os/persistentdata/persistentstorage/sql/SQLite364/vdbeInt.h
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/*
sl@0
     2
** 2003 September 6
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This is the header file for information that is private to the
sl@0
    13
** VDBE.  This information used to all be at the top of the single
sl@0
    14
** source code file "vdbe.c".  When that file became too big (over
sl@0
    15
** 6000 lines long) it was split up into several smaller files and
sl@0
    16
** this header information was factored out.
sl@0
    17
**
sl@0
    18
** $Id: vdbeInt.h,v 1.155 2008/10/07 23:46:38 drh Exp $
sl@0
    19
*/
sl@0
    20
#ifndef _VDBEINT_H_
sl@0
    21
#define _VDBEINT_H_
sl@0
    22
sl@0
    23
/*
sl@0
    24
** intToKey() and keyToInt() used to transform the rowid.  But with
sl@0
    25
** the latest versions of the design they are no-ops.
sl@0
    26
*/
sl@0
    27
#define keyToInt(X)   (X)
sl@0
    28
#define intToKey(X)   (X)
sl@0
    29
sl@0
    30
sl@0
    31
/*
sl@0
    32
** SQL is translated into a sequence of instructions to be
sl@0
    33
** executed by a virtual machine.  Each instruction is an instance
sl@0
    34
** of the following structure.
sl@0
    35
*/
sl@0
    36
typedef struct VdbeOp Op;
sl@0
    37
sl@0
    38
/*
sl@0
    39
** Boolean values
sl@0
    40
*/
sl@0
    41
typedef unsigned char Bool;
sl@0
    42
sl@0
    43
/*
sl@0
    44
** A cursor is a pointer into a single BTree within a database file.
sl@0
    45
** The cursor can seek to a BTree entry with a particular key, or
sl@0
    46
** loop over all entries of the Btree.  You can also insert new BTree
sl@0
    47
** entries or retrieve the key or data from the entry that the cursor
sl@0
    48
** is currently pointing to.
sl@0
    49
** 
sl@0
    50
** Every cursor that the virtual machine has open is represented by an
sl@0
    51
** instance of the following structure.
sl@0
    52
**
sl@0
    53
** If the Cursor.isTriggerRow flag is set it means that this cursor is
sl@0
    54
** really a single row that represents the NEW or OLD pseudo-table of
sl@0
    55
** a row trigger.  The data for the row is stored in Cursor.pData and
sl@0
    56
** the rowid is in Cursor.iKey.
sl@0
    57
*/
sl@0
    58
struct Cursor {
sl@0
    59
  BtCursor *pCursor;    /* The cursor structure of the backend */
sl@0
    60
  int iDb;              /* Index of cursor database in db->aDb[] (or -1) */
sl@0
    61
  i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
sl@0
    62
  i64 nextRowid;        /* Next rowid returned by OP_NewRowid */
sl@0
    63
  Bool zeroed;          /* True if zeroed out and ready for reuse */
sl@0
    64
  Bool rowidIsValid;    /* True if lastRowid is valid */
sl@0
    65
  Bool atFirst;         /* True if pointing to first entry */
sl@0
    66
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
sl@0
    67
  Bool nullRow;         /* True if pointing to a row with no data */
sl@0
    68
  Bool nextRowidValid;  /* True if the nextRowid field is valid */
sl@0
    69
  Bool pseudoTable;     /* This is a NEW or OLD pseudo-tables of a trigger */
sl@0
    70
  Bool ephemPseudoTable;
sl@0
    71
  Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
sl@0
    72
  Bool isTable;         /* True if a table requiring integer keys */
sl@0
    73
  Bool isIndex;         /* True if an index containing keys only - no data */
sl@0
    74
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
sl@0
    75
  Btree *pBt;           /* Separate file holding temporary table */
sl@0
    76
  int nData;            /* Number of bytes in pData */
sl@0
    77
  char *pData;          /* Data for a NEW or OLD pseudo-table */
sl@0
    78
  i64 iKey;             /* Key for the NEW or OLD pseudo-table row */
sl@0
    79
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
sl@0
    80
  int nField;           /* Number of fields in the header */
sl@0
    81
  i64 seqCount;         /* Sequence counter */
sl@0
    82
  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
sl@0
    83
  const sqlite3_module *pModule;     /* Module for cursor pVtabCursor */
sl@0
    84
sl@0
    85
  /* Cached information about the header for the data record that the
sl@0
    86
  ** cursor is currently pointing to.  Only valid if cacheValid is true.
sl@0
    87
  ** aRow might point to (ephemeral) data for the current row, or it might
sl@0
    88
  ** be NULL.
sl@0
    89
  */
sl@0
    90
  int cacheStatus;      /* Cache is valid if this matches Vdbe.cacheCtr */
sl@0
    91
  int payloadSize;      /* Total number of bytes in the record */
sl@0
    92
  u32 *aType;           /* Type values for all entries in the record */
sl@0
    93
  u32 *aOffset;         /* Cached offsets to the start of each columns data */
sl@0
    94
  u8 *aRow;             /* Data for the current row, if all on one page */
sl@0
    95
};
sl@0
    96
typedef struct Cursor Cursor;
sl@0
    97
sl@0
    98
/*
sl@0
    99
** A value for Cursor.cacheValid that means the cache is always invalid.
sl@0
   100
*/
sl@0
   101
#define CACHE_STALE 0
sl@0
   102
sl@0
   103
/*
sl@0
   104
** Internally, the vdbe manipulates nearly all SQL values as Mem
sl@0
   105
** structures. Each Mem struct may cache multiple representations (string,
sl@0
   106
** integer etc.) of the same value.  A value (and therefore Mem structure)
sl@0
   107
** has the following properties:
sl@0
   108
**
sl@0
   109
** Each value has a manifest type. The manifest type of the value stored
sl@0
   110
** in a Mem struct is returned by the MemType(Mem*) macro. The type is
sl@0
   111
** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
sl@0
   112
** SQLITE_BLOB.
sl@0
   113
*/
sl@0
   114
struct Mem {
sl@0
   115
  union {
sl@0
   116
    i64 i;              /* Integer value. Or FuncDef* when flags==MEM_Agg */
sl@0
   117
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
sl@0
   118
  } u;
sl@0
   119
  double r;           /* Real value */
sl@0
   120
  sqlite3 *db;        /* The associated database connection */
sl@0
   121
  char *z;            /* String or BLOB value */
sl@0
   122
  int n;              /* Number of characters in string value, excluding '\0' */
sl@0
   123
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
sl@0
   124
  u8  type;           /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
sl@0
   125
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
sl@0
   126
  void (*xDel)(void *);  /* If not null, call this function to delete Mem.z */
sl@0
   127
  char *zMalloc;      /* Dynamic buffer allocated by sqlite3_malloc() */
sl@0
   128
};
sl@0
   129
sl@0
   130
/* One or more of the following flags are set to indicate the validOK
sl@0
   131
** representations of the value stored in the Mem struct.
sl@0
   132
**
sl@0
   133
** If the MEM_Null flag is set, then the value is an SQL NULL value.
sl@0
   134
** No other flags may be set in this case.
sl@0
   135
**
sl@0
   136
** If the MEM_Str flag is set then Mem.z points at a string representation.
sl@0
   137
** Usually this is encoded in the same unicode encoding as the main
sl@0
   138
** database (see below for exceptions). If the MEM_Term flag is also
sl@0
   139
** set, then the string is nul terminated. The MEM_Int and MEM_Real 
sl@0
   140
** flags may coexist with the MEM_Str flag.
sl@0
   141
**
sl@0
   142
** Multiple of these values can appear in Mem.flags.  But only one
sl@0
   143
** at a time can appear in Mem.type.
sl@0
   144
*/
sl@0
   145
#define MEM_Null      0x0001   /* Value is NULL */
sl@0
   146
#define MEM_Str       0x0002   /* Value is a string */
sl@0
   147
#define MEM_Int       0x0004   /* Value is an integer */
sl@0
   148
#define MEM_Real      0x0008   /* Value is a real number */
sl@0
   149
#define MEM_Blob      0x0010   /* Value is a BLOB */
sl@0
   150
sl@0
   151
#define MemSetTypeFlag(p, f) \
sl@0
   152
  ((p)->flags = ((p)->flags&~(MEM_Int|MEM_Real|MEM_Null|MEM_Blob|MEM_Str))|f)
sl@0
   153
sl@0
   154
/* Whenever Mem contains a valid string or blob representation, one of
sl@0
   155
** the following flags must be set to determine the memory management
sl@0
   156
** policy for Mem.z.  The MEM_Term flag tells us whether or not the
sl@0
   157
** string is \000 or \u0000 terminated
sl@0
   158
*/
sl@0
   159
#define MEM_Term      0x0020   /* String rep is nul terminated */
sl@0
   160
#define MEM_Dyn       0x0040   /* Need to call sqliteFree() on Mem.z */
sl@0
   161
#define MEM_Static    0x0080   /* Mem.z points to a static string */
sl@0
   162
#define MEM_Ephem     0x0100   /* Mem.z points to an ephemeral string */
sl@0
   163
#define MEM_Agg       0x0400   /* Mem.z points to an agg function context */
sl@0
   164
#define MEM_Zero      0x0800   /* Mem.i contains count of 0s appended to blob */
sl@0
   165
sl@0
   166
#ifdef SQLITE_OMIT_INCRBLOB
sl@0
   167
  #undef MEM_Zero
sl@0
   168
  #define MEM_Zero 0x0000
sl@0
   169
#endif
sl@0
   170
sl@0
   171
sl@0
   172
/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
sl@0
   173
** additional information about auxiliary information bound to arguments
sl@0
   174
** of the function.  This is used to implement the sqlite3_get_auxdata()
sl@0
   175
** and sqlite3_set_auxdata() APIs.  The "auxdata" is some auxiliary data
sl@0
   176
** that can be associated with a constant argument to a function.  This
sl@0
   177
** allows functions such as "regexp" to compile their constant regular
sl@0
   178
** expression argument once and reused the compiled code for multiple
sl@0
   179
** invocations.
sl@0
   180
*/
sl@0
   181
struct VdbeFunc {
sl@0
   182
  FuncDef *pFunc;               /* The definition of the function */
sl@0
   183
  int nAux;                     /* Number of entries allocated for apAux[] */
sl@0
   184
  struct AuxData {
sl@0
   185
    void *pAux;                   /* Aux data for the i-th argument */
sl@0
   186
    void (*xDelete)(void *);      /* Destructor for the aux data */
sl@0
   187
  } apAux[1];                   /* One slot for each function argument */
sl@0
   188
};
sl@0
   189
sl@0
   190
/*
sl@0
   191
** The "context" argument for a installable function.  A pointer to an
sl@0
   192
** instance of this structure is the first argument to the routines used
sl@0
   193
** implement the SQL functions.
sl@0
   194
**
sl@0
   195
** There is a typedef for this structure in sqlite.h.  So all routines,
sl@0
   196
** even the public interface to SQLite, can use a pointer to this structure.
sl@0
   197
** But this file is the only place where the internal details of this
sl@0
   198
** structure are known.
sl@0
   199
**
sl@0
   200
** This structure is defined inside of vdbeInt.h because it uses substructures
sl@0
   201
** (Mem) which are only defined there.
sl@0
   202
*/
sl@0
   203
struct sqlite3_context {
sl@0
   204
  FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */
sl@0
   205
  VdbeFunc *pVdbeFunc;  /* Auxilary data, if created. */
sl@0
   206
  Mem s;                /* The return value is stored here */
sl@0
   207
  Mem *pMem;            /* Memory cell used to store aggregate context */
sl@0
   208
  int isError;          /* Error code returned by the function. */
sl@0
   209
  CollSeq *pColl;       /* Collating sequence */
sl@0
   210
};
sl@0
   211
sl@0
   212
/*
sl@0
   213
** A Set structure is used for quick testing to see if a value
sl@0
   214
** is part of a small set.  Sets are used to implement code like
sl@0
   215
** this:
sl@0
   216
**            x.y IN ('hi','hoo','hum')
sl@0
   217
*/
sl@0
   218
typedef struct Set Set;
sl@0
   219
struct Set {
sl@0
   220
  Hash hash;             /* A set is just a hash table */
sl@0
   221
  HashElem *prev;        /* Previously accessed hash elemen */
sl@0
   222
};
sl@0
   223
sl@0
   224
/*
sl@0
   225
** A FifoPage structure holds a single page of valves.  Pages are arranged
sl@0
   226
** in a list.
sl@0
   227
*/
sl@0
   228
typedef struct FifoPage FifoPage;
sl@0
   229
struct FifoPage {
sl@0
   230
  int nSlot;         /* Number of entries aSlot[] */
sl@0
   231
  int iWrite;        /* Push the next value into this entry in aSlot[] */
sl@0
   232
  int iRead;         /* Read the next value from this entry in aSlot[] */
sl@0
   233
  FifoPage *pNext;   /* Next page in the fifo */
sl@0
   234
  i64 aSlot[1];      /* One or more slots for rowid values */
sl@0
   235
};
sl@0
   236
sl@0
   237
/*
sl@0
   238
** The Fifo structure is typedef-ed in vdbeInt.h.  But the implementation
sl@0
   239
** of that structure is private to this file.
sl@0
   240
**
sl@0
   241
** The Fifo structure describes the entire fifo.  
sl@0
   242
*/
sl@0
   243
typedef struct Fifo Fifo;
sl@0
   244
struct Fifo {
sl@0
   245
  int nEntry;         /* Total number of entries */
sl@0
   246
  sqlite3 *db;        /* The associated database connection */
sl@0
   247
  FifoPage *pFirst;   /* First page on the list */
sl@0
   248
  FifoPage *pLast;    /* Last page on the list */
sl@0
   249
};
sl@0
   250
sl@0
   251
/*
sl@0
   252
** A Context stores the last insert rowid, the last statement change count,
sl@0
   253
** and the current statement change count (i.e. changes since last statement).
sl@0
   254
** The current keylist is also stored in the context.
sl@0
   255
** Elements of Context structure type make up the ContextStack, which is
sl@0
   256
** updated by the ContextPush and ContextPop opcodes (used by triggers).
sl@0
   257
** The context is pushed before executing a trigger a popped when the
sl@0
   258
** trigger finishes.
sl@0
   259
*/
sl@0
   260
typedef struct Context Context;
sl@0
   261
struct Context {
sl@0
   262
  i64 lastRowid;    /* Last insert rowid (sqlite3.lastRowid) */
sl@0
   263
  int nChange;      /* Statement changes (Vdbe.nChanges)     */
sl@0
   264
  Fifo sFifo;       /* Records that will participate in a DELETE or UPDATE */
sl@0
   265
};
sl@0
   266
sl@0
   267
/*
sl@0
   268
** An instance of the virtual machine.  This structure contains the complete
sl@0
   269
** state of the virtual machine.
sl@0
   270
**
sl@0
   271
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
sl@0
   272
** is really a pointer to an instance of this structure.
sl@0
   273
**
sl@0
   274
** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
sl@0
   275
** any virtual table method invocations made by the vdbe program. It is
sl@0
   276
** set to 2 for xDestroy method calls and 1 for all other methods. This
sl@0
   277
** variable is used for two purposes: to allow xDestroy methods to execute
sl@0
   278
** "DROP TABLE" statements and to prevent some nasty side effects of
sl@0
   279
** malloc failure when SQLite is invoked recursively by a virtual table 
sl@0
   280
** method function.
sl@0
   281
*/
sl@0
   282
struct Vdbe {
sl@0
   283
  sqlite3 *db;        /* The whole database */
sl@0
   284
  Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
sl@0
   285
  int nOp;            /* Number of instructions in the program */
sl@0
   286
  int nOpAlloc;       /* Number of slots allocated for aOp[] */
sl@0
   287
  Op *aOp;            /* Space to hold the virtual machine's program */
sl@0
   288
  int nLabel;         /* Number of labels used */
sl@0
   289
  int nLabelAlloc;    /* Number of slots allocated in aLabel[] */
sl@0
   290
  int *aLabel;        /* Space to hold the labels */
sl@0
   291
  Mem **apArg;        /* Arguments to currently executing user function */
sl@0
   292
  Mem *aColName;      /* Column names to return */
sl@0
   293
  int nCursor;        /* Number of slots in apCsr[] */
sl@0
   294
  Cursor **apCsr;     /* One element of this array for each open cursor */
sl@0
   295
  int nVar;           /* Number of entries in aVar[] */
sl@0
   296
  Mem *aVar;          /* Values for the OP_Variable opcode. */
sl@0
   297
  char **azVar;       /* Name of variables */
sl@0
   298
  int okVar;          /* True if azVar[] has been initialized */
sl@0
   299
  int magic;              /* Magic number for sanity checking */
sl@0
   300
  int nMem;               /* Number of memory locations currently allocated */
sl@0
   301
  Mem *aMem;              /* The memory locations */
sl@0
   302
  int nCallback;          /* Number of callbacks invoked so far */
sl@0
   303
  int cacheCtr;           /* Cursor row cache generation counter */
sl@0
   304
  Fifo sFifo;             /* A list of ROWIDs */
sl@0
   305
  int contextStackTop;    /* Index of top element in the context stack */
sl@0
   306
  int contextStackDepth;  /* The size of the "context" stack */
sl@0
   307
  Context *contextStack;  /* Stack used by opcodes ContextPush & ContextPop*/
sl@0
   308
  int pc;                 /* The program counter */
sl@0
   309
  int rc;                 /* Value to return */
sl@0
   310
  unsigned uniqueCnt;     /* Used by OP_MakeRecord when P2!=0 */
sl@0
   311
  int errorAction;        /* Recovery action to do in case of an error */
sl@0
   312
  int inTempTrans;        /* True if temp database is transactioned */
sl@0
   313
  int nResColumn;         /* Number of columns in one row of the result set */
sl@0
   314
  char **azResColumn;     /* Values for one row of result */ 
sl@0
   315
  char *zErrMsg;          /* Error message written here */
sl@0
   316
  Mem *pResultSet;        /* Pointer to an array of results */
sl@0
   317
  u8 explain;             /* True if EXPLAIN present on SQL command */
sl@0
   318
  u8 changeCntOn;         /* True to update the change-counter */
sl@0
   319
  u8 expired;             /* True if the VM needs to be recompiled */
sl@0
   320
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
sl@0
   321
  u8 inVtabMethod;        /* See comments above */
sl@0
   322
  int nChange;            /* Number of db changes made since last reset */
sl@0
   323
  i64 startTime;          /* Time when query started - used for profiling */
sl@0
   324
  int btreeMask;          /* Bitmask of db->aDb[] entries referenced */
sl@0
   325
  BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
sl@0
   326
  int aCounter[2];        /* Counters used by sqlite3_stmt_status() */
sl@0
   327
  int nSql;             /* Number of bytes in zSql */
sl@0
   328
  char *zSql;           /* Text of the SQL statement that generated this */
sl@0
   329
#ifdef SQLITE_DEBUG
sl@0
   330
  FILE *trace;          /* Write an execution trace here, if not NULL */
sl@0
   331
#endif
sl@0
   332
  int openedStatement;  /* True if this VM has opened a statement journal */
sl@0
   333
#ifdef SQLITE_SSE
sl@0
   334
  int fetchId;          /* Statement number used by sqlite3_fetch_statement */
sl@0
   335
  int lru;              /* Counter used for LRU cache replacement */
sl@0
   336
#endif
sl@0
   337
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
sl@0
   338
  Vdbe *pLruPrev;
sl@0
   339
  Vdbe *pLruNext;
sl@0
   340
#endif
sl@0
   341
};
sl@0
   342
sl@0
   343
/*
sl@0
   344
** The following are allowed values for Vdbe.magic
sl@0
   345
*/
sl@0
   346
#define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
sl@0
   347
#define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
sl@0
   348
#define VDBE_MAGIC_HALT     0x519c2973    /* VDBE has completed execution */
sl@0
   349
#define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */
sl@0
   350
sl@0
   351
/*
sl@0
   352
** Function prototypes
sl@0
   353
*/
sl@0
   354
void sqlite3VdbeFreeCursor(Vdbe *, Cursor*);
sl@0
   355
void sqliteVdbePopStack(Vdbe*,int);
sl@0
   356
int sqlite3VdbeCursorMoveto(Cursor*);
sl@0
   357
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
sl@0
   358
void sqlite3VdbePrintOp(FILE*, int, Op*);
sl@0
   359
#endif
sl@0
   360
int sqlite3VdbeSerialTypeLen(u32);
sl@0
   361
u32 sqlite3VdbeSerialType(Mem*, int);
sl@0
   362
int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
sl@0
   363
int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
sl@0
   364
void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
sl@0
   365
sl@0
   366
int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
sl@0
   367
int sqlite3VdbeIdxKeyCompare(Cursor*,UnpackedRecord*,int*);
sl@0
   368
int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
sl@0
   369
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
sl@0
   370
int sqlite3VdbeExec(Vdbe*);
sl@0
   371
int sqlite3VdbeList(Vdbe*);
sl@0
   372
int sqlite3VdbeHalt(Vdbe*);
sl@0
   373
int sqlite3VdbeChangeEncoding(Mem *, int);
sl@0
   374
int sqlite3VdbeMemTooBig(Mem*);
sl@0
   375
int sqlite3VdbeMemCopy(Mem*, const Mem*);
sl@0
   376
void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
sl@0
   377
void sqlite3VdbeMemMove(Mem*, Mem*);
sl@0
   378
int sqlite3VdbeMemNulTerminate(Mem*);
sl@0
   379
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
sl@0
   380
void sqlite3VdbeMemSetInt64(Mem*, i64);
sl@0
   381
void sqlite3VdbeMemSetDouble(Mem*, double);
sl@0
   382
void sqlite3VdbeMemSetNull(Mem*);
sl@0
   383
void sqlite3VdbeMemSetZeroBlob(Mem*,int);
sl@0
   384
int sqlite3VdbeMemMakeWriteable(Mem*);
sl@0
   385
int sqlite3VdbeMemStringify(Mem*, int);
sl@0
   386
i64 sqlite3VdbeIntValue(Mem*);
sl@0
   387
int sqlite3VdbeMemIntegerify(Mem*);
sl@0
   388
double sqlite3VdbeRealValue(Mem*);
sl@0
   389
void sqlite3VdbeIntegerAffinity(Mem*);
sl@0
   390
int sqlite3VdbeMemRealify(Mem*);
sl@0
   391
int sqlite3VdbeMemNumerify(Mem*);
sl@0
   392
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
sl@0
   393
void sqlite3VdbeMemRelease(Mem *p);
sl@0
   394
void sqlite3VdbeMemReleaseExternal(Mem *p);
sl@0
   395
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
sl@0
   396
const char *sqlite3OpcodeName(int);
sl@0
   397
int sqlite3VdbeOpcodeHasProperty(int, int);
sl@0
   398
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
sl@0
   399
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
sl@0
   400
int sqlite3VdbeReleaseBuffers(Vdbe *p);
sl@0
   401
#endif
sl@0
   402
sl@0
   403
#ifndef NDEBUG
sl@0
   404
  void sqlite3VdbeMemSanity(Mem*);
sl@0
   405
#endif
sl@0
   406
int sqlite3VdbeMemTranslate(Mem*, u8);
sl@0
   407
#ifdef SQLITE_DEBUG
sl@0
   408
  void sqlite3VdbePrintSql(Vdbe*);
sl@0
   409
  void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
sl@0
   410
#endif
sl@0
   411
int sqlite3VdbeMemHandleBom(Mem *pMem);
sl@0
   412
void sqlite3VdbeFifoInit(Fifo*, sqlite3*);
sl@0
   413
int sqlite3VdbeFifoPush(Fifo*, i64);
sl@0
   414
int sqlite3VdbeFifoPop(Fifo*, i64*);
sl@0
   415
void sqlite3VdbeFifoClear(Fifo*);
sl@0
   416
sl@0
   417
#ifndef SQLITE_OMIT_INCRBLOB
sl@0
   418
  int sqlite3VdbeMemExpandBlob(Mem *);
sl@0
   419
#else
sl@0
   420
  #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
sl@0
   421
#endif
sl@0
   422
sl@0
   423
#endif /* !defined(_VDBEINT_H_) */