sl@0
|
1 |
/*
|
sl@0
|
2 |
** 2001 September 15
|
sl@0
|
3 |
**
|
sl@0
|
4 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
5 |
** a legal notice, here is a blessing:
|
sl@0
|
6 |
**
|
sl@0
|
7 |
** May you do good and not evil.
|
sl@0
|
8 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
9 |
** May you share freely, never taking more than you give.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
*************************************************************************
|
sl@0
|
12 |
** This file contains code for implementations of the r-tree and r*-tree
|
sl@0
|
13 |
** algorithms packaged as an SQLite virtual table module.
|
sl@0
|
14 |
**
|
sl@0
|
15 |
** $Id: rtree.c,v 1.9 2008/09/08 11:07:03 danielk1977 Exp $
|
sl@0
|
16 |
*/
|
sl@0
|
17 |
|
sl@0
|
18 |
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
|
sl@0
|
19 |
|
sl@0
|
20 |
/*
|
sl@0
|
21 |
** This file contains an implementation of a couple of different variants
|
sl@0
|
22 |
** of the r-tree algorithm. See the README file for further details. The
|
sl@0
|
23 |
** same data-structure is used for all, but the algorithms for insert and
|
sl@0
|
24 |
** delete operations vary. The variants used are selected at compile time
|
sl@0
|
25 |
** by defining the following symbols:
|
sl@0
|
26 |
*/
|
sl@0
|
27 |
|
sl@0
|
28 |
/* Either, both or none of the following may be set to activate
|
sl@0
|
29 |
** r*tree variant algorithms.
|
sl@0
|
30 |
*/
|
sl@0
|
31 |
#define VARIANT_RSTARTREE_CHOOSESUBTREE 0
|
sl@0
|
32 |
#define VARIANT_RSTARTREE_REINSERT 1
|
sl@0
|
33 |
|
sl@0
|
34 |
/*
|
sl@0
|
35 |
** Exactly one of the following must be set to 1.
|
sl@0
|
36 |
*/
|
sl@0
|
37 |
#define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0
|
sl@0
|
38 |
#define VARIANT_GUTTMAN_LINEAR_SPLIT 0
|
sl@0
|
39 |
#define VARIANT_RSTARTREE_SPLIT 1
|
sl@0
|
40 |
|
sl@0
|
41 |
#define VARIANT_GUTTMAN_SPLIT \
|
sl@0
|
42 |
(VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT)
|
sl@0
|
43 |
|
sl@0
|
44 |
#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
|
sl@0
|
45 |
#define PickNext QuadraticPickNext
|
sl@0
|
46 |
#define PickSeeds QuadraticPickSeeds
|
sl@0
|
47 |
#define AssignCells splitNodeGuttman
|
sl@0
|
48 |
#endif
|
sl@0
|
49 |
#if VARIANT_GUTTMAN_LINEAR_SPLIT
|
sl@0
|
50 |
#define PickNext LinearPickNext
|
sl@0
|
51 |
#define PickSeeds LinearPickSeeds
|
sl@0
|
52 |
#define AssignCells splitNodeGuttman
|
sl@0
|
53 |
#endif
|
sl@0
|
54 |
#if VARIANT_RSTARTREE_SPLIT
|
sl@0
|
55 |
#define AssignCells splitNodeStartree
|
sl@0
|
56 |
#endif
|
sl@0
|
57 |
|
sl@0
|
58 |
|
sl@0
|
59 |
#ifndef SQLITE_CORE
|
sl@0
|
60 |
#include "sqlite3ext.h"
|
sl@0
|
61 |
SQLITE_EXTENSION_INIT1
|
sl@0
|
62 |
#else
|
sl@0
|
63 |
#include "sqlite3.h"
|
sl@0
|
64 |
#endif
|
sl@0
|
65 |
|
sl@0
|
66 |
#include <string.h>
|
sl@0
|
67 |
#include <assert.h>
|
sl@0
|
68 |
|
sl@0
|
69 |
#ifndef SQLITE_AMALGAMATION
|
sl@0
|
70 |
typedef sqlite3_int64 i64;
|
sl@0
|
71 |
typedef unsigned char u8;
|
sl@0
|
72 |
typedef unsigned int u32;
|
sl@0
|
73 |
#endif
|
sl@0
|
74 |
|
sl@0
|
75 |
typedef struct Rtree Rtree;
|
sl@0
|
76 |
typedef struct RtreeCursor RtreeCursor;
|
sl@0
|
77 |
typedef struct RtreeNode RtreeNode;
|
sl@0
|
78 |
typedef struct RtreeCell RtreeCell;
|
sl@0
|
79 |
typedef struct RtreeConstraint RtreeConstraint;
|
sl@0
|
80 |
typedef union RtreeCoord RtreeCoord;
|
sl@0
|
81 |
|
sl@0
|
82 |
/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
|
sl@0
|
83 |
#define RTREE_MAX_DIMENSIONS 5
|
sl@0
|
84 |
|
sl@0
|
85 |
/* Size of hash table Rtree.aHash. This hash table is not expected to
|
sl@0
|
86 |
** ever contain very many entries, so a fixed number of buckets is
|
sl@0
|
87 |
** used.
|
sl@0
|
88 |
*/
|
sl@0
|
89 |
#define HASHSIZE 128
|
sl@0
|
90 |
|
sl@0
|
91 |
/*
|
sl@0
|
92 |
** An rtree virtual-table object.
|
sl@0
|
93 |
*/
|
sl@0
|
94 |
struct Rtree {
|
sl@0
|
95 |
sqlite3_vtab base;
|
sl@0
|
96 |
sqlite3 *db; /* Host database connection */
|
sl@0
|
97 |
int iNodeSize; /* Size in bytes of each node in the node table */
|
sl@0
|
98 |
int nDim; /* Number of dimensions */
|
sl@0
|
99 |
int nBytesPerCell; /* Bytes consumed per cell */
|
sl@0
|
100 |
int iDepth; /* Current depth of the r-tree structure */
|
sl@0
|
101 |
char *zDb; /* Name of database containing r-tree table */
|
sl@0
|
102 |
char *zName; /* Name of r-tree table */
|
sl@0
|
103 |
RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
|
sl@0
|
104 |
int nBusy; /* Current number of users of this structure */
|
sl@0
|
105 |
|
sl@0
|
106 |
/* List of nodes removed during a CondenseTree operation. List is
|
sl@0
|
107 |
** linked together via the pointer normally used for hash chains -
|
sl@0
|
108 |
** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
|
sl@0
|
109 |
** headed by the node (leaf nodes have RtreeNode.iNode==0).
|
sl@0
|
110 |
*/
|
sl@0
|
111 |
RtreeNode *pDeleted;
|
sl@0
|
112 |
int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */
|
sl@0
|
113 |
|
sl@0
|
114 |
/* Statements to read/write/delete a record from xxx_node */
|
sl@0
|
115 |
sqlite3_stmt *pReadNode;
|
sl@0
|
116 |
sqlite3_stmt *pWriteNode;
|
sl@0
|
117 |
sqlite3_stmt *pDeleteNode;
|
sl@0
|
118 |
|
sl@0
|
119 |
/* Statements to read/write/delete a record from xxx_rowid */
|
sl@0
|
120 |
sqlite3_stmt *pReadRowid;
|
sl@0
|
121 |
sqlite3_stmt *pWriteRowid;
|
sl@0
|
122 |
sqlite3_stmt *pDeleteRowid;
|
sl@0
|
123 |
|
sl@0
|
124 |
/* Statements to read/write/delete a record from xxx_parent */
|
sl@0
|
125 |
sqlite3_stmt *pReadParent;
|
sl@0
|
126 |
sqlite3_stmt *pWriteParent;
|
sl@0
|
127 |
sqlite3_stmt *pDeleteParent;
|
sl@0
|
128 |
|
sl@0
|
129 |
int eCoordType;
|
sl@0
|
130 |
};
|
sl@0
|
131 |
|
sl@0
|
132 |
/* Possible values for eCoordType: */
|
sl@0
|
133 |
#define RTREE_COORD_REAL32 0
|
sl@0
|
134 |
#define RTREE_COORD_INT32 1
|
sl@0
|
135 |
|
sl@0
|
136 |
/*
|
sl@0
|
137 |
** The minimum number of cells allowed for a node is a third of the
|
sl@0
|
138 |
** maximum. In Gutman's notation:
|
sl@0
|
139 |
**
|
sl@0
|
140 |
** m = M/3
|
sl@0
|
141 |
**
|
sl@0
|
142 |
** If an R*-tree "Reinsert" operation is required, the same number of
|
sl@0
|
143 |
** cells are removed from the overfull node and reinserted into the tree.
|
sl@0
|
144 |
*/
|
sl@0
|
145 |
#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
|
sl@0
|
146 |
#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
|
sl@0
|
147 |
#define RTREE_MAXCELLS 51
|
sl@0
|
148 |
|
sl@0
|
149 |
/*
|
sl@0
|
150 |
** An rtree cursor object.
|
sl@0
|
151 |
*/
|
sl@0
|
152 |
struct RtreeCursor {
|
sl@0
|
153 |
sqlite3_vtab_cursor base;
|
sl@0
|
154 |
RtreeNode *pNode; /* Node cursor is currently pointing at */
|
sl@0
|
155 |
int iCell; /* Index of current cell in pNode */
|
sl@0
|
156 |
int iStrategy; /* Copy of idxNum search parameter */
|
sl@0
|
157 |
int nConstraint; /* Number of entries in aConstraint */
|
sl@0
|
158 |
RtreeConstraint *aConstraint; /* Search constraints. */
|
sl@0
|
159 |
};
|
sl@0
|
160 |
|
sl@0
|
161 |
union RtreeCoord {
|
sl@0
|
162 |
float f;
|
sl@0
|
163 |
int i;
|
sl@0
|
164 |
};
|
sl@0
|
165 |
|
sl@0
|
166 |
/*
|
sl@0
|
167 |
** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
|
sl@0
|
168 |
** formatted as a double. This macro assumes that local variable pRtree points
|
sl@0
|
169 |
** to the Rtree structure associated with the RtreeCoord.
|
sl@0
|
170 |
*/
|
sl@0
|
171 |
#define DCOORD(coord) ( \
|
sl@0
|
172 |
(pRtree->eCoordType==RTREE_COORD_REAL32) ? \
|
sl@0
|
173 |
((double)coord.f) : \
|
sl@0
|
174 |
((double)coord.i) \
|
sl@0
|
175 |
)
|
sl@0
|
176 |
|
sl@0
|
177 |
/*
|
sl@0
|
178 |
** A search constraint.
|
sl@0
|
179 |
*/
|
sl@0
|
180 |
struct RtreeConstraint {
|
sl@0
|
181 |
int iCoord; /* Index of constrained coordinate */
|
sl@0
|
182 |
int op; /* Constraining operation */
|
sl@0
|
183 |
double rValue; /* Constraint value. */
|
sl@0
|
184 |
};
|
sl@0
|
185 |
|
sl@0
|
186 |
/* Possible values for RtreeConstraint.op */
|
sl@0
|
187 |
#define RTREE_EQ 0x41
|
sl@0
|
188 |
#define RTREE_LE 0x42
|
sl@0
|
189 |
#define RTREE_LT 0x43
|
sl@0
|
190 |
#define RTREE_GE 0x44
|
sl@0
|
191 |
#define RTREE_GT 0x45
|
sl@0
|
192 |
|
sl@0
|
193 |
/*
|
sl@0
|
194 |
** An rtree structure node.
|
sl@0
|
195 |
**
|
sl@0
|
196 |
** Data format (RtreeNode.zData):
|
sl@0
|
197 |
**
|
sl@0
|
198 |
** 1. If the node is the root node (node 1), then the first 2 bytes
|
sl@0
|
199 |
** of the node contain the tree depth as a big-endian integer.
|
sl@0
|
200 |
** For non-root nodes, the first 2 bytes are left unused.
|
sl@0
|
201 |
**
|
sl@0
|
202 |
** 2. The next 2 bytes contain the number of entries currently
|
sl@0
|
203 |
** stored in the node.
|
sl@0
|
204 |
**
|
sl@0
|
205 |
** 3. The remainder of the node contains the node entries. Each entry
|
sl@0
|
206 |
** consists of a single 8-byte integer followed by an even number
|
sl@0
|
207 |
** of 4-byte coordinates. For leaf nodes the integer is the rowid
|
sl@0
|
208 |
** of a record. For internal nodes it is the node number of a
|
sl@0
|
209 |
** child page.
|
sl@0
|
210 |
*/
|
sl@0
|
211 |
struct RtreeNode {
|
sl@0
|
212 |
RtreeNode *pParent; /* Parent node */
|
sl@0
|
213 |
i64 iNode;
|
sl@0
|
214 |
int nRef;
|
sl@0
|
215 |
int isDirty;
|
sl@0
|
216 |
u8 *zData;
|
sl@0
|
217 |
RtreeNode *pNext; /* Next node in this hash chain */
|
sl@0
|
218 |
};
|
sl@0
|
219 |
#define NCELL(pNode) readInt16(&(pNode)->zData[2])
|
sl@0
|
220 |
|
sl@0
|
221 |
/*
|
sl@0
|
222 |
** Structure to store a deserialized rtree record.
|
sl@0
|
223 |
*/
|
sl@0
|
224 |
struct RtreeCell {
|
sl@0
|
225 |
i64 iRowid;
|
sl@0
|
226 |
RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];
|
sl@0
|
227 |
};
|
sl@0
|
228 |
|
sl@0
|
229 |
#define MAX(x,y) ((x) < (y) ? (y) : (x))
|
sl@0
|
230 |
#define MIN(x,y) ((x) > (y) ? (y) : (x))
|
sl@0
|
231 |
|
sl@0
|
232 |
/*
|
sl@0
|
233 |
** Functions to deserialize a 16 bit integer, 32 bit real number and
|
sl@0
|
234 |
** 64 bit integer. The deserialized value is returned.
|
sl@0
|
235 |
*/
|
sl@0
|
236 |
static int readInt16(u8 *p){
|
sl@0
|
237 |
return (p[0]<<8) + p[1];
|
sl@0
|
238 |
}
|
sl@0
|
239 |
static void readCoord(u8 *p, RtreeCoord *pCoord){
|
sl@0
|
240 |
u32 i = (
|
sl@0
|
241 |
(((u32)p[0]) << 24) +
|
sl@0
|
242 |
(((u32)p[1]) << 16) +
|
sl@0
|
243 |
(((u32)p[2]) << 8) +
|
sl@0
|
244 |
(((u32)p[3]) << 0)
|
sl@0
|
245 |
);
|
sl@0
|
246 |
*(u32 *)pCoord = i;
|
sl@0
|
247 |
}
|
sl@0
|
248 |
static i64 readInt64(u8 *p){
|
sl@0
|
249 |
return (
|
sl@0
|
250 |
(((i64)p[0]) << 56) +
|
sl@0
|
251 |
(((i64)p[1]) << 48) +
|
sl@0
|
252 |
(((i64)p[2]) << 40) +
|
sl@0
|
253 |
(((i64)p[3]) << 32) +
|
sl@0
|
254 |
(((i64)p[4]) << 24) +
|
sl@0
|
255 |
(((i64)p[5]) << 16) +
|
sl@0
|
256 |
(((i64)p[6]) << 8) +
|
sl@0
|
257 |
(((i64)p[7]) << 0)
|
sl@0
|
258 |
);
|
sl@0
|
259 |
}
|
sl@0
|
260 |
|
sl@0
|
261 |
/*
|
sl@0
|
262 |
** Functions to serialize a 16 bit integer, 32 bit real number and
|
sl@0
|
263 |
** 64 bit integer. The value returned is the number of bytes written
|
sl@0
|
264 |
** to the argument buffer (always 2, 4 and 8 respectively).
|
sl@0
|
265 |
*/
|
sl@0
|
266 |
static int writeInt16(u8 *p, int i){
|
sl@0
|
267 |
p[0] = (i>> 8)&0xFF;
|
sl@0
|
268 |
p[1] = (i>> 0)&0xFF;
|
sl@0
|
269 |
return 2;
|
sl@0
|
270 |
}
|
sl@0
|
271 |
static int writeCoord(u8 *p, RtreeCoord *pCoord){
|
sl@0
|
272 |
u32 i;
|
sl@0
|
273 |
assert( sizeof(RtreeCoord)==4 );
|
sl@0
|
274 |
assert( sizeof(u32)==4 );
|
sl@0
|
275 |
i = *(u32 *)pCoord;
|
sl@0
|
276 |
p[0] = (i>>24)&0xFF;
|
sl@0
|
277 |
p[1] = (i>>16)&0xFF;
|
sl@0
|
278 |
p[2] = (i>> 8)&0xFF;
|
sl@0
|
279 |
p[3] = (i>> 0)&0xFF;
|
sl@0
|
280 |
return 4;
|
sl@0
|
281 |
}
|
sl@0
|
282 |
static int writeInt64(u8 *p, i64 i){
|
sl@0
|
283 |
p[0] = (i>>56)&0xFF;
|
sl@0
|
284 |
p[1] = (i>>48)&0xFF;
|
sl@0
|
285 |
p[2] = (i>>40)&0xFF;
|
sl@0
|
286 |
p[3] = (i>>32)&0xFF;
|
sl@0
|
287 |
p[4] = (i>>24)&0xFF;
|
sl@0
|
288 |
p[5] = (i>>16)&0xFF;
|
sl@0
|
289 |
p[6] = (i>> 8)&0xFF;
|
sl@0
|
290 |
p[7] = (i>> 0)&0xFF;
|
sl@0
|
291 |
return 8;
|
sl@0
|
292 |
}
|
sl@0
|
293 |
|
sl@0
|
294 |
/*
|
sl@0
|
295 |
** Increment the reference count of node p.
|
sl@0
|
296 |
*/
|
sl@0
|
297 |
static void nodeReference(RtreeNode *p){
|
sl@0
|
298 |
if( p ){
|
sl@0
|
299 |
p->nRef++;
|
sl@0
|
300 |
}
|
sl@0
|
301 |
}
|
sl@0
|
302 |
|
sl@0
|
303 |
/*
|
sl@0
|
304 |
** Clear the content of node p (set all bytes to 0x00).
|
sl@0
|
305 |
*/
|
sl@0
|
306 |
static void nodeZero(Rtree *pRtree, RtreeNode *p){
|
sl@0
|
307 |
if( p ){
|
sl@0
|
308 |
memset(&p->zData[2], 0, pRtree->iNodeSize-2);
|
sl@0
|
309 |
p->isDirty = 1;
|
sl@0
|
310 |
}
|
sl@0
|
311 |
}
|
sl@0
|
312 |
|
sl@0
|
313 |
/*
|
sl@0
|
314 |
** Given a node number iNode, return the corresponding key to use
|
sl@0
|
315 |
** in the Rtree.aHash table.
|
sl@0
|
316 |
*/
|
sl@0
|
317 |
static int nodeHash(i64 iNode){
|
sl@0
|
318 |
return (
|
sl@0
|
319 |
(iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^
|
sl@0
|
320 |
(iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0)
|
sl@0
|
321 |
) % HASHSIZE;
|
sl@0
|
322 |
}
|
sl@0
|
323 |
|
sl@0
|
324 |
/*
|
sl@0
|
325 |
** Search the node hash table for node iNode. If found, return a pointer
|
sl@0
|
326 |
** to it. Otherwise, return 0.
|
sl@0
|
327 |
*/
|
sl@0
|
328 |
static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
|
sl@0
|
329 |
RtreeNode *p;
|
sl@0
|
330 |
assert( iNode!=0 );
|
sl@0
|
331 |
for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
|
sl@0
|
332 |
return p;
|
sl@0
|
333 |
}
|
sl@0
|
334 |
|
sl@0
|
335 |
/*
|
sl@0
|
336 |
** Add node pNode to the node hash table.
|
sl@0
|
337 |
*/
|
sl@0
|
338 |
static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
|
sl@0
|
339 |
if( pNode ){
|
sl@0
|
340 |
int iHash;
|
sl@0
|
341 |
assert( pNode->pNext==0 );
|
sl@0
|
342 |
iHash = nodeHash(pNode->iNode);
|
sl@0
|
343 |
pNode->pNext = pRtree->aHash[iHash];
|
sl@0
|
344 |
pRtree->aHash[iHash] = pNode;
|
sl@0
|
345 |
}
|
sl@0
|
346 |
}
|
sl@0
|
347 |
|
sl@0
|
348 |
/*
|
sl@0
|
349 |
** Remove node pNode from the node hash table.
|
sl@0
|
350 |
*/
|
sl@0
|
351 |
static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
|
sl@0
|
352 |
RtreeNode **pp;
|
sl@0
|
353 |
if( pNode->iNode!=0 ){
|
sl@0
|
354 |
pp = &pRtree->aHash[nodeHash(pNode->iNode)];
|
sl@0
|
355 |
for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
|
sl@0
|
356 |
*pp = pNode->pNext;
|
sl@0
|
357 |
pNode->pNext = 0;
|
sl@0
|
358 |
}
|
sl@0
|
359 |
}
|
sl@0
|
360 |
|
sl@0
|
361 |
/*
|
sl@0
|
362 |
** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
|
sl@0
|
363 |
** indicating that node has not yet been assigned a node number. It is
|
sl@0
|
364 |
** assigned a node number when nodeWrite() is called to write the
|
sl@0
|
365 |
** node contents out to the database.
|
sl@0
|
366 |
*/
|
sl@0
|
367 |
static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent, int zero){
|
sl@0
|
368 |
RtreeNode *pNode;
|
sl@0
|
369 |
pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
|
sl@0
|
370 |
if( pNode ){
|
sl@0
|
371 |
memset(pNode, 0, sizeof(RtreeNode) + (zero?pRtree->iNodeSize:0));
|
sl@0
|
372 |
pNode->zData = (u8 *)&pNode[1];
|
sl@0
|
373 |
pNode->nRef = 1;
|
sl@0
|
374 |
pNode->pParent = pParent;
|
sl@0
|
375 |
pNode->isDirty = 1;
|
sl@0
|
376 |
nodeReference(pParent);
|
sl@0
|
377 |
}
|
sl@0
|
378 |
return pNode;
|
sl@0
|
379 |
}
|
sl@0
|
380 |
|
sl@0
|
381 |
/*
|
sl@0
|
382 |
** Obtain a reference to an r-tree node.
|
sl@0
|
383 |
*/
|
sl@0
|
384 |
static int
|
sl@0
|
385 |
nodeAcquire(
|
sl@0
|
386 |
Rtree *pRtree, /* R-tree structure */
|
sl@0
|
387 |
i64 iNode, /* Node number to load */
|
sl@0
|
388 |
RtreeNode *pParent, /* Either the parent node or NULL */
|
sl@0
|
389 |
RtreeNode **ppNode /* OUT: Acquired node */
|
sl@0
|
390 |
){
|
sl@0
|
391 |
int rc;
|
sl@0
|
392 |
RtreeNode *pNode;
|
sl@0
|
393 |
|
sl@0
|
394 |
/* Check if the requested node is already in the hash table. If so,
|
sl@0
|
395 |
** increase its reference count and return it.
|
sl@0
|
396 |
*/
|
sl@0
|
397 |
if( (pNode = nodeHashLookup(pRtree, iNode)) ){
|
sl@0
|
398 |
assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
|
sl@0
|
399 |
if( pParent ){
|
sl@0
|
400 |
pNode->pParent = pParent;
|
sl@0
|
401 |
}
|
sl@0
|
402 |
pNode->nRef++;
|
sl@0
|
403 |
*ppNode = pNode;
|
sl@0
|
404 |
return SQLITE_OK;
|
sl@0
|
405 |
}
|
sl@0
|
406 |
|
sl@0
|
407 |
pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
|
sl@0
|
408 |
if( !pNode ){
|
sl@0
|
409 |
*ppNode = 0;
|
sl@0
|
410 |
return SQLITE_NOMEM;
|
sl@0
|
411 |
}
|
sl@0
|
412 |
pNode->pParent = pParent;
|
sl@0
|
413 |
pNode->zData = (u8 *)&pNode[1];
|
sl@0
|
414 |
pNode->nRef = 1;
|
sl@0
|
415 |
pNode->iNode = iNode;
|
sl@0
|
416 |
pNode->isDirty = 0;
|
sl@0
|
417 |
pNode->pNext = 0;
|
sl@0
|
418 |
|
sl@0
|
419 |
sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
|
sl@0
|
420 |
rc = sqlite3_step(pRtree->pReadNode);
|
sl@0
|
421 |
if( rc==SQLITE_ROW ){
|
sl@0
|
422 |
const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
|
sl@0
|
423 |
memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
|
sl@0
|
424 |
nodeReference(pParent);
|
sl@0
|
425 |
}else{
|
sl@0
|
426 |
sqlite3_free(pNode);
|
sl@0
|
427 |
pNode = 0;
|
sl@0
|
428 |
}
|
sl@0
|
429 |
|
sl@0
|
430 |
*ppNode = pNode;
|
sl@0
|
431 |
rc = sqlite3_reset(pRtree->pReadNode);
|
sl@0
|
432 |
|
sl@0
|
433 |
if( rc==SQLITE_OK && iNode==1 ){
|
sl@0
|
434 |
pRtree->iDepth = readInt16(pNode->zData);
|
sl@0
|
435 |
}
|
sl@0
|
436 |
|
sl@0
|
437 |
assert( (rc==SQLITE_OK && pNode) || (pNode==0 && rc!=SQLITE_OK) );
|
sl@0
|
438 |
nodeHashInsert(pRtree, pNode);
|
sl@0
|
439 |
|
sl@0
|
440 |
return rc;
|
sl@0
|
441 |
}
|
sl@0
|
442 |
|
sl@0
|
443 |
/*
|
sl@0
|
444 |
** Overwrite cell iCell of node pNode with the contents of pCell.
|
sl@0
|
445 |
*/
|
sl@0
|
446 |
static void nodeOverwriteCell(
|
sl@0
|
447 |
Rtree *pRtree,
|
sl@0
|
448 |
RtreeNode *pNode,
|
sl@0
|
449 |
RtreeCell *pCell,
|
sl@0
|
450 |
int iCell
|
sl@0
|
451 |
){
|
sl@0
|
452 |
int ii;
|
sl@0
|
453 |
u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
|
sl@0
|
454 |
p += writeInt64(p, pCell->iRowid);
|
sl@0
|
455 |
for(ii=0; ii<(pRtree->nDim*2); ii++){
|
sl@0
|
456 |
p += writeCoord(p, &pCell->aCoord[ii]);
|
sl@0
|
457 |
}
|
sl@0
|
458 |
pNode->isDirty = 1;
|
sl@0
|
459 |
}
|
sl@0
|
460 |
|
sl@0
|
461 |
/*
|
sl@0
|
462 |
** Remove cell the cell with index iCell from node pNode.
|
sl@0
|
463 |
*/
|
sl@0
|
464 |
static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
|
sl@0
|
465 |
u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
|
sl@0
|
466 |
u8 *pSrc = &pDst[pRtree->nBytesPerCell];
|
sl@0
|
467 |
int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
|
sl@0
|
468 |
memmove(pDst, pSrc, nByte);
|
sl@0
|
469 |
writeInt16(&pNode->zData[2], NCELL(pNode)-1);
|
sl@0
|
470 |
pNode->isDirty = 1;
|
sl@0
|
471 |
}
|
sl@0
|
472 |
|
sl@0
|
473 |
/*
|
sl@0
|
474 |
** Insert the contents of cell pCell into node pNode. If the insert
|
sl@0
|
475 |
** is successful, return SQLITE_OK.
|
sl@0
|
476 |
**
|
sl@0
|
477 |
** If there is not enough free space in pNode, return SQLITE_FULL.
|
sl@0
|
478 |
*/
|
sl@0
|
479 |
static int
|
sl@0
|
480 |
nodeInsertCell(
|
sl@0
|
481 |
Rtree *pRtree,
|
sl@0
|
482 |
RtreeNode *pNode,
|
sl@0
|
483 |
RtreeCell *pCell
|
sl@0
|
484 |
){
|
sl@0
|
485 |
int nCell; /* Current number of cells in pNode */
|
sl@0
|
486 |
int nMaxCell; /* Maximum number of cells for pNode */
|
sl@0
|
487 |
|
sl@0
|
488 |
nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
|
sl@0
|
489 |
nCell = NCELL(pNode);
|
sl@0
|
490 |
|
sl@0
|
491 |
assert(nCell<=nMaxCell);
|
sl@0
|
492 |
|
sl@0
|
493 |
if( nCell<nMaxCell ){
|
sl@0
|
494 |
nodeOverwriteCell(pRtree, pNode, pCell, nCell);
|
sl@0
|
495 |
writeInt16(&pNode->zData[2], nCell+1);
|
sl@0
|
496 |
pNode->isDirty = 1;
|
sl@0
|
497 |
}
|
sl@0
|
498 |
|
sl@0
|
499 |
return (nCell==nMaxCell);
|
sl@0
|
500 |
}
|
sl@0
|
501 |
|
sl@0
|
502 |
/*
|
sl@0
|
503 |
** If the node is dirty, write it out to the database.
|
sl@0
|
504 |
*/
|
sl@0
|
505 |
static int
|
sl@0
|
506 |
nodeWrite(Rtree *pRtree, RtreeNode *pNode){
|
sl@0
|
507 |
int rc = SQLITE_OK;
|
sl@0
|
508 |
if( pNode->isDirty ){
|
sl@0
|
509 |
sqlite3_stmt *p = pRtree->pWriteNode;
|
sl@0
|
510 |
if( pNode->iNode ){
|
sl@0
|
511 |
sqlite3_bind_int64(p, 1, pNode->iNode);
|
sl@0
|
512 |
}else{
|
sl@0
|
513 |
sqlite3_bind_null(p, 1);
|
sl@0
|
514 |
}
|
sl@0
|
515 |
sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
|
sl@0
|
516 |
sqlite3_step(p);
|
sl@0
|
517 |
pNode->isDirty = 0;
|
sl@0
|
518 |
rc = sqlite3_reset(p);
|
sl@0
|
519 |
if( pNode->iNode==0 && rc==SQLITE_OK ){
|
sl@0
|
520 |
pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
|
sl@0
|
521 |
nodeHashInsert(pRtree, pNode);
|
sl@0
|
522 |
}
|
sl@0
|
523 |
}
|
sl@0
|
524 |
return rc;
|
sl@0
|
525 |
}
|
sl@0
|
526 |
|
sl@0
|
527 |
/*
|
sl@0
|
528 |
** Release a reference to a node. If the node is dirty and the reference
|
sl@0
|
529 |
** count drops to zero, the node data is written to the database.
|
sl@0
|
530 |
*/
|
sl@0
|
531 |
static int
|
sl@0
|
532 |
nodeRelease(Rtree *pRtree, RtreeNode *pNode){
|
sl@0
|
533 |
int rc = SQLITE_OK;
|
sl@0
|
534 |
if( pNode ){
|
sl@0
|
535 |
assert( pNode->nRef>0 );
|
sl@0
|
536 |
pNode->nRef--;
|
sl@0
|
537 |
if( pNode->nRef==0 ){
|
sl@0
|
538 |
if( pNode->iNode==1 ){
|
sl@0
|
539 |
pRtree->iDepth = -1;
|
sl@0
|
540 |
}
|
sl@0
|
541 |
if( pNode->pParent ){
|
sl@0
|
542 |
rc = nodeRelease(pRtree, pNode->pParent);
|
sl@0
|
543 |
}
|
sl@0
|
544 |
if( rc==SQLITE_OK ){
|
sl@0
|
545 |
rc = nodeWrite(pRtree, pNode);
|
sl@0
|
546 |
}
|
sl@0
|
547 |
nodeHashDelete(pRtree, pNode);
|
sl@0
|
548 |
sqlite3_free(pNode);
|
sl@0
|
549 |
}
|
sl@0
|
550 |
}
|
sl@0
|
551 |
return rc;
|
sl@0
|
552 |
}
|
sl@0
|
553 |
|
sl@0
|
554 |
/*
|
sl@0
|
555 |
** Return the 64-bit integer value associated with cell iCell of
|
sl@0
|
556 |
** node pNode. If pNode is a leaf node, this is a rowid. If it is
|
sl@0
|
557 |
** an internal node, then the 64-bit integer is a child page number.
|
sl@0
|
558 |
*/
|
sl@0
|
559 |
static i64 nodeGetRowid(
|
sl@0
|
560 |
Rtree *pRtree,
|
sl@0
|
561 |
RtreeNode *pNode,
|
sl@0
|
562 |
int iCell
|
sl@0
|
563 |
){
|
sl@0
|
564 |
assert( iCell<NCELL(pNode) );
|
sl@0
|
565 |
return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
|
sl@0
|
566 |
}
|
sl@0
|
567 |
|
sl@0
|
568 |
/*
|
sl@0
|
569 |
** Return coordinate iCoord from cell iCell in node pNode.
|
sl@0
|
570 |
*/
|
sl@0
|
571 |
static void nodeGetCoord(
|
sl@0
|
572 |
Rtree *pRtree,
|
sl@0
|
573 |
RtreeNode *pNode,
|
sl@0
|
574 |
int iCell,
|
sl@0
|
575 |
int iCoord,
|
sl@0
|
576 |
RtreeCoord *pCoord /* Space to write result to */
|
sl@0
|
577 |
){
|
sl@0
|
578 |
readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
|
sl@0
|
579 |
}
|
sl@0
|
580 |
|
sl@0
|
581 |
/*
|
sl@0
|
582 |
** Deserialize cell iCell of node pNode. Populate the structure pointed
|
sl@0
|
583 |
** to by pCell with the results.
|
sl@0
|
584 |
*/
|
sl@0
|
585 |
static void nodeGetCell(
|
sl@0
|
586 |
Rtree *pRtree,
|
sl@0
|
587 |
RtreeNode *pNode,
|
sl@0
|
588 |
int iCell,
|
sl@0
|
589 |
RtreeCell *pCell
|
sl@0
|
590 |
){
|
sl@0
|
591 |
int ii;
|
sl@0
|
592 |
pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
|
sl@0
|
593 |
for(ii=0; ii<pRtree->nDim*2; ii++){
|
sl@0
|
594 |
nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]);
|
sl@0
|
595 |
}
|
sl@0
|
596 |
}
|
sl@0
|
597 |
|
sl@0
|
598 |
|
sl@0
|
599 |
/* Forward declaration for the function that does the work of
|
sl@0
|
600 |
** the virtual table module xCreate() and xConnect() methods.
|
sl@0
|
601 |
*/
|
sl@0
|
602 |
static int rtreeInit(
|
sl@0
|
603 |
sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int, int
|
sl@0
|
604 |
);
|
sl@0
|
605 |
|
sl@0
|
606 |
/*
|
sl@0
|
607 |
** Rtree virtual table module xCreate method.
|
sl@0
|
608 |
*/
|
sl@0
|
609 |
static int rtreeCreate(
|
sl@0
|
610 |
sqlite3 *db,
|
sl@0
|
611 |
void *pAux,
|
sl@0
|
612 |
int argc, const char *const*argv,
|
sl@0
|
613 |
sqlite3_vtab **ppVtab,
|
sl@0
|
614 |
char **pzErr
|
sl@0
|
615 |
){
|
sl@0
|
616 |
return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1, (int)pAux);
|
sl@0
|
617 |
}
|
sl@0
|
618 |
|
sl@0
|
619 |
/*
|
sl@0
|
620 |
** Rtree virtual table module xConnect method.
|
sl@0
|
621 |
*/
|
sl@0
|
622 |
static int rtreeConnect(
|
sl@0
|
623 |
sqlite3 *db,
|
sl@0
|
624 |
void *pAux,
|
sl@0
|
625 |
int argc, const char *const*argv,
|
sl@0
|
626 |
sqlite3_vtab **ppVtab,
|
sl@0
|
627 |
char **pzErr
|
sl@0
|
628 |
){
|
sl@0
|
629 |
return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0, (int)pAux);
|
sl@0
|
630 |
}
|
sl@0
|
631 |
|
sl@0
|
632 |
/*
|
sl@0
|
633 |
** Increment the r-tree reference count.
|
sl@0
|
634 |
*/
|
sl@0
|
635 |
static void rtreeReference(Rtree *pRtree){
|
sl@0
|
636 |
pRtree->nBusy++;
|
sl@0
|
637 |
}
|
sl@0
|
638 |
|
sl@0
|
639 |
/*
|
sl@0
|
640 |
** Decrement the r-tree reference count. When the reference count reaches
|
sl@0
|
641 |
** zero the structure is deleted.
|
sl@0
|
642 |
*/
|
sl@0
|
643 |
static void rtreeRelease(Rtree *pRtree){
|
sl@0
|
644 |
pRtree->nBusy--;
|
sl@0
|
645 |
if( pRtree->nBusy==0 ){
|
sl@0
|
646 |
sqlite3_finalize(pRtree->pReadNode);
|
sl@0
|
647 |
sqlite3_finalize(pRtree->pWriteNode);
|
sl@0
|
648 |
sqlite3_finalize(pRtree->pDeleteNode);
|
sl@0
|
649 |
sqlite3_finalize(pRtree->pReadRowid);
|
sl@0
|
650 |
sqlite3_finalize(pRtree->pWriteRowid);
|
sl@0
|
651 |
sqlite3_finalize(pRtree->pDeleteRowid);
|
sl@0
|
652 |
sqlite3_finalize(pRtree->pReadParent);
|
sl@0
|
653 |
sqlite3_finalize(pRtree->pWriteParent);
|
sl@0
|
654 |
sqlite3_finalize(pRtree->pDeleteParent);
|
sl@0
|
655 |
sqlite3_free(pRtree);
|
sl@0
|
656 |
}
|
sl@0
|
657 |
}
|
sl@0
|
658 |
|
sl@0
|
659 |
/*
|
sl@0
|
660 |
** Rtree virtual table module xDisconnect method.
|
sl@0
|
661 |
*/
|
sl@0
|
662 |
static int rtreeDisconnect(sqlite3_vtab *pVtab){
|
sl@0
|
663 |
rtreeRelease((Rtree *)pVtab);
|
sl@0
|
664 |
return SQLITE_OK;
|
sl@0
|
665 |
}
|
sl@0
|
666 |
|
sl@0
|
667 |
/*
|
sl@0
|
668 |
** Rtree virtual table module xDestroy method.
|
sl@0
|
669 |
*/
|
sl@0
|
670 |
static int rtreeDestroy(sqlite3_vtab *pVtab){
|
sl@0
|
671 |
Rtree *pRtree = (Rtree *)pVtab;
|
sl@0
|
672 |
int rc;
|
sl@0
|
673 |
char *zCreate = sqlite3_mprintf(
|
sl@0
|
674 |
"DROP TABLE '%q'.'%q_node';"
|
sl@0
|
675 |
"DROP TABLE '%q'.'%q_rowid';"
|
sl@0
|
676 |
"DROP TABLE '%q'.'%q_parent';",
|
sl@0
|
677 |
pRtree->zDb, pRtree->zName,
|
sl@0
|
678 |
pRtree->zDb, pRtree->zName,
|
sl@0
|
679 |
pRtree->zDb, pRtree->zName
|
sl@0
|
680 |
);
|
sl@0
|
681 |
if( !zCreate ){
|
sl@0
|
682 |
rc = SQLITE_NOMEM;
|
sl@0
|
683 |
}else{
|
sl@0
|
684 |
rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
|
sl@0
|
685 |
sqlite3_free(zCreate);
|
sl@0
|
686 |
}
|
sl@0
|
687 |
if( rc==SQLITE_OK ){
|
sl@0
|
688 |
rtreeRelease(pRtree);
|
sl@0
|
689 |
}
|
sl@0
|
690 |
|
sl@0
|
691 |
return rc;
|
sl@0
|
692 |
}
|
sl@0
|
693 |
|
sl@0
|
694 |
/*
|
sl@0
|
695 |
** Rtree virtual table module xOpen method.
|
sl@0
|
696 |
*/
|
sl@0
|
697 |
static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
sl@0
|
698 |
int rc = SQLITE_NOMEM;
|
sl@0
|
699 |
RtreeCursor *pCsr;
|
sl@0
|
700 |
|
sl@0
|
701 |
pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
|
sl@0
|
702 |
if( pCsr ){
|
sl@0
|
703 |
memset(pCsr, 0, sizeof(RtreeCursor));
|
sl@0
|
704 |
pCsr->base.pVtab = pVTab;
|
sl@0
|
705 |
rc = SQLITE_OK;
|
sl@0
|
706 |
}
|
sl@0
|
707 |
*ppCursor = (sqlite3_vtab_cursor *)pCsr;
|
sl@0
|
708 |
|
sl@0
|
709 |
return rc;
|
sl@0
|
710 |
}
|
sl@0
|
711 |
|
sl@0
|
712 |
/*
|
sl@0
|
713 |
** Rtree virtual table module xClose method.
|
sl@0
|
714 |
*/
|
sl@0
|
715 |
static int rtreeClose(sqlite3_vtab_cursor *cur){
|
sl@0
|
716 |
Rtree *pRtree = (Rtree *)(cur->pVtab);
|
sl@0
|
717 |
int rc;
|
sl@0
|
718 |
RtreeCursor *pCsr = (RtreeCursor *)cur;
|
sl@0
|
719 |
sqlite3_free(pCsr->aConstraint);
|
sl@0
|
720 |
rc = nodeRelease(pRtree, pCsr->pNode);
|
sl@0
|
721 |
sqlite3_free(pCsr);
|
sl@0
|
722 |
return rc;
|
sl@0
|
723 |
}
|
sl@0
|
724 |
|
sl@0
|
725 |
/*
|
sl@0
|
726 |
** Rtree virtual table module xEof method.
|
sl@0
|
727 |
**
|
sl@0
|
728 |
** Return non-zero if the cursor does not currently point to a valid
|
sl@0
|
729 |
** record (i.e if the scan has finished), or zero otherwise.
|
sl@0
|
730 |
*/
|
sl@0
|
731 |
static int rtreeEof(sqlite3_vtab_cursor *cur){
|
sl@0
|
732 |
RtreeCursor *pCsr = (RtreeCursor *)cur;
|
sl@0
|
733 |
return (pCsr->pNode==0);
|
sl@0
|
734 |
}
|
sl@0
|
735 |
|
sl@0
|
736 |
/*
|
sl@0
|
737 |
** Cursor pCursor currently points to a cell in a non-leaf page.
|
sl@0
|
738 |
** Return true if the sub-tree headed by the cell is filtered
|
sl@0
|
739 |
** (excluded) by the constraints in the pCursor->aConstraint[]
|
sl@0
|
740 |
** array, or false otherwise.
|
sl@0
|
741 |
*/
|
sl@0
|
742 |
static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){
|
sl@0
|
743 |
RtreeCell cell;
|
sl@0
|
744 |
int ii;
|
sl@0
|
745 |
int bRes = 0;
|
sl@0
|
746 |
|
sl@0
|
747 |
nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
|
sl@0
|
748 |
for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
|
sl@0
|
749 |
RtreeConstraint *p = &pCursor->aConstraint[ii];
|
sl@0
|
750 |
double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
|
sl@0
|
751 |
double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);
|
sl@0
|
752 |
|
sl@0
|
753 |
assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
|
sl@0
|
754 |
|| p->op==RTREE_GT || p->op==RTREE_EQ
|
sl@0
|
755 |
);
|
sl@0
|
756 |
|
sl@0
|
757 |
switch( p->op ){
|
sl@0
|
758 |
case RTREE_LE: case RTREE_LT: bRes = p->rValue<cell_min; break;
|
sl@0
|
759 |
case RTREE_GE: case RTREE_GT: bRes = p->rValue>cell_max; break;
|
sl@0
|
760 |
case RTREE_EQ:
|
sl@0
|
761 |
bRes = (p->rValue>cell_max || p->rValue<cell_min);
|
sl@0
|
762 |
break;
|
sl@0
|
763 |
}
|
sl@0
|
764 |
}
|
sl@0
|
765 |
|
sl@0
|
766 |
return bRes;
|
sl@0
|
767 |
}
|
sl@0
|
768 |
|
sl@0
|
769 |
/*
|
sl@0
|
770 |
** Return true if the cell that cursor pCursor currently points to
|
sl@0
|
771 |
** would be filtered (excluded) by the constraints in the
|
sl@0
|
772 |
** pCursor->aConstraint[] array, or false otherwise.
|
sl@0
|
773 |
**
|
sl@0
|
774 |
** This function assumes that the cell is part of a leaf node.
|
sl@0
|
775 |
*/
|
sl@0
|
776 |
static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){
|
sl@0
|
777 |
RtreeCell cell;
|
sl@0
|
778 |
int ii;
|
sl@0
|
779 |
|
sl@0
|
780 |
nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
|
sl@0
|
781 |
for(ii=0; ii<pCursor->nConstraint; ii++){
|
sl@0
|
782 |
RtreeConstraint *p = &pCursor->aConstraint[ii];
|
sl@0
|
783 |
double coord = DCOORD(cell.aCoord[p->iCoord]);
|
sl@0
|
784 |
int res;
|
sl@0
|
785 |
assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
|
sl@0
|
786 |
|| p->op==RTREE_GT || p->op==RTREE_EQ
|
sl@0
|
787 |
);
|
sl@0
|
788 |
switch( p->op ){
|
sl@0
|
789 |
case RTREE_LE: res = (coord<=p->rValue); break;
|
sl@0
|
790 |
case RTREE_LT: res = (coord<p->rValue); break;
|
sl@0
|
791 |
case RTREE_GE: res = (coord>=p->rValue); break;
|
sl@0
|
792 |
case RTREE_GT: res = (coord>p->rValue); break;
|
sl@0
|
793 |
case RTREE_EQ: res = (coord==p->rValue); break;
|
sl@0
|
794 |
}
|
sl@0
|
795 |
|
sl@0
|
796 |
if( !res ) return 1;
|
sl@0
|
797 |
}
|
sl@0
|
798 |
|
sl@0
|
799 |
return 0;
|
sl@0
|
800 |
}
|
sl@0
|
801 |
|
sl@0
|
802 |
/*
|
sl@0
|
803 |
** Cursor pCursor currently points at a node that heads a sub-tree of
|
sl@0
|
804 |
** height iHeight (if iHeight==0, then the node is a leaf). Descend
|
sl@0
|
805 |
** to point to the left-most cell of the sub-tree that matches the
|
sl@0
|
806 |
** configured constraints.
|
sl@0
|
807 |
*/
|
sl@0
|
808 |
static int descendToCell(
|
sl@0
|
809 |
Rtree *pRtree,
|
sl@0
|
810 |
RtreeCursor *pCursor,
|
sl@0
|
811 |
int iHeight,
|
sl@0
|
812 |
int *pEof /* OUT: Set to true if cannot descend */
|
sl@0
|
813 |
){
|
sl@0
|
814 |
int isEof;
|
sl@0
|
815 |
int rc;
|
sl@0
|
816 |
int ii;
|
sl@0
|
817 |
RtreeNode *pChild;
|
sl@0
|
818 |
sqlite3_int64 iRowid;
|
sl@0
|
819 |
|
sl@0
|
820 |
RtreeNode *pSavedNode = pCursor->pNode;
|
sl@0
|
821 |
int iSavedCell = pCursor->iCell;
|
sl@0
|
822 |
|
sl@0
|
823 |
assert( iHeight>=0 );
|
sl@0
|
824 |
|
sl@0
|
825 |
if( iHeight==0 ){
|
sl@0
|
826 |
isEof = testRtreeEntry(pRtree, pCursor);
|
sl@0
|
827 |
}else{
|
sl@0
|
828 |
isEof = testRtreeCell(pRtree, pCursor);
|
sl@0
|
829 |
}
|
sl@0
|
830 |
if( isEof || iHeight==0 ){
|
sl@0
|
831 |
*pEof = isEof;
|
sl@0
|
832 |
return SQLITE_OK;
|
sl@0
|
833 |
}
|
sl@0
|
834 |
|
sl@0
|
835 |
iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell);
|
sl@0
|
836 |
rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild);
|
sl@0
|
837 |
if( rc!=SQLITE_OK ){
|
sl@0
|
838 |
return rc;
|
sl@0
|
839 |
}
|
sl@0
|
840 |
|
sl@0
|
841 |
nodeRelease(pRtree, pCursor->pNode);
|
sl@0
|
842 |
pCursor->pNode = pChild;
|
sl@0
|
843 |
isEof = 1;
|
sl@0
|
844 |
for(ii=0; isEof && ii<NCELL(pChild); ii++){
|
sl@0
|
845 |
pCursor->iCell = ii;
|
sl@0
|
846 |
rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof);
|
sl@0
|
847 |
if( rc!=SQLITE_OK ){
|
sl@0
|
848 |
return rc;
|
sl@0
|
849 |
}
|
sl@0
|
850 |
}
|
sl@0
|
851 |
|
sl@0
|
852 |
if( isEof ){
|
sl@0
|
853 |
assert( pCursor->pNode==pChild );
|
sl@0
|
854 |
nodeReference(pSavedNode);
|
sl@0
|
855 |
nodeRelease(pRtree, pChild);
|
sl@0
|
856 |
pCursor->pNode = pSavedNode;
|
sl@0
|
857 |
pCursor->iCell = iSavedCell;
|
sl@0
|
858 |
}
|
sl@0
|
859 |
|
sl@0
|
860 |
*pEof = isEof;
|
sl@0
|
861 |
return SQLITE_OK;
|
sl@0
|
862 |
}
|
sl@0
|
863 |
|
sl@0
|
864 |
/*
|
sl@0
|
865 |
** One of the cells in node pNode is guaranteed to have a 64-bit
|
sl@0
|
866 |
** integer value equal to iRowid. Return the index of this cell.
|
sl@0
|
867 |
*/
|
sl@0
|
868 |
static int nodeRowidIndex(Rtree *pRtree, RtreeNode *pNode, i64 iRowid){
|
sl@0
|
869 |
int ii;
|
sl@0
|
870 |
for(ii=0; nodeGetRowid(pRtree, pNode, ii)!=iRowid; ii++){
|
sl@0
|
871 |
assert( ii<(NCELL(pNode)-1) );
|
sl@0
|
872 |
}
|
sl@0
|
873 |
return ii;
|
sl@0
|
874 |
}
|
sl@0
|
875 |
|
sl@0
|
876 |
/*
|
sl@0
|
877 |
** Return the index of the cell containing a pointer to node pNode
|
sl@0
|
878 |
** in its parent. If pNode is the root node, return -1.
|
sl@0
|
879 |
*/
|
sl@0
|
880 |
static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode){
|
sl@0
|
881 |
RtreeNode *pParent = pNode->pParent;
|
sl@0
|
882 |
if( pParent ){
|
sl@0
|
883 |
return nodeRowidIndex(pRtree, pParent, pNode->iNode);
|
sl@0
|
884 |
}
|
sl@0
|
885 |
return -1;
|
sl@0
|
886 |
}
|
sl@0
|
887 |
|
sl@0
|
888 |
/*
|
sl@0
|
889 |
** Rtree virtual table module xNext method.
|
sl@0
|
890 |
*/
|
sl@0
|
891 |
static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
|
sl@0
|
892 |
Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab);
|
sl@0
|
893 |
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
|
sl@0
|
894 |
int rc = SQLITE_OK;
|
sl@0
|
895 |
|
sl@0
|
896 |
if( pCsr->iStrategy==1 ){
|
sl@0
|
897 |
/* This "scan" is a direct lookup by rowid. There is no next entry. */
|
sl@0
|
898 |
nodeRelease(pRtree, pCsr->pNode);
|
sl@0
|
899 |
pCsr->pNode = 0;
|
sl@0
|
900 |
}
|
sl@0
|
901 |
|
sl@0
|
902 |
else if( pCsr->pNode ){
|
sl@0
|
903 |
/* Move to the next entry that matches the configured constraints. */
|
sl@0
|
904 |
int iHeight = 0;
|
sl@0
|
905 |
while( pCsr->pNode ){
|
sl@0
|
906 |
RtreeNode *pNode = pCsr->pNode;
|
sl@0
|
907 |
int nCell = NCELL(pNode);
|
sl@0
|
908 |
for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){
|
sl@0
|
909 |
int isEof;
|
sl@0
|
910 |
rc = descendToCell(pRtree, pCsr, iHeight, &isEof);
|
sl@0
|
911 |
if( rc!=SQLITE_OK || !isEof ){
|
sl@0
|
912 |
return rc;
|
sl@0
|
913 |
}
|
sl@0
|
914 |
}
|
sl@0
|
915 |
pCsr->pNode = pNode->pParent;
|
sl@0
|
916 |
pCsr->iCell = nodeParentIndex(pRtree, pNode);
|
sl@0
|
917 |
nodeReference(pCsr->pNode);
|
sl@0
|
918 |
nodeRelease(pRtree, pNode);
|
sl@0
|
919 |
iHeight++;
|
sl@0
|
920 |
}
|
sl@0
|
921 |
}
|
sl@0
|
922 |
|
sl@0
|
923 |
return rc;
|
sl@0
|
924 |
}
|
sl@0
|
925 |
|
sl@0
|
926 |
/*
|
sl@0
|
927 |
** Rtree virtual table module xRowid method.
|
sl@0
|
928 |
*/
|
sl@0
|
929 |
static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
|
sl@0
|
930 |
Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
|
sl@0
|
931 |
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
|
sl@0
|
932 |
|
sl@0
|
933 |
assert(pCsr->pNode);
|
sl@0
|
934 |
*pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
|
sl@0
|
935 |
|
sl@0
|
936 |
return SQLITE_OK;
|
sl@0
|
937 |
}
|
sl@0
|
938 |
|
sl@0
|
939 |
/*
|
sl@0
|
940 |
** Rtree virtual table module xColumn method.
|
sl@0
|
941 |
*/
|
sl@0
|
942 |
static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
|
sl@0
|
943 |
Rtree *pRtree = (Rtree *)cur->pVtab;
|
sl@0
|
944 |
RtreeCursor *pCsr = (RtreeCursor *)cur;
|
sl@0
|
945 |
|
sl@0
|
946 |
if( i==0 ){
|
sl@0
|
947 |
i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
|
sl@0
|
948 |
sqlite3_result_int64(ctx, iRowid);
|
sl@0
|
949 |
}else{
|
sl@0
|
950 |
RtreeCoord c;
|
sl@0
|
951 |
nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);
|
sl@0
|
952 |
if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
|
sl@0
|
953 |
sqlite3_result_double(ctx, c.f);
|
sl@0
|
954 |
}else{
|
sl@0
|
955 |
assert( pRtree->eCoordType==RTREE_COORD_INT32 );
|
sl@0
|
956 |
sqlite3_result_int(ctx, c.i);
|
sl@0
|
957 |
}
|
sl@0
|
958 |
}
|
sl@0
|
959 |
|
sl@0
|
960 |
return SQLITE_OK;
|
sl@0
|
961 |
}
|
sl@0
|
962 |
|
sl@0
|
963 |
/*
|
sl@0
|
964 |
** Use nodeAcquire() to obtain the leaf node containing the record with
|
sl@0
|
965 |
** rowid iRowid. If successful, set *ppLeaf to point to the node and
|
sl@0
|
966 |
** return SQLITE_OK. If there is no such record in the table, set
|
sl@0
|
967 |
** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
|
sl@0
|
968 |
** to zero and return an SQLite error code.
|
sl@0
|
969 |
*/
|
sl@0
|
970 |
static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){
|
sl@0
|
971 |
int rc;
|
sl@0
|
972 |
*ppLeaf = 0;
|
sl@0
|
973 |
sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
|
sl@0
|
974 |
if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
|
sl@0
|
975 |
i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
|
sl@0
|
976 |
rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
|
sl@0
|
977 |
sqlite3_reset(pRtree->pReadRowid);
|
sl@0
|
978 |
}else{
|
sl@0
|
979 |
rc = sqlite3_reset(pRtree->pReadRowid);
|
sl@0
|
980 |
}
|
sl@0
|
981 |
return rc;
|
sl@0
|
982 |
}
|
sl@0
|
983 |
|
sl@0
|
984 |
|
sl@0
|
985 |
/*
|
sl@0
|
986 |
** Rtree virtual table module xFilter method.
|
sl@0
|
987 |
*/
|
sl@0
|
988 |
static int rtreeFilter(
|
sl@0
|
989 |
sqlite3_vtab_cursor *pVtabCursor,
|
sl@0
|
990 |
int idxNum, const char *idxStr,
|
sl@0
|
991 |
int argc, sqlite3_value **argv
|
sl@0
|
992 |
){
|
sl@0
|
993 |
Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
|
sl@0
|
994 |
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
|
sl@0
|
995 |
|
sl@0
|
996 |
RtreeNode *pRoot = 0;
|
sl@0
|
997 |
int ii;
|
sl@0
|
998 |
int rc = SQLITE_OK;
|
sl@0
|
999 |
|
sl@0
|
1000 |
rtreeReference(pRtree);
|
sl@0
|
1001 |
|
sl@0
|
1002 |
sqlite3_free(pCsr->aConstraint);
|
sl@0
|
1003 |
pCsr->aConstraint = 0;
|
sl@0
|
1004 |
pCsr->iStrategy = idxNum;
|
sl@0
|
1005 |
|
sl@0
|
1006 |
if( idxNum==1 ){
|
sl@0
|
1007 |
/* Special case - lookup by rowid. */
|
sl@0
|
1008 |
RtreeNode *pLeaf; /* Leaf on which the required cell resides */
|
sl@0
|
1009 |
i64 iRowid = sqlite3_value_int64(argv[0]);
|
sl@0
|
1010 |
rc = findLeafNode(pRtree, iRowid, &pLeaf);
|
sl@0
|
1011 |
pCsr->pNode = pLeaf;
|
sl@0
|
1012 |
if( pLeaf && rc==SQLITE_OK ){
|
sl@0
|
1013 |
pCsr->iCell = nodeRowidIndex(pRtree, pLeaf, iRowid);
|
sl@0
|
1014 |
}
|
sl@0
|
1015 |
}else{
|
sl@0
|
1016 |
/* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
|
sl@0
|
1017 |
** with the configured constraints.
|
sl@0
|
1018 |
*/
|
sl@0
|
1019 |
if( argc>0 ){
|
sl@0
|
1020 |
pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
|
sl@0
|
1021 |
pCsr->nConstraint = argc;
|
sl@0
|
1022 |
if( !pCsr->aConstraint ){
|
sl@0
|
1023 |
rc = SQLITE_NOMEM;
|
sl@0
|
1024 |
}else{
|
sl@0
|
1025 |
assert( (idxStr==0 && argc==0) || strlen(idxStr)==argc*2 );
|
sl@0
|
1026 |
for(ii=0; ii<argc; ii++){
|
sl@0
|
1027 |
RtreeConstraint *p = &pCsr->aConstraint[ii];
|
sl@0
|
1028 |
p->op = idxStr[ii*2];
|
sl@0
|
1029 |
p->iCoord = idxStr[ii*2+1]-'a';
|
sl@0
|
1030 |
p->rValue = sqlite3_value_double(argv[ii]);
|
sl@0
|
1031 |
}
|
sl@0
|
1032 |
}
|
sl@0
|
1033 |
}
|
sl@0
|
1034 |
|
sl@0
|
1035 |
if( rc==SQLITE_OK ){
|
sl@0
|
1036 |
pCsr->pNode = 0;
|
sl@0
|
1037 |
rc = nodeAcquire(pRtree, 1, 0, &pRoot);
|
sl@0
|
1038 |
}
|
sl@0
|
1039 |
if( rc==SQLITE_OK ){
|
sl@0
|
1040 |
int isEof = 1;
|
sl@0
|
1041 |
int nCell = NCELL(pRoot);
|
sl@0
|
1042 |
pCsr->pNode = pRoot;
|
sl@0
|
1043 |
for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){
|
sl@0
|
1044 |
assert( pCsr->pNode==pRoot );
|
sl@0
|
1045 |
rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof);
|
sl@0
|
1046 |
if( !isEof ){
|
sl@0
|
1047 |
break;
|
sl@0
|
1048 |
}
|
sl@0
|
1049 |
}
|
sl@0
|
1050 |
if( rc==SQLITE_OK && isEof ){
|
sl@0
|
1051 |
assert( pCsr->pNode==pRoot );
|
sl@0
|
1052 |
nodeRelease(pRtree, pRoot);
|
sl@0
|
1053 |
pCsr->pNode = 0;
|
sl@0
|
1054 |
}
|
sl@0
|
1055 |
assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) );
|
sl@0
|
1056 |
}
|
sl@0
|
1057 |
}
|
sl@0
|
1058 |
|
sl@0
|
1059 |
rtreeRelease(pRtree);
|
sl@0
|
1060 |
return rc;
|
sl@0
|
1061 |
}
|
sl@0
|
1062 |
|
sl@0
|
1063 |
/*
|
sl@0
|
1064 |
** Rtree virtual table module xBestIndex method. There are three
|
sl@0
|
1065 |
** table scan strategies to choose from (in order from most to
|
sl@0
|
1066 |
** least desirable):
|
sl@0
|
1067 |
**
|
sl@0
|
1068 |
** idxNum idxStr Strategy
|
sl@0
|
1069 |
** ------------------------------------------------
|
sl@0
|
1070 |
** 1 Unused Direct lookup by rowid.
|
sl@0
|
1071 |
** 2 See below R-tree query.
|
sl@0
|
1072 |
** 3 Unused Full table scan.
|
sl@0
|
1073 |
** ------------------------------------------------
|
sl@0
|
1074 |
**
|
sl@0
|
1075 |
** If strategy 1 or 3 is used, then idxStr is not meaningful. If strategy
|
sl@0
|
1076 |
** 2 is used, idxStr is formatted to contain 2 bytes for each
|
sl@0
|
1077 |
** constraint used. The first two bytes of idxStr correspond to
|
sl@0
|
1078 |
** the constraint in sqlite3_index_info.aConstraintUsage[] with
|
sl@0
|
1079 |
** (argvIndex==1) etc.
|
sl@0
|
1080 |
**
|
sl@0
|
1081 |
** The first of each pair of bytes in idxStr identifies the constraint
|
sl@0
|
1082 |
** operator as follows:
|
sl@0
|
1083 |
**
|
sl@0
|
1084 |
** Operator Byte Value
|
sl@0
|
1085 |
** ----------------------
|
sl@0
|
1086 |
** = 0x41 ('A')
|
sl@0
|
1087 |
** <= 0x42 ('B')
|
sl@0
|
1088 |
** < 0x43 ('C')
|
sl@0
|
1089 |
** >= 0x44 ('D')
|
sl@0
|
1090 |
** > 0x45 ('E')
|
sl@0
|
1091 |
** ----------------------
|
sl@0
|
1092 |
**
|
sl@0
|
1093 |
** The second of each pair of bytes identifies the coordinate column
|
sl@0
|
1094 |
** to which the constraint applies. The leftmost coordinate column
|
sl@0
|
1095 |
** is 'a', the second from the left 'b' etc.
|
sl@0
|
1096 |
*/
|
sl@0
|
1097 |
static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
|
sl@0
|
1098 |
int rc = SQLITE_OK;
|
sl@0
|
1099 |
int ii, cCol;
|
sl@0
|
1100 |
|
sl@0
|
1101 |
int iIdx = 0;
|
sl@0
|
1102 |
char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
|
sl@0
|
1103 |
memset(zIdxStr, 0, sizeof(zIdxStr));
|
sl@0
|
1104 |
|
sl@0
|
1105 |
assert( pIdxInfo->idxStr==0 );
|
sl@0
|
1106 |
for(ii=0; ii<pIdxInfo->nConstraint; ii++){
|
sl@0
|
1107 |
struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
|
sl@0
|
1108 |
|
sl@0
|
1109 |
if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
|
sl@0
|
1110 |
/* We have an equality constraint on the rowid. Use strategy 1. */
|
sl@0
|
1111 |
int jj;
|
sl@0
|
1112 |
for(jj=0; jj<ii; jj++){
|
sl@0
|
1113 |
pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
|
sl@0
|
1114 |
pIdxInfo->aConstraintUsage[jj].omit = 0;
|
sl@0
|
1115 |
}
|
sl@0
|
1116 |
pIdxInfo->idxNum = 1;
|
sl@0
|
1117 |
pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
|
sl@0
|
1118 |
pIdxInfo->aConstraintUsage[jj].omit = 1;
|
sl@0
|
1119 |
|
sl@0
|
1120 |
/* This strategy involves a two rowid lookups on an B-Tree structures
|
sl@0
|
1121 |
** and then a linear search of an R-Tree node. This should be
|
sl@0
|
1122 |
** considered almost as quick as a direct rowid lookup (for which
|
sl@0
|
1123 |
** sqlite uses an internal cost of 0.0).
|
sl@0
|
1124 |
*/
|
sl@0
|
1125 |
pIdxInfo->estimatedCost = 10.0;
|
sl@0
|
1126 |
return SQLITE_OK;
|
sl@0
|
1127 |
}
|
sl@0
|
1128 |
|
sl@0
|
1129 |
if( p->usable && p->iColumn>0 ){
|
sl@0
|
1130 |
u8 op = 0;
|
sl@0
|
1131 |
switch( p->op ){
|
sl@0
|
1132 |
case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
|
sl@0
|
1133 |
case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
|
sl@0
|
1134 |
case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
|
sl@0
|
1135 |
case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
|
sl@0
|
1136 |
case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
|
sl@0
|
1137 |
}
|
sl@0
|
1138 |
if( op ){
|
sl@0
|
1139 |
/* Make sure this particular constraint has not been used before.
|
sl@0
|
1140 |
** If it has been used before, ignore it.
|
sl@0
|
1141 |
**
|
sl@0
|
1142 |
** A <= or < can be used if there is a prior >= or >.
|
sl@0
|
1143 |
** A >= or > can be used if there is a prior < or <=.
|
sl@0
|
1144 |
** A <= or < is disqualified if there is a prior <=, <, or ==.
|
sl@0
|
1145 |
** A >= or > is disqualified if there is a prior >=, >, or ==.
|
sl@0
|
1146 |
** A == is disqualifed if there is any prior constraint.
|
sl@0
|
1147 |
*/
|
sl@0
|
1148 |
int j, opmsk;
|
sl@0
|
1149 |
static const unsigned char compatible[] = { 0, 0, 1, 1, 2, 2 };
|
sl@0
|
1150 |
assert( compatible[RTREE_EQ & 7]==0 );
|
sl@0
|
1151 |
assert( compatible[RTREE_LT & 7]==1 );
|
sl@0
|
1152 |
assert( compatible[RTREE_LE & 7]==1 );
|
sl@0
|
1153 |
assert( compatible[RTREE_GT & 7]==2 );
|
sl@0
|
1154 |
assert( compatible[RTREE_GE & 7]==2 );
|
sl@0
|
1155 |
cCol = p->iColumn - 1 + 'a';
|
sl@0
|
1156 |
opmsk = compatible[op & 7];
|
sl@0
|
1157 |
for(j=0; j<iIdx; j+=2){
|
sl@0
|
1158 |
if( zIdxStr[j+1]==cCol && (compatible[zIdxStr[j] & 7] & opmsk)!=0 ){
|
sl@0
|
1159 |
op = 0;
|
sl@0
|
1160 |
break;
|
sl@0
|
1161 |
}
|
sl@0
|
1162 |
}
|
sl@0
|
1163 |
}
|
sl@0
|
1164 |
if( op ){
|
sl@0
|
1165 |
assert( iIdx<sizeof(zIdxStr)-1 );
|
sl@0
|
1166 |
zIdxStr[iIdx++] = op;
|
sl@0
|
1167 |
zIdxStr[iIdx++] = cCol;
|
sl@0
|
1168 |
pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
|
sl@0
|
1169 |
pIdxInfo->aConstraintUsage[ii].omit = 1;
|
sl@0
|
1170 |
}
|
sl@0
|
1171 |
}
|
sl@0
|
1172 |
}
|
sl@0
|
1173 |
|
sl@0
|
1174 |
pIdxInfo->idxNum = 2;
|
sl@0
|
1175 |
pIdxInfo->needToFreeIdxStr = 1;
|
sl@0
|
1176 |
if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
|
sl@0
|
1177 |
return SQLITE_NOMEM;
|
sl@0
|
1178 |
}
|
sl@0
|
1179 |
assert( iIdx>=0 );
|
sl@0
|
1180 |
pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1));
|
sl@0
|
1181 |
return rc;
|
sl@0
|
1182 |
}
|
sl@0
|
1183 |
|
sl@0
|
1184 |
/*
|
sl@0
|
1185 |
** Return the N-dimensional volumn of the cell stored in *p.
|
sl@0
|
1186 |
*/
|
sl@0
|
1187 |
static float cellArea(Rtree *pRtree, RtreeCell *p){
|
sl@0
|
1188 |
float area = 1.0;
|
sl@0
|
1189 |
int ii;
|
sl@0
|
1190 |
for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
sl@0
|
1191 |
area = area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
|
sl@0
|
1192 |
}
|
sl@0
|
1193 |
return area;
|
sl@0
|
1194 |
}
|
sl@0
|
1195 |
|
sl@0
|
1196 |
/*
|
sl@0
|
1197 |
** Return the margin length of cell p. The margin length is the sum
|
sl@0
|
1198 |
** of the objects size in each dimension.
|
sl@0
|
1199 |
*/
|
sl@0
|
1200 |
static float cellMargin(Rtree *pRtree, RtreeCell *p){
|
sl@0
|
1201 |
float margin = 0.0;
|
sl@0
|
1202 |
int ii;
|
sl@0
|
1203 |
for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
sl@0
|
1204 |
margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
|
sl@0
|
1205 |
}
|
sl@0
|
1206 |
return margin;
|
sl@0
|
1207 |
}
|
sl@0
|
1208 |
|
sl@0
|
1209 |
/*
|
sl@0
|
1210 |
** Store the union of cells p1 and p2 in p1.
|
sl@0
|
1211 |
*/
|
sl@0
|
1212 |
static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
|
sl@0
|
1213 |
int ii;
|
sl@0
|
1214 |
if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
|
sl@0
|
1215 |
for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
sl@0
|
1216 |
p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
|
sl@0
|
1217 |
p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
|
sl@0
|
1218 |
}
|
sl@0
|
1219 |
}else{
|
sl@0
|
1220 |
for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
sl@0
|
1221 |
p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
|
sl@0
|
1222 |
p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
|
sl@0
|
1223 |
}
|
sl@0
|
1224 |
}
|
sl@0
|
1225 |
}
|
sl@0
|
1226 |
|
sl@0
|
1227 |
/*
|
sl@0
|
1228 |
** Return true if the area covered by p2 is a subset of the area covered
|
sl@0
|
1229 |
** by p1. False otherwise.
|
sl@0
|
1230 |
*/
|
sl@0
|
1231 |
static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
|
sl@0
|
1232 |
int ii;
|
sl@0
|
1233 |
int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
|
sl@0
|
1234 |
for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
sl@0
|
1235 |
RtreeCoord *a1 = &p1->aCoord[ii];
|
sl@0
|
1236 |
RtreeCoord *a2 = &p2->aCoord[ii];
|
sl@0
|
1237 |
if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f))
|
sl@0
|
1238 |
|| ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i))
|
sl@0
|
1239 |
){
|
sl@0
|
1240 |
return 0;
|
sl@0
|
1241 |
}
|
sl@0
|
1242 |
}
|
sl@0
|
1243 |
return 1;
|
sl@0
|
1244 |
}
|
sl@0
|
1245 |
|
sl@0
|
1246 |
/*
|
sl@0
|
1247 |
** Return the amount cell p would grow by if it were unioned with pCell.
|
sl@0
|
1248 |
*/
|
sl@0
|
1249 |
static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
|
sl@0
|
1250 |
float area;
|
sl@0
|
1251 |
RtreeCell cell;
|
sl@0
|
1252 |
memcpy(&cell, p, sizeof(RtreeCell));
|
sl@0
|
1253 |
area = cellArea(pRtree, &cell);
|
sl@0
|
1254 |
cellUnion(pRtree, &cell, pCell);
|
sl@0
|
1255 |
return (cellArea(pRtree, &cell)-area);
|
sl@0
|
1256 |
}
|
sl@0
|
1257 |
|
sl@0
|
1258 |
#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
|
sl@0
|
1259 |
static float cellOverlap(
|
sl@0
|
1260 |
Rtree *pRtree,
|
sl@0
|
1261 |
RtreeCell *p,
|
sl@0
|
1262 |
RtreeCell *aCell,
|
sl@0
|
1263 |
int nCell,
|
sl@0
|
1264 |
int iExclude
|
sl@0
|
1265 |
){
|
sl@0
|
1266 |
int ii;
|
sl@0
|
1267 |
float overlap = 0.0;
|
sl@0
|
1268 |
for(ii=0; ii<nCell; ii++){
|
sl@0
|
1269 |
if( ii!=iExclude ){
|
sl@0
|
1270 |
int jj;
|
sl@0
|
1271 |
float o = 1.0;
|
sl@0
|
1272 |
for(jj=0; jj<(pRtree->nDim*2); jj+=2){
|
sl@0
|
1273 |
double x1;
|
sl@0
|
1274 |
double x2;
|
sl@0
|
1275 |
|
sl@0
|
1276 |
x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
|
sl@0
|
1277 |
x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
|
sl@0
|
1278 |
|
sl@0
|
1279 |
if( x2<x1 ){
|
sl@0
|
1280 |
o = 0.0;
|
sl@0
|
1281 |
break;
|
sl@0
|
1282 |
}else{
|
sl@0
|
1283 |
o = o * (x2-x1);
|
sl@0
|
1284 |
}
|
sl@0
|
1285 |
}
|
sl@0
|
1286 |
overlap += o;
|
sl@0
|
1287 |
}
|
sl@0
|
1288 |
}
|
sl@0
|
1289 |
return overlap;
|
sl@0
|
1290 |
}
|
sl@0
|
1291 |
#endif
|
sl@0
|
1292 |
|
sl@0
|
1293 |
#if VARIANT_RSTARTREE_CHOOSESUBTREE
|
sl@0
|
1294 |
static float cellOverlapEnlargement(
|
sl@0
|
1295 |
Rtree *pRtree,
|
sl@0
|
1296 |
RtreeCell *p,
|
sl@0
|
1297 |
RtreeCell *pInsert,
|
sl@0
|
1298 |
RtreeCell *aCell,
|
sl@0
|
1299 |
int nCell,
|
sl@0
|
1300 |
int iExclude
|
sl@0
|
1301 |
){
|
sl@0
|
1302 |
float before;
|
sl@0
|
1303 |
float after;
|
sl@0
|
1304 |
before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
|
sl@0
|
1305 |
cellUnion(pRtree, p, pInsert);
|
sl@0
|
1306 |
after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
|
sl@0
|
1307 |
return after-before;
|
sl@0
|
1308 |
}
|
sl@0
|
1309 |
#endif
|
sl@0
|
1310 |
|
sl@0
|
1311 |
|
sl@0
|
1312 |
/*
|
sl@0
|
1313 |
** This function implements the ChooseLeaf algorithm from Gutman[84].
|
sl@0
|
1314 |
** ChooseSubTree in r*tree terminology.
|
sl@0
|
1315 |
*/
|
sl@0
|
1316 |
static int ChooseLeaf(
|
sl@0
|
1317 |
Rtree *pRtree, /* Rtree table */
|
sl@0
|
1318 |
RtreeCell *pCell, /* Cell to insert into rtree */
|
sl@0
|
1319 |
int iHeight, /* Height of sub-tree rooted at pCell */
|
sl@0
|
1320 |
RtreeNode **ppLeaf /* OUT: Selected leaf page */
|
sl@0
|
1321 |
){
|
sl@0
|
1322 |
int rc;
|
sl@0
|
1323 |
int ii;
|
sl@0
|
1324 |
RtreeNode *pNode;
|
sl@0
|
1325 |
rc = nodeAcquire(pRtree, 1, 0, &pNode);
|
sl@0
|
1326 |
|
sl@0
|
1327 |
for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
|
sl@0
|
1328 |
int iCell;
|
sl@0
|
1329 |
sqlite3_int64 iBest;
|
sl@0
|
1330 |
|
sl@0
|
1331 |
float fMinGrowth;
|
sl@0
|
1332 |
float fMinArea;
|
sl@0
|
1333 |
float fMinOverlap;
|
sl@0
|
1334 |
|
sl@0
|
1335 |
int nCell = NCELL(pNode);
|
sl@0
|
1336 |
RtreeCell cell;
|
sl@0
|
1337 |
RtreeNode *pChild;
|
sl@0
|
1338 |
|
sl@0
|
1339 |
RtreeCell *aCell = 0;
|
sl@0
|
1340 |
|
sl@0
|
1341 |
#if VARIANT_RSTARTREE_CHOOSESUBTREE
|
sl@0
|
1342 |
if( ii==(pRtree->iDepth-1) ){
|
sl@0
|
1343 |
int jj;
|
sl@0
|
1344 |
aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell);
|
sl@0
|
1345 |
if( !aCell ){
|
sl@0
|
1346 |
rc = SQLITE_NOMEM;
|
sl@0
|
1347 |
nodeRelease(pRtree, pNode);
|
sl@0
|
1348 |
pNode = 0;
|
sl@0
|
1349 |
continue;
|
sl@0
|
1350 |
}
|
sl@0
|
1351 |
for(jj=0; jj<nCell; jj++){
|
sl@0
|
1352 |
nodeGetCell(pRtree, pNode, jj, &aCell[jj]);
|
sl@0
|
1353 |
}
|
sl@0
|
1354 |
}
|
sl@0
|
1355 |
#endif
|
sl@0
|
1356 |
|
sl@0
|
1357 |
/* Select the child node which will be enlarged the least if pCell
|
sl@0
|
1358 |
** is inserted into it. Resolve ties by choosing the entry with
|
sl@0
|
1359 |
** the smallest area.
|
sl@0
|
1360 |
*/
|
sl@0
|
1361 |
for(iCell=0; iCell<nCell; iCell++){
|
sl@0
|
1362 |
float growth;
|
sl@0
|
1363 |
float area;
|
sl@0
|
1364 |
float overlap = 0.0;
|
sl@0
|
1365 |
nodeGetCell(pRtree, pNode, iCell, &cell);
|
sl@0
|
1366 |
growth = cellGrowth(pRtree, &cell, pCell);
|
sl@0
|
1367 |
area = cellArea(pRtree, &cell);
|
sl@0
|
1368 |
#if VARIANT_RSTARTREE_CHOOSESUBTREE
|
sl@0
|
1369 |
if( ii==(pRtree->iDepth-1) ){
|
sl@0
|
1370 |
overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
|
sl@0
|
1371 |
}
|
sl@0
|
1372 |
#endif
|
sl@0
|
1373 |
if( (iCell==0)
|
sl@0
|
1374 |
|| (overlap<fMinOverlap)
|
sl@0
|
1375 |
|| (overlap==fMinOverlap && growth<fMinGrowth)
|
sl@0
|
1376 |
|| (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea)
|
sl@0
|
1377 |
){
|
sl@0
|
1378 |
fMinOverlap = overlap;
|
sl@0
|
1379 |
fMinGrowth = growth;
|
sl@0
|
1380 |
fMinArea = area;
|
sl@0
|
1381 |
iBest = cell.iRowid;
|
sl@0
|
1382 |
}
|
sl@0
|
1383 |
}
|
sl@0
|
1384 |
|
sl@0
|
1385 |
sqlite3_free(aCell);
|
sl@0
|
1386 |
rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
|
sl@0
|
1387 |
nodeRelease(pRtree, pNode);
|
sl@0
|
1388 |
pNode = pChild;
|
sl@0
|
1389 |
}
|
sl@0
|
1390 |
|
sl@0
|
1391 |
*ppLeaf = pNode;
|
sl@0
|
1392 |
return rc;
|
sl@0
|
1393 |
}
|
sl@0
|
1394 |
|
sl@0
|
1395 |
/*
|
sl@0
|
1396 |
** A cell with the same content as pCell has just been inserted into
|
sl@0
|
1397 |
** the node pNode. This function updates the bounding box cells in
|
sl@0
|
1398 |
** all ancestor elements.
|
sl@0
|
1399 |
*/
|
sl@0
|
1400 |
static void AdjustTree(
|
sl@0
|
1401 |
Rtree *pRtree, /* Rtree table */
|
sl@0
|
1402 |
RtreeNode *pNode, /* Adjust ancestry of this node. */
|
sl@0
|
1403 |
RtreeCell *pCell /* This cell was just inserted */
|
sl@0
|
1404 |
){
|
sl@0
|
1405 |
RtreeNode *p = pNode;
|
sl@0
|
1406 |
while( p->pParent ){
|
sl@0
|
1407 |
RtreeCell cell;
|
sl@0
|
1408 |
RtreeNode *pParent = p->pParent;
|
sl@0
|
1409 |
int iCell = nodeParentIndex(pRtree, p);
|
sl@0
|
1410 |
|
sl@0
|
1411 |
nodeGetCell(pRtree, pParent, iCell, &cell);
|
sl@0
|
1412 |
if( !cellContains(pRtree, &cell, pCell) ){
|
sl@0
|
1413 |
cellUnion(pRtree, &cell, pCell);
|
sl@0
|
1414 |
nodeOverwriteCell(pRtree, pParent, &cell, iCell);
|
sl@0
|
1415 |
}
|
sl@0
|
1416 |
|
sl@0
|
1417 |
p = pParent;
|
sl@0
|
1418 |
}
|
sl@0
|
1419 |
}
|
sl@0
|
1420 |
|
sl@0
|
1421 |
/*
|
sl@0
|
1422 |
** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
|
sl@0
|
1423 |
*/
|
sl@0
|
1424 |
static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
|
sl@0
|
1425 |
sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
|
sl@0
|
1426 |
sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
|
sl@0
|
1427 |
sqlite3_step(pRtree->pWriteRowid);
|
sl@0
|
1428 |
return sqlite3_reset(pRtree->pWriteRowid);
|
sl@0
|
1429 |
}
|
sl@0
|
1430 |
|
sl@0
|
1431 |
/*
|
sl@0
|
1432 |
** Write mapping (iNode->iPar) to the <rtree>_parent table.
|
sl@0
|
1433 |
*/
|
sl@0
|
1434 |
static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
|
sl@0
|
1435 |
sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
|
sl@0
|
1436 |
sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
|
sl@0
|
1437 |
sqlite3_step(pRtree->pWriteParent);
|
sl@0
|
1438 |
return sqlite3_reset(pRtree->pWriteParent);
|
sl@0
|
1439 |
}
|
sl@0
|
1440 |
|
sl@0
|
1441 |
static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
|
sl@0
|
1442 |
|
sl@0
|
1443 |
#if VARIANT_GUTTMAN_LINEAR_SPLIT
|
sl@0
|
1444 |
/*
|
sl@0
|
1445 |
** Implementation of the linear variant of the PickNext() function from
|
sl@0
|
1446 |
** Guttman[84].
|
sl@0
|
1447 |
*/
|
sl@0
|
1448 |
static RtreeCell *LinearPickNext(
|
sl@0
|
1449 |
Rtree *pRtree,
|
sl@0
|
1450 |
RtreeCell *aCell,
|
sl@0
|
1451 |
int nCell,
|
sl@0
|
1452 |
RtreeCell *pLeftBox,
|
sl@0
|
1453 |
RtreeCell *pRightBox,
|
sl@0
|
1454 |
int *aiUsed
|
sl@0
|
1455 |
){
|
sl@0
|
1456 |
int ii;
|
sl@0
|
1457 |
for(ii=0; aiUsed[ii]; ii++);
|
sl@0
|
1458 |
aiUsed[ii] = 1;
|
sl@0
|
1459 |
return &aCell[ii];
|
sl@0
|
1460 |
}
|
sl@0
|
1461 |
|
sl@0
|
1462 |
/*
|
sl@0
|
1463 |
** Implementation of the linear variant of the PickSeeds() function from
|
sl@0
|
1464 |
** Guttman[84].
|
sl@0
|
1465 |
*/
|
sl@0
|
1466 |
static void LinearPickSeeds(
|
sl@0
|
1467 |
Rtree *pRtree,
|
sl@0
|
1468 |
RtreeCell *aCell,
|
sl@0
|
1469 |
int nCell,
|
sl@0
|
1470 |
int *piLeftSeed,
|
sl@0
|
1471 |
int *piRightSeed
|
sl@0
|
1472 |
){
|
sl@0
|
1473 |
int i;
|
sl@0
|
1474 |
int iLeftSeed = 0;
|
sl@0
|
1475 |
int iRightSeed = 1;
|
sl@0
|
1476 |
float maxNormalInnerWidth = 0.0;
|
sl@0
|
1477 |
|
sl@0
|
1478 |
/* Pick two "seed" cells from the array of cells. The algorithm used
|
sl@0
|
1479 |
** here is the LinearPickSeeds algorithm from Gutman[1984]. The
|
sl@0
|
1480 |
** indices of the two seed cells in the array are stored in local
|
sl@0
|
1481 |
** variables iLeftSeek and iRightSeed.
|
sl@0
|
1482 |
*/
|
sl@0
|
1483 |
for(i=0; i<pRtree->nDim; i++){
|
sl@0
|
1484 |
float x1 = aCell[0].aCoord[i*2];
|
sl@0
|
1485 |
float x2 = aCell[0].aCoord[i*2+1];
|
sl@0
|
1486 |
float x3 = x1;
|
sl@0
|
1487 |
float x4 = x2;
|
sl@0
|
1488 |
int jj;
|
sl@0
|
1489 |
|
sl@0
|
1490 |
int iCellLeft = 0;
|
sl@0
|
1491 |
int iCellRight = 0;
|
sl@0
|
1492 |
|
sl@0
|
1493 |
for(jj=1; jj<nCell; jj++){
|
sl@0
|
1494 |
float left = aCell[jj].aCoord[i*2];
|
sl@0
|
1495 |
float right = aCell[jj].aCoord[i*2+1];
|
sl@0
|
1496 |
|
sl@0
|
1497 |
if( left<x1 ) x1 = left;
|
sl@0
|
1498 |
if( right>x4 ) x4 = right;
|
sl@0
|
1499 |
if( left>x3 ){
|
sl@0
|
1500 |
x3 = left;
|
sl@0
|
1501 |
iCellRight = jj;
|
sl@0
|
1502 |
}
|
sl@0
|
1503 |
if( right<x2 ){
|
sl@0
|
1504 |
x2 = right;
|
sl@0
|
1505 |
iCellLeft = jj;
|
sl@0
|
1506 |
}
|
sl@0
|
1507 |
}
|
sl@0
|
1508 |
|
sl@0
|
1509 |
if( x4!=x1 ){
|
sl@0
|
1510 |
float normalwidth = (x3 - x2) / (x4 - x1);
|
sl@0
|
1511 |
if( normalwidth>maxNormalInnerWidth ){
|
sl@0
|
1512 |
iLeftSeed = iCellLeft;
|
sl@0
|
1513 |
iRightSeed = iCellRight;
|
sl@0
|
1514 |
}
|
sl@0
|
1515 |
}
|
sl@0
|
1516 |
}
|
sl@0
|
1517 |
|
sl@0
|
1518 |
*piLeftSeed = iLeftSeed;
|
sl@0
|
1519 |
*piRightSeed = iRightSeed;
|
sl@0
|
1520 |
}
|
sl@0
|
1521 |
#endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */
|
sl@0
|
1522 |
|
sl@0
|
1523 |
#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
|
sl@0
|
1524 |
/*
|
sl@0
|
1525 |
** Implementation of the quadratic variant of the PickNext() function from
|
sl@0
|
1526 |
** Guttman[84].
|
sl@0
|
1527 |
*/
|
sl@0
|
1528 |
static RtreeCell *QuadraticPickNext(
|
sl@0
|
1529 |
Rtree *pRtree,
|
sl@0
|
1530 |
RtreeCell *aCell,
|
sl@0
|
1531 |
int nCell,
|
sl@0
|
1532 |
RtreeCell *pLeftBox,
|
sl@0
|
1533 |
RtreeCell *pRightBox,
|
sl@0
|
1534 |
int *aiUsed
|
sl@0
|
1535 |
){
|
sl@0
|
1536 |
#define FABS(a) ((a)<0.0?-1.0*(a):(a))
|
sl@0
|
1537 |
|
sl@0
|
1538 |
int iSelect = -1;
|
sl@0
|
1539 |
float fDiff;
|
sl@0
|
1540 |
int ii;
|
sl@0
|
1541 |
for(ii=0; ii<nCell; ii++){
|
sl@0
|
1542 |
if( aiUsed[ii]==0 ){
|
sl@0
|
1543 |
float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
|
sl@0
|
1544 |
float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
|
sl@0
|
1545 |
float diff = FABS(right-left);
|
sl@0
|
1546 |
if( iSelect<0 || diff>fDiff ){
|
sl@0
|
1547 |
fDiff = diff;
|
sl@0
|
1548 |
iSelect = ii;
|
sl@0
|
1549 |
}
|
sl@0
|
1550 |
}
|
sl@0
|
1551 |
}
|
sl@0
|
1552 |
aiUsed[iSelect] = 1;
|
sl@0
|
1553 |
return &aCell[iSelect];
|
sl@0
|
1554 |
}
|
sl@0
|
1555 |
|
sl@0
|
1556 |
/*
|
sl@0
|
1557 |
** Implementation of the quadratic variant of the PickSeeds() function from
|
sl@0
|
1558 |
** Guttman[84].
|
sl@0
|
1559 |
*/
|
sl@0
|
1560 |
static void QuadraticPickSeeds(
|
sl@0
|
1561 |
Rtree *pRtree,
|
sl@0
|
1562 |
RtreeCell *aCell,
|
sl@0
|
1563 |
int nCell,
|
sl@0
|
1564 |
int *piLeftSeed,
|
sl@0
|
1565 |
int *piRightSeed
|
sl@0
|
1566 |
){
|
sl@0
|
1567 |
int ii;
|
sl@0
|
1568 |
int jj;
|
sl@0
|
1569 |
|
sl@0
|
1570 |
int iLeftSeed = 0;
|
sl@0
|
1571 |
int iRightSeed = 1;
|
sl@0
|
1572 |
float fWaste = 0.0;
|
sl@0
|
1573 |
|
sl@0
|
1574 |
for(ii=0; ii<nCell; ii++){
|
sl@0
|
1575 |
for(jj=ii+1; jj<nCell; jj++){
|
sl@0
|
1576 |
float right = cellArea(pRtree, &aCell[jj]);
|
sl@0
|
1577 |
float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
|
sl@0
|
1578 |
float waste = growth - right;
|
sl@0
|
1579 |
|
sl@0
|
1580 |
if( waste>fWaste ){
|
sl@0
|
1581 |
iLeftSeed = ii;
|
sl@0
|
1582 |
iRightSeed = jj;
|
sl@0
|
1583 |
fWaste = waste;
|
sl@0
|
1584 |
}
|
sl@0
|
1585 |
}
|
sl@0
|
1586 |
}
|
sl@0
|
1587 |
|
sl@0
|
1588 |
*piLeftSeed = iLeftSeed;
|
sl@0
|
1589 |
*piRightSeed = iRightSeed;
|
sl@0
|
1590 |
}
|
sl@0
|
1591 |
#endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */
|
sl@0
|
1592 |
|
sl@0
|
1593 |
/*
|
sl@0
|
1594 |
** Arguments aIdx, aDistance and aSpare all point to arrays of size
|
sl@0
|
1595 |
** nIdx. The aIdx array contains the set of integers from 0 to
|
sl@0
|
1596 |
** (nIdx-1) in no particular order. This function sorts the values
|
sl@0
|
1597 |
** in aIdx according to the indexed values in aDistance. For
|
sl@0
|
1598 |
** example, assuming the inputs:
|
sl@0
|
1599 |
**
|
sl@0
|
1600 |
** aIdx = { 0, 1, 2, 3 }
|
sl@0
|
1601 |
** aDistance = { 5.0, 2.0, 7.0, 6.0 }
|
sl@0
|
1602 |
**
|
sl@0
|
1603 |
** this function sets the aIdx array to contain:
|
sl@0
|
1604 |
**
|
sl@0
|
1605 |
** aIdx = { 0, 1, 2, 3 }
|
sl@0
|
1606 |
**
|
sl@0
|
1607 |
** The aSpare array is used as temporary working space by the
|
sl@0
|
1608 |
** sorting algorithm.
|
sl@0
|
1609 |
*/
|
sl@0
|
1610 |
static void SortByDistance(
|
sl@0
|
1611 |
int *aIdx,
|
sl@0
|
1612 |
int nIdx,
|
sl@0
|
1613 |
float *aDistance,
|
sl@0
|
1614 |
int *aSpare
|
sl@0
|
1615 |
){
|
sl@0
|
1616 |
if( nIdx>1 ){
|
sl@0
|
1617 |
int iLeft = 0;
|
sl@0
|
1618 |
int iRight = 0;
|
sl@0
|
1619 |
|
sl@0
|
1620 |
int nLeft = nIdx/2;
|
sl@0
|
1621 |
int nRight = nIdx-nLeft;
|
sl@0
|
1622 |
int *aLeft = aIdx;
|
sl@0
|
1623 |
int *aRight = &aIdx[nLeft];
|
sl@0
|
1624 |
|
sl@0
|
1625 |
SortByDistance(aLeft, nLeft, aDistance, aSpare);
|
sl@0
|
1626 |
SortByDistance(aRight, nRight, aDistance, aSpare);
|
sl@0
|
1627 |
|
sl@0
|
1628 |
memcpy(aSpare, aLeft, sizeof(int)*nLeft);
|
sl@0
|
1629 |
aLeft = aSpare;
|
sl@0
|
1630 |
|
sl@0
|
1631 |
while( iLeft<nLeft || iRight<nRight ){
|
sl@0
|
1632 |
if( iLeft==nLeft ){
|
sl@0
|
1633 |
aIdx[iLeft+iRight] = aRight[iRight];
|
sl@0
|
1634 |
iRight++;
|
sl@0
|
1635 |
}else if( iRight==nRight ){
|
sl@0
|
1636 |
aIdx[iLeft+iRight] = aLeft[iLeft];
|
sl@0
|
1637 |
iLeft++;
|
sl@0
|
1638 |
}else{
|
sl@0
|
1639 |
float fLeft = aDistance[aLeft[iLeft]];
|
sl@0
|
1640 |
float fRight = aDistance[aRight[iRight]];
|
sl@0
|
1641 |
if( fLeft<fRight ){
|
sl@0
|
1642 |
aIdx[iLeft+iRight] = aLeft[iLeft];
|
sl@0
|
1643 |
iLeft++;
|
sl@0
|
1644 |
}else{
|
sl@0
|
1645 |
aIdx[iLeft+iRight] = aRight[iRight];
|
sl@0
|
1646 |
iRight++;
|
sl@0
|
1647 |
}
|
sl@0
|
1648 |
}
|
sl@0
|
1649 |
}
|
sl@0
|
1650 |
|
sl@0
|
1651 |
#if 0
|
sl@0
|
1652 |
/* Check that the sort worked */
|
sl@0
|
1653 |
{
|
sl@0
|
1654 |
int jj;
|
sl@0
|
1655 |
for(jj=1; jj<nIdx; jj++){
|
sl@0
|
1656 |
float left = aDistance[aIdx[jj-1]];
|
sl@0
|
1657 |
float right = aDistance[aIdx[jj]];
|
sl@0
|
1658 |
assert( left<=right );
|
sl@0
|
1659 |
}
|
sl@0
|
1660 |
}
|
sl@0
|
1661 |
#endif
|
sl@0
|
1662 |
}
|
sl@0
|
1663 |
}
|
sl@0
|
1664 |
|
sl@0
|
1665 |
/*
|
sl@0
|
1666 |
** Arguments aIdx, aCell and aSpare all point to arrays of size
|
sl@0
|
1667 |
** nIdx. The aIdx array contains the set of integers from 0 to
|
sl@0
|
1668 |
** (nIdx-1) in no particular order. This function sorts the values
|
sl@0
|
1669 |
** in aIdx according to dimension iDim of the cells in aCell. The
|
sl@0
|
1670 |
** minimum value of dimension iDim is considered first, the
|
sl@0
|
1671 |
** maximum used to break ties.
|
sl@0
|
1672 |
**
|
sl@0
|
1673 |
** The aSpare array is used as temporary working space by the
|
sl@0
|
1674 |
** sorting algorithm.
|
sl@0
|
1675 |
*/
|
sl@0
|
1676 |
static void SortByDimension(
|
sl@0
|
1677 |
Rtree *pRtree,
|
sl@0
|
1678 |
int *aIdx,
|
sl@0
|
1679 |
int nIdx,
|
sl@0
|
1680 |
int iDim,
|
sl@0
|
1681 |
RtreeCell *aCell,
|
sl@0
|
1682 |
int *aSpare
|
sl@0
|
1683 |
){
|
sl@0
|
1684 |
if( nIdx>1 ){
|
sl@0
|
1685 |
|
sl@0
|
1686 |
int iLeft = 0;
|
sl@0
|
1687 |
int iRight = 0;
|
sl@0
|
1688 |
|
sl@0
|
1689 |
int nLeft = nIdx/2;
|
sl@0
|
1690 |
int nRight = nIdx-nLeft;
|
sl@0
|
1691 |
int *aLeft = aIdx;
|
sl@0
|
1692 |
int *aRight = &aIdx[nLeft];
|
sl@0
|
1693 |
|
sl@0
|
1694 |
SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
|
sl@0
|
1695 |
SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
|
sl@0
|
1696 |
|
sl@0
|
1697 |
memcpy(aSpare, aLeft, sizeof(int)*nLeft);
|
sl@0
|
1698 |
aLeft = aSpare;
|
sl@0
|
1699 |
while( iLeft<nLeft || iRight<nRight ){
|
sl@0
|
1700 |
double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
|
sl@0
|
1701 |
double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
|
sl@0
|
1702 |
double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
|
sl@0
|
1703 |
double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
|
sl@0
|
1704 |
if( (iLeft!=nLeft) && ((iRight==nRight)
|
sl@0
|
1705 |
|| (xleft1<xright1)
|
sl@0
|
1706 |
|| (xleft1==xright1 && xleft2<xright2)
|
sl@0
|
1707 |
)){
|
sl@0
|
1708 |
aIdx[iLeft+iRight] = aLeft[iLeft];
|
sl@0
|
1709 |
iLeft++;
|
sl@0
|
1710 |
}else{
|
sl@0
|
1711 |
aIdx[iLeft+iRight] = aRight[iRight];
|
sl@0
|
1712 |
iRight++;
|
sl@0
|
1713 |
}
|
sl@0
|
1714 |
}
|
sl@0
|
1715 |
|
sl@0
|
1716 |
#if 0
|
sl@0
|
1717 |
/* Check that the sort worked */
|
sl@0
|
1718 |
{
|
sl@0
|
1719 |
int jj;
|
sl@0
|
1720 |
for(jj=1; jj<nIdx; jj++){
|
sl@0
|
1721 |
float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
|
sl@0
|
1722 |
float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
|
sl@0
|
1723 |
float xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
|
sl@0
|
1724 |
float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
|
sl@0
|
1725 |
assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
|
sl@0
|
1726 |
}
|
sl@0
|
1727 |
}
|
sl@0
|
1728 |
#endif
|
sl@0
|
1729 |
}
|
sl@0
|
1730 |
}
|
sl@0
|
1731 |
|
sl@0
|
1732 |
#if VARIANT_RSTARTREE_SPLIT
|
sl@0
|
1733 |
/*
|
sl@0
|
1734 |
** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
|
sl@0
|
1735 |
*/
|
sl@0
|
1736 |
static int splitNodeStartree(
|
sl@0
|
1737 |
Rtree *pRtree,
|
sl@0
|
1738 |
RtreeCell *aCell,
|
sl@0
|
1739 |
int nCell,
|
sl@0
|
1740 |
RtreeNode *pLeft,
|
sl@0
|
1741 |
RtreeNode *pRight,
|
sl@0
|
1742 |
RtreeCell *pBboxLeft,
|
sl@0
|
1743 |
RtreeCell *pBboxRight
|
sl@0
|
1744 |
){
|
sl@0
|
1745 |
int **aaSorted;
|
sl@0
|
1746 |
int *aSpare;
|
sl@0
|
1747 |
int ii;
|
sl@0
|
1748 |
|
sl@0
|
1749 |
int iBestDim;
|
sl@0
|
1750 |
int iBestSplit;
|
sl@0
|
1751 |
float fBestMargin;
|
sl@0
|
1752 |
|
sl@0
|
1753 |
int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
|
sl@0
|
1754 |
|
sl@0
|
1755 |
aaSorted = (int **)sqlite3_malloc(nByte);
|
sl@0
|
1756 |
if( !aaSorted ){
|
sl@0
|
1757 |
return SQLITE_NOMEM;
|
sl@0
|
1758 |
}
|
sl@0
|
1759 |
|
sl@0
|
1760 |
aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
|
sl@0
|
1761 |
memset(aaSorted, 0, nByte);
|
sl@0
|
1762 |
for(ii=0; ii<pRtree->nDim; ii++){
|
sl@0
|
1763 |
int jj;
|
sl@0
|
1764 |
aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
|
sl@0
|
1765 |
for(jj=0; jj<nCell; jj++){
|
sl@0
|
1766 |
aaSorted[ii][jj] = jj;
|
sl@0
|
1767 |
}
|
sl@0
|
1768 |
SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
|
sl@0
|
1769 |
}
|
sl@0
|
1770 |
|
sl@0
|
1771 |
for(ii=0; ii<pRtree->nDim; ii++){
|
sl@0
|
1772 |
float margin = 0.0;
|
sl@0
|
1773 |
float fBestOverlap;
|
sl@0
|
1774 |
float fBestArea;
|
sl@0
|
1775 |
int iBestLeft;
|
sl@0
|
1776 |
int nLeft;
|
sl@0
|
1777 |
|
sl@0
|
1778 |
for(
|
sl@0
|
1779 |
nLeft=RTREE_MINCELLS(pRtree);
|
sl@0
|
1780 |
nLeft<=(nCell-RTREE_MINCELLS(pRtree));
|
sl@0
|
1781 |
nLeft++
|
sl@0
|
1782 |
){
|
sl@0
|
1783 |
RtreeCell left;
|
sl@0
|
1784 |
RtreeCell right;
|
sl@0
|
1785 |
int kk;
|
sl@0
|
1786 |
float overlap;
|
sl@0
|
1787 |
float area;
|
sl@0
|
1788 |
|
sl@0
|
1789 |
memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
|
sl@0
|
1790 |
memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
|
sl@0
|
1791 |
for(kk=1; kk<(nCell-1); kk++){
|
sl@0
|
1792 |
if( kk<nLeft ){
|
sl@0
|
1793 |
cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
|
sl@0
|
1794 |
}else{
|
sl@0
|
1795 |
cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
|
sl@0
|
1796 |
}
|
sl@0
|
1797 |
}
|
sl@0
|
1798 |
margin += cellMargin(pRtree, &left);
|
sl@0
|
1799 |
margin += cellMargin(pRtree, &right);
|
sl@0
|
1800 |
overlap = cellOverlap(pRtree, &left, &right, 1, -1);
|
sl@0
|
1801 |
area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
|
sl@0
|
1802 |
if( (nLeft==RTREE_MINCELLS(pRtree))
|
sl@0
|
1803 |
|| (overlap<fBestOverlap)
|
sl@0
|
1804 |
|| (overlap==fBestOverlap && area<fBestArea)
|
sl@0
|
1805 |
){
|
sl@0
|
1806 |
iBestLeft = nLeft;
|
sl@0
|
1807 |
fBestOverlap = overlap;
|
sl@0
|
1808 |
fBestArea = area;
|
sl@0
|
1809 |
}
|
sl@0
|
1810 |
}
|
sl@0
|
1811 |
|
sl@0
|
1812 |
if( ii==0 || margin<fBestMargin ){
|
sl@0
|
1813 |
iBestDim = ii;
|
sl@0
|
1814 |
fBestMargin = margin;
|
sl@0
|
1815 |
iBestSplit = iBestLeft;
|
sl@0
|
1816 |
}
|
sl@0
|
1817 |
}
|
sl@0
|
1818 |
|
sl@0
|
1819 |
memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
|
sl@0
|
1820 |
memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
|
sl@0
|
1821 |
for(ii=0; ii<nCell; ii++){
|
sl@0
|
1822 |
RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
|
sl@0
|
1823 |
RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
|
sl@0
|
1824 |
RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
|
sl@0
|
1825 |
nodeInsertCell(pRtree, pTarget, pCell);
|
sl@0
|
1826 |
cellUnion(pRtree, pBbox, pCell);
|
sl@0
|
1827 |
}
|
sl@0
|
1828 |
|
sl@0
|
1829 |
sqlite3_free(aaSorted);
|
sl@0
|
1830 |
return SQLITE_OK;
|
sl@0
|
1831 |
}
|
sl@0
|
1832 |
#endif
|
sl@0
|
1833 |
|
sl@0
|
1834 |
#if VARIANT_GUTTMAN_SPLIT
|
sl@0
|
1835 |
/*
|
sl@0
|
1836 |
** Implementation of the regular R-tree SplitNode from Guttman[1984].
|
sl@0
|
1837 |
*/
|
sl@0
|
1838 |
static int splitNodeGuttman(
|
sl@0
|
1839 |
Rtree *pRtree,
|
sl@0
|
1840 |
RtreeCell *aCell,
|
sl@0
|
1841 |
int nCell,
|
sl@0
|
1842 |
RtreeNode *pLeft,
|
sl@0
|
1843 |
RtreeNode *pRight,
|
sl@0
|
1844 |
RtreeCell *pBboxLeft,
|
sl@0
|
1845 |
RtreeCell *pBboxRight
|
sl@0
|
1846 |
){
|
sl@0
|
1847 |
int iLeftSeed = 0;
|
sl@0
|
1848 |
int iRightSeed = 1;
|
sl@0
|
1849 |
int *aiUsed;
|
sl@0
|
1850 |
int i;
|
sl@0
|
1851 |
|
sl@0
|
1852 |
aiUsed = sqlite3_malloc(sizeof(int)*nCell);
|
sl@0
|
1853 |
memset(aiUsed, 0, sizeof(int)*nCell);
|
sl@0
|
1854 |
|
sl@0
|
1855 |
PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed);
|
sl@0
|
1856 |
|
sl@0
|
1857 |
memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell));
|
sl@0
|
1858 |
memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell));
|
sl@0
|
1859 |
nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]);
|
sl@0
|
1860 |
nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
|
sl@0
|
1861 |
aiUsed[iLeftSeed] = 1;
|
sl@0
|
1862 |
aiUsed[iRightSeed] = 1;
|
sl@0
|
1863 |
|
sl@0
|
1864 |
for(i=nCell-2; i>0; i--){
|
sl@0
|
1865 |
RtreeCell *pNext;
|
sl@0
|
1866 |
pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
|
sl@0
|
1867 |
float diff =
|
sl@0
|
1868 |
cellGrowth(pRtree, pBboxLeft, pNext) -
|
sl@0
|
1869 |
cellGrowth(pRtree, pBboxRight, pNext)
|
sl@0
|
1870 |
;
|
sl@0
|
1871 |
if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
|
sl@0
|
1872 |
|| (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
|
sl@0
|
1873 |
){
|
sl@0
|
1874 |
nodeInsertCell(pRtree, pRight, pNext);
|
sl@0
|
1875 |
cellUnion(pRtree, pBboxRight, pNext);
|
sl@0
|
1876 |
}else{
|
sl@0
|
1877 |
nodeInsertCell(pRtree, pLeft, pNext);
|
sl@0
|
1878 |
cellUnion(pRtree, pBboxLeft, pNext);
|
sl@0
|
1879 |
}
|
sl@0
|
1880 |
}
|
sl@0
|
1881 |
|
sl@0
|
1882 |
sqlite3_free(aiUsed);
|
sl@0
|
1883 |
return SQLITE_OK;
|
sl@0
|
1884 |
}
|
sl@0
|
1885 |
#endif
|
sl@0
|
1886 |
|
sl@0
|
1887 |
static int updateMapping(
|
sl@0
|
1888 |
Rtree *pRtree,
|
sl@0
|
1889 |
i64 iRowid,
|
sl@0
|
1890 |
RtreeNode *pNode,
|
sl@0
|
1891 |
int iHeight
|
sl@0
|
1892 |
){
|
sl@0
|
1893 |
int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
|
sl@0
|
1894 |
xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
|
sl@0
|
1895 |
if( iHeight>0 ){
|
sl@0
|
1896 |
RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
|
sl@0
|
1897 |
if( pChild ){
|
sl@0
|
1898 |
nodeRelease(pRtree, pChild->pParent);
|
sl@0
|
1899 |
nodeReference(pNode);
|
sl@0
|
1900 |
pChild->pParent = pNode;
|
sl@0
|
1901 |
}
|
sl@0
|
1902 |
}
|
sl@0
|
1903 |
return xSetMapping(pRtree, iRowid, pNode->iNode);
|
sl@0
|
1904 |
}
|
sl@0
|
1905 |
|
sl@0
|
1906 |
static int SplitNode(
|
sl@0
|
1907 |
Rtree *pRtree,
|
sl@0
|
1908 |
RtreeNode *pNode,
|
sl@0
|
1909 |
RtreeCell *pCell,
|
sl@0
|
1910 |
int iHeight
|
sl@0
|
1911 |
){
|
sl@0
|
1912 |
int i;
|
sl@0
|
1913 |
int newCellIsRight = 0;
|
sl@0
|
1914 |
|
sl@0
|
1915 |
int rc = SQLITE_OK;
|
sl@0
|
1916 |
int nCell = NCELL(pNode);
|
sl@0
|
1917 |
RtreeCell *aCell;
|
sl@0
|
1918 |
int *aiUsed;
|
sl@0
|
1919 |
|
sl@0
|
1920 |
RtreeNode *pLeft = 0;
|
sl@0
|
1921 |
RtreeNode *pRight = 0;
|
sl@0
|
1922 |
|
sl@0
|
1923 |
RtreeCell leftbbox;
|
sl@0
|
1924 |
RtreeCell rightbbox;
|
sl@0
|
1925 |
|
sl@0
|
1926 |
/* Allocate an array and populate it with a copy of pCell and
|
sl@0
|
1927 |
** all cells from node pLeft. Then zero the original node.
|
sl@0
|
1928 |
*/
|
sl@0
|
1929 |
aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
|
sl@0
|
1930 |
if( !aCell ){
|
sl@0
|
1931 |
rc = SQLITE_NOMEM;
|
sl@0
|
1932 |
goto splitnode_out;
|
sl@0
|
1933 |
}
|
sl@0
|
1934 |
aiUsed = (int *)&aCell[nCell+1];
|
sl@0
|
1935 |
memset(aiUsed, 0, sizeof(int)*(nCell+1));
|
sl@0
|
1936 |
for(i=0; i<nCell; i++){
|
sl@0
|
1937 |
nodeGetCell(pRtree, pNode, i, &aCell[i]);
|
sl@0
|
1938 |
}
|
sl@0
|
1939 |
nodeZero(pRtree, pNode);
|
sl@0
|
1940 |
memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
|
sl@0
|
1941 |
nCell++;
|
sl@0
|
1942 |
|
sl@0
|
1943 |
if( pNode->iNode==1 ){
|
sl@0
|
1944 |
pRight = nodeNew(pRtree, pNode, 1);
|
sl@0
|
1945 |
pLeft = nodeNew(pRtree, pNode, 1);
|
sl@0
|
1946 |
pRtree->iDepth++;
|
sl@0
|
1947 |
pNode->isDirty = 1;
|
sl@0
|
1948 |
writeInt16(pNode->zData, pRtree->iDepth);
|
sl@0
|
1949 |
}else{
|
sl@0
|
1950 |
pLeft = pNode;
|
sl@0
|
1951 |
pRight = nodeNew(pRtree, pLeft->pParent, 1);
|
sl@0
|
1952 |
nodeReference(pLeft);
|
sl@0
|
1953 |
}
|
sl@0
|
1954 |
|
sl@0
|
1955 |
if( !pLeft || !pRight ){
|
sl@0
|
1956 |
rc = SQLITE_NOMEM;
|
sl@0
|
1957 |
goto splitnode_out;
|
sl@0
|
1958 |
}
|
sl@0
|
1959 |
|
sl@0
|
1960 |
memset(pLeft->zData, 0, pRtree->iNodeSize);
|
sl@0
|
1961 |
memset(pRight->zData, 0, pRtree->iNodeSize);
|
sl@0
|
1962 |
|
sl@0
|
1963 |
rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox);
|
sl@0
|
1964 |
if( rc!=SQLITE_OK ){
|
sl@0
|
1965 |
goto splitnode_out;
|
sl@0
|
1966 |
}
|
sl@0
|
1967 |
|
sl@0
|
1968 |
/* Ensure both child nodes have node numbers assigned to them. */
|
sl@0
|
1969 |
if( (0==pRight->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)))
|
sl@0
|
1970 |
|| (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
|
sl@0
|
1971 |
){
|
sl@0
|
1972 |
goto splitnode_out;
|
sl@0
|
1973 |
}
|
sl@0
|
1974 |
|
sl@0
|
1975 |
rightbbox.iRowid = pRight->iNode;
|
sl@0
|
1976 |
leftbbox.iRowid = pLeft->iNode;
|
sl@0
|
1977 |
|
sl@0
|
1978 |
if( pNode->iNode==1 ){
|
sl@0
|
1979 |
rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
|
sl@0
|
1980 |
if( rc!=SQLITE_OK ){
|
sl@0
|
1981 |
goto splitnode_out;
|
sl@0
|
1982 |
}
|
sl@0
|
1983 |
}else{
|
sl@0
|
1984 |
RtreeNode *pParent = pLeft->pParent;
|
sl@0
|
1985 |
int iCell = nodeParentIndex(pRtree, pLeft);
|
sl@0
|
1986 |
nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
|
sl@0
|
1987 |
AdjustTree(pRtree, pParent, &leftbbox);
|
sl@0
|
1988 |
}
|
sl@0
|
1989 |
if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
|
sl@0
|
1990 |
goto splitnode_out;
|
sl@0
|
1991 |
}
|
sl@0
|
1992 |
|
sl@0
|
1993 |
for(i=0; i<NCELL(pRight); i++){
|
sl@0
|
1994 |
i64 iRowid = nodeGetRowid(pRtree, pRight, i);
|
sl@0
|
1995 |
rc = updateMapping(pRtree, iRowid, pRight, iHeight);
|
sl@0
|
1996 |
if( iRowid==pCell->iRowid ){
|
sl@0
|
1997 |
newCellIsRight = 1;
|
sl@0
|
1998 |
}
|
sl@0
|
1999 |
if( rc!=SQLITE_OK ){
|
sl@0
|
2000 |
goto splitnode_out;
|
sl@0
|
2001 |
}
|
sl@0
|
2002 |
}
|
sl@0
|
2003 |
if( pNode->iNode==1 ){
|
sl@0
|
2004 |
for(i=0; i<NCELL(pLeft); i++){
|
sl@0
|
2005 |
i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
|
sl@0
|
2006 |
rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
|
sl@0
|
2007 |
if( rc!=SQLITE_OK ){
|
sl@0
|
2008 |
goto splitnode_out;
|
sl@0
|
2009 |
}
|
sl@0
|
2010 |
}
|
sl@0
|
2011 |
}else if( newCellIsRight==0 ){
|
sl@0
|
2012 |
rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
|
sl@0
|
2013 |
}
|
sl@0
|
2014 |
|
sl@0
|
2015 |
if( rc==SQLITE_OK ){
|
sl@0
|
2016 |
rc = nodeRelease(pRtree, pRight);
|
sl@0
|
2017 |
pRight = 0;
|
sl@0
|
2018 |
}
|
sl@0
|
2019 |
if( rc==SQLITE_OK ){
|
sl@0
|
2020 |
rc = nodeRelease(pRtree, pLeft);
|
sl@0
|
2021 |
pLeft = 0;
|
sl@0
|
2022 |
}
|
sl@0
|
2023 |
|
sl@0
|
2024 |
splitnode_out:
|
sl@0
|
2025 |
nodeRelease(pRtree, pRight);
|
sl@0
|
2026 |
nodeRelease(pRtree, pLeft);
|
sl@0
|
2027 |
sqlite3_free(aCell);
|
sl@0
|
2028 |
return rc;
|
sl@0
|
2029 |
}
|
sl@0
|
2030 |
|
sl@0
|
2031 |
static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
|
sl@0
|
2032 |
int rc = SQLITE_OK;
|
sl@0
|
2033 |
if( pLeaf->iNode!=1 && pLeaf->pParent==0 ){
|
sl@0
|
2034 |
sqlite3_bind_int64(pRtree->pReadParent, 1, pLeaf->iNode);
|
sl@0
|
2035 |
if( sqlite3_step(pRtree->pReadParent)==SQLITE_ROW ){
|
sl@0
|
2036 |
i64 iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
|
sl@0
|
2037 |
rc = nodeAcquire(pRtree, iNode, 0, &pLeaf->pParent);
|
sl@0
|
2038 |
}else{
|
sl@0
|
2039 |
rc = SQLITE_ERROR;
|
sl@0
|
2040 |
}
|
sl@0
|
2041 |
sqlite3_reset(pRtree->pReadParent);
|
sl@0
|
2042 |
if( rc==SQLITE_OK ){
|
sl@0
|
2043 |
rc = fixLeafParent(pRtree, pLeaf->pParent);
|
sl@0
|
2044 |
}
|
sl@0
|
2045 |
}
|
sl@0
|
2046 |
return rc;
|
sl@0
|
2047 |
}
|
sl@0
|
2048 |
|
sl@0
|
2049 |
static int deleteCell(Rtree *, RtreeNode *, int, int);
|
sl@0
|
2050 |
|
sl@0
|
2051 |
static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
|
sl@0
|
2052 |
int rc;
|
sl@0
|
2053 |
RtreeNode *pParent;
|
sl@0
|
2054 |
int iCell;
|
sl@0
|
2055 |
|
sl@0
|
2056 |
assert( pNode->nRef==1 );
|
sl@0
|
2057 |
|
sl@0
|
2058 |
/* Remove the entry in the parent cell. */
|
sl@0
|
2059 |
iCell = nodeParentIndex(pRtree, pNode);
|
sl@0
|
2060 |
pParent = pNode->pParent;
|
sl@0
|
2061 |
pNode->pParent = 0;
|
sl@0
|
2062 |
if( SQLITE_OK!=(rc = deleteCell(pRtree, pParent, iCell, iHeight+1))
|
sl@0
|
2063 |
|| SQLITE_OK!=(rc = nodeRelease(pRtree, pParent))
|
sl@0
|
2064 |
){
|
sl@0
|
2065 |
return rc;
|
sl@0
|
2066 |
}
|
sl@0
|
2067 |
|
sl@0
|
2068 |
/* Remove the xxx_node entry. */
|
sl@0
|
2069 |
sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
|
sl@0
|
2070 |
sqlite3_step(pRtree->pDeleteNode);
|
sl@0
|
2071 |
if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
|
sl@0
|
2072 |
return rc;
|
sl@0
|
2073 |
}
|
sl@0
|
2074 |
|
sl@0
|
2075 |
/* Remove the xxx_parent entry. */
|
sl@0
|
2076 |
sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
|
sl@0
|
2077 |
sqlite3_step(pRtree->pDeleteParent);
|
sl@0
|
2078 |
if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
|
sl@0
|
2079 |
return rc;
|
sl@0
|
2080 |
}
|
sl@0
|
2081 |
|
sl@0
|
2082 |
/* Remove the node from the in-memory hash table and link it into
|
sl@0
|
2083 |
** the Rtree.pDeleted list. Its contents will be re-inserted later on.
|
sl@0
|
2084 |
*/
|
sl@0
|
2085 |
nodeHashDelete(pRtree, pNode);
|
sl@0
|
2086 |
pNode->iNode = iHeight;
|
sl@0
|
2087 |
pNode->pNext = pRtree->pDeleted;
|
sl@0
|
2088 |
pNode->nRef++;
|
sl@0
|
2089 |
pRtree->pDeleted = pNode;
|
sl@0
|
2090 |
|
sl@0
|
2091 |
return SQLITE_OK;
|
sl@0
|
2092 |
}
|
sl@0
|
2093 |
|
sl@0
|
2094 |
static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
|
sl@0
|
2095 |
RtreeNode *pParent = pNode->pParent;
|
sl@0
|
2096 |
if( pParent ){
|
sl@0
|
2097 |
int ii;
|
sl@0
|
2098 |
int nCell = NCELL(pNode);
|
sl@0
|
2099 |
RtreeCell box; /* Bounding box for pNode */
|
sl@0
|
2100 |
nodeGetCell(pRtree, pNode, 0, &box);
|
sl@0
|
2101 |
for(ii=1; ii<nCell; ii++){
|
sl@0
|
2102 |
RtreeCell cell;
|
sl@0
|
2103 |
nodeGetCell(pRtree, pNode, ii, &cell);
|
sl@0
|
2104 |
cellUnion(pRtree, &box, &cell);
|
sl@0
|
2105 |
}
|
sl@0
|
2106 |
box.iRowid = pNode->iNode;
|
sl@0
|
2107 |
ii = nodeParentIndex(pRtree, pNode);
|
sl@0
|
2108 |
nodeOverwriteCell(pRtree, pParent, &box, ii);
|
sl@0
|
2109 |
fixBoundingBox(pRtree, pParent);
|
sl@0
|
2110 |
}
|
sl@0
|
2111 |
}
|
sl@0
|
2112 |
|
sl@0
|
2113 |
/*
|
sl@0
|
2114 |
** Delete the cell at index iCell of node pNode. After removing the
|
sl@0
|
2115 |
** cell, adjust the r-tree data structure if required.
|
sl@0
|
2116 |
*/
|
sl@0
|
2117 |
static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
|
sl@0
|
2118 |
int rc;
|
sl@0
|
2119 |
|
sl@0
|
2120 |
if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
|
sl@0
|
2121 |
return rc;
|
sl@0
|
2122 |
}
|
sl@0
|
2123 |
|
sl@0
|
2124 |
/* Remove the cell from the node. This call just moves bytes around
|
sl@0
|
2125 |
** the in-memory node image, so it cannot fail.
|
sl@0
|
2126 |
*/
|
sl@0
|
2127 |
nodeDeleteCell(pRtree, pNode, iCell);
|
sl@0
|
2128 |
|
sl@0
|
2129 |
/* If the node is not the tree root and now has less than the minimum
|
sl@0
|
2130 |
** number of cells, remove it from the tree. Otherwise, update the
|
sl@0
|
2131 |
** cell in the parent node so that it tightly contains the updated
|
sl@0
|
2132 |
** node.
|
sl@0
|
2133 |
*/
|
sl@0
|
2134 |
if( pNode->iNode!=1 ){
|
sl@0
|
2135 |
RtreeNode *pParent = pNode->pParent;
|
sl@0
|
2136 |
if( (pParent->iNode!=1 || NCELL(pParent)!=1)
|
sl@0
|
2137 |
&& (NCELL(pNode)<RTREE_MINCELLS(pRtree))
|
sl@0
|
2138 |
){
|
sl@0
|
2139 |
rc = removeNode(pRtree, pNode, iHeight);
|
sl@0
|
2140 |
}else{
|
sl@0
|
2141 |
fixBoundingBox(pRtree, pNode);
|
sl@0
|
2142 |
}
|
sl@0
|
2143 |
}
|
sl@0
|
2144 |
|
sl@0
|
2145 |
return rc;
|
sl@0
|
2146 |
}
|
sl@0
|
2147 |
|
sl@0
|
2148 |
static int Reinsert(
|
sl@0
|
2149 |
Rtree *pRtree,
|
sl@0
|
2150 |
RtreeNode *pNode,
|
sl@0
|
2151 |
RtreeCell *pCell,
|
sl@0
|
2152 |
int iHeight
|
sl@0
|
2153 |
){
|
sl@0
|
2154 |
int *aOrder;
|
sl@0
|
2155 |
int *aSpare;
|
sl@0
|
2156 |
RtreeCell *aCell;
|
sl@0
|
2157 |
float *aDistance;
|
sl@0
|
2158 |
int nCell;
|
sl@0
|
2159 |
float aCenterCoord[RTREE_MAX_DIMENSIONS];
|
sl@0
|
2160 |
int iDim;
|
sl@0
|
2161 |
int ii;
|
sl@0
|
2162 |
int rc = SQLITE_OK;
|
sl@0
|
2163 |
|
sl@0
|
2164 |
memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS);
|
sl@0
|
2165 |
|
sl@0
|
2166 |
nCell = NCELL(pNode)+1;
|
sl@0
|
2167 |
|
sl@0
|
2168 |
/* Allocate the buffers used by this operation. The allocation is
|
sl@0
|
2169 |
** relinquished before this function returns.
|
sl@0
|
2170 |
*/
|
sl@0
|
2171 |
aCell = (RtreeCell *)sqlite3_malloc(nCell * (
|
sl@0
|
2172 |
sizeof(RtreeCell) + /* aCell array */
|
sl@0
|
2173 |
sizeof(int) + /* aOrder array */
|
sl@0
|
2174 |
sizeof(int) + /* aSpare array */
|
sl@0
|
2175 |
sizeof(float) /* aDistance array */
|
sl@0
|
2176 |
));
|
sl@0
|
2177 |
if( !aCell ){
|
sl@0
|
2178 |
return SQLITE_NOMEM;
|
sl@0
|
2179 |
}
|
sl@0
|
2180 |
aOrder = (int *)&aCell[nCell];
|
sl@0
|
2181 |
aSpare = (int *)&aOrder[nCell];
|
sl@0
|
2182 |
aDistance = (float *)&aSpare[nCell];
|
sl@0
|
2183 |
|
sl@0
|
2184 |
for(ii=0; ii<nCell; ii++){
|
sl@0
|
2185 |
if( ii==(nCell-1) ){
|
sl@0
|
2186 |
memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
|
sl@0
|
2187 |
}else{
|
sl@0
|
2188 |
nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
|
sl@0
|
2189 |
}
|
sl@0
|
2190 |
aOrder[ii] = ii;
|
sl@0
|
2191 |
for(iDim=0; iDim<pRtree->nDim; iDim++){
|
sl@0
|
2192 |
aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
|
sl@0
|
2193 |
aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
|
sl@0
|
2194 |
}
|
sl@0
|
2195 |
}
|
sl@0
|
2196 |
for(iDim=0; iDim<pRtree->nDim; iDim++){
|
sl@0
|
2197 |
aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0);
|
sl@0
|
2198 |
}
|
sl@0
|
2199 |
|
sl@0
|
2200 |
for(ii=0; ii<nCell; ii++){
|
sl@0
|
2201 |
aDistance[ii] = 0.0;
|
sl@0
|
2202 |
for(iDim=0; iDim<pRtree->nDim; iDim++){
|
sl@0
|
2203 |
float coord = DCOORD(aCell[ii].aCoord[iDim*2+1]) -
|
sl@0
|
2204 |
DCOORD(aCell[ii].aCoord[iDim*2]);
|
sl@0
|
2205 |
aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
|
sl@0
|
2206 |
}
|
sl@0
|
2207 |
}
|
sl@0
|
2208 |
|
sl@0
|
2209 |
SortByDistance(aOrder, nCell, aDistance, aSpare);
|
sl@0
|
2210 |
nodeZero(pRtree, pNode);
|
sl@0
|
2211 |
|
sl@0
|
2212 |
for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
|
sl@0
|
2213 |
RtreeCell *p = &aCell[aOrder[ii]];
|
sl@0
|
2214 |
nodeInsertCell(pRtree, pNode, p);
|
sl@0
|
2215 |
if( p->iRowid==pCell->iRowid ){
|
sl@0
|
2216 |
if( iHeight==0 ){
|
sl@0
|
2217 |
rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
|
sl@0
|
2218 |
}else{
|
sl@0
|
2219 |
rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
|
sl@0
|
2220 |
}
|
sl@0
|
2221 |
}
|
sl@0
|
2222 |
}
|
sl@0
|
2223 |
if( rc==SQLITE_OK ){
|
sl@0
|
2224 |
fixBoundingBox(pRtree, pNode);
|
sl@0
|
2225 |
}
|
sl@0
|
2226 |
for(; rc==SQLITE_OK && ii<nCell; ii++){
|
sl@0
|
2227 |
/* Find a node to store this cell in. pNode->iNode currently contains
|
sl@0
|
2228 |
** the height of the sub-tree headed by the cell.
|
sl@0
|
2229 |
*/
|
sl@0
|
2230 |
RtreeNode *pInsert;
|
sl@0
|
2231 |
RtreeCell *p = &aCell[aOrder[ii]];
|
sl@0
|
2232 |
rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
|
sl@0
|
2233 |
if( rc==SQLITE_OK ){
|
sl@0
|
2234 |
int rc2;
|
sl@0
|
2235 |
rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
|
sl@0
|
2236 |
rc2 = nodeRelease(pRtree, pInsert);
|
sl@0
|
2237 |
if( rc==SQLITE_OK ){
|
sl@0
|
2238 |
rc = rc2;
|
sl@0
|
2239 |
}
|
sl@0
|
2240 |
}
|
sl@0
|
2241 |
}
|
sl@0
|
2242 |
|
sl@0
|
2243 |
sqlite3_free(aCell);
|
sl@0
|
2244 |
return rc;
|
sl@0
|
2245 |
}
|
sl@0
|
2246 |
|
sl@0
|
2247 |
/*
|
sl@0
|
2248 |
** Insert cell pCell into node pNode. Node pNode is the head of a
|
sl@0
|
2249 |
** subtree iHeight high (leaf nodes have iHeight==0).
|
sl@0
|
2250 |
*/
|
sl@0
|
2251 |
static int rtreeInsertCell(
|
sl@0
|
2252 |
Rtree *pRtree,
|
sl@0
|
2253 |
RtreeNode *pNode,
|
sl@0
|
2254 |
RtreeCell *pCell,
|
sl@0
|
2255 |
int iHeight
|
sl@0
|
2256 |
){
|
sl@0
|
2257 |
int rc = SQLITE_OK;
|
sl@0
|
2258 |
if( iHeight>0 ){
|
sl@0
|
2259 |
RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
|
sl@0
|
2260 |
if( pChild ){
|
sl@0
|
2261 |
nodeRelease(pRtree, pChild->pParent);
|
sl@0
|
2262 |
nodeReference(pNode);
|
sl@0
|
2263 |
pChild->pParent = pNode;
|
sl@0
|
2264 |
}
|
sl@0
|
2265 |
}
|
sl@0
|
2266 |
if( nodeInsertCell(pRtree, pNode, pCell) ){
|
sl@0
|
2267 |
#if VARIANT_RSTARTREE_REINSERT
|
sl@0
|
2268 |
if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
|
sl@0
|
2269 |
rc = SplitNode(pRtree, pNode, pCell, iHeight);
|
sl@0
|
2270 |
}else{
|
sl@0
|
2271 |
pRtree->iReinsertHeight = iHeight;
|
sl@0
|
2272 |
rc = Reinsert(pRtree, pNode, pCell, iHeight);
|
sl@0
|
2273 |
}
|
sl@0
|
2274 |
#else
|
sl@0
|
2275 |
rc = SplitNode(pRtree, pNode, pCell, iHeight);
|
sl@0
|
2276 |
#endif
|
sl@0
|
2277 |
}else{
|
sl@0
|
2278 |
AdjustTree(pRtree, pNode, pCell);
|
sl@0
|
2279 |
if( iHeight==0 ){
|
sl@0
|
2280 |
rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
|
sl@0
|
2281 |
}else{
|
sl@0
|
2282 |
rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
|
sl@0
|
2283 |
}
|
sl@0
|
2284 |
}
|
sl@0
|
2285 |
return rc;
|
sl@0
|
2286 |
}
|
sl@0
|
2287 |
|
sl@0
|
2288 |
static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
|
sl@0
|
2289 |
int ii;
|
sl@0
|
2290 |
int rc = SQLITE_OK;
|
sl@0
|
2291 |
int nCell = NCELL(pNode);
|
sl@0
|
2292 |
|
sl@0
|
2293 |
for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
|
sl@0
|
2294 |
RtreeNode *pInsert;
|
sl@0
|
2295 |
RtreeCell cell;
|
sl@0
|
2296 |
nodeGetCell(pRtree, pNode, ii, &cell);
|
sl@0
|
2297 |
|
sl@0
|
2298 |
/* Find a node to store this cell in. pNode->iNode currently contains
|
sl@0
|
2299 |
** the height of the sub-tree headed by the cell.
|
sl@0
|
2300 |
*/
|
sl@0
|
2301 |
rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert);
|
sl@0
|
2302 |
if( rc==SQLITE_OK ){
|
sl@0
|
2303 |
int rc2;
|
sl@0
|
2304 |
rc = rtreeInsertCell(pRtree, pInsert, &cell, pNode->iNode);
|
sl@0
|
2305 |
rc2 = nodeRelease(pRtree, pInsert);
|
sl@0
|
2306 |
if( rc==SQLITE_OK ){
|
sl@0
|
2307 |
rc = rc2;
|
sl@0
|
2308 |
}
|
sl@0
|
2309 |
}
|
sl@0
|
2310 |
}
|
sl@0
|
2311 |
return rc;
|
sl@0
|
2312 |
}
|
sl@0
|
2313 |
|
sl@0
|
2314 |
/*
|
sl@0
|
2315 |
** Select a currently unused rowid for a new r-tree record.
|
sl@0
|
2316 |
*/
|
sl@0
|
2317 |
static int newRowid(Rtree *pRtree, i64 *piRowid){
|
sl@0
|
2318 |
int rc;
|
sl@0
|
2319 |
sqlite3_bind_null(pRtree->pWriteRowid, 1);
|
sl@0
|
2320 |
sqlite3_bind_null(pRtree->pWriteRowid, 2);
|
sl@0
|
2321 |
sqlite3_step(pRtree->pWriteRowid);
|
sl@0
|
2322 |
rc = sqlite3_reset(pRtree->pWriteRowid);
|
sl@0
|
2323 |
*piRowid = sqlite3_last_insert_rowid(pRtree->db);
|
sl@0
|
2324 |
return rc;
|
sl@0
|
2325 |
}
|
sl@0
|
2326 |
|
sl@0
|
2327 |
#ifndef NDEBUG
|
sl@0
|
2328 |
static int hashIsEmpty(Rtree *pRtree){
|
sl@0
|
2329 |
int ii;
|
sl@0
|
2330 |
for(ii=0; ii<HASHSIZE; ii++){
|
sl@0
|
2331 |
assert( !pRtree->aHash[ii] );
|
sl@0
|
2332 |
}
|
sl@0
|
2333 |
return 1;
|
sl@0
|
2334 |
}
|
sl@0
|
2335 |
#endif
|
sl@0
|
2336 |
|
sl@0
|
2337 |
/*
|
sl@0
|
2338 |
** The xUpdate method for rtree module virtual tables.
|
sl@0
|
2339 |
*/
|
sl@0
|
2340 |
int rtreeUpdate(
|
sl@0
|
2341 |
sqlite3_vtab *pVtab,
|
sl@0
|
2342 |
int nData,
|
sl@0
|
2343 |
sqlite3_value **azData,
|
sl@0
|
2344 |
sqlite_int64 *pRowid
|
sl@0
|
2345 |
){
|
sl@0
|
2346 |
Rtree *pRtree = (Rtree *)pVtab;
|
sl@0
|
2347 |
int rc = SQLITE_OK;
|
sl@0
|
2348 |
|
sl@0
|
2349 |
rtreeReference(pRtree);
|
sl@0
|
2350 |
|
sl@0
|
2351 |
assert(nData>=1);
|
sl@0
|
2352 |
assert(hashIsEmpty(pRtree));
|
sl@0
|
2353 |
|
sl@0
|
2354 |
/* If azData[0] is not an SQL NULL value, it is the rowid of a
|
sl@0
|
2355 |
** record to delete from the r-tree table. The following block does
|
sl@0
|
2356 |
** just that.
|
sl@0
|
2357 |
*/
|
sl@0
|
2358 |
if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
|
sl@0
|
2359 |
i64 iDelete; /* The rowid to delete */
|
sl@0
|
2360 |
RtreeNode *pLeaf; /* Leaf node containing record iDelete */
|
sl@0
|
2361 |
int iCell; /* Index of iDelete cell in pLeaf */
|
sl@0
|
2362 |
RtreeNode *pRoot;
|
sl@0
|
2363 |
|
sl@0
|
2364 |
/* Obtain a reference to the root node to initialise Rtree.iDepth */
|
sl@0
|
2365 |
rc = nodeAcquire(pRtree, 1, 0, &pRoot);
|
sl@0
|
2366 |
|
sl@0
|
2367 |
/* Obtain a reference to the leaf node that contains the entry
|
sl@0
|
2368 |
** about to be deleted.
|
sl@0
|
2369 |
*/
|
sl@0
|
2370 |
if( rc==SQLITE_OK ){
|
sl@0
|
2371 |
iDelete = sqlite3_value_int64(azData[0]);
|
sl@0
|
2372 |
rc = findLeafNode(pRtree, iDelete, &pLeaf);
|
sl@0
|
2373 |
}
|
sl@0
|
2374 |
|
sl@0
|
2375 |
/* Delete the cell in question from the leaf node. */
|
sl@0
|
2376 |
if( rc==SQLITE_OK ){
|
sl@0
|
2377 |
int rc2;
|
sl@0
|
2378 |
iCell = nodeRowidIndex(pRtree, pLeaf, iDelete);
|
sl@0
|
2379 |
rc = deleteCell(pRtree, pLeaf, iCell, 0);
|
sl@0
|
2380 |
rc2 = nodeRelease(pRtree, pLeaf);
|
sl@0
|
2381 |
if( rc==SQLITE_OK ){
|
sl@0
|
2382 |
rc = rc2;
|
sl@0
|
2383 |
}
|
sl@0
|
2384 |
}
|
sl@0
|
2385 |
|
sl@0
|
2386 |
/* Delete the corresponding entry in the <rtree>_rowid table. */
|
sl@0
|
2387 |
if( rc==SQLITE_OK ){
|
sl@0
|
2388 |
sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
|
sl@0
|
2389 |
sqlite3_step(pRtree->pDeleteRowid);
|
sl@0
|
2390 |
rc = sqlite3_reset(pRtree->pDeleteRowid);
|
sl@0
|
2391 |
}
|
sl@0
|
2392 |
|
sl@0
|
2393 |
/* Check if the root node now has exactly one child. If so, remove
|
sl@0
|
2394 |
** it, schedule the contents of the child for reinsertion and
|
sl@0
|
2395 |
** reduce the tree height by one.
|
sl@0
|
2396 |
**
|
sl@0
|
2397 |
** This is equivalent to copying the contents of the child into
|
sl@0
|
2398 |
** the root node (the operation that Gutman's paper says to perform
|
sl@0
|
2399 |
** in this scenario).
|
sl@0
|
2400 |
*/
|
sl@0
|
2401 |
if( rc==SQLITE_OK && pRtree->iDepth>0 ){
|
sl@0
|
2402 |
if( rc==SQLITE_OK && NCELL(pRoot)==1 ){
|
sl@0
|
2403 |
RtreeNode *pChild;
|
sl@0
|
2404 |
i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
|
sl@0
|
2405 |
rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
|
sl@0
|
2406 |
if( rc==SQLITE_OK ){
|
sl@0
|
2407 |
rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
|
sl@0
|
2408 |
}
|
sl@0
|
2409 |
if( rc==SQLITE_OK ){
|
sl@0
|
2410 |
pRtree->iDepth--;
|
sl@0
|
2411 |
writeInt16(pRoot->zData, pRtree->iDepth);
|
sl@0
|
2412 |
pRoot->isDirty = 1;
|
sl@0
|
2413 |
}
|
sl@0
|
2414 |
}
|
sl@0
|
2415 |
}
|
sl@0
|
2416 |
|
sl@0
|
2417 |
/* Re-insert the contents of any underfull nodes removed from the tree. */
|
sl@0
|
2418 |
for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
|
sl@0
|
2419 |
if( rc==SQLITE_OK ){
|
sl@0
|
2420 |
rc = reinsertNodeContent(pRtree, pLeaf);
|
sl@0
|
2421 |
}
|
sl@0
|
2422 |
pRtree->pDeleted = pLeaf->pNext;
|
sl@0
|
2423 |
sqlite3_free(pLeaf);
|
sl@0
|
2424 |
}
|
sl@0
|
2425 |
|
sl@0
|
2426 |
/* Release the reference to the root node. */
|
sl@0
|
2427 |
if( rc==SQLITE_OK ){
|
sl@0
|
2428 |
rc = nodeRelease(pRtree, pRoot);
|
sl@0
|
2429 |
}else{
|
sl@0
|
2430 |
nodeRelease(pRtree, pRoot);
|
sl@0
|
2431 |
}
|
sl@0
|
2432 |
}
|
sl@0
|
2433 |
|
sl@0
|
2434 |
/* If the azData[] array contains more than one element, elements
|
sl@0
|
2435 |
** (azData[2]..azData[argc-1]) contain a new record to insert into
|
sl@0
|
2436 |
** the r-tree structure.
|
sl@0
|
2437 |
*/
|
sl@0
|
2438 |
if( rc==SQLITE_OK && nData>1 ){
|
sl@0
|
2439 |
/* Insert a new record into the r-tree */
|
sl@0
|
2440 |
RtreeCell cell;
|
sl@0
|
2441 |
int ii;
|
sl@0
|
2442 |
RtreeNode *pLeaf;
|
sl@0
|
2443 |
|
sl@0
|
2444 |
/* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
|
sl@0
|
2445 |
assert( nData==(pRtree->nDim*2 + 3) );
|
sl@0
|
2446 |
if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
|
sl@0
|
2447 |
for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
sl@0
|
2448 |
cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]);
|
sl@0
|
2449 |
cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]);
|
sl@0
|
2450 |
if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
|
sl@0
|
2451 |
rc = SQLITE_CONSTRAINT;
|
sl@0
|
2452 |
goto constraint;
|
sl@0
|
2453 |
}
|
sl@0
|
2454 |
}
|
sl@0
|
2455 |
}else{
|
sl@0
|
2456 |
for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
sl@0
|
2457 |
cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
|
sl@0
|
2458 |
cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
|
sl@0
|
2459 |
if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
|
sl@0
|
2460 |
rc = SQLITE_CONSTRAINT;
|
sl@0
|
2461 |
goto constraint;
|
sl@0
|
2462 |
}
|
sl@0
|
2463 |
}
|
sl@0
|
2464 |
}
|
sl@0
|
2465 |
|
sl@0
|
2466 |
/* Figure out the rowid of the new row. */
|
sl@0
|
2467 |
if( sqlite3_value_type(azData[2])==SQLITE_NULL ){
|
sl@0
|
2468 |
rc = newRowid(pRtree, &cell.iRowid);
|
sl@0
|
2469 |
}else{
|
sl@0
|
2470 |
cell.iRowid = sqlite3_value_int64(azData[2]);
|
sl@0
|
2471 |
sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
|
sl@0
|
2472 |
if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){
|
sl@0
|
2473 |
sqlite3_reset(pRtree->pReadRowid);
|
sl@0
|
2474 |
rc = SQLITE_CONSTRAINT;
|
sl@0
|
2475 |
goto constraint;
|
sl@0
|
2476 |
}
|
sl@0
|
2477 |
rc = sqlite3_reset(pRtree->pReadRowid);
|
sl@0
|
2478 |
}
|
sl@0
|
2479 |
|
sl@0
|
2480 |
if( rc==SQLITE_OK ){
|
sl@0
|
2481 |
rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
|
sl@0
|
2482 |
}
|
sl@0
|
2483 |
if( rc==SQLITE_OK ){
|
sl@0
|
2484 |
int rc2;
|
sl@0
|
2485 |
pRtree->iReinsertHeight = -1;
|
sl@0
|
2486 |
rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
|
sl@0
|
2487 |
rc2 = nodeRelease(pRtree, pLeaf);
|
sl@0
|
2488 |
if( rc==SQLITE_OK ){
|
sl@0
|
2489 |
rc = rc2;
|
sl@0
|
2490 |
}
|
sl@0
|
2491 |
}
|
sl@0
|
2492 |
}
|
sl@0
|
2493 |
|
sl@0
|
2494 |
constraint:
|
sl@0
|
2495 |
rtreeRelease(pRtree);
|
sl@0
|
2496 |
return rc;
|
sl@0
|
2497 |
}
|
sl@0
|
2498 |
|
sl@0
|
2499 |
/*
|
sl@0
|
2500 |
** The xRename method for rtree module virtual tables.
|
sl@0
|
2501 |
*/
|
sl@0
|
2502 |
static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
|
sl@0
|
2503 |
Rtree *pRtree = (Rtree *)pVtab;
|
sl@0
|
2504 |
int rc = SQLITE_NOMEM;
|
sl@0
|
2505 |
char *zSql = sqlite3_mprintf(
|
sl@0
|
2506 |
"ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
|
sl@0
|
2507 |
"ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
|
sl@0
|
2508 |
"ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
|
sl@0
|
2509 |
, pRtree->zDb, pRtree->zName, zNewName
|
sl@0
|
2510 |
, pRtree->zDb, pRtree->zName, zNewName
|
sl@0
|
2511 |
, pRtree->zDb, pRtree->zName, zNewName
|
sl@0
|
2512 |
);
|
sl@0
|
2513 |
if( zSql ){
|
sl@0
|
2514 |
rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
|
sl@0
|
2515 |
sqlite3_free(zSql);
|
sl@0
|
2516 |
}
|
sl@0
|
2517 |
return rc;
|
sl@0
|
2518 |
}
|
sl@0
|
2519 |
|
sl@0
|
2520 |
static sqlite3_module rtreeModule = {
|
sl@0
|
2521 |
0, /* iVersion */
|
sl@0
|
2522 |
rtreeCreate, /* xCreate - create a table */
|
sl@0
|
2523 |
rtreeConnect, /* xConnect - connect to an existing table */
|
sl@0
|
2524 |
rtreeBestIndex, /* xBestIndex - Determine search strategy */
|
sl@0
|
2525 |
rtreeDisconnect, /* xDisconnect - Disconnect from a table */
|
sl@0
|
2526 |
rtreeDestroy, /* xDestroy - Drop a table */
|
sl@0
|
2527 |
rtreeOpen, /* xOpen - open a cursor */
|
sl@0
|
2528 |
rtreeClose, /* xClose - close a cursor */
|
sl@0
|
2529 |
rtreeFilter, /* xFilter - configure scan constraints */
|
sl@0
|
2530 |
rtreeNext, /* xNext - advance a cursor */
|
sl@0
|
2531 |
rtreeEof, /* xEof */
|
sl@0
|
2532 |
rtreeColumn, /* xColumn - read data */
|
sl@0
|
2533 |
rtreeRowid, /* xRowid - read data */
|
sl@0
|
2534 |
rtreeUpdate, /* xUpdate - write data */
|
sl@0
|
2535 |
0, /* xBegin - begin transaction */
|
sl@0
|
2536 |
0, /* xSync - sync transaction */
|
sl@0
|
2537 |
0, /* xCommit - commit transaction */
|
sl@0
|
2538 |
0, /* xRollback - rollback transaction */
|
sl@0
|
2539 |
0, /* xFindFunction - function overloading */
|
sl@0
|
2540 |
rtreeRename /* xRename - rename the table */
|
sl@0
|
2541 |
};
|
sl@0
|
2542 |
|
sl@0
|
2543 |
static int rtreeSqlInit(
|
sl@0
|
2544 |
Rtree *pRtree,
|
sl@0
|
2545 |
sqlite3 *db,
|
sl@0
|
2546 |
const char *zDb,
|
sl@0
|
2547 |
const char *zPrefix,
|
sl@0
|
2548 |
int isCreate
|
sl@0
|
2549 |
){
|
sl@0
|
2550 |
int rc = SQLITE_OK;
|
sl@0
|
2551 |
|
sl@0
|
2552 |
#define N_STATEMENT 9
|
sl@0
|
2553 |
static const char *azSql[N_STATEMENT] = {
|
sl@0
|
2554 |
/* Read and write the xxx_node table */
|
sl@0
|
2555 |
"SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
|
sl@0
|
2556 |
"INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
|
sl@0
|
2557 |
"DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",
|
sl@0
|
2558 |
|
sl@0
|
2559 |
/* Read and write the xxx_rowid table */
|
sl@0
|
2560 |
"SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
|
sl@0
|
2561 |
"INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
|
sl@0
|
2562 |
"DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
|
sl@0
|
2563 |
|
sl@0
|
2564 |
/* Read and write the xxx_parent table */
|
sl@0
|
2565 |
"SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
|
sl@0
|
2566 |
"INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
|
sl@0
|
2567 |
"DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
|
sl@0
|
2568 |
};
|
sl@0
|
2569 |
sqlite3_stmt **appStmt[N_STATEMENT];
|
sl@0
|
2570 |
int i;
|
sl@0
|
2571 |
|
sl@0
|
2572 |
pRtree->db = db;
|
sl@0
|
2573 |
|
sl@0
|
2574 |
if( isCreate ){
|
sl@0
|
2575 |
char *zCreate = sqlite3_mprintf(
|
sl@0
|
2576 |
"CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
|
sl@0
|
2577 |
"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
|
sl@0
|
2578 |
"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);"
|
sl@0
|
2579 |
"INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
|
sl@0
|
2580 |
zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
|
sl@0
|
2581 |
);
|
sl@0
|
2582 |
if( !zCreate ){
|
sl@0
|
2583 |
return SQLITE_NOMEM;
|
sl@0
|
2584 |
}
|
sl@0
|
2585 |
rc = sqlite3_exec(db, zCreate, 0, 0, 0);
|
sl@0
|
2586 |
sqlite3_free(zCreate);
|
sl@0
|
2587 |
if( rc!=SQLITE_OK ){
|
sl@0
|
2588 |
return rc;
|
sl@0
|
2589 |
}
|
sl@0
|
2590 |
}
|
sl@0
|
2591 |
|
sl@0
|
2592 |
appStmt[0] = &pRtree->pReadNode;
|
sl@0
|
2593 |
appStmt[1] = &pRtree->pWriteNode;
|
sl@0
|
2594 |
appStmt[2] = &pRtree->pDeleteNode;
|
sl@0
|
2595 |
appStmt[3] = &pRtree->pReadRowid;
|
sl@0
|
2596 |
appStmt[4] = &pRtree->pWriteRowid;
|
sl@0
|
2597 |
appStmt[5] = &pRtree->pDeleteRowid;
|
sl@0
|
2598 |
appStmt[6] = &pRtree->pReadParent;
|
sl@0
|
2599 |
appStmt[7] = &pRtree->pWriteParent;
|
sl@0
|
2600 |
appStmt[8] = &pRtree->pDeleteParent;
|
sl@0
|
2601 |
|
sl@0
|
2602 |
for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
|
sl@0
|
2603 |
char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
|
sl@0
|
2604 |
if( zSql ){
|
sl@0
|
2605 |
rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0);
|
sl@0
|
2606 |
}else{
|
sl@0
|
2607 |
rc = SQLITE_NOMEM;
|
sl@0
|
2608 |
}
|
sl@0
|
2609 |
sqlite3_free(zSql);
|
sl@0
|
2610 |
}
|
sl@0
|
2611 |
|
sl@0
|
2612 |
return rc;
|
sl@0
|
2613 |
}
|
sl@0
|
2614 |
|
sl@0
|
2615 |
/*
|
sl@0
|
2616 |
** This routine queries database handle db for the page-size used by
|
sl@0
|
2617 |
** database zDb. If successful, the page-size in bytes is written to
|
sl@0
|
2618 |
** *piPageSize and SQLITE_OK returned. Otherwise, and an SQLite error
|
sl@0
|
2619 |
** code is returned.
|
sl@0
|
2620 |
*/
|
sl@0
|
2621 |
static int getPageSize(sqlite3 *db, const char *zDb, int *piPageSize){
|
sl@0
|
2622 |
int rc = SQLITE_NOMEM;
|
sl@0
|
2623 |
char *zSql;
|
sl@0
|
2624 |
sqlite3_stmt *pStmt = 0;
|
sl@0
|
2625 |
|
sl@0
|
2626 |
zSql = sqlite3_mprintf("PRAGMA %Q.page_size", zDb);
|
sl@0
|
2627 |
if( !zSql ){
|
sl@0
|
2628 |
return SQLITE_NOMEM;
|
sl@0
|
2629 |
}
|
sl@0
|
2630 |
|
sl@0
|
2631 |
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
sl@0
|
2632 |
sqlite3_free(zSql);
|
sl@0
|
2633 |
if( rc!=SQLITE_OK ){
|
sl@0
|
2634 |
return rc;
|
sl@0
|
2635 |
}
|
sl@0
|
2636 |
|
sl@0
|
2637 |
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
sl@0
|
2638 |
*piPageSize = sqlite3_column_int(pStmt, 0);
|
sl@0
|
2639 |
}
|
sl@0
|
2640 |
return sqlite3_finalize(pStmt);
|
sl@0
|
2641 |
}
|
sl@0
|
2642 |
|
sl@0
|
2643 |
/*
|
sl@0
|
2644 |
** This function is the implementation of both the xConnect and xCreate
|
sl@0
|
2645 |
** methods of the r-tree virtual table.
|
sl@0
|
2646 |
**
|
sl@0
|
2647 |
** argv[0] -> module name
|
sl@0
|
2648 |
** argv[1] -> database name
|
sl@0
|
2649 |
** argv[2] -> table name
|
sl@0
|
2650 |
** argv[...] -> column names...
|
sl@0
|
2651 |
*/
|
sl@0
|
2652 |
static int rtreeInit(
|
sl@0
|
2653 |
sqlite3 *db, /* Database connection */
|
sl@0
|
2654 |
void *pAux, /* Pointer to head of rtree list */
|
sl@0
|
2655 |
int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
|
sl@0
|
2656 |
sqlite3_vtab **ppVtab, /* OUT: New virtual table */
|
sl@0
|
2657 |
char **pzErr, /* OUT: Error message, if any */
|
sl@0
|
2658 |
int isCreate, /* True for xCreate, false for xConnect */
|
sl@0
|
2659 |
int eCoordType /* One of the RTREE_COORD_* constants */
|
sl@0
|
2660 |
){
|
sl@0
|
2661 |
int rc = SQLITE_OK;
|
sl@0
|
2662 |
int iPageSize = 0;
|
sl@0
|
2663 |
Rtree *pRtree;
|
sl@0
|
2664 |
int nDb; /* Length of string argv[1] */
|
sl@0
|
2665 |
int nName; /* Length of string argv[2] */
|
sl@0
|
2666 |
|
sl@0
|
2667 |
const char *aErrMsg[] = {
|
sl@0
|
2668 |
0, /* 0 */
|
sl@0
|
2669 |
"Wrong number of columns for an rtree table", /* 1 */
|
sl@0
|
2670 |
"Too few columns for an rtree table", /* 2 */
|
sl@0
|
2671 |
"Too many columns for an rtree table" /* 3 */
|
sl@0
|
2672 |
};
|
sl@0
|
2673 |
|
sl@0
|
2674 |
int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
|
sl@0
|
2675 |
if( aErrMsg[iErr] ){
|
sl@0
|
2676 |
*pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
|
sl@0
|
2677 |
return SQLITE_ERROR;
|
sl@0
|
2678 |
}
|
sl@0
|
2679 |
|
sl@0
|
2680 |
rc = getPageSize(db, argv[1], &iPageSize);
|
sl@0
|
2681 |
if( rc!=SQLITE_OK ){
|
sl@0
|
2682 |
return rc;
|
sl@0
|
2683 |
}
|
sl@0
|
2684 |
|
sl@0
|
2685 |
/* Allocate the sqlite3_vtab structure */
|
sl@0
|
2686 |
nDb = strlen(argv[1]);
|
sl@0
|
2687 |
nName = strlen(argv[2]);
|
sl@0
|
2688 |
pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
|
sl@0
|
2689 |
if( !pRtree ){
|
sl@0
|
2690 |
return SQLITE_NOMEM;
|
sl@0
|
2691 |
}
|
sl@0
|
2692 |
memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
|
sl@0
|
2693 |
pRtree->nBusy = 1;
|
sl@0
|
2694 |
pRtree->base.pModule = &rtreeModule;
|
sl@0
|
2695 |
pRtree->zDb = (char *)&pRtree[1];
|
sl@0
|
2696 |
pRtree->zName = &pRtree->zDb[nDb+1];
|
sl@0
|
2697 |
pRtree->nDim = (argc-4)/2;
|
sl@0
|
2698 |
pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
|
sl@0
|
2699 |
pRtree->eCoordType = eCoordType;
|
sl@0
|
2700 |
memcpy(pRtree->zDb, argv[1], nDb);
|
sl@0
|
2701 |
memcpy(pRtree->zName, argv[2], nName);
|
sl@0
|
2702 |
|
sl@0
|
2703 |
/* Figure out the node size to use. By default, use 64 bytes less than
|
sl@0
|
2704 |
** the database page-size. This ensures that each node is stored on
|
sl@0
|
2705 |
** a single database page.
|
sl@0
|
2706 |
**
|
sl@0
|
2707 |
** If the databasd page-size is so large that more than RTREE_MAXCELLS
|
sl@0
|
2708 |
** entries would fit in a single node, use a smaller node-size.
|
sl@0
|
2709 |
*/
|
sl@0
|
2710 |
pRtree->iNodeSize = iPageSize-64;
|
sl@0
|
2711 |
if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
|
sl@0
|
2712 |
pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
|
sl@0
|
2713 |
}
|
sl@0
|
2714 |
|
sl@0
|
2715 |
/* Create/Connect to the underlying relational database schema. If
|
sl@0
|
2716 |
** that is successful, call sqlite3_declare_vtab() to configure
|
sl@0
|
2717 |
** the r-tree table schema.
|
sl@0
|
2718 |
*/
|
sl@0
|
2719 |
if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
|
sl@0
|
2720 |
*pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
sl@0
|
2721 |
}else{
|
sl@0
|
2722 |
char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
|
sl@0
|
2723 |
char *zTmp;
|
sl@0
|
2724 |
int ii;
|
sl@0
|
2725 |
for(ii=4; zSql && ii<argc; ii++){
|
sl@0
|
2726 |
zTmp = zSql;
|
sl@0
|
2727 |
zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
|
sl@0
|
2728 |
sqlite3_free(zTmp);
|
sl@0
|
2729 |
}
|
sl@0
|
2730 |
if( zSql ){
|
sl@0
|
2731 |
zTmp = zSql;
|
sl@0
|
2732 |
zSql = sqlite3_mprintf("%s);", zTmp);
|
sl@0
|
2733 |
sqlite3_free(zTmp);
|
sl@0
|
2734 |
}
|
sl@0
|
2735 |
if( !zSql || sqlite3_declare_vtab(db, zSql) ){
|
sl@0
|
2736 |
rc = SQLITE_NOMEM;
|
sl@0
|
2737 |
}
|
sl@0
|
2738 |
sqlite3_free(zSql);
|
sl@0
|
2739 |
}
|
sl@0
|
2740 |
|
sl@0
|
2741 |
if( rc==SQLITE_OK ){
|
sl@0
|
2742 |
*ppVtab = (sqlite3_vtab *)pRtree;
|
sl@0
|
2743 |
}else{
|
sl@0
|
2744 |
rtreeRelease(pRtree);
|
sl@0
|
2745 |
}
|
sl@0
|
2746 |
return rc;
|
sl@0
|
2747 |
}
|
sl@0
|
2748 |
|
sl@0
|
2749 |
|
sl@0
|
2750 |
/*
|
sl@0
|
2751 |
** Implementation of a scalar function that decodes r-tree nodes to
|
sl@0
|
2752 |
** human readable strings. This can be used for debugging and analysis.
|
sl@0
|
2753 |
**
|
sl@0
|
2754 |
** The scalar function takes two arguments, a blob of data containing
|
sl@0
|
2755 |
** an r-tree node, and the number of dimensions the r-tree indexes.
|
sl@0
|
2756 |
** For a two-dimensional r-tree structure called "rt", to deserialize
|
sl@0
|
2757 |
** all nodes, a statement like:
|
sl@0
|
2758 |
**
|
sl@0
|
2759 |
** SELECT rtreenode(2, data) FROM rt_node;
|
sl@0
|
2760 |
**
|
sl@0
|
2761 |
** The human readable string takes the form of a Tcl list with one
|
sl@0
|
2762 |
** entry for each cell in the r-tree node. Each entry is itself a
|
sl@0
|
2763 |
** list, containing the 8-byte rowid/pageno followed by the
|
sl@0
|
2764 |
** <num-dimension>*2 coordinates.
|
sl@0
|
2765 |
*/
|
sl@0
|
2766 |
static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
|
sl@0
|
2767 |
char *zText = 0;
|
sl@0
|
2768 |
RtreeNode node;
|
sl@0
|
2769 |
Rtree tree;
|
sl@0
|
2770 |
int ii;
|
sl@0
|
2771 |
|
sl@0
|
2772 |
memset(&node, 0, sizeof(RtreeNode));
|
sl@0
|
2773 |
memset(&tree, 0, sizeof(Rtree));
|
sl@0
|
2774 |
tree.nDim = sqlite3_value_int(apArg[0]);
|
sl@0
|
2775 |
tree.nBytesPerCell = 8 + 8 * tree.nDim;
|
sl@0
|
2776 |
node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
|
sl@0
|
2777 |
|
sl@0
|
2778 |
for(ii=0; ii<NCELL(&node); ii++){
|
sl@0
|
2779 |
char zCell[512];
|
sl@0
|
2780 |
int nCell = 0;
|
sl@0
|
2781 |
RtreeCell cell;
|
sl@0
|
2782 |
int jj;
|
sl@0
|
2783 |
|
sl@0
|
2784 |
nodeGetCell(&tree, &node, ii, &cell);
|
sl@0
|
2785 |
sqlite3_snprintf(512-nCell,&zCell[nCell],"%d", cell.iRowid);
|
sl@0
|
2786 |
nCell = strlen(zCell);
|
sl@0
|
2787 |
for(jj=0; jj<tree.nDim*2; jj++){
|
sl@0
|
2788 |
sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f);
|
sl@0
|
2789 |
nCell = strlen(zCell);
|
sl@0
|
2790 |
}
|
sl@0
|
2791 |
|
sl@0
|
2792 |
if( zText ){
|
sl@0
|
2793 |
char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
|
sl@0
|
2794 |
sqlite3_free(zText);
|
sl@0
|
2795 |
zText = zTextNew;
|
sl@0
|
2796 |
}else{
|
sl@0
|
2797 |
zText = sqlite3_mprintf("{%s}", zCell);
|
sl@0
|
2798 |
}
|
sl@0
|
2799 |
}
|
sl@0
|
2800 |
|
sl@0
|
2801 |
sqlite3_result_text(ctx, zText, -1, sqlite3_free);
|
sl@0
|
2802 |
}
|
sl@0
|
2803 |
|
sl@0
|
2804 |
static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
|
sl@0
|
2805 |
if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
|
sl@0
|
2806 |
|| sqlite3_value_bytes(apArg[0])<2
|
sl@0
|
2807 |
){
|
sl@0
|
2808 |
sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
|
sl@0
|
2809 |
}else{
|
sl@0
|
2810 |
u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
|
sl@0
|
2811 |
sqlite3_result_int(ctx, readInt16(zBlob));
|
sl@0
|
2812 |
}
|
sl@0
|
2813 |
}
|
sl@0
|
2814 |
|
sl@0
|
2815 |
/*
|
sl@0
|
2816 |
** Register the r-tree module with database handle db. This creates the
|
sl@0
|
2817 |
** virtual table module "rtree" and the debugging/analysis scalar
|
sl@0
|
2818 |
** function "rtreenode".
|
sl@0
|
2819 |
*/
|
sl@0
|
2820 |
int sqlite3RtreeInit(sqlite3 *db){
|
sl@0
|
2821 |
int rc = SQLITE_OK;
|
sl@0
|
2822 |
|
sl@0
|
2823 |
if( rc==SQLITE_OK ){
|
sl@0
|
2824 |
int utf8 = SQLITE_UTF8;
|
sl@0
|
2825 |
rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
|
sl@0
|
2826 |
}
|
sl@0
|
2827 |
if( rc==SQLITE_OK ){
|
sl@0
|
2828 |
int utf8 = SQLITE_UTF8;
|
sl@0
|
2829 |
rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
|
sl@0
|
2830 |
}
|
sl@0
|
2831 |
if( rc==SQLITE_OK ){
|
sl@0
|
2832 |
void *c = (void *)RTREE_COORD_REAL32;
|
sl@0
|
2833 |
rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
|
sl@0
|
2834 |
}
|
sl@0
|
2835 |
if( rc==SQLITE_OK ){
|
sl@0
|
2836 |
void *c = (void *)RTREE_COORD_INT32;
|
sl@0
|
2837 |
rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
|
sl@0
|
2838 |
}
|
sl@0
|
2839 |
|
sl@0
|
2840 |
return rc;
|
sl@0
|
2841 |
}
|
sl@0
|
2842 |
|
sl@0
|
2843 |
#if !SQLITE_CORE
|
sl@0
|
2844 |
int sqlite3_extension_init(
|
sl@0
|
2845 |
sqlite3 *db,
|
sl@0
|
2846 |
char **pzErrMsg,
|
sl@0
|
2847 |
const sqlite3_api_routines *pApi
|
sl@0
|
2848 |
){
|
sl@0
|
2849 |
SQLITE_EXTENSION_INIT2(pApi)
|
sl@0
|
2850 |
return sqlite3RtreeInit(db);
|
sl@0
|
2851 |
}
|
sl@0
|
2852 |
#endif
|
sl@0
|
2853 |
|
sl@0
|
2854 |
#endif
|