sl@0
|
1 |
/*
|
sl@0
|
2 |
* tclParseExpr.c --
|
sl@0
|
3 |
*
|
sl@0
|
4 |
* This file contains procedures that parse Tcl expressions. They
|
sl@0
|
5 |
* do so in a general-purpose fashion that can be used for many
|
sl@0
|
6 |
* different purposes, including compilation, direct execution,
|
sl@0
|
7 |
* code analysis, etc.
|
sl@0
|
8 |
*
|
sl@0
|
9 |
* Copyright (c) 1997 Sun Microsystems, Inc.
|
sl@0
|
10 |
* Copyright (c) 1998-2000 by Scriptics Corporation.
|
sl@0
|
11 |
* Portions Copyright (c) 2007-2008 Nokia Corporation and/or its subsidiaries. All rights reserved.
|
sl@0
|
12 |
* Contributions from Don Porter, NIST, 2002. (not subject to US copyright)
|
sl@0
|
13 |
*
|
sl@0
|
14 |
* See the file "license.terms" for information on usage and redistribution
|
sl@0
|
15 |
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
|
sl@0
|
16 |
*
|
sl@0
|
17 |
* RCS: @(#) $Id: tclParseExpr.c,v 1.17.2.2 2005/05/20 17:19:10 vasiljevic Exp $
|
sl@0
|
18 |
*/
|
sl@0
|
19 |
|
sl@0
|
20 |
#include "tclInt.h"
|
sl@0
|
21 |
|
sl@0
|
22 |
/*
|
sl@0
|
23 |
* The stuff below is a bit of a hack so that this file can be used in
|
sl@0
|
24 |
* environments that include no UNIX, i.e. no errno: just arrange to use
|
sl@0
|
25 |
* the errno from tclExecute.c here.
|
sl@0
|
26 |
*/
|
sl@0
|
27 |
|
sl@0
|
28 |
#ifndef TCL_GENERIC_ONLY
|
sl@0
|
29 |
#include "tclPort.h"
|
sl@0
|
30 |
#else
|
sl@0
|
31 |
#define NO_ERRNO_H
|
sl@0
|
32 |
#endif
|
sl@0
|
33 |
|
sl@0
|
34 |
#ifdef NO_ERRNO_H
|
sl@0
|
35 |
extern int errno; /* Use errno from tclExecute.c. */
|
sl@0
|
36 |
#define ERANGE 34
|
sl@0
|
37 |
#endif
|
sl@0
|
38 |
|
sl@0
|
39 |
/*
|
sl@0
|
40 |
* Boolean variable that controls whether expression parse tracing
|
sl@0
|
41 |
* is enabled.
|
sl@0
|
42 |
*/
|
sl@0
|
43 |
|
sl@0
|
44 |
#ifdef TCL_COMPILE_DEBUG
|
sl@0
|
45 |
static int traceParseExpr = 0;
|
sl@0
|
46 |
#endif /* TCL_COMPILE_DEBUG */
|
sl@0
|
47 |
|
sl@0
|
48 |
/*
|
sl@0
|
49 |
* The ParseInfo structure holds state while parsing an expression.
|
sl@0
|
50 |
* A pointer to an ParseInfo record is passed among the routines in
|
sl@0
|
51 |
* this module.
|
sl@0
|
52 |
*/
|
sl@0
|
53 |
|
sl@0
|
54 |
typedef struct ParseInfo {
|
sl@0
|
55 |
Tcl_Parse *parsePtr; /* Points to structure to fill in with
|
sl@0
|
56 |
* information about the expression. */
|
sl@0
|
57 |
int lexeme; /* Type of last lexeme scanned in expr.
|
sl@0
|
58 |
* See below for definitions. Corresponds to
|
sl@0
|
59 |
* size characters beginning at start. */
|
sl@0
|
60 |
CONST char *start; /* First character in lexeme. */
|
sl@0
|
61 |
int size; /* Number of bytes in lexeme. */
|
sl@0
|
62 |
CONST char *next; /* Position of the next character to be
|
sl@0
|
63 |
* scanned in the expression string. */
|
sl@0
|
64 |
CONST char *prevEnd; /* Points to the character just after the
|
sl@0
|
65 |
* last one in the previous lexeme. Used to
|
sl@0
|
66 |
* compute size of subexpression tokens. */
|
sl@0
|
67 |
CONST char *originalExpr; /* Points to the start of the expression
|
sl@0
|
68 |
* originally passed to Tcl_ParseExpr. */
|
sl@0
|
69 |
CONST char *lastChar; /* Points just after last byte of expr. */
|
sl@0
|
70 |
} ParseInfo;
|
sl@0
|
71 |
|
sl@0
|
72 |
/*
|
sl@0
|
73 |
* Definitions of the different lexemes that appear in expressions. The
|
sl@0
|
74 |
* order of these must match the corresponding entries in the
|
sl@0
|
75 |
* operatorStrings array below.
|
sl@0
|
76 |
*
|
sl@0
|
77 |
* Basic lexemes:
|
sl@0
|
78 |
*/
|
sl@0
|
79 |
|
sl@0
|
80 |
#define LITERAL 0
|
sl@0
|
81 |
#define FUNC_NAME 1
|
sl@0
|
82 |
#define OPEN_BRACKET 2
|
sl@0
|
83 |
#define OPEN_BRACE 3
|
sl@0
|
84 |
#define OPEN_PAREN 4
|
sl@0
|
85 |
#define CLOSE_PAREN 5
|
sl@0
|
86 |
#define DOLLAR 6
|
sl@0
|
87 |
#define QUOTE 7
|
sl@0
|
88 |
#define COMMA 8
|
sl@0
|
89 |
#define END 9
|
sl@0
|
90 |
#define UNKNOWN 10
|
sl@0
|
91 |
#define UNKNOWN_CHAR 11
|
sl@0
|
92 |
|
sl@0
|
93 |
/*
|
sl@0
|
94 |
* Binary numeric operators:
|
sl@0
|
95 |
*/
|
sl@0
|
96 |
|
sl@0
|
97 |
#define MULT 12
|
sl@0
|
98 |
#define DIVIDE 13
|
sl@0
|
99 |
#define MOD 14
|
sl@0
|
100 |
#define PLUS 15
|
sl@0
|
101 |
#define MINUS 16
|
sl@0
|
102 |
#define LEFT_SHIFT 17
|
sl@0
|
103 |
#define RIGHT_SHIFT 18
|
sl@0
|
104 |
#define LESS 19
|
sl@0
|
105 |
#define GREATER 20
|
sl@0
|
106 |
#define LEQ 21
|
sl@0
|
107 |
#define GEQ 22
|
sl@0
|
108 |
#define EQUAL 23
|
sl@0
|
109 |
#define NEQ 24
|
sl@0
|
110 |
#define BIT_AND 25
|
sl@0
|
111 |
#define BIT_XOR 26
|
sl@0
|
112 |
#define BIT_OR 27
|
sl@0
|
113 |
#define AND 28
|
sl@0
|
114 |
#define OR 29
|
sl@0
|
115 |
#define QUESTY 30
|
sl@0
|
116 |
#define COLON 31
|
sl@0
|
117 |
|
sl@0
|
118 |
/*
|
sl@0
|
119 |
* Unary operators. Unary minus and plus are represented by the (binary)
|
sl@0
|
120 |
* lexemes MINUS and PLUS.
|
sl@0
|
121 |
*/
|
sl@0
|
122 |
|
sl@0
|
123 |
#define NOT 32
|
sl@0
|
124 |
#define BIT_NOT 33
|
sl@0
|
125 |
|
sl@0
|
126 |
/*
|
sl@0
|
127 |
* Binary string operators:
|
sl@0
|
128 |
*/
|
sl@0
|
129 |
|
sl@0
|
130 |
#define STREQ 34
|
sl@0
|
131 |
#define STRNEQ 35
|
sl@0
|
132 |
|
sl@0
|
133 |
/*
|
sl@0
|
134 |
* Mapping from lexemes to strings; used for debugging messages. These
|
sl@0
|
135 |
* entries must match the order and number of the lexeme definitions above.
|
sl@0
|
136 |
*/
|
sl@0
|
137 |
|
sl@0
|
138 |
static char *lexemeStrings[] = {
|
sl@0
|
139 |
"LITERAL", "FUNCNAME",
|
sl@0
|
140 |
"[", "{", "(", ")", "$", "\"", ",", "END", "UNKNOWN", "UNKNOWN_CHAR",
|
sl@0
|
141 |
"*", "/", "%", "+", "-",
|
sl@0
|
142 |
"<<", ">>", "<", ">", "<=", ">=", "==", "!=",
|
sl@0
|
143 |
"&", "^", "|", "&&", "||", "?", ":",
|
sl@0
|
144 |
"!", "~", "eq", "ne",
|
sl@0
|
145 |
};
|
sl@0
|
146 |
|
sl@0
|
147 |
/*
|
sl@0
|
148 |
* Declarations for local procedures to this file:
|
sl@0
|
149 |
*/
|
sl@0
|
150 |
|
sl@0
|
151 |
static int GetLexeme _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
152 |
static void LogSyntaxError _ANSI_ARGS_((ParseInfo *infoPtr,
|
sl@0
|
153 |
CONST char *extraInfo));
|
sl@0
|
154 |
static int ParseAddExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
155 |
static int ParseBitAndExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
156 |
static int ParseBitOrExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
157 |
static int ParseBitXorExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
158 |
static int ParseCondExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
159 |
static int ParseEqualityExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
160 |
static int ParseLandExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
161 |
static int ParseLorExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
162 |
static int ParseMaxDoubleLength _ANSI_ARGS_((CONST char *string,
|
sl@0
|
163 |
CONST char *end));
|
sl@0
|
164 |
static int ParseMultiplyExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
165 |
static int ParsePrimaryExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
166 |
static int ParseRelationalExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
167 |
static int ParseShiftExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
168 |
static int ParseUnaryExpr _ANSI_ARGS_((ParseInfo *infoPtr));
|
sl@0
|
169 |
static void PrependSubExprTokens _ANSI_ARGS_((CONST char *op,
|
sl@0
|
170 |
int opBytes, CONST char *src, int srcBytes,
|
sl@0
|
171 |
int firstIndex, ParseInfo *infoPtr));
|
sl@0
|
172 |
|
sl@0
|
173 |
/*
|
sl@0
|
174 |
* Macro used to debug the execution of the recursive descent parser used
|
sl@0
|
175 |
* to parse expressions.
|
sl@0
|
176 |
*/
|
sl@0
|
177 |
|
sl@0
|
178 |
#ifdef TCL_COMPILE_DEBUG
|
sl@0
|
179 |
#define HERE(production, level) \
|
sl@0
|
180 |
if (traceParseExpr) { \
|
sl@0
|
181 |
fprintf(stderr, "%*s%s: lexeme=%s, next=\"%.20s\"\n", \
|
sl@0
|
182 |
(level), " ", (production), \
|
sl@0
|
183 |
lexemeStrings[infoPtr->lexeme], infoPtr->next); \
|
sl@0
|
184 |
}
|
sl@0
|
185 |
#else
|
sl@0
|
186 |
#define HERE(production, level)
|
sl@0
|
187 |
#endif /* TCL_COMPILE_DEBUG */
|
sl@0
|
188 |
|
sl@0
|
189 |
/*
|
sl@0
|
190 |
*----------------------------------------------------------------------
|
sl@0
|
191 |
*
|
sl@0
|
192 |
* Tcl_ParseExpr --
|
sl@0
|
193 |
*
|
sl@0
|
194 |
* Given a string, this procedure parses the first Tcl expression
|
sl@0
|
195 |
* in the string and returns information about the structure of
|
sl@0
|
196 |
* the expression. This procedure is the top-level interface to the
|
sl@0
|
197 |
* the expression parsing module. No more that numBytes bytes will
|
sl@0
|
198 |
* be scanned.
|
sl@0
|
199 |
*
|
sl@0
|
200 |
* Results:
|
sl@0
|
201 |
* The return value is TCL_OK if the command was parsed successfully
|
sl@0
|
202 |
* and TCL_ERROR otherwise. If an error occurs and interp isn't NULL
|
sl@0
|
203 |
* then an error message is left in its result. On a successful return,
|
sl@0
|
204 |
* parsePtr is filled in with information about the expression that
|
sl@0
|
205 |
* was parsed.
|
sl@0
|
206 |
*
|
sl@0
|
207 |
* Side effects:
|
sl@0
|
208 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
209 |
* information about the expression, then additional space is
|
sl@0
|
210 |
* malloc-ed. If the procedure returns TCL_OK then the caller must
|
sl@0
|
211 |
* eventually invoke Tcl_FreeParse to release any additional space
|
sl@0
|
212 |
* that was allocated.
|
sl@0
|
213 |
*
|
sl@0
|
214 |
*----------------------------------------------------------------------
|
sl@0
|
215 |
*/
|
sl@0
|
216 |
|
sl@0
|
217 |
EXPORT_C int
|
sl@0
|
218 |
Tcl_ParseExpr(interp, string, numBytes, parsePtr)
|
sl@0
|
219 |
Tcl_Interp *interp; /* Used for error reporting. */
|
sl@0
|
220 |
CONST char *string; /* The source string to parse. */
|
sl@0
|
221 |
int numBytes; /* Number of bytes in string. If < 0, the
|
sl@0
|
222 |
* string consists of all bytes up to the
|
sl@0
|
223 |
* first null character. */
|
sl@0
|
224 |
Tcl_Parse *parsePtr; /* Structure to fill with information about
|
sl@0
|
225 |
* the parsed expression; any previous
|
sl@0
|
226 |
* information in the structure is
|
sl@0
|
227 |
* ignored. */
|
sl@0
|
228 |
{
|
sl@0
|
229 |
ParseInfo info;
|
sl@0
|
230 |
int code;
|
sl@0
|
231 |
|
sl@0
|
232 |
if (numBytes < 0) {
|
sl@0
|
233 |
numBytes = (string? strlen(string) : 0);
|
sl@0
|
234 |
}
|
sl@0
|
235 |
#ifdef TCL_COMPILE_DEBUG
|
sl@0
|
236 |
if (traceParseExpr) {
|
sl@0
|
237 |
fprintf(stderr, "Tcl_ParseExpr: string=\"%.*s\"\n",
|
sl@0
|
238 |
numBytes, string);
|
sl@0
|
239 |
}
|
sl@0
|
240 |
#endif /* TCL_COMPILE_DEBUG */
|
sl@0
|
241 |
|
sl@0
|
242 |
parsePtr->commentStart = NULL;
|
sl@0
|
243 |
parsePtr->commentSize = 0;
|
sl@0
|
244 |
parsePtr->commandStart = NULL;
|
sl@0
|
245 |
parsePtr->commandSize = 0;
|
sl@0
|
246 |
parsePtr->numWords = 0;
|
sl@0
|
247 |
parsePtr->tokenPtr = parsePtr->staticTokens;
|
sl@0
|
248 |
parsePtr->numTokens = 0;
|
sl@0
|
249 |
parsePtr->tokensAvailable = NUM_STATIC_TOKENS;
|
sl@0
|
250 |
parsePtr->string = string;
|
sl@0
|
251 |
parsePtr->end = (string + numBytes);
|
sl@0
|
252 |
parsePtr->interp = interp;
|
sl@0
|
253 |
parsePtr->term = string;
|
sl@0
|
254 |
parsePtr->incomplete = 0;
|
sl@0
|
255 |
|
sl@0
|
256 |
/*
|
sl@0
|
257 |
* Initialize the ParseInfo structure that holds state while parsing
|
sl@0
|
258 |
* the expression.
|
sl@0
|
259 |
*/
|
sl@0
|
260 |
|
sl@0
|
261 |
info.parsePtr = parsePtr;
|
sl@0
|
262 |
info.lexeme = UNKNOWN;
|
sl@0
|
263 |
info.start = NULL;
|
sl@0
|
264 |
info.size = 0;
|
sl@0
|
265 |
info.next = string;
|
sl@0
|
266 |
info.prevEnd = string;
|
sl@0
|
267 |
info.originalExpr = string;
|
sl@0
|
268 |
info.lastChar = (string + numBytes); /* just after last char of expr */
|
sl@0
|
269 |
|
sl@0
|
270 |
/*
|
sl@0
|
271 |
* Get the first lexeme then parse the expression.
|
sl@0
|
272 |
*/
|
sl@0
|
273 |
|
sl@0
|
274 |
code = GetLexeme(&info);
|
sl@0
|
275 |
if (code != TCL_OK) {
|
sl@0
|
276 |
goto error;
|
sl@0
|
277 |
}
|
sl@0
|
278 |
code = ParseCondExpr(&info);
|
sl@0
|
279 |
if (code != TCL_OK) {
|
sl@0
|
280 |
goto error;
|
sl@0
|
281 |
}
|
sl@0
|
282 |
if (info.lexeme != END) {
|
sl@0
|
283 |
LogSyntaxError(&info, "extra tokens at end of expression");
|
sl@0
|
284 |
goto error;
|
sl@0
|
285 |
}
|
sl@0
|
286 |
return TCL_OK;
|
sl@0
|
287 |
|
sl@0
|
288 |
error:
|
sl@0
|
289 |
if (parsePtr->tokenPtr != parsePtr->staticTokens) {
|
sl@0
|
290 |
ckfree((char *) parsePtr->tokenPtr);
|
sl@0
|
291 |
}
|
sl@0
|
292 |
return TCL_ERROR;
|
sl@0
|
293 |
}
|
sl@0
|
294 |
|
sl@0
|
295 |
/*
|
sl@0
|
296 |
*----------------------------------------------------------------------
|
sl@0
|
297 |
*
|
sl@0
|
298 |
* ParseCondExpr --
|
sl@0
|
299 |
*
|
sl@0
|
300 |
* This procedure parses a Tcl conditional expression:
|
sl@0
|
301 |
* condExpr ::= lorExpr ['?' condExpr ':' condExpr]
|
sl@0
|
302 |
*
|
sl@0
|
303 |
* Note that this is the topmost recursive-descent parsing routine used
|
sl@0
|
304 |
* by Tcl_ParseExpr to parse expressions. This avoids an extra procedure
|
sl@0
|
305 |
* call since such a procedure would only return the result of calling
|
sl@0
|
306 |
* ParseCondExpr. Other recursive-descent procedures that need to parse
|
sl@0
|
307 |
* complete expressions also call ParseCondExpr.
|
sl@0
|
308 |
*
|
sl@0
|
309 |
* Results:
|
sl@0
|
310 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
311 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
312 |
* contains an error message.
|
sl@0
|
313 |
*
|
sl@0
|
314 |
* Side effects:
|
sl@0
|
315 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
316 |
* information about the subexpression, then additional space is
|
sl@0
|
317 |
* malloc-ed.
|
sl@0
|
318 |
*
|
sl@0
|
319 |
*----------------------------------------------------------------------
|
sl@0
|
320 |
*/
|
sl@0
|
321 |
|
sl@0
|
322 |
static int
|
sl@0
|
323 |
ParseCondExpr(infoPtr)
|
sl@0
|
324 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
325 |
* expression being parsed. */
|
sl@0
|
326 |
{
|
sl@0
|
327 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
328 |
Tcl_Token *tokenPtr, *firstTokenPtr, *condTokenPtr;
|
sl@0
|
329 |
int firstIndex, numToMove, code;
|
sl@0
|
330 |
CONST char *srcStart;
|
sl@0
|
331 |
|
sl@0
|
332 |
HERE("condExpr", 1);
|
sl@0
|
333 |
srcStart = infoPtr->start;
|
sl@0
|
334 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
335 |
|
sl@0
|
336 |
code = ParseLorExpr(infoPtr);
|
sl@0
|
337 |
if (code != TCL_OK) {
|
sl@0
|
338 |
return code;
|
sl@0
|
339 |
}
|
sl@0
|
340 |
|
sl@0
|
341 |
if (infoPtr->lexeme == QUESTY) {
|
sl@0
|
342 |
/*
|
sl@0
|
343 |
* Emit two tokens: one TCL_TOKEN_SUB_EXPR token for the entire
|
sl@0
|
344 |
* conditional expression, and a TCL_TOKEN_OPERATOR token for
|
sl@0
|
345 |
* the "?" operator. Note that these two tokens must be inserted
|
sl@0
|
346 |
* before the LOR operand tokens generated above.
|
sl@0
|
347 |
*/
|
sl@0
|
348 |
|
sl@0
|
349 |
if ((parsePtr->numTokens + 1) >= parsePtr->tokensAvailable) {
|
sl@0
|
350 |
TclExpandTokenArray(parsePtr);
|
sl@0
|
351 |
}
|
sl@0
|
352 |
firstTokenPtr = &parsePtr->tokenPtr[firstIndex];
|
sl@0
|
353 |
tokenPtr = (firstTokenPtr + 2);
|
sl@0
|
354 |
numToMove = (parsePtr->numTokens - firstIndex);
|
sl@0
|
355 |
memmove((VOID *) tokenPtr, (VOID *) firstTokenPtr,
|
sl@0
|
356 |
(size_t) (numToMove * sizeof(Tcl_Token)));
|
sl@0
|
357 |
parsePtr->numTokens += 2;
|
sl@0
|
358 |
|
sl@0
|
359 |
tokenPtr = firstTokenPtr;
|
sl@0
|
360 |
tokenPtr->type = TCL_TOKEN_SUB_EXPR;
|
sl@0
|
361 |
tokenPtr->start = srcStart;
|
sl@0
|
362 |
|
sl@0
|
363 |
tokenPtr++;
|
sl@0
|
364 |
tokenPtr->type = TCL_TOKEN_OPERATOR;
|
sl@0
|
365 |
tokenPtr->start = infoPtr->start;
|
sl@0
|
366 |
tokenPtr->size = 1;
|
sl@0
|
367 |
tokenPtr->numComponents = 0;
|
sl@0
|
368 |
|
sl@0
|
369 |
/*
|
sl@0
|
370 |
* Skip over the '?'.
|
sl@0
|
371 |
*/
|
sl@0
|
372 |
|
sl@0
|
373 |
code = GetLexeme(infoPtr);
|
sl@0
|
374 |
if (code != TCL_OK) {
|
sl@0
|
375 |
return code;
|
sl@0
|
376 |
}
|
sl@0
|
377 |
|
sl@0
|
378 |
/*
|
sl@0
|
379 |
* Parse the "then" expression.
|
sl@0
|
380 |
*/
|
sl@0
|
381 |
|
sl@0
|
382 |
code = ParseCondExpr(infoPtr);
|
sl@0
|
383 |
if (code != TCL_OK) {
|
sl@0
|
384 |
return code;
|
sl@0
|
385 |
}
|
sl@0
|
386 |
if (infoPtr->lexeme != COLON) {
|
sl@0
|
387 |
LogSyntaxError(infoPtr, "missing colon from ternary conditional");
|
sl@0
|
388 |
return TCL_ERROR;
|
sl@0
|
389 |
}
|
sl@0
|
390 |
code = GetLexeme(infoPtr); /* skip over the ':' */
|
sl@0
|
391 |
if (code != TCL_OK) {
|
sl@0
|
392 |
return code;
|
sl@0
|
393 |
}
|
sl@0
|
394 |
|
sl@0
|
395 |
/*
|
sl@0
|
396 |
* Parse the "else" expression.
|
sl@0
|
397 |
*/
|
sl@0
|
398 |
|
sl@0
|
399 |
code = ParseCondExpr(infoPtr);
|
sl@0
|
400 |
if (code != TCL_OK) {
|
sl@0
|
401 |
return code;
|
sl@0
|
402 |
}
|
sl@0
|
403 |
|
sl@0
|
404 |
/*
|
sl@0
|
405 |
* Now set the size-related fields in the '?' subexpression token.
|
sl@0
|
406 |
*/
|
sl@0
|
407 |
|
sl@0
|
408 |
condTokenPtr = &parsePtr->tokenPtr[firstIndex];
|
sl@0
|
409 |
condTokenPtr->size = (infoPtr->prevEnd - srcStart);
|
sl@0
|
410 |
condTokenPtr->numComponents = parsePtr->numTokens - (firstIndex+1);
|
sl@0
|
411 |
}
|
sl@0
|
412 |
return TCL_OK;
|
sl@0
|
413 |
}
|
sl@0
|
414 |
|
sl@0
|
415 |
/*
|
sl@0
|
416 |
*----------------------------------------------------------------------
|
sl@0
|
417 |
*
|
sl@0
|
418 |
* ParseLorExpr --
|
sl@0
|
419 |
*
|
sl@0
|
420 |
* This procedure parses a Tcl logical or expression:
|
sl@0
|
421 |
* lorExpr ::= landExpr {'||' landExpr}
|
sl@0
|
422 |
*
|
sl@0
|
423 |
* Results:
|
sl@0
|
424 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
425 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
426 |
* contains an error message.
|
sl@0
|
427 |
*
|
sl@0
|
428 |
* Side effects:
|
sl@0
|
429 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
430 |
* information about the subexpression, then additional space is
|
sl@0
|
431 |
* malloc-ed.
|
sl@0
|
432 |
*
|
sl@0
|
433 |
*----------------------------------------------------------------------
|
sl@0
|
434 |
*/
|
sl@0
|
435 |
|
sl@0
|
436 |
static int
|
sl@0
|
437 |
ParseLorExpr(infoPtr)
|
sl@0
|
438 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
439 |
* expression being parsed. */
|
sl@0
|
440 |
{
|
sl@0
|
441 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
442 |
int firstIndex, code;
|
sl@0
|
443 |
CONST char *srcStart, *operator;
|
sl@0
|
444 |
|
sl@0
|
445 |
HERE("lorExpr", 2);
|
sl@0
|
446 |
srcStart = infoPtr->start;
|
sl@0
|
447 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
448 |
|
sl@0
|
449 |
code = ParseLandExpr(infoPtr);
|
sl@0
|
450 |
if (code != TCL_OK) {
|
sl@0
|
451 |
return code;
|
sl@0
|
452 |
}
|
sl@0
|
453 |
|
sl@0
|
454 |
while (infoPtr->lexeme == OR) {
|
sl@0
|
455 |
operator = infoPtr->start;
|
sl@0
|
456 |
code = GetLexeme(infoPtr); /* skip over the '||' */
|
sl@0
|
457 |
if (code != TCL_OK) {
|
sl@0
|
458 |
return code;
|
sl@0
|
459 |
}
|
sl@0
|
460 |
code = ParseLandExpr(infoPtr);
|
sl@0
|
461 |
if (code != TCL_OK) {
|
sl@0
|
462 |
return code;
|
sl@0
|
463 |
}
|
sl@0
|
464 |
|
sl@0
|
465 |
/*
|
sl@0
|
466 |
* Generate tokens for the LOR subexpression and the '||' operator.
|
sl@0
|
467 |
*/
|
sl@0
|
468 |
|
sl@0
|
469 |
PrependSubExprTokens(operator, 2, srcStart,
|
sl@0
|
470 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
471 |
}
|
sl@0
|
472 |
return TCL_OK;
|
sl@0
|
473 |
}
|
sl@0
|
474 |
|
sl@0
|
475 |
/*
|
sl@0
|
476 |
*----------------------------------------------------------------------
|
sl@0
|
477 |
*
|
sl@0
|
478 |
* ParseLandExpr --
|
sl@0
|
479 |
*
|
sl@0
|
480 |
* This procedure parses a Tcl logical and expression:
|
sl@0
|
481 |
* landExpr ::= bitOrExpr {'&&' bitOrExpr}
|
sl@0
|
482 |
*
|
sl@0
|
483 |
* Results:
|
sl@0
|
484 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
485 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
486 |
* contains an error message.
|
sl@0
|
487 |
*
|
sl@0
|
488 |
* Side effects:
|
sl@0
|
489 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
490 |
* information about the subexpression, then additional space is
|
sl@0
|
491 |
* malloc-ed.
|
sl@0
|
492 |
*
|
sl@0
|
493 |
*----------------------------------------------------------------------
|
sl@0
|
494 |
*/
|
sl@0
|
495 |
|
sl@0
|
496 |
static int
|
sl@0
|
497 |
ParseLandExpr(infoPtr)
|
sl@0
|
498 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
499 |
* expression being parsed. */
|
sl@0
|
500 |
{
|
sl@0
|
501 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
502 |
int firstIndex, code;
|
sl@0
|
503 |
CONST char *srcStart, *operator;
|
sl@0
|
504 |
|
sl@0
|
505 |
HERE("landExpr", 3);
|
sl@0
|
506 |
srcStart = infoPtr->start;
|
sl@0
|
507 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
508 |
|
sl@0
|
509 |
code = ParseBitOrExpr(infoPtr);
|
sl@0
|
510 |
if (code != TCL_OK) {
|
sl@0
|
511 |
return code;
|
sl@0
|
512 |
}
|
sl@0
|
513 |
|
sl@0
|
514 |
while (infoPtr->lexeme == AND) {
|
sl@0
|
515 |
operator = infoPtr->start;
|
sl@0
|
516 |
code = GetLexeme(infoPtr); /* skip over the '&&' */
|
sl@0
|
517 |
if (code != TCL_OK) {
|
sl@0
|
518 |
return code;
|
sl@0
|
519 |
}
|
sl@0
|
520 |
code = ParseBitOrExpr(infoPtr);
|
sl@0
|
521 |
if (code != TCL_OK) {
|
sl@0
|
522 |
return code;
|
sl@0
|
523 |
}
|
sl@0
|
524 |
|
sl@0
|
525 |
/*
|
sl@0
|
526 |
* Generate tokens for the LAND subexpression and the '&&' operator.
|
sl@0
|
527 |
*/
|
sl@0
|
528 |
|
sl@0
|
529 |
PrependSubExprTokens(operator, 2, srcStart,
|
sl@0
|
530 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
531 |
}
|
sl@0
|
532 |
return TCL_OK;
|
sl@0
|
533 |
}
|
sl@0
|
534 |
|
sl@0
|
535 |
/*
|
sl@0
|
536 |
*----------------------------------------------------------------------
|
sl@0
|
537 |
*
|
sl@0
|
538 |
* ParseBitOrExpr --
|
sl@0
|
539 |
*
|
sl@0
|
540 |
* This procedure parses a Tcl bitwise or expression:
|
sl@0
|
541 |
* bitOrExpr ::= bitXorExpr {'|' bitXorExpr}
|
sl@0
|
542 |
*
|
sl@0
|
543 |
* Results:
|
sl@0
|
544 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
545 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
546 |
* contains an error message.
|
sl@0
|
547 |
*
|
sl@0
|
548 |
* Side effects:
|
sl@0
|
549 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
550 |
* information about the subexpression, then additional space is
|
sl@0
|
551 |
* malloc-ed.
|
sl@0
|
552 |
*
|
sl@0
|
553 |
*----------------------------------------------------------------------
|
sl@0
|
554 |
*/
|
sl@0
|
555 |
|
sl@0
|
556 |
static int
|
sl@0
|
557 |
ParseBitOrExpr(infoPtr)
|
sl@0
|
558 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
559 |
* expression being parsed. */
|
sl@0
|
560 |
{
|
sl@0
|
561 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
562 |
int firstIndex, code;
|
sl@0
|
563 |
CONST char *srcStart, *operator;
|
sl@0
|
564 |
|
sl@0
|
565 |
HERE("bitOrExpr", 4);
|
sl@0
|
566 |
srcStart = infoPtr->start;
|
sl@0
|
567 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
568 |
|
sl@0
|
569 |
code = ParseBitXorExpr(infoPtr);
|
sl@0
|
570 |
if (code != TCL_OK) {
|
sl@0
|
571 |
return code;
|
sl@0
|
572 |
}
|
sl@0
|
573 |
|
sl@0
|
574 |
while (infoPtr->lexeme == BIT_OR) {
|
sl@0
|
575 |
operator = infoPtr->start;
|
sl@0
|
576 |
code = GetLexeme(infoPtr); /* skip over the '|' */
|
sl@0
|
577 |
if (code != TCL_OK) {
|
sl@0
|
578 |
return code;
|
sl@0
|
579 |
}
|
sl@0
|
580 |
|
sl@0
|
581 |
code = ParseBitXorExpr(infoPtr);
|
sl@0
|
582 |
if (code != TCL_OK) {
|
sl@0
|
583 |
return code;
|
sl@0
|
584 |
}
|
sl@0
|
585 |
|
sl@0
|
586 |
/*
|
sl@0
|
587 |
* Generate tokens for the BITOR subexpression and the '|' operator.
|
sl@0
|
588 |
*/
|
sl@0
|
589 |
|
sl@0
|
590 |
PrependSubExprTokens(operator, 1, srcStart,
|
sl@0
|
591 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
592 |
}
|
sl@0
|
593 |
return TCL_OK;
|
sl@0
|
594 |
}
|
sl@0
|
595 |
|
sl@0
|
596 |
/*
|
sl@0
|
597 |
*----------------------------------------------------------------------
|
sl@0
|
598 |
*
|
sl@0
|
599 |
* ParseBitXorExpr --
|
sl@0
|
600 |
*
|
sl@0
|
601 |
* This procedure parses a Tcl bitwise exclusive or expression:
|
sl@0
|
602 |
* bitXorExpr ::= bitAndExpr {'^' bitAndExpr}
|
sl@0
|
603 |
*
|
sl@0
|
604 |
* Results:
|
sl@0
|
605 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
606 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
607 |
* contains an error message.
|
sl@0
|
608 |
*
|
sl@0
|
609 |
* Side effects:
|
sl@0
|
610 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
611 |
* information about the subexpression, then additional space is
|
sl@0
|
612 |
* malloc-ed.
|
sl@0
|
613 |
*
|
sl@0
|
614 |
*----------------------------------------------------------------------
|
sl@0
|
615 |
*/
|
sl@0
|
616 |
|
sl@0
|
617 |
static int
|
sl@0
|
618 |
ParseBitXorExpr(infoPtr)
|
sl@0
|
619 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
620 |
* expression being parsed. */
|
sl@0
|
621 |
{
|
sl@0
|
622 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
623 |
int firstIndex, code;
|
sl@0
|
624 |
CONST char *srcStart, *operator;
|
sl@0
|
625 |
|
sl@0
|
626 |
HERE("bitXorExpr", 5);
|
sl@0
|
627 |
srcStart = infoPtr->start;
|
sl@0
|
628 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
629 |
|
sl@0
|
630 |
code = ParseBitAndExpr(infoPtr);
|
sl@0
|
631 |
if (code != TCL_OK) {
|
sl@0
|
632 |
return code;
|
sl@0
|
633 |
}
|
sl@0
|
634 |
|
sl@0
|
635 |
while (infoPtr->lexeme == BIT_XOR) {
|
sl@0
|
636 |
operator = infoPtr->start;
|
sl@0
|
637 |
code = GetLexeme(infoPtr); /* skip over the '^' */
|
sl@0
|
638 |
if (code != TCL_OK) {
|
sl@0
|
639 |
return code;
|
sl@0
|
640 |
}
|
sl@0
|
641 |
|
sl@0
|
642 |
code = ParseBitAndExpr(infoPtr);
|
sl@0
|
643 |
if (code != TCL_OK) {
|
sl@0
|
644 |
return code;
|
sl@0
|
645 |
}
|
sl@0
|
646 |
|
sl@0
|
647 |
/*
|
sl@0
|
648 |
* Generate tokens for the XOR subexpression and the '^' operator.
|
sl@0
|
649 |
*/
|
sl@0
|
650 |
|
sl@0
|
651 |
PrependSubExprTokens(operator, 1, srcStart,
|
sl@0
|
652 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
653 |
}
|
sl@0
|
654 |
return TCL_OK;
|
sl@0
|
655 |
}
|
sl@0
|
656 |
|
sl@0
|
657 |
/*
|
sl@0
|
658 |
*----------------------------------------------------------------------
|
sl@0
|
659 |
*
|
sl@0
|
660 |
* ParseBitAndExpr --
|
sl@0
|
661 |
*
|
sl@0
|
662 |
* This procedure parses a Tcl bitwise and expression:
|
sl@0
|
663 |
* bitAndExpr ::= equalityExpr {'&' equalityExpr}
|
sl@0
|
664 |
*
|
sl@0
|
665 |
* Results:
|
sl@0
|
666 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
667 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
668 |
* contains an error message.
|
sl@0
|
669 |
*
|
sl@0
|
670 |
* Side effects:
|
sl@0
|
671 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
672 |
* information about the subexpression, then additional space is
|
sl@0
|
673 |
* malloc-ed.
|
sl@0
|
674 |
*
|
sl@0
|
675 |
*----------------------------------------------------------------------
|
sl@0
|
676 |
*/
|
sl@0
|
677 |
|
sl@0
|
678 |
static int
|
sl@0
|
679 |
ParseBitAndExpr(infoPtr)
|
sl@0
|
680 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
681 |
* expression being parsed. */
|
sl@0
|
682 |
{
|
sl@0
|
683 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
684 |
int firstIndex, code;
|
sl@0
|
685 |
CONST char *srcStart, *operator;
|
sl@0
|
686 |
|
sl@0
|
687 |
HERE("bitAndExpr", 6);
|
sl@0
|
688 |
srcStart = infoPtr->start;
|
sl@0
|
689 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
690 |
|
sl@0
|
691 |
code = ParseEqualityExpr(infoPtr);
|
sl@0
|
692 |
if (code != TCL_OK) {
|
sl@0
|
693 |
return code;
|
sl@0
|
694 |
}
|
sl@0
|
695 |
|
sl@0
|
696 |
while (infoPtr->lexeme == BIT_AND) {
|
sl@0
|
697 |
operator = infoPtr->start;
|
sl@0
|
698 |
code = GetLexeme(infoPtr); /* skip over the '&' */
|
sl@0
|
699 |
if (code != TCL_OK) {
|
sl@0
|
700 |
return code;
|
sl@0
|
701 |
}
|
sl@0
|
702 |
code = ParseEqualityExpr(infoPtr);
|
sl@0
|
703 |
if (code != TCL_OK) {
|
sl@0
|
704 |
return code;
|
sl@0
|
705 |
}
|
sl@0
|
706 |
|
sl@0
|
707 |
/*
|
sl@0
|
708 |
* Generate tokens for the BITAND subexpression and '&' operator.
|
sl@0
|
709 |
*/
|
sl@0
|
710 |
|
sl@0
|
711 |
PrependSubExprTokens(operator, 1, srcStart,
|
sl@0
|
712 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
713 |
}
|
sl@0
|
714 |
return TCL_OK;
|
sl@0
|
715 |
}
|
sl@0
|
716 |
|
sl@0
|
717 |
/*
|
sl@0
|
718 |
*----------------------------------------------------------------------
|
sl@0
|
719 |
*
|
sl@0
|
720 |
* ParseEqualityExpr --
|
sl@0
|
721 |
*
|
sl@0
|
722 |
* This procedure parses a Tcl equality (inequality) expression:
|
sl@0
|
723 |
* equalityExpr ::= relationalExpr
|
sl@0
|
724 |
* {('==' | '!=' | 'ne' | 'eq') relationalExpr}
|
sl@0
|
725 |
*
|
sl@0
|
726 |
* Results:
|
sl@0
|
727 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
728 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
729 |
* contains an error message.
|
sl@0
|
730 |
*
|
sl@0
|
731 |
* Side effects:
|
sl@0
|
732 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
733 |
* information about the subexpression, then additional space is
|
sl@0
|
734 |
* malloc-ed.
|
sl@0
|
735 |
*
|
sl@0
|
736 |
*----------------------------------------------------------------------
|
sl@0
|
737 |
*/
|
sl@0
|
738 |
|
sl@0
|
739 |
static int
|
sl@0
|
740 |
ParseEqualityExpr(infoPtr)
|
sl@0
|
741 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
742 |
* expression being parsed. */
|
sl@0
|
743 |
{
|
sl@0
|
744 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
745 |
int firstIndex, lexeme, code;
|
sl@0
|
746 |
CONST char *srcStart, *operator;
|
sl@0
|
747 |
|
sl@0
|
748 |
HERE("equalityExpr", 7);
|
sl@0
|
749 |
srcStart = infoPtr->start;
|
sl@0
|
750 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
751 |
|
sl@0
|
752 |
code = ParseRelationalExpr(infoPtr);
|
sl@0
|
753 |
if (code != TCL_OK) {
|
sl@0
|
754 |
return code;
|
sl@0
|
755 |
}
|
sl@0
|
756 |
|
sl@0
|
757 |
lexeme = infoPtr->lexeme;
|
sl@0
|
758 |
while ((lexeme == EQUAL) || (lexeme == NEQ)
|
sl@0
|
759 |
|| (lexeme == STREQ) || (lexeme == STRNEQ)) {
|
sl@0
|
760 |
operator = infoPtr->start;
|
sl@0
|
761 |
code = GetLexeme(infoPtr); /* skip over ==, !=, 'eq' or 'ne' */
|
sl@0
|
762 |
if (code != TCL_OK) {
|
sl@0
|
763 |
return code;
|
sl@0
|
764 |
}
|
sl@0
|
765 |
code = ParseRelationalExpr(infoPtr);
|
sl@0
|
766 |
if (code != TCL_OK) {
|
sl@0
|
767 |
return code;
|
sl@0
|
768 |
}
|
sl@0
|
769 |
|
sl@0
|
770 |
/*
|
sl@0
|
771 |
* Generate tokens for the subexpression and '==', '!=', 'eq' or 'ne'
|
sl@0
|
772 |
* operator.
|
sl@0
|
773 |
*/
|
sl@0
|
774 |
|
sl@0
|
775 |
PrependSubExprTokens(operator, 2, srcStart,
|
sl@0
|
776 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
777 |
lexeme = infoPtr->lexeme;
|
sl@0
|
778 |
}
|
sl@0
|
779 |
return TCL_OK;
|
sl@0
|
780 |
}
|
sl@0
|
781 |
|
sl@0
|
782 |
/*
|
sl@0
|
783 |
*----------------------------------------------------------------------
|
sl@0
|
784 |
*
|
sl@0
|
785 |
* ParseRelationalExpr --
|
sl@0
|
786 |
*
|
sl@0
|
787 |
* This procedure parses a Tcl relational expression:
|
sl@0
|
788 |
* relationalExpr ::= shiftExpr {('<' | '>' | '<=' | '>=') shiftExpr}
|
sl@0
|
789 |
*
|
sl@0
|
790 |
* Results:
|
sl@0
|
791 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
792 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
793 |
* contains an error message.
|
sl@0
|
794 |
*
|
sl@0
|
795 |
* Side effects:
|
sl@0
|
796 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
797 |
* information about the subexpression, then additional space is
|
sl@0
|
798 |
* malloc-ed.
|
sl@0
|
799 |
*
|
sl@0
|
800 |
*----------------------------------------------------------------------
|
sl@0
|
801 |
*/
|
sl@0
|
802 |
|
sl@0
|
803 |
static int
|
sl@0
|
804 |
ParseRelationalExpr(infoPtr)
|
sl@0
|
805 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
806 |
* expression being parsed. */
|
sl@0
|
807 |
{
|
sl@0
|
808 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
809 |
int firstIndex, lexeme, operatorSize, code;
|
sl@0
|
810 |
CONST char *srcStart, *operator;
|
sl@0
|
811 |
|
sl@0
|
812 |
HERE("relationalExpr", 8);
|
sl@0
|
813 |
srcStart = infoPtr->start;
|
sl@0
|
814 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
815 |
|
sl@0
|
816 |
code = ParseShiftExpr(infoPtr);
|
sl@0
|
817 |
if (code != TCL_OK) {
|
sl@0
|
818 |
return code;
|
sl@0
|
819 |
}
|
sl@0
|
820 |
|
sl@0
|
821 |
lexeme = infoPtr->lexeme;
|
sl@0
|
822 |
while ((lexeme == LESS) || (lexeme == GREATER) || (lexeme == LEQ)
|
sl@0
|
823 |
|| (lexeme == GEQ)) {
|
sl@0
|
824 |
operator = infoPtr->start;
|
sl@0
|
825 |
if ((lexeme == LEQ) || (lexeme == GEQ)) {
|
sl@0
|
826 |
operatorSize = 2;
|
sl@0
|
827 |
} else {
|
sl@0
|
828 |
operatorSize = 1;
|
sl@0
|
829 |
}
|
sl@0
|
830 |
code = GetLexeme(infoPtr); /* skip over the operator */
|
sl@0
|
831 |
if (code != TCL_OK) {
|
sl@0
|
832 |
return code;
|
sl@0
|
833 |
}
|
sl@0
|
834 |
code = ParseShiftExpr(infoPtr);
|
sl@0
|
835 |
if (code != TCL_OK) {
|
sl@0
|
836 |
return code;
|
sl@0
|
837 |
}
|
sl@0
|
838 |
|
sl@0
|
839 |
/*
|
sl@0
|
840 |
* Generate tokens for the subexpression and the operator.
|
sl@0
|
841 |
*/
|
sl@0
|
842 |
|
sl@0
|
843 |
PrependSubExprTokens(operator, operatorSize, srcStart,
|
sl@0
|
844 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
845 |
lexeme = infoPtr->lexeme;
|
sl@0
|
846 |
}
|
sl@0
|
847 |
return TCL_OK;
|
sl@0
|
848 |
}
|
sl@0
|
849 |
|
sl@0
|
850 |
/*
|
sl@0
|
851 |
*----------------------------------------------------------------------
|
sl@0
|
852 |
*
|
sl@0
|
853 |
* ParseShiftExpr --
|
sl@0
|
854 |
*
|
sl@0
|
855 |
* This procedure parses a Tcl shift expression:
|
sl@0
|
856 |
* shiftExpr ::= addExpr {('<<' | '>>') addExpr}
|
sl@0
|
857 |
*
|
sl@0
|
858 |
* Results:
|
sl@0
|
859 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
860 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
861 |
* contains an error message.
|
sl@0
|
862 |
*
|
sl@0
|
863 |
* Side effects:
|
sl@0
|
864 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
865 |
* information about the subexpression, then additional space is
|
sl@0
|
866 |
* malloc-ed.
|
sl@0
|
867 |
*
|
sl@0
|
868 |
*----------------------------------------------------------------------
|
sl@0
|
869 |
*/
|
sl@0
|
870 |
|
sl@0
|
871 |
static int
|
sl@0
|
872 |
ParseShiftExpr(infoPtr)
|
sl@0
|
873 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
874 |
* expression being parsed. */
|
sl@0
|
875 |
{
|
sl@0
|
876 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
877 |
int firstIndex, lexeme, code;
|
sl@0
|
878 |
CONST char *srcStart, *operator;
|
sl@0
|
879 |
|
sl@0
|
880 |
HERE("shiftExpr", 9);
|
sl@0
|
881 |
srcStart = infoPtr->start;
|
sl@0
|
882 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
883 |
|
sl@0
|
884 |
code = ParseAddExpr(infoPtr);
|
sl@0
|
885 |
if (code != TCL_OK) {
|
sl@0
|
886 |
return code;
|
sl@0
|
887 |
}
|
sl@0
|
888 |
|
sl@0
|
889 |
lexeme = infoPtr->lexeme;
|
sl@0
|
890 |
while ((lexeme == LEFT_SHIFT) || (lexeme == RIGHT_SHIFT)) {
|
sl@0
|
891 |
operator = infoPtr->start;
|
sl@0
|
892 |
code = GetLexeme(infoPtr); /* skip over << or >> */
|
sl@0
|
893 |
if (code != TCL_OK) {
|
sl@0
|
894 |
return code;
|
sl@0
|
895 |
}
|
sl@0
|
896 |
code = ParseAddExpr(infoPtr);
|
sl@0
|
897 |
if (code != TCL_OK) {
|
sl@0
|
898 |
return code;
|
sl@0
|
899 |
}
|
sl@0
|
900 |
|
sl@0
|
901 |
/*
|
sl@0
|
902 |
* Generate tokens for the subexpression and '<<' or '>>' operator.
|
sl@0
|
903 |
*/
|
sl@0
|
904 |
|
sl@0
|
905 |
PrependSubExprTokens(operator, 2, srcStart,
|
sl@0
|
906 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
907 |
lexeme = infoPtr->lexeme;
|
sl@0
|
908 |
}
|
sl@0
|
909 |
return TCL_OK;
|
sl@0
|
910 |
}
|
sl@0
|
911 |
|
sl@0
|
912 |
/*
|
sl@0
|
913 |
*----------------------------------------------------------------------
|
sl@0
|
914 |
*
|
sl@0
|
915 |
* ParseAddExpr --
|
sl@0
|
916 |
*
|
sl@0
|
917 |
* This procedure parses a Tcl addition expression:
|
sl@0
|
918 |
* addExpr ::= multiplyExpr {('+' | '-') multiplyExpr}
|
sl@0
|
919 |
*
|
sl@0
|
920 |
* Results:
|
sl@0
|
921 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
922 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
923 |
* contains an error message.
|
sl@0
|
924 |
*
|
sl@0
|
925 |
* Side effects:
|
sl@0
|
926 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
927 |
* information about the subexpression, then additional space is
|
sl@0
|
928 |
* malloc-ed.
|
sl@0
|
929 |
*
|
sl@0
|
930 |
*----------------------------------------------------------------------
|
sl@0
|
931 |
*/
|
sl@0
|
932 |
|
sl@0
|
933 |
static int
|
sl@0
|
934 |
ParseAddExpr(infoPtr)
|
sl@0
|
935 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
936 |
* expression being parsed. */
|
sl@0
|
937 |
{
|
sl@0
|
938 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
939 |
int firstIndex, lexeme, code;
|
sl@0
|
940 |
CONST char *srcStart, *operator;
|
sl@0
|
941 |
|
sl@0
|
942 |
HERE("addExpr", 10);
|
sl@0
|
943 |
srcStart = infoPtr->start;
|
sl@0
|
944 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
945 |
|
sl@0
|
946 |
code = ParseMultiplyExpr(infoPtr);
|
sl@0
|
947 |
if (code != TCL_OK) {
|
sl@0
|
948 |
return code;
|
sl@0
|
949 |
}
|
sl@0
|
950 |
|
sl@0
|
951 |
lexeme = infoPtr->lexeme;
|
sl@0
|
952 |
while ((lexeme == PLUS) || (lexeme == MINUS)) {
|
sl@0
|
953 |
operator = infoPtr->start;
|
sl@0
|
954 |
code = GetLexeme(infoPtr); /* skip over + or - */
|
sl@0
|
955 |
if (code != TCL_OK) {
|
sl@0
|
956 |
return code;
|
sl@0
|
957 |
}
|
sl@0
|
958 |
code = ParseMultiplyExpr(infoPtr);
|
sl@0
|
959 |
if (code != TCL_OK) {
|
sl@0
|
960 |
return code;
|
sl@0
|
961 |
}
|
sl@0
|
962 |
|
sl@0
|
963 |
/*
|
sl@0
|
964 |
* Generate tokens for the subexpression and '+' or '-' operator.
|
sl@0
|
965 |
*/
|
sl@0
|
966 |
|
sl@0
|
967 |
PrependSubExprTokens(operator, 1, srcStart,
|
sl@0
|
968 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
969 |
lexeme = infoPtr->lexeme;
|
sl@0
|
970 |
}
|
sl@0
|
971 |
return TCL_OK;
|
sl@0
|
972 |
}
|
sl@0
|
973 |
|
sl@0
|
974 |
/*
|
sl@0
|
975 |
*----------------------------------------------------------------------
|
sl@0
|
976 |
*
|
sl@0
|
977 |
* ParseMultiplyExpr --
|
sl@0
|
978 |
*
|
sl@0
|
979 |
* This procedure parses a Tcl multiply expression:
|
sl@0
|
980 |
* multiplyExpr ::= unaryExpr {('*' | '/' | '%') unaryExpr}
|
sl@0
|
981 |
*
|
sl@0
|
982 |
* Results:
|
sl@0
|
983 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
984 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
985 |
* contains an error message.
|
sl@0
|
986 |
*
|
sl@0
|
987 |
* Side effects:
|
sl@0
|
988 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
989 |
* information about the subexpression, then additional space is
|
sl@0
|
990 |
* malloc-ed.
|
sl@0
|
991 |
*
|
sl@0
|
992 |
*----------------------------------------------------------------------
|
sl@0
|
993 |
*/
|
sl@0
|
994 |
|
sl@0
|
995 |
static int
|
sl@0
|
996 |
ParseMultiplyExpr(infoPtr)
|
sl@0
|
997 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
998 |
* expression being parsed. */
|
sl@0
|
999 |
{
|
sl@0
|
1000 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
1001 |
int firstIndex, lexeme, code;
|
sl@0
|
1002 |
CONST char *srcStart, *operator;
|
sl@0
|
1003 |
|
sl@0
|
1004 |
HERE("multiplyExpr", 11);
|
sl@0
|
1005 |
srcStart = infoPtr->start;
|
sl@0
|
1006 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
1007 |
|
sl@0
|
1008 |
code = ParseUnaryExpr(infoPtr);
|
sl@0
|
1009 |
if (code != TCL_OK) {
|
sl@0
|
1010 |
return code;
|
sl@0
|
1011 |
}
|
sl@0
|
1012 |
|
sl@0
|
1013 |
lexeme = infoPtr->lexeme;
|
sl@0
|
1014 |
while ((lexeme == MULT) || (lexeme == DIVIDE) || (lexeme == MOD)) {
|
sl@0
|
1015 |
operator = infoPtr->start;
|
sl@0
|
1016 |
code = GetLexeme(infoPtr); /* skip over * or / or % */
|
sl@0
|
1017 |
if (code != TCL_OK) {
|
sl@0
|
1018 |
return code;
|
sl@0
|
1019 |
}
|
sl@0
|
1020 |
code = ParseUnaryExpr(infoPtr);
|
sl@0
|
1021 |
if (code != TCL_OK) {
|
sl@0
|
1022 |
return code;
|
sl@0
|
1023 |
}
|
sl@0
|
1024 |
|
sl@0
|
1025 |
/*
|
sl@0
|
1026 |
* Generate tokens for the subexpression and * or / or % operator.
|
sl@0
|
1027 |
*/
|
sl@0
|
1028 |
|
sl@0
|
1029 |
PrependSubExprTokens(operator, 1, srcStart,
|
sl@0
|
1030 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
1031 |
lexeme = infoPtr->lexeme;
|
sl@0
|
1032 |
}
|
sl@0
|
1033 |
return TCL_OK;
|
sl@0
|
1034 |
}
|
sl@0
|
1035 |
|
sl@0
|
1036 |
/*
|
sl@0
|
1037 |
*----------------------------------------------------------------------
|
sl@0
|
1038 |
*
|
sl@0
|
1039 |
* ParseUnaryExpr --
|
sl@0
|
1040 |
*
|
sl@0
|
1041 |
* This procedure parses a Tcl unary expression:
|
sl@0
|
1042 |
* unaryExpr ::= ('+' | '-' | '~' | '!') unaryExpr | primaryExpr
|
sl@0
|
1043 |
*
|
sl@0
|
1044 |
* Results:
|
sl@0
|
1045 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
1046 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
1047 |
* contains an error message.
|
sl@0
|
1048 |
*
|
sl@0
|
1049 |
* Side effects:
|
sl@0
|
1050 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
1051 |
* information about the subexpression, then additional space is
|
sl@0
|
1052 |
* malloc-ed.
|
sl@0
|
1053 |
*
|
sl@0
|
1054 |
*----------------------------------------------------------------------
|
sl@0
|
1055 |
*/
|
sl@0
|
1056 |
|
sl@0
|
1057 |
static int
|
sl@0
|
1058 |
ParseUnaryExpr(infoPtr)
|
sl@0
|
1059 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
1060 |
* expression being parsed. */
|
sl@0
|
1061 |
{
|
sl@0
|
1062 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
1063 |
int firstIndex, lexeme, code;
|
sl@0
|
1064 |
CONST char *srcStart, *operator;
|
sl@0
|
1065 |
|
sl@0
|
1066 |
HERE("unaryExpr", 12);
|
sl@0
|
1067 |
srcStart = infoPtr->start;
|
sl@0
|
1068 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
1069 |
|
sl@0
|
1070 |
lexeme = infoPtr->lexeme;
|
sl@0
|
1071 |
if ((lexeme == PLUS) || (lexeme == MINUS) || (lexeme == BIT_NOT)
|
sl@0
|
1072 |
|| (lexeme == NOT)) {
|
sl@0
|
1073 |
operator = infoPtr->start;
|
sl@0
|
1074 |
code = GetLexeme(infoPtr); /* skip over the unary operator */
|
sl@0
|
1075 |
if (code != TCL_OK) {
|
sl@0
|
1076 |
return code;
|
sl@0
|
1077 |
}
|
sl@0
|
1078 |
code = ParseUnaryExpr(infoPtr);
|
sl@0
|
1079 |
if (code != TCL_OK) {
|
sl@0
|
1080 |
return code;
|
sl@0
|
1081 |
}
|
sl@0
|
1082 |
|
sl@0
|
1083 |
/*
|
sl@0
|
1084 |
* Generate tokens for the subexpression and the operator.
|
sl@0
|
1085 |
*/
|
sl@0
|
1086 |
|
sl@0
|
1087 |
PrependSubExprTokens(operator, 1, srcStart,
|
sl@0
|
1088 |
(infoPtr->prevEnd - srcStart), firstIndex, infoPtr);
|
sl@0
|
1089 |
} else { /* must be a primaryExpr */
|
sl@0
|
1090 |
code = ParsePrimaryExpr(infoPtr);
|
sl@0
|
1091 |
if (code != TCL_OK) {
|
sl@0
|
1092 |
return code;
|
sl@0
|
1093 |
}
|
sl@0
|
1094 |
}
|
sl@0
|
1095 |
return TCL_OK;
|
sl@0
|
1096 |
}
|
sl@0
|
1097 |
|
sl@0
|
1098 |
/*
|
sl@0
|
1099 |
*----------------------------------------------------------------------
|
sl@0
|
1100 |
*
|
sl@0
|
1101 |
* ParsePrimaryExpr --
|
sl@0
|
1102 |
*
|
sl@0
|
1103 |
* This procedure parses a Tcl primary expression:
|
sl@0
|
1104 |
* primaryExpr ::= literal | varReference | quotedString |
|
sl@0
|
1105 |
* '[' command ']' | mathFuncCall | '(' condExpr ')'
|
sl@0
|
1106 |
*
|
sl@0
|
1107 |
* Results:
|
sl@0
|
1108 |
* The return value is TCL_OK on a successful parse and TCL_ERROR
|
sl@0
|
1109 |
* on failure. If TCL_ERROR is returned, then the interpreter's result
|
sl@0
|
1110 |
* contains an error message.
|
sl@0
|
1111 |
*
|
sl@0
|
1112 |
* Side effects:
|
sl@0
|
1113 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
1114 |
* information about the subexpression, then additional space is
|
sl@0
|
1115 |
* malloc-ed.
|
sl@0
|
1116 |
*
|
sl@0
|
1117 |
*----------------------------------------------------------------------
|
sl@0
|
1118 |
*/
|
sl@0
|
1119 |
|
sl@0
|
1120 |
static int
|
sl@0
|
1121 |
ParsePrimaryExpr(infoPtr)
|
sl@0
|
1122 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
1123 |
* expression being parsed. */
|
sl@0
|
1124 |
{
|
sl@0
|
1125 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
1126 |
Tcl_Interp *interp = parsePtr->interp;
|
sl@0
|
1127 |
Tcl_Token *tokenPtr, *exprTokenPtr;
|
sl@0
|
1128 |
Tcl_Parse nested;
|
sl@0
|
1129 |
CONST char *dollarPtr, *stringStart, *termPtr, *src;
|
sl@0
|
1130 |
int lexeme, exprIndex, firstIndex, numToMove, code;
|
sl@0
|
1131 |
|
sl@0
|
1132 |
/*
|
sl@0
|
1133 |
* We simply recurse on parenthesized subexpressions.
|
sl@0
|
1134 |
*/
|
sl@0
|
1135 |
|
sl@0
|
1136 |
HERE("primaryExpr", 13);
|
sl@0
|
1137 |
lexeme = infoPtr->lexeme;
|
sl@0
|
1138 |
if (lexeme == OPEN_PAREN) {
|
sl@0
|
1139 |
code = GetLexeme(infoPtr); /* skip over the '(' */
|
sl@0
|
1140 |
if (code != TCL_OK) {
|
sl@0
|
1141 |
return code;
|
sl@0
|
1142 |
}
|
sl@0
|
1143 |
code = ParseCondExpr(infoPtr);
|
sl@0
|
1144 |
if (code != TCL_OK) {
|
sl@0
|
1145 |
return code;
|
sl@0
|
1146 |
}
|
sl@0
|
1147 |
if (infoPtr->lexeme != CLOSE_PAREN) {
|
sl@0
|
1148 |
LogSyntaxError(infoPtr, "looking for close parenthesis");
|
sl@0
|
1149 |
return TCL_ERROR;
|
sl@0
|
1150 |
}
|
sl@0
|
1151 |
code = GetLexeme(infoPtr); /* skip over the ')' */
|
sl@0
|
1152 |
if (code != TCL_OK) {
|
sl@0
|
1153 |
return code;
|
sl@0
|
1154 |
}
|
sl@0
|
1155 |
return TCL_OK;
|
sl@0
|
1156 |
}
|
sl@0
|
1157 |
|
sl@0
|
1158 |
/*
|
sl@0
|
1159 |
* Start a TCL_TOKEN_SUB_EXPR token for the primary.
|
sl@0
|
1160 |
*/
|
sl@0
|
1161 |
|
sl@0
|
1162 |
if (parsePtr->numTokens == parsePtr->tokensAvailable) {
|
sl@0
|
1163 |
TclExpandTokenArray(parsePtr);
|
sl@0
|
1164 |
}
|
sl@0
|
1165 |
exprIndex = parsePtr->numTokens;
|
sl@0
|
1166 |
exprTokenPtr = &parsePtr->tokenPtr[exprIndex];
|
sl@0
|
1167 |
exprTokenPtr->type = TCL_TOKEN_SUB_EXPR;
|
sl@0
|
1168 |
exprTokenPtr->start = infoPtr->start;
|
sl@0
|
1169 |
parsePtr->numTokens++;
|
sl@0
|
1170 |
|
sl@0
|
1171 |
/*
|
sl@0
|
1172 |
* Process the primary then finish setting the fields of the
|
sl@0
|
1173 |
* TCL_TOKEN_SUB_EXPR token. Note that we can't use the pointer now
|
sl@0
|
1174 |
* stored in "exprTokenPtr" in the code below since the token array
|
sl@0
|
1175 |
* might be reallocated.
|
sl@0
|
1176 |
*/
|
sl@0
|
1177 |
|
sl@0
|
1178 |
firstIndex = parsePtr->numTokens;
|
sl@0
|
1179 |
switch (lexeme) {
|
sl@0
|
1180 |
case LITERAL:
|
sl@0
|
1181 |
/*
|
sl@0
|
1182 |
* Int or double number.
|
sl@0
|
1183 |
*/
|
sl@0
|
1184 |
|
sl@0
|
1185 |
tokenizeLiteral:
|
sl@0
|
1186 |
if (parsePtr->numTokens == parsePtr->tokensAvailable) {
|
sl@0
|
1187 |
TclExpandTokenArray(parsePtr);
|
sl@0
|
1188 |
}
|
sl@0
|
1189 |
tokenPtr = &parsePtr->tokenPtr[parsePtr->numTokens];
|
sl@0
|
1190 |
tokenPtr->type = TCL_TOKEN_TEXT;
|
sl@0
|
1191 |
tokenPtr->start = infoPtr->start;
|
sl@0
|
1192 |
tokenPtr->size = infoPtr->size;
|
sl@0
|
1193 |
tokenPtr->numComponents = 0;
|
sl@0
|
1194 |
parsePtr->numTokens++;
|
sl@0
|
1195 |
|
sl@0
|
1196 |
exprTokenPtr = &parsePtr->tokenPtr[exprIndex];
|
sl@0
|
1197 |
exprTokenPtr->size = infoPtr->size;
|
sl@0
|
1198 |
exprTokenPtr->numComponents = 1;
|
sl@0
|
1199 |
break;
|
sl@0
|
1200 |
|
sl@0
|
1201 |
case DOLLAR:
|
sl@0
|
1202 |
/*
|
sl@0
|
1203 |
* $var variable reference.
|
sl@0
|
1204 |
*/
|
sl@0
|
1205 |
|
sl@0
|
1206 |
dollarPtr = (infoPtr->next - 1);
|
sl@0
|
1207 |
code = Tcl_ParseVarName(interp, dollarPtr,
|
sl@0
|
1208 |
(infoPtr->lastChar - dollarPtr), parsePtr, 1);
|
sl@0
|
1209 |
if (code != TCL_OK) {
|
sl@0
|
1210 |
return code;
|
sl@0
|
1211 |
}
|
sl@0
|
1212 |
infoPtr->next = dollarPtr + parsePtr->tokenPtr[firstIndex].size;
|
sl@0
|
1213 |
|
sl@0
|
1214 |
exprTokenPtr = &parsePtr->tokenPtr[exprIndex];
|
sl@0
|
1215 |
exprTokenPtr->size = parsePtr->tokenPtr[firstIndex].size;
|
sl@0
|
1216 |
exprTokenPtr->numComponents =
|
sl@0
|
1217 |
(parsePtr->tokenPtr[firstIndex].numComponents + 1);
|
sl@0
|
1218 |
break;
|
sl@0
|
1219 |
|
sl@0
|
1220 |
case QUOTE:
|
sl@0
|
1221 |
/*
|
sl@0
|
1222 |
* '"' string '"'
|
sl@0
|
1223 |
*/
|
sl@0
|
1224 |
|
sl@0
|
1225 |
stringStart = infoPtr->next;
|
sl@0
|
1226 |
code = Tcl_ParseQuotedString(interp, infoPtr->start,
|
sl@0
|
1227 |
(infoPtr->lastChar - stringStart), parsePtr, 1, &termPtr);
|
sl@0
|
1228 |
if (code != TCL_OK) {
|
sl@0
|
1229 |
return code;
|
sl@0
|
1230 |
}
|
sl@0
|
1231 |
infoPtr->next = termPtr;
|
sl@0
|
1232 |
|
sl@0
|
1233 |
exprTokenPtr = &parsePtr->tokenPtr[exprIndex];
|
sl@0
|
1234 |
exprTokenPtr->size = (termPtr - exprTokenPtr->start);
|
sl@0
|
1235 |
exprTokenPtr->numComponents = parsePtr->numTokens - firstIndex;
|
sl@0
|
1236 |
|
sl@0
|
1237 |
/*
|
sl@0
|
1238 |
* If parsing the quoted string resulted in more than one token,
|
sl@0
|
1239 |
* insert a TCL_TOKEN_WORD token before them. This indicates that
|
sl@0
|
1240 |
* the quoted string represents a concatenation of multiple tokens.
|
sl@0
|
1241 |
*/
|
sl@0
|
1242 |
|
sl@0
|
1243 |
if (exprTokenPtr->numComponents > 1) {
|
sl@0
|
1244 |
if (parsePtr->numTokens >= parsePtr->tokensAvailable) {
|
sl@0
|
1245 |
TclExpandTokenArray(parsePtr);
|
sl@0
|
1246 |
}
|
sl@0
|
1247 |
tokenPtr = &parsePtr->tokenPtr[firstIndex];
|
sl@0
|
1248 |
numToMove = (parsePtr->numTokens - firstIndex);
|
sl@0
|
1249 |
memmove((VOID *) (tokenPtr + 1), (VOID *) tokenPtr,
|
sl@0
|
1250 |
(size_t) (numToMove * sizeof(Tcl_Token)));
|
sl@0
|
1251 |
parsePtr->numTokens++;
|
sl@0
|
1252 |
|
sl@0
|
1253 |
exprTokenPtr = &parsePtr->tokenPtr[exprIndex];
|
sl@0
|
1254 |
exprTokenPtr->numComponents++;
|
sl@0
|
1255 |
|
sl@0
|
1256 |
tokenPtr->type = TCL_TOKEN_WORD;
|
sl@0
|
1257 |
tokenPtr->start = exprTokenPtr->start;
|
sl@0
|
1258 |
tokenPtr->size = exprTokenPtr->size;
|
sl@0
|
1259 |
tokenPtr->numComponents = (exprTokenPtr->numComponents - 1);
|
sl@0
|
1260 |
}
|
sl@0
|
1261 |
break;
|
sl@0
|
1262 |
|
sl@0
|
1263 |
case OPEN_BRACKET:
|
sl@0
|
1264 |
/*
|
sl@0
|
1265 |
* '[' command {command} ']'
|
sl@0
|
1266 |
*/
|
sl@0
|
1267 |
|
sl@0
|
1268 |
if (parsePtr->numTokens == parsePtr->tokensAvailable) {
|
sl@0
|
1269 |
TclExpandTokenArray(parsePtr);
|
sl@0
|
1270 |
}
|
sl@0
|
1271 |
tokenPtr = &parsePtr->tokenPtr[parsePtr->numTokens];
|
sl@0
|
1272 |
tokenPtr->type = TCL_TOKEN_COMMAND;
|
sl@0
|
1273 |
tokenPtr->start = infoPtr->start;
|
sl@0
|
1274 |
tokenPtr->numComponents = 0;
|
sl@0
|
1275 |
parsePtr->numTokens++;
|
sl@0
|
1276 |
|
sl@0
|
1277 |
/*
|
sl@0
|
1278 |
* Call Tcl_ParseCommand repeatedly to parse the nested command(s)
|
sl@0
|
1279 |
* to find their end, then throw away that parse information.
|
sl@0
|
1280 |
*/
|
sl@0
|
1281 |
|
sl@0
|
1282 |
src = infoPtr->next;
|
sl@0
|
1283 |
while (1) {
|
sl@0
|
1284 |
if (Tcl_ParseCommand(interp, src, (parsePtr->end - src), 1,
|
sl@0
|
1285 |
&nested) != TCL_OK) {
|
sl@0
|
1286 |
parsePtr->term = nested.term;
|
sl@0
|
1287 |
parsePtr->errorType = nested.errorType;
|
sl@0
|
1288 |
parsePtr->incomplete = nested.incomplete;
|
sl@0
|
1289 |
return TCL_ERROR;
|
sl@0
|
1290 |
}
|
sl@0
|
1291 |
src = (nested.commandStart + nested.commandSize);
|
sl@0
|
1292 |
|
sl@0
|
1293 |
/*
|
sl@0
|
1294 |
* This is equivalent to Tcl_FreeParse(&nested), but
|
sl@0
|
1295 |
* presumably inlined here for sake of runtime optimization
|
sl@0
|
1296 |
*/
|
sl@0
|
1297 |
|
sl@0
|
1298 |
if (nested.tokenPtr != nested.staticTokens) {
|
sl@0
|
1299 |
ckfree((char *) nested.tokenPtr);
|
sl@0
|
1300 |
}
|
sl@0
|
1301 |
|
sl@0
|
1302 |
/*
|
sl@0
|
1303 |
* Check for the closing ']' that ends the command substitution.
|
sl@0
|
1304 |
* It must have been the last character of the parsed command.
|
sl@0
|
1305 |
*/
|
sl@0
|
1306 |
|
sl@0
|
1307 |
if ((nested.term < parsePtr->end) && (*nested.term == ']')
|
sl@0
|
1308 |
&& !nested.incomplete) {
|
sl@0
|
1309 |
break;
|
sl@0
|
1310 |
}
|
sl@0
|
1311 |
if (src == parsePtr->end) {
|
sl@0
|
1312 |
if (parsePtr->interp != NULL) {
|
sl@0
|
1313 |
Tcl_SetResult(interp, "missing close-bracket",
|
sl@0
|
1314 |
TCL_STATIC);
|
sl@0
|
1315 |
}
|
sl@0
|
1316 |
parsePtr->term = tokenPtr->start;
|
sl@0
|
1317 |
parsePtr->errorType = TCL_PARSE_MISSING_BRACKET;
|
sl@0
|
1318 |
parsePtr->incomplete = 1;
|
sl@0
|
1319 |
return TCL_ERROR;
|
sl@0
|
1320 |
}
|
sl@0
|
1321 |
}
|
sl@0
|
1322 |
tokenPtr->size = (src - tokenPtr->start);
|
sl@0
|
1323 |
infoPtr->next = src;
|
sl@0
|
1324 |
|
sl@0
|
1325 |
exprTokenPtr = &parsePtr->tokenPtr[exprIndex];
|
sl@0
|
1326 |
exprTokenPtr->size = (src - tokenPtr->start);
|
sl@0
|
1327 |
exprTokenPtr->numComponents = 1;
|
sl@0
|
1328 |
break;
|
sl@0
|
1329 |
|
sl@0
|
1330 |
case OPEN_BRACE:
|
sl@0
|
1331 |
/*
|
sl@0
|
1332 |
* '{' string '}'
|
sl@0
|
1333 |
*/
|
sl@0
|
1334 |
|
sl@0
|
1335 |
code = Tcl_ParseBraces(interp, infoPtr->start,
|
sl@0
|
1336 |
(infoPtr->lastChar - infoPtr->start), parsePtr, 1,
|
sl@0
|
1337 |
&termPtr);
|
sl@0
|
1338 |
if (code != TCL_OK) {
|
sl@0
|
1339 |
return code;
|
sl@0
|
1340 |
}
|
sl@0
|
1341 |
infoPtr->next = termPtr;
|
sl@0
|
1342 |
|
sl@0
|
1343 |
exprTokenPtr = &parsePtr->tokenPtr[exprIndex];
|
sl@0
|
1344 |
exprTokenPtr->size = (termPtr - infoPtr->start);
|
sl@0
|
1345 |
exprTokenPtr->numComponents = parsePtr->numTokens - firstIndex;
|
sl@0
|
1346 |
|
sl@0
|
1347 |
/*
|
sl@0
|
1348 |
* If parsing the braced string resulted in more than one token,
|
sl@0
|
1349 |
* insert a TCL_TOKEN_WORD token before them. This indicates that
|
sl@0
|
1350 |
* the braced string represents a concatenation of multiple tokens.
|
sl@0
|
1351 |
*/
|
sl@0
|
1352 |
|
sl@0
|
1353 |
if (exprTokenPtr->numComponents > 1) {
|
sl@0
|
1354 |
if (parsePtr->numTokens >= parsePtr->tokensAvailable) {
|
sl@0
|
1355 |
TclExpandTokenArray(parsePtr);
|
sl@0
|
1356 |
}
|
sl@0
|
1357 |
tokenPtr = &parsePtr->tokenPtr[firstIndex];
|
sl@0
|
1358 |
numToMove = (parsePtr->numTokens - firstIndex);
|
sl@0
|
1359 |
memmove((VOID *) (tokenPtr + 1), (VOID *) tokenPtr,
|
sl@0
|
1360 |
(size_t) (numToMove * sizeof(Tcl_Token)));
|
sl@0
|
1361 |
parsePtr->numTokens++;
|
sl@0
|
1362 |
|
sl@0
|
1363 |
exprTokenPtr = &parsePtr->tokenPtr[exprIndex];
|
sl@0
|
1364 |
exprTokenPtr->numComponents++;
|
sl@0
|
1365 |
|
sl@0
|
1366 |
tokenPtr->type = TCL_TOKEN_WORD;
|
sl@0
|
1367 |
tokenPtr->start = exprTokenPtr->start;
|
sl@0
|
1368 |
tokenPtr->size = exprTokenPtr->size;
|
sl@0
|
1369 |
tokenPtr->numComponents = exprTokenPtr->numComponents-1;
|
sl@0
|
1370 |
}
|
sl@0
|
1371 |
break;
|
sl@0
|
1372 |
|
sl@0
|
1373 |
case STREQ:
|
sl@0
|
1374 |
case STRNEQ:
|
sl@0
|
1375 |
case FUNC_NAME: {
|
sl@0
|
1376 |
/*
|
sl@0
|
1377 |
* math_func '(' expr {',' expr} ')'
|
sl@0
|
1378 |
*/
|
sl@0
|
1379 |
|
sl@0
|
1380 |
ParseInfo savedInfo = *infoPtr;
|
sl@0
|
1381 |
|
sl@0
|
1382 |
code = GetLexeme(infoPtr); /* skip over function name */
|
sl@0
|
1383 |
if (code != TCL_OK) {
|
sl@0
|
1384 |
return code;
|
sl@0
|
1385 |
}
|
sl@0
|
1386 |
if (infoPtr->lexeme != OPEN_PAREN) {
|
sl@0
|
1387 |
int code;
|
sl@0
|
1388 |
Tcl_DString functionName;
|
sl@0
|
1389 |
Tcl_HashEntry *hPtr;
|
sl@0
|
1390 |
Interp *iPtr = (Interp *) infoPtr->parsePtr->interp;
|
sl@0
|
1391 |
Tcl_Obj *objPtr = Tcl_NewStringObj(savedInfo.start, savedInfo.size);
|
sl@0
|
1392 |
|
sl@0
|
1393 |
/* Check for boolean literals (true, false, yes, no, on, off) */
|
sl@0
|
1394 |
Tcl_IncrRefCount(objPtr);
|
sl@0
|
1395 |
code = Tcl_ConvertToType(NULL, objPtr, &tclBooleanType);
|
sl@0
|
1396 |
Tcl_DecrRefCount(objPtr);
|
sl@0
|
1397 |
if (code == TCL_OK) {
|
sl@0
|
1398 |
*infoPtr = savedInfo;
|
sl@0
|
1399 |
goto tokenizeLiteral;
|
sl@0
|
1400 |
}
|
sl@0
|
1401 |
|
sl@0
|
1402 |
/*
|
sl@0
|
1403 |
* Guess what kind of error we have by trying to tell
|
sl@0
|
1404 |
* whether we have a function or variable name here.
|
sl@0
|
1405 |
* Alas, this makes the parser more tightly bound with the
|
sl@0
|
1406 |
* rest of the interpreter, but that is the only way to
|
sl@0
|
1407 |
* give a sensible message here. Still, it is not too
|
sl@0
|
1408 |
* serious as this is only done when generating an error.
|
sl@0
|
1409 |
*/
|
sl@0
|
1410 |
|
sl@0
|
1411 |
/*
|
sl@0
|
1412 |
* Look up the name as a function name. We need a writable
|
sl@0
|
1413 |
* copy (DString) so we can terminate it with a NULL for
|
sl@0
|
1414 |
* the benefit of Tcl_FindHashEntry which operates on
|
sl@0
|
1415 |
* NULL-terminated string keys.
|
sl@0
|
1416 |
*/
|
sl@0
|
1417 |
Tcl_DStringInit(&functionName);
|
sl@0
|
1418 |
hPtr = Tcl_FindHashEntry(&iPtr->mathFuncTable,
|
sl@0
|
1419 |
Tcl_DStringAppend(&functionName,
|
sl@0
|
1420 |
savedInfo.start, savedInfo.size));
|
sl@0
|
1421 |
Tcl_DStringFree(&functionName);
|
sl@0
|
1422 |
|
sl@0
|
1423 |
/*
|
sl@0
|
1424 |
* Assume that we have an attempted variable reference
|
sl@0
|
1425 |
* unless we've got a function name, as the set of
|
sl@0
|
1426 |
* potential function names is typically much smaller.
|
sl@0
|
1427 |
*/
|
sl@0
|
1428 |
if (hPtr != NULL) {
|
sl@0
|
1429 |
LogSyntaxError(infoPtr,
|
sl@0
|
1430 |
"expected parenthesis enclosing function arguments");
|
sl@0
|
1431 |
} else {
|
sl@0
|
1432 |
LogSyntaxError(infoPtr,
|
sl@0
|
1433 |
"variable references require preceding $");
|
sl@0
|
1434 |
}
|
sl@0
|
1435 |
return TCL_ERROR;
|
sl@0
|
1436 |
}
|
sl@0
|
1437 |
|
sl@0
|
1438 |
if (parsePtr->numTokens == parsePtr->tokensAvailable) {
|
sl@0
|
1439 |
TclExpandTokenArray(parsePtr);
|
sl@0
|
1440 |
}
|
sl@0
|
1441 |
tokenPtr = &parsePtr->tokenPtr[parsePtr->numTokens];
|
sl@0
|
1442 |
tokenPtr->type = TCL_TOKEN_OPERATOR;
|
sl@0
|
1443 |
tokenPtr->start = savedInfo.start;
|
sl@0
|
1444 |
tokenPtr->size = savedInfo.size;
|
sl@0
|
1445 |
tokenPtr->numComponents = 0;
|
sl@0
|
1446 |
parsePtr->numTokens++;
|
sl@0
|
1447 |
|
sl@0
|
1448 |
code = GetLexeme(infoPtr); /* skip over '(' */
|
sl@0
|
1449 |
if (code != TCL_OK) {
|
sl@0
|
1450 |
return code;
|
sl@0
|
1451 |
}
|
sl@0
|
1452 |
|
sl@0
|
1453 |
while (infoPtr->lexeme != CLOSE_PAREN) {
|
sl@0
|
1454 |
code = ParseCondExpr(infoPtr);
|
sl@0
|
1455 |
if (code != TCL_OK) {
|
sl@0
|
1456 |
return code;
|
sl@0
|
1457 |
}
|
sl@0
|
1458 |
|
sl@0
|
1459 |
if (infoPtr->lexeme == COMMA) {
|
sl@0
|
1460 |
code = GetLexeme(infoPtr); /* skip over , */
|
sl@0
|
1461 |
if (code != TCL_OK) {
|
sl@0
|
1462 |
return code;
|
sl@0
|
1463 |
}
|
sl@0
|
1464 |
} else if (infoPtr->lexeme != CLOSE_PAREN) {
|
sl@0
|
1465 |
LogSyntaxError(infoPtr,
|
sl@0
|
1466 |
"missing close parenthesis at end of function call");
|
sl@0
|
1467 |
return TCL_ERROR;
|
sl@0
|
1468 |
}
|
sl@0
|
1469 |
}
|
sl@0
|
1470 |
|
sl@0
|
1471 |
exprTokenPtr = &parsePtr->tokenPtr[exprIndex];
|
sl@0
|
1472 |
exprTokenPtr->size = (infoPtr->next - exprTokenPtr->start);
|
sl@0
|
1473 |
exprTokenPtr->numComponents = parsePtr->numTokens - firstIndex;
|
sl@0
|
1474 |
break;
|
sl@0
|
1475 |
}
|
sl@0
|
1476 |
|
sl@0
|
1477 |
case COMMA:
|
sl@0
|
1478 |
LogSyntaxError(infoPtr,
|
sl@0
|
1479 |
"commas can only separate function arguments");
|
sl@0
|
1480 |
return TCL_ERROR;
|
sl@0
|
1481 |
case END:
|
sl@0
|
1482 |
LogSyntaxError(infoPtr, "premature end of expression");
|
sl@0
|
1483 |
return TCL_ERROR;
|
sl@0
|
1484 |
case UNKNOWN:
|
sl@0
|
1485 |
LogSyntaxError(infoPtr, "single equality character not legal in expressions");
|
sl@0
|
1486 |
return TCL_ERROR;
|
sl@0
|
1487 |
case UNKNOWN_CHAR:
|
sl@0
|
1488 |
LogSyntaxError(infoPtr, "character not legal in expressions");
|
sl@0
|
1489 |
return TCL_ERROR;
|
sl@0
|
1490 |
case QUESTY:
|
sl@0
|
1491 |
LogSyntaxError(infoPtr, "unexpected ternary 'then' separator");
|
sl@0
|
1492 |
return TCL_ERROR;
|
sl@0
|
1493 |
case COLON:
|
sl@0
|
1494 |
LogSyntaxError(infoPtr, "unexpected ternary 'else' separator");
|
sl@0
|
1495 |
return TCL_ERROR;
|
sl@0
|
1496 |
case CLOSE_PAREN:
|
sl@0
|
1497 |
LogSyntaxError(infoPtr, "unexpected close parenthesis");
|
sl@0
|
1498 |
return TCL_ERROR;
|
sl@0
|
1499 |
|
sl@0
|
1500 |
default: {
|
sl@0
|
1501 |
char buf[64];
|
sl@0
|
1502 |
|
sl@0
|
1503 |
sprintf(buf, "unexpected operator %s", lexemeStrings[lexeme]);
|
sl@0
|
1504 |
LogSyntaxError(infoPtr, buf);
|
sl@0
|
1505 |
return TCL_ERROR;
|
sl@0
|
1506 |
}
|
sl@0
|
1507 |
}
|
sl@0
|
1508 |
|
sl@0
|
1509 |
/*
|
sl@0
|
1510 |
* Advance to the next lexeme before returning.
|
sl@0
|
1511 |
*/
|
sl@0
|
1512 |
|
sl@0
|
1513 |
code = GetLexeme(infoPtr);
|
sl@0
|
1514 |
if (code != TCL_OK) {
|
sl@0
|
1515 |
return code;
|
sl@0
|
1516 |
}
|
sl@0
|
1517 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1518 |
return TCL_OK;
|
sl@0
|
1519 |
}
|
sl@0
|
1520 |
|
sl@0
|
1521 |
/*
|
sl@0
|
1522 |
*----------------------------------------------------------------------
|
sl@0
|
1523 |
*
|
sl@0
|
1524 |
* GetLexeme --
|
sl@0
|
1525 |
*
|
sl@0
|
1526 |
* Lexical scanner for Tcl expressions: scans a single operator or
|
sl@0
|
1527 |
* other syntactic element from an expression string.
|
sl@0
|
1528 |
*
|
sl@0
|
1529 |
* Results:
|
sl@0
|
1530 |
* TCL_OK is returned unless an error occurred. In that case a standard
|
sl@0
|
1531 |
* Tcl error code is returned and, if infoPtr->parsePtr->interp is
|
sl@0
|
1532 |
* non-NULL, the interpreter's result is set to hold an error
|
sl@0
|
1533 |
* message. TCL_ERROR is returned if an integer overflow, or a
|
sl@0
|
1534 |
* floating-point overflow or underflow occurred while reading in a
|
sl@0
|
1535 |
* number. If the lexical analysis is successful, infoPtr->lexeme
|
sl@0
|
1536 |
* refers to the next symbol in the expression string, and
|
sl@0
|
1537 |
* infoPtr->next is advanced past the lexeme. Also, if the lexeme is a
|
sl@0
|
1538 |
* LITERAL or FUNC_NAME, then infoPtr->start is set to the first
|
sl@0
|
1539 |
* character of the lexeme; otherwise it is set NULL.
|
sl@0
|
1540 |
*
|
sl@0
|
1541 |
* Side effects:
|
sl@0
|
1542 |
* If there is insufficient space in parsePtr to hold all the
|
sl@0
|
1543 |
* information about the subexpression, then additional space is
|
sl@0
|
1544 |
* malloc-ed..
|
sl@0
|
1545 |
*
|
sl@0
|
1546 |
*----------------------------------------------------------------------
|
sl@0
|
1547 |
*/
|
sl@0
|
1548 |
|
sl@0
|
1549 |
static int
|
sl@0
|
1550 |
GetLexeme(infoPtr)
|
sl@0
|
1551 |
ParseInfo *infoPtr; /* Holds state needed to parse the expr,
|
sl@0
|
1552 |
* including the resulting lexeme. */
|
sl@0
|
1553 |
{
|
sl@0
|
1554 |
register CONST char *src; /* Points to current source char. */
|
sl@0
|
1555 |
char c;
|
sl@0
|
1556 |
int offset, length, numBytes;
|
sl@0
|
1557 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
1558 |
Tcl_Interp *interp = parsePtr->interp;
|
sl@0
|
1559 |
Tcl_UniChar ch;
|
sl@0
|
1560 |
|
sl@0
|
1561 |
/*
|
sl@0
|
1562 |
* Record where the previous lexeme ended. Since we always read one
|
sl@0
|
1563 |
* lexeme ahead during parsing, this helps us know the source length of
|
sl@0
|
1564 |
* subexpression tokens.
|
sl@0
|
1565 |
*/
|
sl@0
|
1566 |
|
sl@0
|
1567 |
infoPtr->prevEnd = infoPtr->next;
|
sl@0
|
1568 |
|
sl@0
|
1569 |
/*
|
sl@0
|
1570 |
* Scan over leading white space at the start of a lexeme.
|
sl@0
|
1571 |
*/
|
sl@0
|
1572 |
|
sl@0
|
1573 |
src = infoPtr->next;
|
sl@0
|
1574 |
numBytes = parsePtr->end - src;
|
sl@0
|
1575 |
do {
|
sl@0
|
1576 |
char type;
|
sl@0
|
1577 |
int scanned = TclParseWhiteSpace(src, numBytes, parsePtr, &type);
|
sl@0
|
1578 |
src += scanned; numBytes -= scanned;
|
sl@0
|
1579 |
} while (numBytes && (*src == '\n') && (src++,numBytes--));
|
sl@0
|
1580 |
parsePtr->term = src;
|
sl@0
|
1581 |
if (numBytes == 0) {
|
sl@0
|
1582 |
infoPtr->lexeme = END;
|
sl@0
|
1583 |
infoPtr->next = src;
|
sl@0
|
1584 |
return TCL_OK;
|
sl@0
|
1585 |
}
|
sl@0
|
1586 |
|
sl@0
|
1587 |
/*
|
sl@0
|
1588 |
* Try to parse the lexeme first as an integer or floating-point
|
sl@0
|
1589 |
* number. Don't check for a number if the first character c is
|
sl@0
|
1590 |
* "+" or "-". If we did, we might treat a binary operator as unary
|
sl@0
|
1591 |
* by mistake, which would eventually cause a syntax error.
|
sl@0
|
1592 |
*/
|
sl@0
|
1593 |
|
sl@0
|
1594 |
c = *src;
|
sl@0
|
1595 |
if ((c != '+') && (c != '-')) {
|
sl@0
|
1596 |
CONST char *end = infoPtr->lastChar;
|
sl@0
|
1597 |
if ((length = TclParseInteger(src, (end - src)))) {
|
sl@0
|
1598 |
/*
|
sl@0
|
1599 |
* First length bytes look like an integer. Verify by
|
sl@0
|
1600 |
* attempting the conversion to the largest integer we have.
|
sl@0
|
1601 |
*/
|
sl@0
|
1602 |
int code;
|
sl@0
|
1603 |
Tcl_WideInt wide;
|
sl@0
|
1604 |
Tcl_Obj *value = Tcl_NewStringObj(src, length);
|
sl@0
|
1605 |
|
sl@0
|
1606 |
Tcl_IncrRefCount(value);
|
sl@0
|
1607 |
code = Tcl_GetWideIntFromObj(interp, value, &wide);
|
sl@0
|
1608 |
Tcl_DecrRefCount(value);
|
sl@0
|
1609 |
if (code == TCL_ERROR) {
|
sl@0
|
1610 |
parsePtr->errorType = TCL_PARSE_BAD_NUMBER;
|
sl@0
|
1611 |
return TCL_ERROR;
|
sl@0
|
1612 |
}
|
sl@0
|
1613 |
infoPtr->lexeme = LITERAL;
|
sl@0
|
1614 |
infoPtr->start = src;
|
sl@0
|
1615 |
infoPtr->size = length;
|
sl@0
|
1616 |
infoPtr->next = (src + length);
|
sl@0
|
1617 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1618 |
return TCL_OK;
|
sl@0
|
1619 |
} else if ((length = ParseMaxDoubleLength(src, end))) {
|
sl@0
|
1620 |
/*
|
sl@0
|
1621 |
* There are length characters that could be a double.
|
sl@0
|
1622 |
* Let strtod() tells us for sure. Need a writable copy
|
sl@0
|
1623 |
* so we can set an terminating NULL to keep strtod from
|
sl@0
|
1624 |
* scanning too far.
|
sl@0
|
1625 |
*/
|
sl@0
|
1626 |
char *startPtr, *termPtr;
|
sl@0
|
1627 |
double doubleValue;
|
sl@0
|
1628 |
Tcl_DString toParse;
|
sl@0
|
1629 |
|
sl@0
|
1630 |
errno = 0;
|
sl@0
|
1631 |
Tcl_DStringInit(&toParse);
|
sl@0
|
1632 |
startPtr = Tcl_DStringAppend(&toParse, src, length);
|
sl@0
|
1633 |
doubleValue = strtod(startPtr, &termPtr);
|
sl@0
|
1634 |
Tcl_DStringFree(&toParse);
|
sl@0
|
1635 |
if (termPtr != startPtr) {
|
sl@0
|
1636 |
if (errno != 0) {
|
sl@0
|
1637 |
if (interp != NULL) {
|
sl@0
|
1638 |
TclExprFloatError(interp, doubleValue);
|
sl@0
|
1639 |
}
|
sl@0
|
1640 |
parsePtr->errorType = TCL_PARSE_BAD_NUMBER;
|
sl@0
|
1641 |
return TCL_ERROR;
|
sl@0
|
1642 |
}
|
sl@0
|
1643 |
|
sl@0
|
1644 |
/*
|
sl@0
|
1645 |
* startPtr was the start of a valid double, copied
|
sl@0
|
1646 |
* from src.
|
sl@0
|
1647 |
*/
|
sl@0
|
1648 |
|
sl@0
|
1649 |
infoPtr->lexeme = LITERAL;
|
sl@0
|
1650 |
infoPtr->start = src;
|
sl@0
|
1651 |
if ((termPtr - startPtr) > length) {
|
sl@0
|
1652 |
infoPtr->size = length;
|
sl@0
|
1653 |
} else {
|
sl@0
|
1654 |
infoPtr->size = (termPtr - startPtr);
|
sl@0
|
1655 |
}
|
sl@0
|
1656 |
infoPtr->next = src + infoPtr->size;
|
sl@0
|
1657 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1658 |
return TCL_OK;
|
sl@0
|
1659 |
}
|
sl@0
|
1660 |
}
|
sl@0
|
1661 |
}
|
sl@0
|
1662 |
|
sl@0
|
1663 |
/*
|
sl@0
|
1664 |
* Not an integer or double literal. Initialize the lexeme's fields
|
sl@0
|
1665 |
* assuming the common case of a single character lexeme.
|
sl@0
|
1666 |
*/
|
sl@0
|
1667 |
|
sl@0
|
1668 |
infoPtr->start = src;
|
sl@0
|
1669 |
infoPtr->size = 1;
|
sl@0
|
1670 |
infoPtr->next = src+1;
|
sl@0
|
1671 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1672 |
|
sl@0
|
1673 |
switch (*src) {
|
sl@0
|
1674 |
case '[':
|
sl@0
|
1675 |
infoPtr->lexeme = OPEN_BRACKET;
|
sl@0
|
1676 |
return TCL_OK;
|
sl@0
|
1677 |
|
sl@0
|
1678 |
case '{':
|
sl@0
|
1679 |
infoPtr->lexeme = OPEN_BRACE;
|
sl@0
|
1680 |
return TCL_OK;
|
sl@0
|
1681 |
|
sl@0
|
1682 |
case '(':
|
sl@0
|
1683 |
infoPtr->lexeme = OPEN_PAREN;
|
sl@0
|
1684 |
return TCL_OK;
|
sl@0
|
1685 |
|
sl@0
|
1686 |
case ')':
|
sl@0
|
1687 |
infoPtr->lexeme = CLOSE_PAREN;
|
sl@0
|
1688 |
return TCL_OK;
|
sl@0
|
1689 |
|
sl@0
|
1690 |
case '$':
|
sl@0
|
1691 |
infoPtr->lexeme = DOLLAR;
|
sl@0
|
1692 |
return TCL_OK;
|
sl@0
|
1693 |
|
sl@0
|
1694 |
case '\"':
|
sl@0
|
1695 |
infoPtr->lexeme = QUOTE;
|
sl@0
|
1696 |
return TCL_OK;
|
sl@0
|
1697 |
|
sl@0
|
1698 |
case ',':
|
sl@0
|
1699 |
infoPtr->lexeme = COMMA;
|
sl@0
|
1700 |
return TCL_OK;
|
sl@0
|
1701 |
|
sl@0
|
1702 |
case '*':
|
sl@0
|
1703 |
infoPtr->lexeme = MULT;
|
sl@0
|
1704 |
return TCL_OK;
|
sl@0
|
1705 |
|
sl@0
|
1706 |
case '/':
|
sl@0
|
1707 |
infoPtr->lexeme = DIVIDE;
|
sl@0
|
1708 |
return TCL_OK;
|
sl@0
|
1709 |
|
sl@0
|
1710 |
case '%':
|
sl@0
|
1711 |
infoPtr->lexeme = MOD;
|
sl@0
|
1712 |
return TCL_OK;
|
sl@0
|
1713 |
|
sl@0
|
1714 |
case '+':
|
sl@0
|
1715 |
infoPtr->lexeme = PLUS;
|
sl@0
|
1716 |
return TCL_OK;
|
sl@0
|
1717 |
|
sl@0
|
1718 |
case '-':
|
sl@0
|
1719 |
infoPtr->lexeme = MINUS;
|
sl@0
|
1720 |
return TCL_OK;
|
sl@0
|
1721 |
|
sl@0
|
1722 |
case '?':
|
sl@0
|
1723 |
infoPtr->lexeme = QUESTY;
|
sl@0
|
1724 |
return TCL_OK;
|
sl@0
|
1725 |
|
sl@0
|
1726 |
case ':':
|
sl@0
|
1727 |
infoPtr->lexeme = COLON;
|
sl@0
|
1728 |
return TCL_OK;
|
sl@0
|
1729 |
|
sl@0
|
1730 |
case '<':
|
sl@0
|
1731 |
infoPtr->lexeme = LESS;
|
sl@0
|
1732 |
if ((infoPtr->lastChar - src) > 1) {
|
sl@0
|
1733 |
switch (src[1]) {
|
sl@0
|
1734 |
case '<':
|
sl@0
|
1735 |
infoPtr->lexeme = LEFT_SHIFT;
|
sl@0
|
1736 |
infoPtr->size = 2;
|
sl@0
|
1737 |
infoPtr->next = src+2;
|
sl@0
|
1738 |
break;
|
sl@0
|
1739 |
case '=':
|
sl@0
|
1740 |
infoPtr->lexeme = LEQ;
|
sl@0
|
1741 |
infoPtr->size = 2;
|
sl@0
|
1742 |
infoPtr->next = src+2;
|
sl@0
|
1743 |
break;
|
sl@0
|
1744 |
}
|
sl@0
|
1745 |
}
|
sl@0
|
1746 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1747 |
return TCL_OK;
|
sl@0
|
1748 |
|
sl@0
|
1749 |
case '>':
|
sl@0
|
1750 |
infoPtr->lexeme = GREATER;
|
sl@0
|
1751 |
if ((infoPtr->lastChar - src) > 1) {
|
sl@0
|
1752 |
switch (src[1]) {
|
sl@0
|
1753 |
case '>':
|
sl@0
|
1754 |
infoPtr->lexeme = RIGHT_SHIFT;
|
sl@0
|
1755 |
infoPtr->size = 2;
|
sl@0
|
1756 |
infoPtr->next = src+2;
|
sl@0
|
1757 |
break;
|
sl@0
|
1758 |
case '=':
|
sl@0
|
1759 |
infoPtr->lexeme = GEQ;
|
sl@0
|
1760 |
infoPtr->size = 2;
|
sl@0
|
1761 |
infoPtr->next = src+2;
|
sl@0
|
1762 |
break;
|
sl@0
|
1763 |
}
|
sl@0
|
1764 |
}
|
sl@0
|
1765 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1766 |
return TCL_OK;
|
sl@0
|
1767 |
|
sl@0
|
1768 |
case '=':
|
sl@0
|
1769 |
infoPtr->lexeme = UNKNOWN;
|
sl@0
|
1770 |
if ((src[1] == '=') && ((infoPtr->lastChar - src) > 1)) {
|
sl@0
|
1771 |
infoPtr->lexeme = EQUAL;
|
sl@0
|
1772 |
infoPtr->size = 2;
|
sl@0
|
1773 |
infoPtr->next = src+2;
|
sl@0
|
1774 |
}
|
sl@0
|
1775 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1776 |
return TCL_OK;
|
sl@0
|
1777 |
|
sl@0
|
1778 |
case '!':
|
sl@0
|
1779 |
infoPtr->lexeme = NOT;
|
sl@0
|
1780 |
if ((src[1] == '=') && ((infoPtr->lastChar - src) > 1)) {
|
sl@0
|
1781 |
infoPtr->lexeme = NEQ;
|
sl@0
|
1782 |
infoPtr->size = 2;
|
sl@0
|
1783 |
infoPtr->next = src+2;
|
sl@0
|
1784 |
}
|
sl@0
|
1785 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1786 |
return TCL_OK;
|
sl@0
|
1787 |
|
sl@0
|
1788 |
case '&':
|
sl@0
|
1789 |
infoPtr->lexeme = BIT_AND;
|
sl@0
|
1790 |
if ((src[1] == '&') && ((infoPtr->lastChar - src) > 1)) {
|
sl@0
|
1791 |
infoPtr->lexeme = AND;
|
sl@0
|
1792 |
infoPtr->size = 2;
|
sl@0
|
1793 |
infoPtr->next = src+2;
|
sl@0
|
1794 |
}
|
sl@0
|
1795 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1796 |
return TCL_OK;
|
sl@0
|
1797 |
|
sl@0
|
1798 |
case '^':
|
sl@0
|
1799 |
infoPtr->lexeme = BIT_XOR;
|
sl@0
|
1800 |
return TCL_OK;
|
sl@0
|
1801 |
|
sl@0
|
1802 |
case '|':
|
sl@0
|
1803 |
infoPtr->lexeme = BIT_OR;
|
sl@0
|
1804 |
if ((src[1] == '|') && ((infoPtr->lastChar - src) > 1)) {
|
sl@0
|
1805 |
infoPtr->lexeme = OR;
|
sl@0
|
1806 |
infoPtr->size = 2;
|
sl@0
|
1807 |
infoPtr->next = src+2;
|
sl@0
|
1808 |
}
|
sl@0
|
1809 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1810 |
return TCL_OK;
|
sl@0
|
1811 |
|
sl@0
|
1812 |
case '~':
|
sl@0
|
1813 |
infoPtr->lexeme = BIT_NOT;
|
sl@0
|
1814 |
return TCL_OK;
|
sl@0
|
1815 |
|
sl@0
|
1816 |
case 'e':
|
sl@0
|
1817 |
if ((src[1] == 'q') && ((infoPtr->lastChar - src) > 1)) {
|
sl@0
|
1818 |
infoPtr->lexeme = STREQ;
|
sl@0
|
1819 |
infoPtr->size = 2;
|
sl@0
|
1820 |
infoPtr->next = src+2;
|
sl@0
|
1821 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1822 |
return TCL_OK;
|
sl@0
|
1823 |
} else {
|
sl@0
|
1824 |
goto checkFuncName;
|
sl@0
|
1825 |
}
|
sl@0
|
1826 |
|
sl@0
|
1827 |
case 'n':
|
sl@0
|
1828 |
if ((src[1] == 'e') && ((infoPtr->lastChar - src) > 1)) {
|
sl@0
|
1829 |
infoPtr->lexeme = STRNEQ;
|
sl@0
|
1830 |
infoPtr->size = 2;
|
sl@0
|
1831 |
infoPtr->next = src+2;
|
sl@0
|
1832 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1833 |
return TCL_OK;
|
sl@0
|
1834 |
} else {
|
sl@0
|
1835 |
goto checkFuncName;
|
sl@0
|
1836 |
}
|
sl@0
|
1837 |
|
sl@0
|
1838 |
default:
|
sl@0
|
1839 |
checkFuncName:
|
sl@0
|
1840 |
length = (infoPtr->lastChar - src);
|
sl@0
|
1841 |
if (Tcl_UtfCharComplete(src, length)) {
|
sl@0
|
1842 |
offset = Tcl_UtfToUniChar(src, &ch);
|
sl@0
|
1843 |
} else {
|
sl@0
|
1844 |
char utfBytes[TCL_UTF_MAX];
|
sl@0
|
1845 |
memcpy(utfBytes, src, (size_t) length);
|
sl@0
|
1846 |
utfBytes[length] = '\0';
|
sl@0
|
1847 |
offset = Tcl_UtfToUniChar(utfBytes, &ch);
|
sl@0
|
1848 |
}
|
sl@0
|
1849 |
c = UCHAR(ch);
|
sl@0
|
1850 |
if (isalpha(UCHAR(c))) { /* INTL: ISO only. */
|
sl@0
|
1851 |
infoPtr->lexeme = FUNC_NAME;
|
sl@0
|
1852 |
while (isalnum(UCHAR(c)) || (c == '_')) { /* INTL: ISO only. */
|
sl@0
|
1853 |
src += offset; length -= offset;
|
sl@0
|
1854 |
if (Tcl_UtfCharComplete(src, length)) {
|
sl@0
|
1855 |
offset = Tcl_UtfToUniChar(src, &ch);
|
sl@0
|
1856 |
} else {
|
sl@0
|
1857 |
char utfBytes[TCL_UTF_MAX];
|
sl@0
|
1858 |
memcpy(utfBytes, src, (size_t) length);
|
sl@0
|
1859 |
utfBytes[length] = '\0';
|
sl@0
|
1860 |
offset = Tcl_UtfToUniChar(utfBytes, &ch);
|
sl@0
|
1861 |
}
|
sl@0
|
1862 |
c = UCHAR(ch);
|
sl@0
|
1863 |
}
|
sl@0
|
1864 |
infoPtr->size = (src - infoPtr->start);
|
sl@0
|
1865 |
infoPtr->next = src;
|
sl@0
|
1866 |
parsePtr->term = infoPtr->next;
|
sl@0
|
1867 |
return TCL_OK;
|
sl@0
|
1868 |
}
|
sl@0
|
1869 |
infoPtr->lexeme = UNKNOWN_CHAR;
|
sl@0
|
1870 |
return TCL_OK;
|
sl@0
|
1871 |
}
|
sl@0
|
1872 |
}
|
sl@0
|
1873 |
|
sl@0
|
1874 |
/*
|
sl@0
|
1875 |
*----------------------------------------------------------------------
|
sl@0
|
1876 |
*
|
sl@0
|
1877 |
* TclParseInteger --
|
sl@0
|
1878 |
*
|
sl@0
|
1879 |
* Scans up to numBytes bytes starting at src, and checks whether
|
sl@0
|
1880 |
* the leading bytes look like an integer's string representation.
|
sl@0
|
1881 |
*
|
sl@0
|
1882 |
* Results:
|
sl@0
|
1883 |
* Returns 0 if the leading bytes do not look like an integer.
|
sl@0
|
1884 |
* Otherwise, returns the number of bytes examined that look
|
sl@0
|
1885 |
* like an integer. This may be less than numBytes if the integer
|
sl@0
|
1886 |
* is only the leading part of the string.
|
sl@0
|
1887 |
*
|
sl@0
|
1888 |
* Side effects:
|
sl@0
|
1889 |
* None.
|
sl@0
|
1890 |
*
|
sl@0
|
1891 |
*----------------------------------------------------------------------
|
sl@0
|
1892 |
*/
|
sl@0
|
1893 |
|
sl@0
|
1894 |
int
|
sl@0
|
1895 |
TclParseInteger(string, numBytes)
|
sl@0
|
1896 |
register CONST char *string;/* The string to examine. */
|
sl@0
|
1897 |
register int numBytes; /* Max number of bytes to scan. */
|
sl@0
|
1898 |
{
|
sl@0
|
1899 |
register CONST char *p = string;
|
sl@0
|
1900 |
|
sl@0
|
1901 |
/* Take care of introductory "0x" */
|
sl@0
|
1902 |
if ((numBytes > 1) && (p[0] == '0') && ((p[1] == 'x') || (p[1] == 'X'))) {
|
sl@0
|
1903 |
int scanned;
|
sl@0
|
1904 |
Tcl_UniChar ch;
|
sl@0
|
1905 |
p+=2; numBytes -= 2;
|
sl@0
|
1906 |
scanned = TclParseHex(p, numBytes, &ch);
|
sl@0
|
1907 |
if (scanned) {
|
sl@0
|
1908 |
return scanned + 2;
|
sl@0
|
1909 |
}
|
sl@0
|
1910 |
|
sl@0
|
1911 |
/* Recognize the 0 as valid integer, but x is left behind */
|
sl@0
|
1912 |
return 1;
|
sl@0
|
1913 |
}
|
sl@0
|
1914 |
while (numBytes && isdigit(UCHAR(*p))) { /* INTL: digit */
|
sl@0
|
1915 |
numBytes--; p++;
|
sl@0
|
1916 |
}
|
sl@0
|
1917 |
if (numBytes == 0) {
|
sl@0
|
1918 |
return (p - string);
|
sl@0
|
1919 |
}
|
sl@0
|
1920 |
if ((*p != '.') && (*p != 'e') && (*p != 'E')) {
|
sl@0
|
1921 |
return (p - string);
|
sl@0
|
1922 |
}
|
sl@0
|
1923 |
return 0;
|
sl@0
|
1924 |
}
|
sl@0
|
1925 |
|
sl@0
|
1926 |
/*
|
sl@0
|
1927 |
*----------------------------------------------------------------------
|
sl@0
|
1928 |
*
|
sl@0
|
1929 |
* ParseMaxDoubleLength --
|
sl@0
|
1930 |
*
|
sl@0
|
1931 |
* Scans a sequence of bytes checking that the characters could
|
sl@0
|
1932 |
* be in a string rep of a double.
|
sl@0
|
1933 |
*
|
sl@0
|
1934 |
* Results:
|
sl@0
|
1935 |
* Returns the number of bytes starting with string, runing to, but
|
sl@0
|
1936 |
* not including end, all of which could be part of a string rep.
|
sl@0
|
1937 |
* of a double. Only character identity is used, no actual
|
sl@0
|
1938 |
* parsing is done.
|
sl@0
|
1939 |
*
|
sl@0
|
1940 |
* The legal bytes are '0' - '9', 'A' - 'F', 'a' - 'f',
|
sl@0
|
1941 |
* '.', '+', '-', 'i', 'I', 'n', 'N', 'p', 'P', 'x', and 'X'.
|
sl@0
|
1942 |
* This covers the values "Inf" and "Nan" as well as the
|
sl@0
|
1943 |
* decimal and hexadecimal representations recognized by a
|
sl@0
|
1944 |
* C99-compliant strtod().
|
sl@0
|
1945 |
*
|
sl@0
|
1946 |
* Side effects:
|
sl@0
|
1947 |
* None.
|
sl@0
|
1948 |
*
|
sl@0
|
1949 |
*----------------------------------------------------------------------
|
sl@0
|
1950 |
*/
|
sl@0
|
1951 |
|
sl@0
|
1952 |
static int
|
sl@0
|
1953 |
ParseMaxDoubleLength(string, end)
|
sl@0
|
1954 |
register CONST char *string;/* The string to examine. */
|
sl@0
|
1955 |
CONST char *end; /* Point to the first character past the end
|
sl@0
|
1956 |
* of the string we are examining. */
|
sl@0
|
1957 |
{
|
sl@0
|
1958 |
CONST char *p = string;
|
sl@0
|
1959 |
while (p < end) {
|
sl@0
|
1960 |
switch (*p) {
|
sl@0
|
1961 |
case '0': case '1': case '2': case '3': case '4': case '5':
|
sl@0
|
1962 |
case '6': case '7': case '8': case '9': case 'A': case 'B':
|
sl@0
|
1963 |
case 'C': case 'D': case 'E': case 'F': case 'I': case 'N':
|
sl@0
|
1964 |
case 'P': case 'X': case 'a': case 'b': case 'c': case 'd':
|
sl@0
|
1965 |
case 'e': case 'f': case 'i': case 'n': case 'p': case 'x':
|
sl@0
|
1966 |
case '.': case '+': case '-':
|
sl@0
|
1967 |
p++;
|
sl@0
|
1968 |
break;
|
sl@0
|
1969 |
default:
|
sl@0
|
1970 |
goto done;
|
sl@0
|
1971 |
}
|
sl@0
|
1972 |
}
|
sl@0
|
1973 |
done:
|
sl@0
|
1974 |
return (p - string);
|
sl@0
|
1975 |
}
|
sl@0
|
1976 |
|
sl@0
|
1977 |
/*
|
sl@0
|
1978 |
*----------------------------------------------------------------------
|
sl@0
|
1979 |
*
|
sl@0
|
1980 |
* PrependSubExprTokens --
|
sl@0
|
1981 |
*
|
sl@0
|
1982 |
* This procedure is called after the operands of an subexpression have
|
sl@0
|
1983 |
* been parsed. It generates two tokens: a TCL_TOKEN_SUB_EXPR token for
|
sl@0
|
1984 |
* the subexpression, and a TCL_TOKEN_OPERATOR token for its operator.
|
sl@0
|
1985 |
* These two tokens are inserted before the operand tokens.
|
sl@0
|
1986 |
*
|
sl@0
|
1987 |
* Results:
|
sl@0
|
1988 |
* None.
|
sl@0
|
1989 |
*
|
sl@0
|
1990 |
* Side effects:
|
sl@0
|
1991 |
* If there is insufficient space in parsePtr to hold the new tokens,
|
sl@0
|
1992 |
* additional space is malloc-ed.
|
sl@0
|
1993 |
*
|
sl@0
|
1994 |
*----------------------------------------------------------------------
|
sl@0
|
1995 |
*/
|
sl@0
|
1996 |
|
sl@0
|
1997 |
static void
|
sl@0
|
1998 |
PrependSubExprTokens(op, opBytes, src, srcBytes, firstIndex, infoPtr)
|
sl@0
|
1999 |
CONST char *op; /* Points to first byte of the operator
|
sl@0
|
2000 |
* in the source script. */
|
sl@0
|
2001 |
int opBytes; /* Number of bytes in the operator. */
|
sl@0
|
2002 |
CONST char *src; /* Points to first byte of the subexpression
|
sl@0
|
2003 |
* in the source script. */
|
sl@0
|
2004 |
int srcBytes; /* Number of bytes in subexpression's
|
sl@0
|
2005 |
* source. */
|
sl@0
|
2006 |
int firstIndex; /* Index of first token already emitted for
|
sl@0
|
2007 |
* operator's first (or only) operand. */
|
sl@0
|
2008 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
2009 |
* expression being parsed. */
|
sl@0
|
2010 |
{
|
sl@0
|
2011 |
Tcl_Parse *parsePtr = infoPtr->parsePtr;
|
sl@0
|
2012 |
Tcl_Token *tokenPtr, *firstTokenPtr;
|
sl@0
|
2013 |
int numToMove;
|
sl@0
|
2014 |
|
sl@0
|
2015 |
if ((parsePtr->numTokens + 1) >= parsePtr->tokensAvailable) {
|
sl@0
|
2016 |
TclExpandTokenArray(parsePtr);
|
sl@0
|
2017 |
}
|
sl@0
|
2018 |
firstTokenPtr = &parsePtr->tokenPtr[firstIndex];
|
sl@0
|
2019 |
tokenPtr = (firstTokenPtr + 2);
|
sl@0
|
2020 |
numToMove = (parsePtr->numTokens - firstIndex);
|
sl@0
|
2021 |
memmove((VOID *) tokenPtr, (VOID *) firstTokenPtr,
|
sl@0
|
2022 |
(size_t) (numToMove * sizeof(Tcl_Token)));
|
sl@0
|
2023 |
parsePtr->numTokens += 2;
|
sl@0
|
2024 |
|
sl@0
|
2025 |
tokenPtr = firstTokenPtr;
|
sl@0
|
2026 |
tokenPtr->type = TCL_TOKEN_SUB_EXPR;
|
sl@0
|
2027 |
tokenPtr->start = src;
|
sl@0
|
2028 |
tokenPtr->size = srcBytes;
|
sl@0
|
2029 |
tokenPtr->numComponents = parsePtr->numTokens - (firstIndex + 1);
|
sl@0
|
2030 |
|
sl@0
|
2031 |
tokenPtr++;
|
sl@0
|
2032 |
tokenPtr->type = TCL_TOKEN_OPERATOR;
|
sl@0
|
2033 |
tokenPtr->start = op;
|
sl@0
|
2034 |
tokenPtr->size = opBytes;
|
sl@0
|
2035 |
tokenPtr->numComponents = 0;
|
sl@0
|
2036 |
}
|
sl@0
|
2037 |
|
sl@0
|
2038 |
/*
|
sl@0
|
2039 |
*----------------------------------------------------------------------
|
sl@0
|
2040 |
*
|
sl@0
|
2041 |
* LogSyntaxError --
|
sl@0
|
2042 |
*
|
sl@0
|
2043 |
* This procedure is invoked after an error occurs when parsing an
|
sl@0
|
2044 |
* expression. It sets the interpreter result to an error message
|
sl@0
|
2045 |
* describing the error.
|
sl@0
|
2046 |
*
|
sl@0
|
2047 |
* Results:
|
sl@0
|
2048 |
* None.
|
sl@0
|
2049 |
*
|
sl@0
|
2050 |
* Side effects:
|
sl@0
|
2051 |
* Sets the interpreter result to an error message describing the
|
sl@0
|
2052 |
* expression that was being parsed when the error occurred, and why
|
sl@0
|
2053 |
* the parser considers that to be a syntax error at all.
|
sl@0
|
2054 |
*
|
sl@0
|
2055 |
*----------------------------------------------------------------------
|
sl@0
|
2056 |
*/
|
sl@0
|
2057 |
|
sl@0
|
2058 |
static void
|
sl@0
|
2059 |
LogSyntaxError(infoPtr, extraInfo)
|
sl@0
|
2060 |
ParseInfo *infoPtr; /* Holds the parse state for the
|
sl@0
|
2061 |
* expression being parsed. */
|
sl@0
|
2062 |
CONST char *extraInfo; /* String to provide extra information
|
sl@0
|
2063 |
* about the syntax error. */
|
sl@0
|
2064 |
{
|
sl@0
|
2065 |
int numBytes = (infoPtr->lastChar - infoPtr->originalExpr);
|
sl@0
|
2066 |
char buffer[100];
|
sl@0
|
2067 |
|
sl@0
|
2068 |
if (numBytes > 60) {
|
sl@0
|
2069 |
sprintf(buffer, "syntax error in expression \"%.60s...\"",
|
sl@0
|
2070 |
infoPtr->originalExpr);
|
sl@0
|
2071 |
} else {
|
sl@0
|
2072 |
sprintf(buffer, "syntax error in expression \"%.*s\"",
|
sl@0
|
2073 |
numBytes, infoPtr->originalExpr);
|
sl@0
|
2074 |
}
|
sl@0
|
2075 |
Tcl_ResetResult(infoPtr->parsePtr->interp);
|
sl@0
|
2076 |
Tcl_AppendStringsToObj(Tcl_GetObjResult(infoPtr->parsePtr->interp),
|
sl@0
|
2077 |
buffer, ": ", extraInfo, (char *) NULL);
|
sl@0
|
2078 |
infoPtr->parsePtr->errorType = TCL_PARSE_SYNTAX;
|
sl@0
|
2079 |
infoPtr->parsePtr->term = infoPtr->start;
|
sl@0
|
2080 |
}
|