0
|
1085 |
*----------------------------------------------------------------------
|
sl@0
|
1086 |
*
|
sl@0
|
1087 |
* TclpGmtime --
|
sl@0
|
1088 |
*
|
sl@0
|
1089 |
* Wrapper around the 'gmtime' library function to make it thread
|
sl@0
|
1090 |
* safe.
|
sl@0
|
1091 |
*
|
sl@0
|
1092 |
* Results:
|
sl@0
|
1093 |
* Returns a pointer to a 'struct tm' in thread-specific data.
|
sl@0
|
1094 |
*
|
sl@0
|
1095 |
* Side effects:
|
sl@0
|
1096 |
* Invokes gmtime or gmtime_r as appropriate.
|
sl@0
|
1097 |
*
|
sl@0
|
1098 |
*----------------------------------------------------------------------
|
sl@0
|
1099 |
*/
|
sl@0
|
1100 |
|
sl@0
|
1101 |
struct tm *
|
sl@0
|
1102 |
TclpGmtime( tt )
|
sl@0
|
1103 |
TclpTime_t_CONST tt;
|
sl@0
|
1104 |
{
|
sl@0
|
1105 |
CONST time_t *timePtr = (CONST time_t *) tt;
|
sl@0
|
1106 |
/* Pointer to the number of seconds
|
sl@0
|
1107 |
* since the local system's epoch */
|
sl@0
|
1108 |
/*
|
sl@0
|
1109 |
* The MS implementation of gmtime is thread safe because
|
sl@0
|
1110 |
* it returns the time in a block of thread-local storage,
|
sl@0
|
1111 |
* and Windows does not provide a Posix gmtime_r function.
|
sl@0
|
1112 |
*/
|
sl@0
|
1113 |
return gmtime( timePtr );
|
sl@0
|
1114 |
}
|
sl@0
|
1115 |
|
sl@0
|
1116 |
/*
|
sl@0
|
1117 |
*----------------------------------------------------------------------
|
sl@0
|
1118 |
*
|
sl@0
|
1119 |
* TclpLocaltime --
|
sl@0
|
1120 |
*
|
sl@0
|
1121 |
* Wrapper around the 'localtime' library function to make it thread
|
sl@0
|
1122 |
* safe.
|
sl@0
|
1123 |
*
|
sl@0
|
1124 |
* Results:
|
sl@0
|
1125 |
* Returns a pointer to a 'struct tm' in thread-specific data.
|
sl@0
|
1126 |
*
|
sl@0
|
1127 |
* Side effects:
|
sl@0
|
1128 |
* Invokes localtime or localtime_r as appropriate.
|
sl@0
|
1129 |
*
|
sl@0
|
1130 |
*----------------------------------------------------------------------
|
sl@0
|
1131 |
*/
|
sl@0
|
1132 |
|
sl@0
|
1133 |
struct tm *
|
sl@0
|
1134 |
TclpLocaltime( tt )
|
sl@0
|
1135 |
TclpTime_t_CONST tt;
|
sl@0
|
1136 |
{
|
sl@0
|
1137 |
CONST time_t *timePtr = (CONST time_t *) tt;
|
sl@0
|
1138 |
/* Pointer to the number of seconds
|
sl@0
|
1139 |
* since the local system's epoch */
|
sl@0
|
1140 |
|
sl@0
|
1141 |
/*
|
sl@0
|
1142 |
* The MS implementation of localtime is thread safe because
|
sl@0
|
1143 |
* it returns the time in a block of thread-local storage,
|
sl@0
|
1144 |
* and Windows does not provide a Posix localtime_r function.
|
sl@0
|
1145 |
*/
|
sl@0
|
1146 |
return localtime( timePtr );
|
sl@0
|
1147 |
}
|