sl@0
|
1 |
/*
|
sl@0
|
2 |
** 2001 September 15
|
sl@0
|
3 |
**
|
sl@0
|
4 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
5 |
** a legal notice, here is a blessing:
|
sl@0
|
6 |
**
|
sl@0
|
7 |
** May you do good and not evil.
|
sl@0
|
8 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
9 |
** May you share freely, never taking more than you give.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
*************************************************************************
|
sl@0
|
12 |
** Utility functions used throughout sqlite.
|
sl@0
|
13 |
**
|
sl@0
|
14 |
** This file contains functions for allocating memory, comparing
|
sl@0
|
15 |
** strings, and stuff like that.
|
sl@0
|
16 |
**
|
sl@0
|
17 |
** $Id: util.c,v 1.241 2008/07/28 19:34:54 drh Exp $
|
sl@0
|
18 |
*/
|
sl@0
|
19 |
#include "sqliteInt.h"
|
sl@0
|
20 |
#include <stdarg.h>
|
sl@0
|
21 |
#include <ctype.h>
|
sl@0
|
22 |
|
sl@0
|
23 |
|
sl@0
|
24 |
/*
|
sl@0
|
25 |
** Return true if the floating point value is Not a Number (NaN).
|
sl@0
|
26 |
*/
|
sl@0
|
27 |
int sqlite3IsNaN(double x){
|
sl@0
|
28 |
/* This NaN test sometimes fails if compiled on GCC with -ffast-math.
|
sl@0
|
29 |
** On the other hand, the use of -ffast-math comes with the following
|
sl@0
|
30 |
** warning:
|
sl@0
|
31 |
**
|
sl@0
|
32 |
** This option [-ffast-math] should never be turned on by any
|
sl@0
|
33 |
** -O option since it can result in incorrect output for programs
|
sl@0
|
34 |
** which depend on an exact implementation of IEEE or ISO
|
sl@0
|
35 |
** rules/specifications for math functions.
|
sl@0
|
36 |
**
|
sl@0
|
37 |
** Under MSVC, this NaN test may fail if compiled with a floating-
|
sl@0
|
38 |
** point precision mode other than /fp:precise. From the MSDN
|
sl@0
|
39 |
** documentation:
|
sl@0
|
40 |
**
|
sl@0
|
41 |
** The compiler [with /fp:precise] will properly handle comparisons
|
sl@0
|
42 |
** involving NaN. For example, x != x evaluates to true if x is NaN
|
sl@0
|
43 |
** ...
|
sl@0
|
44 |
*/
|
sl@0
|
45 |
#ifdef __FAST_MATH__
|
sl@0
|
46 |
# error SQLite will not work correctly with the -ffast-math option of GCC.
|
sl@0
|
47 |
#endif
|
sl@0
|
48 |
volatile double y = x;
|
sl@0
|
49 |
volatile double z = y;
|
sl@0
|
50 |
return y!=z;
|
sl@0
|
51 |
}
|
sl@0
|
52 |
|
sl@0
|
53 |
/*
|
sl@0
|
54 |
** Return the length of a string, except do not allow the string length
|
sl@0
|
55 |
** to exceed the SQLITE_LIMIT_LENGTH setting.
|
sl@0
|
56 |
*/
|
sl@0
|
57 |
int sqlite3Strlen(sqlite3 *db, const char *z){
|
sl@0
|
58 |
const char *z2 = z;
|
sl@0
|
59 |
int len;
|
sl@0
|
60 |
size_t x;
|
sl@0
|
61 |
while( *z2 ){ z2++; }
|
sl@0
|
62 |
x = z2 - z;
|
sl@0
|
63 |
len = 0x7fffffff & x;
|
sl@0
|
64 |
if( len!=x || len > db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
sl@0
|
65 |
return db->aLimit[SQLITE_LIMIT_LENGTH];
|
sl@0
|
66 |
}else{
|
sl@0
|
67 |
return len;
|
sl@0
|
68 |
}
|
sl@0
|
69 |
}
|
sl@0
|
70 |
|
sl@0
|
71 |
/*
|
sl@0
|
72 |
** Set the most recent error code and error string for the sqlite
|
sl@0
|
73 |
** handle "db". The error code is set to "err_code".
|
sl@0
|
74 |
**
|
sl@0
|
75 |
** If it is not NULL, string zFormat specifies the format of the
|
sl@0
|
76 |
** error string in the style of the printf functions: The following
|
sl@0
|
77 |
** format characters are allowed:
|
sl@0
|
78 |
**
|
sl@0
|
79 |
** %s Insert a string
|
sl@0
|
80 |
** %z A string that should be freed after use
|
sl@0
|
81 |
** %d Insert an integer
|
sl@0
|
82 |
** %T Insert a token
|
sl@0
|
83 |
** %S Insert the first element of a SrcList
|
sl@0
|
84 |
**
|
sl@0
|
85 |
** zFormat and any string tokens that follow it are assumed to be
|
sl@0
|
86 |
** encoded in UTF-8.
|
sl@0
|
87 |
**
|
sl@0
|
88 |
** To clear the most recent error for sqlite handle "db", sqlite3Error
|
sl@0
|
89 |
** should be called with err_code set to SQLITE_OK and zFormat set
|
sl@0
|
90 |
** to NULL.
|
sl@0
|
91 |
*/
|
sl@0
|
92 |
void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
|
sl@0
|
93 |
if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
|
sl@0
|
94 |
db->errCode = err_code;
|
sl@0
|
95 |
if( zFormat ){
|
sl@0
|
96 |
char *z;
|
sl@0
|
97 |
va_list ap;
|
sl@0
|
98 |
va_start(ap, zFormat);
|
sl@0
|
99 |
z = sqlite3VMPrintf(db, zFormat, ap);
|
sl@0
|
100 |
va_end(ap);
|
sl@0
|
101 |
sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
|
sl@0
|
102 |
}else{
|
sl@0
|
103 |
sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
|
sl@0
|
104 |
}
|
sl@0
|
105 |
}
|
sl@0
|
106 |
}
|
sl@0
|
107 |
|
sl@0
|
108 |
/*
|
sl@0
|
109 |
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
|
sl@0
|
110 |
** The following formatting characters are allowed:
|
sl@0
|
111 |
**
|
sl@0
|
112 |
** %s Insert a string
|
sl@0
|
113 |
** %z A string that should be freed after use
|
sl@0
|
114 |
** %d Insert an integer
|
sl@0
|
115 |
** %T Insert a token
|
sl@0
|
116 |
** %S Insert the first element of a SrcList
|
sl@0
|
117 |
**
|
sl@0
|
118 |
** This function should be used to report any error that occurs whilst
|
sl@0
|
119 |
** compiling an SQL statement (i.e. within sqlite3_prepare()). The
|
sl@0
|
120 |
** last thing the sqlite3_prepare() function does is copy the error
|
sl@0
|
121 |
** stored by this function into the database handle using sqlite3Error().
|
sl@0
|
122 |
** Function sqlite3Error() should be used during statement execution
|
sl@0
|
123 |
** (sqlite3_step() etc.).
|
sl@0
|
124 |
*/
|
sl@0
|
125 |
void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
|
sl@0
|
126 |
va_list ap;
|
sl@0
|
127 |
sqlite3 *db = pParse->db;
|
sl@0
|
128 |
pParse->nErr++;
|
sl@0
|
129 |
sqlite3DbFree(db, pParse->zErrMsg);
|
sl@0
|
130 |
va_start(ap, zFormat);
|
sl@0
|
131 |
pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap);
|
sl@0
|
132 |
va_end(ap);
|
sl@0
|
133 |
if( pParse->rc==SQLITE_OK ){
|
sl@0
|
134 |
pParse->rc = SQLITE_ERROR;
|
sl@0
|
135 |
}
|
sl@0
|
136 |
}
|
sl@0
|
137 |
|
sl@0
|
138 |
/*
|
sl@0
|
139 |
** Clear the error message in pParse, if any
|
sl@0
|
140 |
*/
|
sl@0
|
141 |
void sqlite3ErrorClear(Parse *pParse){
|
sl@0
|
142 |
sqlite3DbFree(pParse->db, pParse->zErrMsg);
|
sl@0
|
143 |
pParse->zErrMsg = 0;
|
sl@0
|
144 |
pParse->nErr = 0;
|
sl@0
|
145 |
}
|
sl@0
|
146 |
|
sl@0
|
147 |
/*
|
sl@0
|
148 |
** Convert an SQL-style quoted string into a normal string by removing
|
sl@0
|
149 |
** the quote characters. The conversion is done in-place. If the
|
sl@0
|
150 |
** input does not begin with a quote character, then this routine
|
sl@0
|
151 |
** is a no-op.
|
sl@0
|
152 |
**
|
sl@0
|
153 |
** 2002-Feb-14: This routine is extended to remove MS-Access style
|
sl@0
|
154 |
** brackets from around identifers. For example: "[a-b-c]" becomes
|
sl@0
|
155 |
** "a-b-c".
|
sl@0
|
156 |
*/
|
sl@0
|
157 |
void sqlite3Dequote(char *z){
|
sl@0
|
158 |
int quote;
|
sl@0
|
159 |
int i, j;
|
sl@0
|
160 |
if( z==0 ) return;
|
sl@0
|
161 |
quote = z[0];
|
sl@0
|
162 |
switch( quote ){
|
sl@0
|
163 |
case '\'': break;
|
sl@0
|
164 |
case '"': break;
|
sl@0
|
165 |
case '`': break; /* For MySQL compatibility */
|
sl@0
|
166 |
case '[': quote = ']'; break; /* For MS SqlServer compatibility */
|
sl@0
|
167 |
default: return;
|
sl@0
|
168 |
}
|
sl@0
|
169 |
for(i=1, j=0; z[i]; i++){
|
sl@0
|
170 |
if( z[i]==quote ){
|
sl@0
|
171 |
if( z[i+1]==quote ){
|
sl@0
|
172 |
z[j++] = quote;
|
sl@0
|
173 |
i++;
|
sl@0
|
174 |
}else{
|
sl@0
|
175 |
z[j++] = 0;
|
sl@0
|
176 |
break;
|
sl@0
|
177 |
}
|
sl@0
|
178 |
}else{
|
sl@0
|
179 |
z[j++] = z[i];
|
sl@0
|
180 |
}
|
sl@0
|
181 |
}
|
sl@0
|
182 |
}
|
sl@0
|
183 |
|
sl@0
|
184 |
/* Convenient short-hand */
|
sl@0
|
185 |
#define UpperToLower sqlite3UpperToLower
|
sl@0
|
186 |
|
sl@0
|
187 |
/*
|
sl@0
|
188 |
** Some systems have stricmp(). Others have strcasecmp(). Because
|
sl@0
|
189 |
** there is no consistency, we will define our own.
|
sl@0
|
190 |
*/
|
sl@0
|
191 |
int sqlite3StrICmp(const char *zLeft, const char *zRight){
|
sl@0
|
192 |
register unsigned char *a, *b;
|
sl@0
|
193 |
a = (unsigned char *)zLeft;
|
sl@0
|
194 |
b = (unsigned char *)zRight;
|
sl@0
|
195 |
while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
sl@0
|
196 |
return UpperToLower[*a] - UpperToLower[*b];
|
sl@0
|
197 |
}
|
sl@0
|
198 |
int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){
|
sl@0
|
199 |
register unsigned char *a, *b;
|
sl@0
|
200 |
a = (unsigned char *)zLeft;
|
sl@0
|
201 |
b = (unsigned char *)zRight;
|
sl@0
|
202 |
while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
sl@0
|
203 |
return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
|
sl@0
|
204 |
}
|
sl@0
|
205 |
|
sl@0
|
206 |
/*
|
sl@0
|
207 |
** Return TRUE if z is a pure numeric string. Return FALSE if the
|
sl@0
|
208 |
** string contains any character which is not part of a number. If
|
sl@0
|
209 |
** the string is numeric and contains the '.' character, set *realnum
|
sl@0
|
210 |
** to TRUE (otherwise FALSE).
|
sl@0
|
211 |
**
|
sl@0
|
212 |
** An empty string is considered non-numeric.
|
sl@0
|
213 |
*/
|
sl@0
|
214 |
int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
|
sl@0
|
215 |
int incr = (enc==SQLITE_UTF8?1:2);
|
sl@0
|
216 |
if( enc==SQLITE_UTF16BE ) z++;
|
sl@0
|
217 |
if( *z=='-' || *z=='+' ) z += incr;
|
sl@0
|
218 |
if( !isdigit(*(u8*)z) ){
|
sl@0
|
219 |
return 0;
|
sl@0
|
220 |
}
|
sl@0
|
221 |
z += incr;
|
sl@0
|
222 |
if( realnum ) *realnum = 0;
|
sl@0
|
223 |
while( isdigit(*(u8*)z) ){ z += incr; }
|
sl@0
|
224 |
if( *z=='.' ){
|
sl@0
|
225 |
z += incr;
|
sl@0
|
226 |
if( !isdigit(*(u8*)z) ) return 0;
|
sl@0
|
227 |
while( isdigit(*(u8*)z) ){ z += incr; }
|
sl@0
|
228 |
if( realnum ) *realnum = 1;
|
sl@0
|
229 |
}
|
sl@0
|
230 |
if( *z=='e' || *z=='E' ){
|
sl@0
|
231 |
z += incr;
|
sl@0
|
232 |
if( *z=='+' || *z=='-' ) z += incr;
|
sl@0
|
233 |
if( !isdigit(*(u8*)z) ) return 0;
|
sl@0
|
234 |
while( isdigit(*(u8*)z) ){ z += incr; }
|
sl@0
|
235 |
if( realnum ) *realnum = 1;
|
sl@0
|
236 |
}
|
sl@0
|
237 |
return *z==0;
|
sl@0
|
238 |
}
|
sl@0
|
239 |
|
sl@0
|
240 |
/*
|
sl@0
|
241 |
** The string z[] is an ascii representation of a real number.
|
sl@0
|
242 |
** Convert this string to a double.
|
sl@0
|
243 |
**
|
sl@0
|
244 |
** This routine assumes that z[] really is a valid number. If it
|
sl@0
|
245 |
** is not, the result is undefined.
|
sl@0
|
246 |
**
|
sl@0
|
247 |
** This routine is used instead of the library atof() function because
|
sl@0
|
248 |
** the library atof() might want to use "," as the decimal point instead
|
sl@0
|
249 |
** of "." depending on how locale is set. But that would cause problems
|
sl@0
|
250 |
** for SQL. So this routine always uses "." regardless of locale.
|
sl@0
|
251 |
*/
|
sl@0
|
252 |
int sqlite3AtoF(const char *z, double *pResult){
|
sl@0
|
253 |
#ifndef SQLITE_OMIT_FLOATING_POINT
|
sl@0
|
254 |
int sign = 1;
|
sl@0
|
255 |
const char *zBegin = z;
|
sl@0
|
256 |
LONGDOUBLE_TYPE v1 = 0.0;
|
sl@0
|
257 |
int nSignificant = 0;
|
sl@0
|
258 |
while( isspace(*(u8*)z) ) z++;
|
sl@0
|
259 |
if( *z=='-' ){
|
sl@0
|
260 |
sign = -1;
|
sl@0
|
261 |
z++;
|
sl@0
|
262 |
}else if( *z=='+' ){
|
sl@0
|
263 |
z++;
|
sl@0
|
264 |
}
|
sl@0
|
265 |
while( z[0]=='0' ){
|
sl@0
|
266 |
z++;
|
sl@0
|
267 |
}
|
sl@0
|
268 |
while( isdigit(*(u8*)z) ){
|
sl@0
|
269 |
v1 = v1*10.0 + (*z - '0');
|
sl@0
|
270 |
z++;
|
sl@0
|
271 |
nSignificant++;
|
sl@0
|
272 |
}
|
sl@0
|
273 |
if( *z=='.' ){
|
sl@0
|
274 |
LONGDOUBLE_TYPE divisor = 1.0;
|
sl@0
|
275 |
z++;
|
sl@0
|
276 |
if( nSignificant==0 ){
|
sl@0
|
277 |
while( z[0]=='0' ){
|
sl@0
|
278 |
divisor *= 10.0;
|
sl@0
|
279 |
z++;
|
sl@0
|
280 |
}
|
sl@0
|
281 |
}
|
sl@0
|
282 |
while( isdigit(*(u8*)z) ){
|
sl@0
|
283 |
if( nSignificant<18 ){
|
sl@0
|
284 |
v1 = v1*10.0 + (*z - '0');
|
sl@0
|
285 |
divisor *= 10.0;
|
sl@0
|
286 |
nSignificant++;
|
sl@0
|
287 |
}
|
sl@0
|
288 |
z++;
|
sl@0
|
289 |
}
|
sl@0
|
290 |
v1 /= divisor;
|
sl@0
|
291 |
}
|
sl@0
|
292 |
if( *z=='e' || *z=='E' ){
|
sl@0
|
293 |
int esign = 1;
|
sl@0
|
294 |
int eval = 0;
|
sl@0
|
295 |
LONGDOUBLE_TYPE scale = 1.0;
|
sl@0
|
296 |
z++;
|
sl@0
|
297 |
if( *z=='-' ){
|
sl@0
|
298 |
esign = -1;
|
sl@0
|
299 |
z++;
|
sl@0
|
300 |
}else if( *z=='+' ){
|
sl@0
|
301 |
z++;
|
sl@0
|
302 |
}
|
sl@0
|
303 |
while( isdigit(*(u8*)z) ){
|
sl@0
|
304 |
eval = eval*10 + *z - '0';
|
sl@0
|
305 |
z++;
|
sl@0
|
306 |
}
|
sl@0
|
307 |
while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
|
sl@0
|
308 |
while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
|
sl@0
|
309 |
while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
|
sl@0
|
310 |
while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
|
sl@0
|
311 |
if( esign<0 ){
|
sl@0
|
312 |
v1 /= scale;
|
sl@0
|
313 |
}else{
|
sl@0
|
314 |
v1 *= scale;
|
sl@0
|
315 |
}
|
sl@0
|
316 |
}
|
sl@0
|
317 |
*pResult = sign<0 ? -v1 : v1;
|
sl@0
|
318 |
return z - zBegin;
|
sl@0
|
319 |
#else
|
sl@0
|
320 |
return sqlite3Atoi64(z, pResult);
|
sl@0
|
321 |
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
sl@0
|
322 |
}
|
sl@0
|
323 |
|
sl@0
|
324 |
/*
|
sl@0
|
325 |
** Compare the 19-character string zNum against the text representation
|
sl@0
|
326 |
** value 2^63: 9223372036854775808. Return negative, zero, or positive
|
sl@0
|
327 |
** if zNum is less than, equal to, or greater than the string.
|
sl@0
|
328 |
**
|
sl@0
|
329 |
** Unlike memcmp() this routine is guaranteed to return the difference
|
sl@0
|
330 |
** in the values of the last digit if the only difference is in the
|
sl@0
|
331 |
** last digit. So, for example,
|
sl@0
|
332 |
**
|
sl@0
|
333 |
** compare2pow63("9223372036854775800")
|
sl@0
|
334 |
**
|
sl@0
|
335 |
** will return -8.
|
sl@0
|
336 |
*/
|
sl@0
|
337 |
static int compare2pow63(const char *zNum){
|
sl@0
|
338 |
int c;
|
sl@0
|
339 |
c = memcmp(zNum,"922337203685477580",18);
|
sl@0
|
340 |
if( c==0 ){
|
sl@0
|
341 |
c = zNum[18] - '8';
|
sl@0
|
342 |
}
|
sl@0
|
343 |
return c;
|
sl@0
|
344 |
}
|
sl@0
|
345 |
|
sl@0
|
346 |
|
sl@0
|
347 |
/*
|
sl@0
|
348 |
** Return TRUE if zNum is a 64-bit signed integer and write
|
sl@0
|
349 |
** the value of the integer into *pNum. If zNum is not an integer
|
sl@0
|
350 |
** or is an integer that is too large to be expressed with 64 bits,
|
sl@0
|
351 |
** then return false.
|
sl@0
|
352 |
**
|
sl@0
|
353 |
** When this routine was originally written it dealt with only
|
sl@0
|
354 |
** 32-bit numbers. At that time, it was much faster than the
|
sl@0
|
355 |
** atoi() library routine in RedHat 7.2.
|
sl@0
|
356 |
*/
|
sl@0
|
357 |
int sqlite3Atoi64(const char *zNum, i64 *pNum){
|
sl@0
|
358 |
i64 v = 0;
|
sl@0
|
359 |
int neg;
|
sl@0
|
360 |
int i, c;
|
sl@0
|
361 |
const char *zStart;
|
sl@0
|
362 |
while( isspace(*(u8*)zNum) ) zNum++;
|
sl@0
|
363 |
if( *zNum=='-' ){
|
sl@0
|
364 |
neg = 1;
|
sl@0
|
365 |
zNum++;
|
sl@0
|
366 |
}else if( *zNum=='+' ){
|
sl@0
|
367 |
neg = 0;
|
sl@0
|
368 |
zNum++;
|
sl@0
|
369 |
}else{
|
sl@0
|
370 |
neg = 0;
|
sl@0
|
371 |
}
|
sl@0
|
372 |
zStart = zNum;
|
sl@0
|
373 |
while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
|
sl@0
|
374 |
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
|
sl@0
|
375 |
v = v*10 + c - '0';
|
sl@0
|
376 |
}
|
sl@0
|
377 |
*pNum = neg ? -v : v;
|
sl@0
|
378 |
if( c!=0 || (i==0 && zStart==zNum) || i>19 ){
|
sl@0
|
379 |
/* zNum is empty or contains non-numeric text or is longer
|
sl@0
|
380 |
** than 19 digits (thus guaranting that it is too large) */
|
sl@0
|
381 |
return 0;
|
sl@0
|
382 |
}else if( i<19 ){
|
sl@0
|
383 |
/* Less than 19 digits, so we know that it fits in 64 bits */
|
sl@0
|
384 |
return 1;
|
sl@0
|
385 |
}else{
|
sl@0
|
386 |
/* 19-digit numbers must be no larger than 9223372036854775807 if positive
|
sl@0
|
387 |
** or 9223372036854775808 if negative. Note that 9223372036854665808
|
sl@0
|
388 |
** is 2^63. */
|
sl@0
|
389 |
return compare2pow63(zNum)<neg;
|
sl@0
|
390 |
}
|
sl@0
|
391 |
}
|
sl@0
|
392 |
|
sl@0
|
393 |
/*
|
sl@0
|
394 |
** The string zNum represents an integer. There might be some other
|
sl@0
|
395 |
** information following the integer too, but that part is ignored.
|
sl@0
|
396 |
** If the integer that the prefix of zNum represents will fit in a
|
sl@0
|
397 |
** 64-bit signed integer, return TRUE. Otherwise return FALSE.
|
sl@0
|
398 |
**
|
sl@0
|
399 |
** This routine returns FALSE for the string -9223372036854775808 even that
|
sl@0
|
400 |
** that number will, in theory fit in a 64-bit integer. Positive
|
sl@0
|
401 |
** 9223373036854775808 will not fit in 64 bits. So it seems safer to return
|
sl@0
|
402 |
** false.
|
sl@0
|
403 |
*/
|
sl@0
|
404 |
int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
|
sl@0
|
405 |
int i, c;
|
sl@0
|
406 |
int neg = 0;
|
sl@0
|
407 |
if( *zNum=='-' ){
|
sl@0
|
408 |
neg = 1;
|
sl@0
|
409 |
zNum++;
|
sl@0
|
410 |
}else if( *zNum=='+' ){
|
sl@0
|
411 |
zNum++;
|
sl@0
|
412 |
}
|
sl@0
|
413 |
if( negFlag ) neg = 1-neg;
|
sl@0
|
414 |
while( *zNum=='0' ){
|
sl@0
|
415 |
zNum++; /* Skip leading zeros. Ticket #2454 */
|
sl@0
|
416 |
}
|
sl@0
|
417 |
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
|
sl@0
|
418 |
if( i<19 ){
|
sl@0
|
419 |
/* Guaranteed to fit if less than 19 digits */
|
sl@0
|
420 |
return 1;
|
sl@0
|
421 |
}else if( i>19 ){
|
sl@0
|
422 |
/* Guaranteed to be too big if greater than 19 digits */
|
sl@0
|
423 |
return 0;
|
sl@0
|
424 |
}else{
|
sl@0
|
425 |
/* Compare against 2^63. */
|
sl@0
|
426 |
return compare2pow63(zNum)<neg;
|
sl@0
|
427 |
}
|
sl@0
|
428 |
}
|
sl@0
|
429 |
|
sl@0
|
430 |
/*
|
sl@0
|
431 |
** If zNum represents an integer that will fit in 32-bits, then set
|
sl@0
|
432 |
** *pValue to that integer and return true. Otherwise return false.
|
sl@0
|
433 |
**
|
sl@0
|
434 |
** Any non-numeric characters that following zNum are ignored.
|
sl@0
|
435 |
** This is different from sqlite3Atoi64() which requires the
|
sl@0
|
436 |
** input number to be zero-terminated.
|
sl@0
|
437 |
*/
|
sl@0
|
438 |
int sqlite3GetInt32(const char *zNum, int *pValue){
|
sl@0
|
439 |
sqlite_int64 v = 0;
|
sl@0
|
440 |
int i, c;
|
sl@0
|
441 |
int neg = 0;
|
sl@0
|
442 |
if( zNum[0]=='-' ){
|
sl@0
|
443 |
neg = 1;
|
sl@0
|
444 |
zNum++;
|
sl@0
|
445 |
}else if( zNum[0]=='+' ){
|
sl@0
|
446 |
zNum++;
|
sl@0
|
447 |
}
|
sl@0
|
448 |
while( zNum[0]=='0' ) zNum++;
|
sl@0
|
449 |
for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
|
sl@0
|
450 |
v = v*10 + c;
|
sl@0
|
451 |
}
|
sl@0
|
452 |
|
sl@0
|
453 |
/* The longest decimal representation of a 32 bit integer is 10 digits:
|
sl@0
|
454 |
**
|
sl@0
|
455 |
** 1234567890
|
sl@0
|
456 |
** 2^31 -> 2147483648
|
sl@0
|
457 |
*/
|
sl@0
|
458 |
if( i>10 ){
|
sl@0
|
459 |
return 0;
|
sl@0
|
460 |
}
|
sl@0
|
461 |
if( v-neg>2147483647 ){
|
sl@0
|
462 |
return 0;
|
sl@0
|
463 |
}
|
sl@0
|
464 |
if( neg ){
|
sl@0
|
465 |
v = -v;
|
sl@0
|
466 |
}
|
sl@0
|
467 |
*pValue = (int)v;
|
sl@0
|
468 |
return 1;
|
sl@0
|
469 |
}
|
sl@0
|
470 |
|
sl@0
|
471 |
/*
|
sl@0
|
472 |
** The variable-length integer encoding is as follows:
|
sl@0
|
473 |
**
|
sl@0
|
474 |
** KEY:
|
sl@0
|
475 |
** A = 0xxxxxxx 7 bits of data and one flag bit
|
sl@0
|
476 |
** B = 1xxxxxxx 7 bits of data and one flag bit
|
sl@0
|
477 |
** C = xxxxxxxx 8 bits of data
|
sl@0
|
478 |
**
|
sl@0
|
479 |
** 7 bits - A
|
sl@0
|
480 |
** 14 bits - BA
|
sl@0
|
481 |
** 21 bits - BBA
|
sl@0
|
482 |
** 28 bits - BBBA
|
sl@0
|
483 |
** 35 bits - BBBBA
|
sl@0
|
484 |
** 42 bits - BBBBBA
|
sl@0
|
485 |
** 49 bits - BBBBBBA
|
sl@0
|
486 |
** 56 bits - BBBBBBBA
|
sl@0
|
487 |
** 64 bits - BBBBBBBBC
|
sl@0
|
488 |
*/
|
sl@0
|
489 |
|
sl@0
|
490 |
/*
|
sl@0
|
491 |
** Write a 64-bit variable-length integer to memory starting at p[0].
|
sl@0
|
492 |
** The length of data write will be between 1 and 9 bytes. The number
|
sl@0
|
493 |
** of bytes written is returned.
|
sl@0
|
494 |
**
|
sl@0
|
495 |
** A variable-length integer consists of the lower 7 bits of each byte
|
sl@0
|
496 |
** for all bytes that have the 8th bit set and one byte with the 8th
|
sl@0
|
497 |
** bit clear. Except, if we get to the 9th byte, it stores the full
|
sl@0
|
498 |
** 8 bits and is the last byte.
|
sl@0
|
499 |
*/
|
sl@0
|
500 |
int sqlite3PutVarint(unsigned char *p, u64 v){
|
sl@0
|
501 |
int i, j, n;
|
sl@0
|
502 |
u8 buf[10];
|
sl@0
|
503 |
if( v & (((u64)0xff000000)<<32) ){
|
sl@0
|
504 |
p[8] = v;
|
sl@0
|
505 |
v >>= 8;
|
sl@0
|
506 |
for(i=7; i>=0; i--){
|
sl@0
|
507 |
p[i] = (v & 0x7f) | 0x80;
|
sl@0
|
508 |
v >>= 7;
|
sl@0
|
509 |
}
|
sl@0
|
510 |
return 9;
|
sl@0
|
511 |
}
|
sl@0
|
512 |
n = 0;
|
sl@0
|
513 |
do{
|
sl@0
|
514 |
buf[n++] = (v & 0x7f) | 0x80;
|
sl@0
|
515 |
v >>= 7;
|
sl@0
|
516 |
}while( v!=0 );
|
sl@0
|
517 |
buf[0] &= 0x7f;
|
sl@0
|
518 |
assert( n<=9 );
|
sl@0
|
519 |
for(i=0, j=n-1; j>=0; j--, i++){
|
sl@0
|
520 |
p[i] = buf[j];
|
sl@0
|
521 |
}
|
sl@0
|
522 |
return n;
|
sl@0
|
523 |
}
|
sl@0
|
524 |
|
sl@0
|
525 |
/*
|
sl@0
|
526 |
** This routine is a faster version of sqlite3PutVarint() that only
|
sl@0
|
527 |
** works for 32-bit positive integers and which is optimized for
|
sl@0
|
528 |
** the common case of small integers. A MACRO version, putVarint32,
|
sl@0
|
529 |
** is provided which inlines the single-byte case. All code should use
|
sl@0
|
530 |
** the MACRO version as this function assumes the single-byte case has
|
sl@0
|
531 |
** already been handled.
|
sl@0
|
532 |
*/
|
sl@0
|
533 |
int sqlite3PutVarint32(unsigned char *p, u32 v){
|
sl@0
|
534 |
#ifndef putVarint32
|
sl@0
|
535 |
if( (v & ~0x7f)==0 ){
|
sl@0
|
536 |
p[0] = v;
|
sl@0
|
537 |
return 1;
|
sl@0
|
538 |
}
|
sl@0
|
539 |
#endif
|
sl@0
|
540 |
if( (v & ~0x3fff)==0 ){
|
sl@0
|
541 |
p[0] = (v>>7) | 0x80;
|
sl@0
|
542 |
p[1] = v & 0x7f;
|
sl@0
|
543 |
return 2;
|
sl@0
|
544 |
}
|
sl@0
|
545 |
return sqlite3PutVarint(p, v);
|
sl@0
|
546 |
}
|
sl@0
|
547 |
|
sl@0
|
548 |
/*
|
sl@0
|
549 |
** Bitmasks used by sqlite3GetVarint(). These precomputed constants
|
sl@0
|
550 |
** are defined here rather than simply putting the constant expressions
|
sl@0
|
551 |
** inline in order to work around bugs in the RVT compiler.
|
sl@0
|
552 |
**
|
sl@0
|
553 |
** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
|
sl@0
|
554 |
**
|
sl@0
|
555 |
** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
|
sl@0
|
556 |
*/
|
sl@0
|
557 |
#define SLOT_2_0 0x001fc07f
|
sl@0
|
558 |
#define SLOT_4_2_0 0xf01fc07f
|
sl@0
|
559 |
|
sl@0
|
560 |
|
sl@0
|
561 |
/*
|
sl@0
|
562 |
** Read a 64-bit variable-length integer from memory starting at p[0].
|
sl@0
|
563 |
** Return the number of bytes read. The value is stored in *v.
|
sl@0
|
564 |
*/
|
sl@0
|
565 |
int sqlite3GetVarint(const unsigned char *p, u64 *v){
|
sl@0
|
566 |
u32 a,b,s;
|
sl@0
|
567 |
|
sl@0
|
568 |
a = *p;
|
sl@0
|
569 |
/* a: p0 (unmasked) */
|
sl@0
|
570 |
if (!(a&0x80))
|
sl@0
|
571 |
{
|
sl@0
|
572 |
*v = a;
|
sl@0
|
573 |
return 1;
|
sl@0
|
574 |
}
|
sl@0
|
575 |
|
sl@0
|
576 |
p++;
|
sl@0
|
577 |
b = *p;
|
sl@0
|
578 |
/* b: p1 (unmasked) */
|
sl@0
|
579 |
if (!(b&0x80))
|
sl@0
|
580 |
{
|
sl@0
|
581 |
a &= 0x7f;
|
sl@0
|
582 |
a = a<<7;
|
sl@0
|
583 |
a |= b;
|
sl@0
|
584 |
*v = a;
|
sl@0
|
585 |
return 2;
|
sl@0
|
586 |
}
|
sl@0
|
587 |
|
sl@0
|
588 |
/* Verify that constants are precomputed correctly */
|
sl@0
|
589 |
assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
|
sl@0
|
590 |
assert( SLOT_4_2_0 == ((0xf<<28) | (0x7f<<14) | (0x7f)) );
|
sl@0
|
591 |
|
sl@0
|
592 |
p++;
|
sl@0
|
593 |
a = a<<14;
|
sl@0
|
594 |
a |= *p;
|
sl@0
|
595 |
/* a: p0<<14 | p2 (unmasked) */
|
sl@0
|
596 |
if (!(a&0x80))
|
sl@0
|
597 |
{
|
sl@0
|
598 |
a &= SLOT_2_0;
|
sl@0
|
599 |
b &= 0x7f;
|
sl@0
|
600 |
b = b<<7;
|
sl@0
|
601 |
a |= b;
|
sl@0
|
602 |
*v = a;
|
sl@0
|
603 |
return 3;
|
sl@0
|
604 |
}
|
sl@0
|
605 |
|
sl@0
|
606 |
/* CSE1 from below */
|
sl@0
|
607 |
a &= SLOT_2_0;
|
sl@0
|
608 |
p++;
|
sl@0
|
609 |
b = b<<14;
|
sl@0
|
610 |
b |= *p;
|
sl@0
|
611 |
/* b: p1<<14 | p3 (unmasked) */
|
sl@0
|
612 |
if (!(b&0x80))
|
sl@0
|
613 |
{
|
sl@0
|
614 |
b &= SLOT_2_0;
|
sl@0
|
615 |
/* moved CSE1 up */
|
sl@0
|
616 |
/* a &= (0x7f<<14)|(0x7f); */
|
sl@0
|
617 |
a = a<<7;
|
sl@0
|
618 |
a |= b;
|
sl@0
|
619 |
*v = a;
|
sl@0
|
620 |
return 4;
|
sl@0
|
621 |
}
|
sl@0
|
622 |
|
sl@0
|
623 |
/* a: p0<<14 | p2 (masked) */
|
sl@0
|
624 |
/* b: p1<<14 | p3 (unmasked) */
|
sl@0
|
625 |
/* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
sl@0
|
626 |
/* moved CSE1 up */
|
sl@0
|
627 |
/* a &= (0x7f<<14)|(0x7f); */
|
sl@0
|
628 |
b &= SLOT_2_0;
|
sl@0
|
629 |
s = a;
|
sl@0
|
630 |
/* s: p0<<14 | p2 (masked) */
|
sl@0
|
631 |
|
sl@0
|
632 |
p++;
|
sl@0
|
633 |
a = a<<14;
|
sl@0
|
634 |
a |= *p;
|
sl@0
|
635 |
/* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
sl@0
|
636 |
if (!(a&0x80))
|
sl@0
|
637 |
{
|
sl@0
|
638 |
/* we can skip these cause they were (effectively) done above in calc'ing s */
|
sl@0
|
639 |
/* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
sl@0
|
640 |
/* b &= (0x7f<<14)|(0x7f); */
|
sl@0
|
641 |
b = b<<7;
|
sl@0
|
642 |
a |= b;
|
sl@0
|
643 |
s = s>>18;
|
sl@0
|
644 |
*v = ((u64)s)<<32 | a;
|
sl@0
|
645 |
return 5;
|
sl@0
|
646 |
}
|
sl@0
|
647 |
|
sl@0
|
648 |
/* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
sl@0
|
649 |
s = s<<7;
|
sl@0
|
650 |
s |= b;
|
sl@0
|
651 |
/* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
sl@0
|
652 |
|
sl@0
|
653 |
p++;
|
sl@0
|
654 |
b = b<<14;
|
sl@0
|
655 |
b |= *p;
|
sl@0
|
656 |
/* b: p1<<28 | p3<<14 | p5 (unmasked) */
|
sl@0
|
657 |
if (!(b&0x80))
|
sl@0
|
658 |
{
|
sl@0
|
659 |
/* we can skip this cause it was (effectively) done above in calc'ing s */
|
sl@0
|
660 |
/* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
sl@0
|
661 |
a &= SLOT_2_0;
|
sl@0
|
662 |
a = a<<7;
|
sl@0
|
663 |
a |= b;
|
sl@0
|
664 |
s = s>>18;
|
sl@0
|
665 |
*v = ((u64)s)<<32 | a;
|
sl@0
|
666 |
return 6;
|
sl@0
|
667 |
}
|
sl@0
|
668 |
|
sl@0
|
669 |
p++;
|
sl@0
|
670 |
a = a<<14;
|
sl@0
|
671 |
a |= *p;
|
sl@0
|
672 |
/* a: p2<<28 | p4<<14 | p6 (unmasked) */
|
sl@0
|
673 |
if (!(a&0x80))
|
sl@0
|
674 |
{
|
sl@0
|
675 |
a &= SLOT_4_2_0;
|
sl@0
|
676 |
b &= SLOT_2_0;
|
sl@0
|
677 |
b = b<<7;
|
sl@0
|
678 |
a |= b;
|
sl@0
|
679 |
s = s>>11;
|
sl@0
|
680 |
*v = ((u64)s)<<32 | a;
|
sl@0
|
681 |
return 7;
|
sl@0
|
682 |
}
|
sl@0
|
683 |
|
sl@0
|
684 |
/* CSE2 from below */
|
sl@0
|
685 |
a &= SLOT_2_0;
|
sl@0
|
686 |
p++;
|
sl@0
|
687 |
b = b<<14;
|
sl@0
|
688 |
b |= *p;
|
sl@0
|
689 |
/* b: p3<<28 | p5<<14 | p7 (unmasked) */
|
sl@0
|
690 |
if (!(b&0x80))
|
sl@0
|
691 |
{
|
sl@0
|
692 |
b &= SLOT_4_2_0;
|
sl@0
|
693 |
/* moved CSE2 up */
|
sl@0
|
694 |
/* a &= (0x7f<<14)|(0x7f); */
|
sl@0
|
695 |
a = a<<7;
|
sl@0
|
696 |
a |= b;
|
sl@0
|
697 |
s = s>>4;
|
sl@0
|
698 |
*v = ((u64)s)<<32 | a;
|
sl@0
|
699 |
return 8;
|
sl@0
|
700 |
}
|
sl@0
|
701 |
|
sl@0
|
702 |
p++;
|
sl@0
|
703 |
a = a<<15;
|
sl@0
|
704 |
a |= *p;
|
sl@0
|
705 |
/* a: p4<<29 | p6<<15 | p8 (unmasked) */
|
sl@0
|
706 |
|
sl@0
|
707 |
/* moved CSE2 up */
|
sl@0
|
708 |
/* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
|
sl@0
|
709 |
b &= SLOT_2_0;
|
sl@0
|
710 |
b = b<<8;
|
sl@0
|
711 |
a |= b;
|
sl@0
|
712 |
|
sl@0
|
713 |
s = s<<4;
|
sl@0
|
714 |
b = p[-4];
|
sl@0
|
715 |
b &= 0x7f;
|
sl@0
|
716 |
b = b>>3;
|
sl@0
|
717 |
s |= b;
|
sl@0
|
718 |
|
sl@0
|
719 |
*v = ((u64)s)<<32 | a;
|
sl@0
|
720 |
|
sl@0
|
721 |
return 9;
|
sl@0
|
722 |
}
|
sl@0
|
723 |
|
sl@0
|
724 |
/*
|
sl@0
|
725 |
** Read a 32-bit variable-length integer from memory starting at p[0].
|
sl@0
|
726 |
** Return the number of bytes read. The value is stored in *v.
|
sl@0
|
727 |
** A MACRO version, getVarint32, is provided which inlines the
|
sl@0
|
728 |
** single-byte case. All code should use the MACRO version as
|
sl@0
|
729 |
** this function assumes the single-byte case has already been handled.
|
sl@0
|
730 |
*/
|
sl@0
|
731 |
int sqlite3GetVarint32(const unsigned char *p, u32 *v){
|
sl@0
|
732 |
u32 a,b;
|
sl@0
|
733 |
|
sl@0
|
734 |
a = *p;
|
sl@0
|
735 |
/* a: p0 (unmasked) */
|
sl@0
|
736 |
#ifndef getVarint32
|
sl@0
|
737 |
if (!(a&0x80))
|
sl@0
|
738 |
{
|
sl@0
|
739 |
*v = a;
|
sl@0
|
740 |
return 1;
|
sl@0
|
741 |
}
|
sl@0
|
742 |
#endif
|
sl@0
|
743 |
|
sl@0
|
744 |
p++;
|
sl@0
|
745 |
b = *p;
|
sl@0
|
746 |
/* b: p1 (unmasked) */
|
sl@0
|
747 |
if (!(b&0x80))
|
sl@0
|
748 |
{
|
sl@0
|
749 |
a &= 0x7f;
|
sl@0
|
750 |
a = a<<7;
|
sl@0
|
751 |
*v = a | b;
|
sl@0
|
752 |
return 2;
|
sl@0
|
753 |
}
|
sl@0
|
754 |
|
sl@0
|
755 |
p++;
|
sl@0
|
756 |
a = a<<14;
|
sl@0
|
757 |
a |= *p;
|
sl@0
|
758 |
/* a: p0<<14 | p2 (unmasked) */
|
sl@0
|
759 |
if (!(a&0x80))
|
sl@0
|
760 |
{
|
sl@0
|
761 |
a &= (0x7f<<14)|(0x7f);
|
sl@0
|
762 |
b &= 0x7f;
|
sl@0
|
763 |
b = b<<7;
|
sl@0
|
764 |
*v = a | b;
|
sl@0
|
765 |
return 3;
|
sl@0
|
766 |
}
|
sl@0
|
767 |
|
sl@0
|
768 |
p++;
|
sl@0
|
769 |
b = b<<14;
|
sl@0
|
770 |
b |= *p;
|
sl@0
|
771 |
/* b: p1<<14 | p3 (unmasked) */
|
sl@0
|
772 |
if (!(b&0x80))
|
sl@0
|
773 |
{
|
sl@0
|
774 |
b &= (0x7f<<14)|(0x7f);
|
sl@0
|
775 |
a &= (0x7f<<14)|(0x7f);
|
sl@0
|
776 |
a = a<<7;
|
sl@0
|
777 |
*v = a | b;
|
sl@0
|
778 |
return 4;
|
sl@0
|
779 |
}
|
sl@0
|
780 |
|
sl@0
|
781 |
p++;
|
sl@0
|
782 |
a = a<<14;
|
sl@0
|
783 |
a |= *p;
|
sl@0
|
784 |
/* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
sl@0
|
785 |
if (!(a&0x80))
|
sl@0
|
786 |
{
|
sl@0
|
787 |
a &= SLOT_4_2_0;
|
sl@0
|
788 |
b &= SLOT_4_2_0;
|
sl@0
|
789 |
b = b<<7;
|
sl@0
|
790 |
*v = a | b;
|
sl@0
|
791 |
return 5;
|
sl@0
|
792 |
}
|
sl@0
|
793 |
|
sl@0
|
794 |
/* We can only reach this point when reading a corrupt database
|
sl@0
|
795 |
** file. In that case we are not in any hurry. Use the (relatively
|
sl@0
|
796 |
** slow) general-purpose sqlite3GetVarint() routine to extract the
|
sl@0
|
797 |
** value. */
|
sl@0
|
798 |
{
|
sl@0
|
799 |
u64 v64;
|
sl@0
|
800 |
int n;
|
sl@0
|
801 |
|
sl@0
|
802 |
p -= 4;
|
sl@0
|
803 |
n = sqlite3GetVarint(p, &v64);
|
sl@0
|
804 |
assert( n>5 && n<=9 );
|
sl@0
|
805 |
*v = (u32)v64;
|
sl@0
|
806 |
return n;
|
sl@0
|
807 |
}
|
sl@0
|
808 |
}
|
sl@0
|
809 |
|
sl@0
|
810 |
/*
|
sl@0
|
811 |
** Return the number of bytes that will be needed to store the given
|
sl@0
|
812 |
** 64-bit integer.
|
sl@0
|
813 |
*/
|
sl@0
|
814 |
int sqlite3VarintLen(u64 v){
|
sl@0
|
815 |
int i = 0;
|
sl@0
|
816 |
do{
|
sl@0
|
817 |
i++;
|
sl@0
|
818 |
v >>= 7;
|
sl@0
|
819 |
}while( v!=0 && i<9 );
|
sl@0
|
820 |
return i;
|
sl@0
|
821 |
}
|
sl@0
|
822 |
|
sl@0
|
823 |
|
sl@0
|
824 |
/*
|
sl@0
|
825 |
** Read or write a four-byte big-endian integer value.
|
sl@0
|
826 |
*/
|
sl@0
|
827 |
u32 sqlite3Get4byte(const u8 *p){
|
sl@0
|
828 |
return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
|
sl@0
|
829 |
}
|
sl@0
|
830 |
void sqlite3Put4byte(unsigned char *p, u32 v){
|
sl@0
|
831 |
p[0] = v>>24;
|
sl@0
|
832 |
p[1] = v>>16;
|
sl@0
|
833 |
p[2] = v>>8;
|
sl@0
|
834 |
p[3] = v;
|
sl@0
|
835 |
}
|
sl@0
|
836 |
|
sl@0
|
837 |
|
sl@0
|
838 |
|
sl@0
|
839 |
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
sl@0
|
840 |
/*
|
sl@0
|
841 |
** Translate a single byte of Hex into an integer.
|
sl@0
|
842 |
** This routinen only works if h really is a valid hexadecimal
|
sl@0
|
843 |
** character: 0..9a..fA..F
|
sl@0
|
844 |
*/
|
sl@0
|
845 |
static int hexToInt(int h){
|
sl@0
|
846 |
assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
|
sl@0
|
847 |
#ifdef SQLITE_ASCII
|
sl@0
|
848 |
h += 9*(1&(h>>6));
|
sl@0
|
849 |
#endif
|
sl@0
|
850 |
#ifdef SQLITE_EBCDIC
|
sl@0
|
851 |
h += 9*(1&~(h>>4));
|
sl@0
|
852 |
#endif
|
sl@0
|
853 |
return h & 0xf;
|
sl@0
|
854 |
}
|
sl@0
|
855 |
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
sl@0
|
856 |
|
sl@0
|
857 |
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
sl@0
|
858 |
/*
|
sl@0
|
859 |
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
|
sl@0
|
860 |
** value. Return a pointer to its binary value. Space to hold the
|
sl@0
|
861 |
** binary value has been obtained from malloc and must be freed by
|
sl@0
|
862 |
** the calling routine.
|
sl@0
|
863 |
*/
|
sl@0
|
864 |
void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
|
sl@0
|
865 |
char *zBlob;
|
sl@0
|
866 |
int i;
|
sl@0
|
867 |
|
sl@0
|
868 |
zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
|
sl@0
|
869 |
n--;
|
sl@0
|
870 |
if( zBlob ){
|
sl@0
|
871 |
for(i=0; i<n; i+=2){
|
sl@0
|
872 |
zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
|
sl@0
|
873 |
}
|
sl@0
|
874 |
zBlob[i/2] = 0;
|
sl@0
|
875 |
}
|
sl@0
|
876 |
return zBlob;
|
sl@0
|
877 |
}
|
sl@0
|
878 |
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
sl@0
|
879 |
|
sl@0
|
880 |
|
sl@0
|
881 |
/*
|
sl@0
|
882 |
** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
|
sl@0
|
883 |
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
|
sl@0
|
884 |
** when this routine is called.
|
sl@0
|
885 |
**
|
sl@0
|
886 |
** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
|
sl@0
|
887 |
** value indicates that the database connection passed into the API is
|
sl@0
|
888 |
** open and is not being used by another thread. By changing the value
|
sl@0
|
889 |
** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
|
sl@0
|
890 |
** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
|
sl@0
|
891 |
** when the API exits.
|
sl@0
|
892 |
**
|
sl@0
|
893 |
** This routine is a attempt to detect if two threads use the
|
sl@0
|
894 |
** same sqlite* pointer at the same time. There is a race
|
sl@0
|
895 |
** condition so it is possible that the error is not detected.
|
sl@0
|
896 |
** But usually the problem will be seen. The result will be an
|
sl@0
|
897 |
** error which can be used to debug the application that is
|
sl@0
|
898 |
** using SQLite incorrectly.
|
sl@0
|
899 |
**
|
sl@0
|
900 |
** Ticket #202: If db->magic is not a valid open value, take care not
|
sl@0
|
901 |
** to modify the db structure at all. It could be that db is a stale
|
sl@0
|
902 |
** pointer. In other words, it could be that there has been a prior
|
sl@0
|
903 |
** call to sqlite3_close(db) and db has been deallocated. And we do
|
sl@0
|
904 |
** not want to write into deallocated memory.
|
sl@0
|
905 |
*/
|
sl@0
|
906 |
#ifdef SQLITE_DEBUG
|
sl@0
|
907 |
int sqlite3SafetyOn(sqlite3 *db){
|
sl@0
|
908 |
if( db->magic==SQLITE_MAGIC_OPEN ){
|
sl@0
|
909 |
db->magic = SQLITE_MAGIC_BUSY;
|
sl@0
|
910 |
assert( sqlite3_mutex_held(db->mutex) );
|
sl@0
|
911 |
return 0;
|
sl@0
|
912 |
}else if( db->magic==SQLITE_MAGIC_BUSY ){
|
sl@0
|
913 |
db->magic = SQLITE_MAGIC_ERROR;
|
sl@0
|
914 |
db->u1.isInterrupted = 1;
|
sl@0
|
915 |
}
|
sl@0
|
916 |
return 1;
|
sl@0
|
917 |
}
|
sl@0
|
918 |
#endif
|
sl@0
|
919 |
|
sl@0
|
920 |
/*
|
sl@0
|
921 |
** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
|
sl@0
|
922 |
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
|
sl@0
|
923 |
** when this routine is called.
|
sl@0
|
924 |
*/
|
sl@0
|
925 |
#ifdef SQLITE_DEBUG
|
sl@0
|
926 |
int sqlite3SafetyOff(sqlite3 *db){
|
sl@0
|
927 |
if( db->magic==SQLITE_MAGIC_BUSY ){
|
sl@0
|
928 |
db->magic = SQLITE_MAGIC_OPEN;
|
sl@0
|
929 |
assert( sqlite3_mutex_held(db->mutex) );
|
sl@0
|
930 |
return 0;
|
sl@0
|
931 |
}else{
|
sl@0
|
932 |
db->magic = SQLITE_MAGIC_ERROR;
|
sl@0
|
933 |
db->u1.isInterrupted = 1;
|
sl@0
|
934 |
return 1;
|
sl@0
|
935 |
}
|
sl@0
|
936 |
}
|
sl@0
|
937 |
#endif
|
sl@0
|
938 |
|
sl@0
|
939 |
/*
|
sl@0
|
940 |
** Check to make sure we have a valid db pointer. This test is not
|
sl@0
|
941 |
** foolproof but it does provide some measure of protection against
|
sl@0
|
942 |
** misuse of the interface such as passing in db pointers that are
|
sl@0
|
943 |
** NULL or which have been previously closed. If this routine returns
|
sl@0
|
944 |
** 1 it means that the db pointer is valid and 0 if it should not be
|
sl@0
|
945 |
** dereferenced for any reason. The calling function should invoke
|
sl@0
|
946 |
** SQLITE_MISUSE immediately.
|
sl@0
|
947 |
**
|
sl@0
|
948 |
** sqlite3SafetyCheckOk() requires that the db pointer be valid for
|
sl@0
|
949 |
** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
|
sl@0
|
950 |
** open properly and is not fit for general use but which can be
|
sl@0
|
951 |
** used as an argument to sqlite3_errmsg() or sqlite3_close().
|
sl@0
|
952 |
*/
|
sl@0
|
953 |
int sqlite3SafetyCheckOk(sqlite3 *db){
|
sl@0
|
954 |
int magic;
|
sl@0
|
955 |
if( db==0 ) return 0;
|
sl@0
|
956 |
magic = db->magic;
|
sl@0
|
957 |
if( magic!=SQLITE_MAGIC_OPEN &&
|
sl@0
|
958 |
magic!=SQLITE_MAGIC_BUSY ) return 0;
|
sl@0
|
959 |
return 1;
|
sl@0
|
960 |
}
|
sl@0
|
961 |
int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
|
sl@0
|
962 |
int magic;
|
sl@0
|
963 |
if( db==0 ) return 0;
|
sl@0
|
964 |
magic = db->magic;
|
sl@0
|
965 |
if( magic!=SQLITE_MAGIC_SICK &&
|
sl@0
|
966 |
magic!=SQLITE_MAGIC_OPEN &&
|
sl@0
|
967 |
magic!=SQLITE_MAGIC_BUSY ) return 0;
|
sl@0
|
968 |
return 1;
|
sl@0
|
969 |
}
|