os/persistentdata/persistentstorage/sql/SQLite/os_unix.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/*
sl@0
     2
** 2004 May 22
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
******************************************************************************
sl@0
    12
**
sl@0
    13
** This file contains code that is specific to Unix systems.
sl@0
    14
**
sl@0
    15
** $Id: os_unix.c,v 1.195 2008/07/30 17:28:04 drh Exp $
sl@0
    16
*/
sl@0
    17
#include "sqliteInt.h"
sl@0
    18
#if SQLITE_OS_UNIX              /* This file is used on unix only */
sl@0
    19
sl@0
    20
/*
sl@0
    21
** If SQLITE_ENABLE_LOCKING_STYLE is defined, then several different 
sl@0
    22
** locking implementations are provided:
sl@0
    23
**
sl@0
    24
**   * POSIX locking (the default),
sl@0
    25
**   * No locking,
sl@0
    26
**   * Dot-file locking,
sl@0
    27
**   * flock() locking,
sl@0
    28
**   * AFP locking (OSX only).
sl@0
    29
*/
sl@0
    30
/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
sl@0
    31
sl@0
    32
/*
sl@0
    33
** These #defines should enable >2GB file support on Posix if the
sl@0
    34
** underlying operating system supports it.  If the OS lacks
sl@0
    35
** large file support, these should be no-ops.
sl@0
    36
**
sl@0
    37
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
sl@0
    38
** on the compiler command line.  This is necessary if you are compiling
sl@0
    39
** on a recent machine (ex: RedHat 7.2) but you want your code to work
sl@0
    40
** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
sl@0
    41
** without this option, LFS is enable.  But LFS does not exist in the kernel
sl@0
    42
** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
sl@0
    43
** portability you should omit LFS.
sl@0
    44
*/
sl@0
    45
#ifndef SQLITE_DISABLE_LFS
sl@0
    46
# define _LARGE_FILE       1
sl@0
    47
# ifndef _FILE_OFFSET_BITS
sl@0
    48
#   define _FILE_OFFSET_BITS 64
sl@0
    49
# endif
sl@0
    50
# define _LARGEFILE_SOURCE 1
sl@0
    51
#endif
sl@0
    52
sl@0
    53
/*
sl@0
    54
** standard include files.
sl@0
    55
*/
sl@0
    56
#include <sys/types.h>
sl@0
    57
#include <sys/stat.h>
sl@0
    58
#include <fcntl.h>
sl@0
    59
#include <unistd.h>
sl@0
    60
#include <time.h>
sl@0
    61
#include <sys/time.h>
sl@0
    62
#include <errno.h>
sl@0
    63
sl@0
    64
#ifdef SQLITE_ENABLE_LOCKING_STYLE
sl@0
    65
#include <sys/ioctl.h>
sl@0
    66
#include <sys/param.h>
sl@0
    67
#include <sys/mount.h>
sl@0
    68
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
sl@0
    69
sl@0
    70
/*
sl@0
    71
** If we are to be thread-safe, include the pthreads header and define
sl@0
    72
** the SQLITE_UNIX_THREADS macro.
sl@0
    73
*/
sl@0
    74
#if SQLITE_THREADSAFE
sl@0
    75
# include <pthread.h>
sl@0
    76
# define SQLITE_UNIX_THREADS 1
sl@0
    77
#endif
sl@0
    78
sl@0
    79
/*
sl@0
    80
** Default permissions when creating a new file
sl@0
    81
*/
sl@0
    82
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
sl@0
    83
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
sl@0
    84
#endif
sl@0
    85
sl@0
    86
/*
sl@0
    87
** Maximum supported path-length.
sl@0
    88
*/
sl@0
    89
#define MAX_PATHNAME 512
sl@0
    90
sl@0
    91
sl@0
    92
/*
sl@0
    93
** The unixFile structure is subclass of sqlite3_file specific for the unix
sl@0
    94
** protability layer.
sl@0
    95
*/
sl@0
    96
typedef struct unixFile unixFile;
sl@0
    97
struct unixFile {
sl@0
    98
  sqlite3_io_methods const *pMethod;  /* Always the first entry */
sl@0
    99
#ifdef SQLITE_TEST
sl@0
   100
  /* In test mode, increase the size of this structure a bit so that 
sl@0
   101
  ** it is larger than the struct CrashFile defined in test6.c.
sl@0
   102
  */
sl@0
   103
  char aPadding[32];
sl@0
   104
#endif
sl@0
   105
  struct openCnt *pOpen;    /* Info about all open fd's on this inode */
sl@0
   106
  struct lockInfo *pLock;   /* Info about locks on this inode */
sl@0
   107
#ifdef SQLITE_ENABLE_LOCKING_STYLE
sl@0
   108
  void *lockingContext;     /* Locking style specific state */
sl@0
   109
#endif
sl@0
   110
  int h;                    /* The file descriptor */
sl@0
   111
  unsigned char locktype;   /* The type of lock held on this fd */
sl@0
   112
  int dirfd;                /* File descriptor for the directory */
sl@0
   113
#if SQLITE_THREADSAFE
sl@0
   114
  pthread_t tid;            /* The thread that "owns" this unixFile */
sl@0
   115
#endif
sl@0
   116
};
sl@0
   117
sl@0
   118
/*
sl@0
   119
** Include code that is common to all os_*.c files
sl@0
   120
*/
sl@0
   121
#include "os_common.h"
sl@0
   122
sl@0
   123
/*
sl@0
   124
** Define various macros that are missing from some systems.
sl@0
   125
*/
sl@0
   126
#ifndef O_LARGEFILE
sl@0
   127
# define O_LARGEFILE 0
sl@0
   128
#endif
sl@0
   129
#ifdef SQLITE_DISABLE_LFS
sl@0
   130
# undef O_LARGEFILE
sl@0
   131
# define O_LARGEFILE 0
sl@0
   132
#endif
sl@0
   133
#ifndef O_NOFOLLOW
sl@0
   134
# define O_NOFOLLOW 0
sl@0
   135
#endif
sl@0
   136
#ifndef O_BINARY
sl@0
   137
# define O_BINARY 0
sl@0
   138
#endif
sl@0
   139
sl@0
   140
/*
sl@0
   141
** The DJGPP compiler environment looks mostly like Unix, but it
sl@0
   142
** lacks the fcntl() system call.  So redefine fcntl() to be something
sl@0
   143
** that always succeeds.  This means that locking does not occur under
sl@0
   144
** DJGPP.  But it is DOS - what did you expect?
sl@0
   145
*/
sl@0
   146
#ifdef __DJGPP__
sl@0
   147
# define fcntl(A,B,C) 0
sl@0
   148
#endif
sl@0
   149
sl@0
   150
/*
sl@0
   151
** The threadid macro resolves to the thread-id or to 0.  Used for
sl@0
   152
** testing and debugging only.
sl@0
   153
*/
sl@0
   154
#if SQLITE_THREADSAFE
sl@0
   155
#define threadid pthread_self()
sl@0
   156
#else
sl@0
   157
#define threadid 0
sl@0
   158
#endif
sl@0
   159
sl@0
   160
/*
sl@0
   161
** Set or check the unixFile.tid field.  This field is set when an unixFile
sl@0
   162
** is first opened.  All subsequent uses of the unixFile verify that the
sl@0
   163
** same thread is operating on the unixFile.  Some operating systems do
sl@0
   164
** not allow locks to be overridden by other threads and that restriction
sl@0
   165
** means that sqlite3* database handles cannot be moved from one thread
sl@0
   166
** to another.  This logic makes sure a user does not try to do that
sl@0
   167
** by mistake.
sl@0
   168
**
sl@0
   169
** Version 3.3.1 (2006-01-15):  unixFile can be moved from one thread to
sl@0
   170
** another as long as we are running on a system that supports threads
sl@0
   171
** overriding each others locks (which now the most common behavior)
sl@0
   172
** or if no locks are held.  But the unixFile.pLock field needs to be
sl@0
   173
** recomputed because its key includes the thread-id.  See the 
sl@0
   174
** transferOwnership() function below for additional information
sl@0
   175
*/
sl@0
   176
#if SQLITE_THREADSAFE
sl@0
   177
# define SET_THREADID(X)   (X)->tid = pthread_self()
sl@0
   178
# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
sl@0
   179
                            !pthread_equal((X)->tid, pthread_self()))
sl@0
   180
#else
sl@0
   181
# define SET_THREADID(X)
sl@0
   182
# define CHECK_THREADID(X) 0
sl@0
   183
#endif
sl@0
   184
sl@0
   185
/*
sl@0
   186
** Here is the dirt on POSIX advisory locks:  ANSI STD 1003.1 (1996)
sl@0
   187
** section 6.5.2.2 lines 483 through 490 specify that when a process
sl@0
   188
** sets or clears a lock, that operation overrides any prior locks set
sl@0
   189
** by the same process.  It does not explicitly say so, but this implies
sl@0
   190
** that it overrides locks set by the same process using a different
sl@0
   191
** file descriptor.  Consider this test case:
sl@0
   192
**       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
sl@0
   193
**
sl@0
   194
** Suppose ./file1 and ./file2 are really the same file (because
sl@0
   195
** one is a hard or symbolic link to the other) then if you set
sl@0
   196
** an exclusive lock on fd1, then try to get an exclusive lock
sl@0
   197
** on fd2, it works.  I would have expected the second lock to
sl@0
   198
** fail since there was already a lock on the file due to fd1.
sl@0
   199
** But not so.  Since both locks came from the same process, the
sl@0
   200
** second overrides the first, even though they were on different
sl@0
   201
** file descriptors opened on different file names.
sl@0
   202
**
sl@0
   203
** Bummer.  If you ask me, this is broken.  Badly broken.  It means
sl@0
   204
** that we cannot use POSIX locks to synchronize file access among
sl@0
   205
** competing threads of the same process.  POSIX locks will work fine
sl@0
   206
** to synchronize access for threads in separate processes, but not
sl@0
   207
** threads within the same process.
sl@0
   208
**
sl@0
   209
** To work around the problem, SQLite has to manage file locks internally
sl@0
   210
** on its own.  Whenever a new database is opened, we have to find the
sl@0
   211
** specific inode of the database file (the inode is determined by the
sl@0
   212
** st_dev and st_ino fields of the stat structure that fstat() fills in)
sl@0
   213
** and check for locks already existing on that inode.  When locks are
sl@0
   214
** created or removed, we have to look at our own internal record of the
sl@0
   215
** locks to see if another thread has previously set a lock on that same
sl@0
   216
** inode.
sl@0
   217
**
sl@0
   218
** The sqlite3_file structure for POSIX is no longer just an integer file
sl@0
   219
** descriptor.  It is now a structure that holds the integer file
sl@0
   220
** descriptor and a pointer to a structure that describes the internal
sl@0
   221
** locks on the corresponding inode.  There is one locking structure
sl@0
   222
** per inode, so if the same inode is opened twice, both unixFile structures
sl@0
   223
** point to the same locking structure.  The locking structure keeps
sl@0
   224
** a reference count (so we will know when to delete it) and a "cnt"
sl@0
   225
** field that tells us its internal lock status.  cnt==0 means the
sl@0
   226
** file is unlocked.  cnt==-1 means the file has an exclusive lock.
sl@0
   227
** cnt>0 means there are cnt shared locks on the file.
sl@0
   228
**
sl@0
   229
** Any attempt to lock or unlock a file first checks the locking
sl@0
   230
** structure.  The fcntl() system call is only invoked to set a 
sl@0
   231
** POSIX lock if the internal lock structure transitions between
sl@0
   232
** a locked and an unlocked state.
sl@0
   233
**
sl@0
   234
** 2004-Jan-11:
sl@0
   235
** More recent discoveries about POSIX advisory locks.  (The more
sl@0
   236
** I discover, the more I realize the a POSIX advisory locks are
sl@0
   237
** an abomination.)
sl@0
   238
**
sl@0
   239
** If you close a file descriptor that points to a file that has locks,
sl@0
   240
** all locks on that file that are owned by the current process are
sl@0
   241
** released.  To work around this problem, each unixFile structure contains
sl@0
   242
** a pointer to an openCnt structure.  There is one openCnt structure
sl@0
   243
** per open inode, which means that multiple unixFile can point to a single
sl@0
   244
** openCnt.  When an attempt is made to close an unixFile, if there are
sl@0
   245
** other unixFile open on the same inode that are holding locks, the call
sl@0
   246
** to close() the file descriptor is deferred until all of the locks clear.
sl@0
   247
** The openCnt structure keeps a list of file descriptors that need to
sl@0
   248
** be closed and that list is walked (and cleared) when the last lock
sl@0
   249
** clears.
sl@0
   250
**
sl@0
   251
** First, under Linux threads, because each thread has a separate
sl@0
   252
** process ID, lock operations in one thread do not override locks
sl@0
   253
** to the same file in other threads.  Linux threads behave like
sl@0
   254
** separate processes in this respect.  But, if you close a file
sl@0
   255
** descriptor in linux threads, all locks are cleared, even locks
sl@0
   256
** on other threads and even though the other threads have different
sl@0
   257
** process IDs.  Linux threads is inconsistent in this respect.
sl@0
   258
** (I'm beginning to think that linux threads is an abomination too.)
sl@0
   259
** The consequence of this all is that the hash table for the lockInfo
sl@0
   260
** structure has to include the process id as part of its key because
sl@0
   261
** locks in different threads are treated as distinct.  But the 
sl@0
   262
** openCnt structure should not include the process id in its
sl@0
   263
** key because close() clears lock on all threads, not just the current
sl@0
   264
** thread.  Were it not for this goofiness in linux threads, we could
sl@0
   265
** combine the lockInfo and openCnt structures into a single structure.
sl@0
   266
**
sl@0
   267
** 2004-Jun-28:
sl@0
   268
** On some versions of linux, threads can override each others locks.
sl@0
   269
** On others not.  Sometimes you can change the behavior on the same
sl@0
   270
** system by setting the LD_ASSUME_KERNEL environment variable.  The
sl@0
   271
** POSIX standard is silent as to which behavior is correct, as far
sl@0
   272
** as I can tell, so other versions of unix might show the same
sl@0
   273
** inconsistency.  There is no little doubt in my mind that posix
sl@0
   274
** advisory locks and linux threads are profoundly broken.
sl@0
   275
**
sl@0
   276
** To work around the inconsistencies, we have to test at runtime 
sl@0
   277
** whether or not threads can override each others locks.  This test
sl@0
   278
** is run once, the first time any lock is attempted.  A static 
sl@0
   279
** variable is set to record the results of this test for future
sl@0
   280
** use.
sl@0
   281
*/
sl@0
   282
sl@0
   283
/*
sl@0
   284
** An instance of the following structure serves as the key used
sl@0
   285
** to locate a particular lockInfo structure given its inode.
sl@0
   286
**
sl@0
   287
** If threads cannot override each others locks, then we set the
sl@0
   288
** lockKey.tid field to the thread ID.  If threads can override
sl@0
   289
** each others locks then tid is always set to zero.  tid is omitted
sl@0
   290
** if we compile without threading support.
sl@0
   291
*/
sl@0
   292
struct lockKey {
sl@0
   293
  dev_t dev;       /* Device number */
sl@0
   294
  ino_t ino;       /* Inode number */
sl@0
   295
#if SQLITE_THREADSAFE
sl@0
   296
  pthread_t tid;   /* Thread ID or zero if threads can override each other */
sl@0
   297
#endif
sl@0
   298
};
sl@0
   299
sl@0
   300
/*
sl@0
   301
** An instance of the following structure is allocated for each open
sl@0
   302
** inode on each thread with a different process ID.  (Threads have
sl@0
   303
** different process IDs on linux, but not on most other unixes.)
sl@0
   304
**
sl@0
   305
** A single inode can have multiple file descriptors, so each unixFile
sl@0
   306
** structure contains a pointer to an instance of this object and this
sl@0
   307
** object keeps a count of the number of unixFile pointing to it.
sl@0
   308
*/
sl@0
   309
struct lockInfo {
sl@0
   310
  struct lockKey key;  /* The lookup key */
sl@0
   311
  int cnt;             /* Number of SHARED locks held */
sl@0
   312
  int locktype;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
sl@0
   313
  int nRef;            /* Number of pointers to this structure */
sl@0
   314
  struct lockInfo *pNext, *pPrev;   /* List of all lockInfo objects */
sl@0
   315
};
sl@0
   316
sl@0
   317
/*
sl@0
   318
** An instance of the following structure serves as the key used
sl@0
   319
** to locate a particular openCnt structure given its inode.  This
sl@0
   320
** is the same as the lockKey except that the thread ID is omitted.
sl@0
   321
*/
sl@0
   322
struct openKey {
sl@0
   323
  dev_t dev;   /* Device number */
sl@0
   324
  ino_t ino;   /* Inode number */
sl@0
   325
};
sl@0
   326
sl@0
   327
/*
sl@0
   328
** An instance of the following structure is allocated for each open
sl@0
   329
** inode.  This structure keeps track of the number of locks on that
sl@0
   330
** inode.  If a close is attempted against an inode that is holding
sl@0
   331
** locks, the close is deferred until all locks clear by adding the
sl@0
   332
** file descriptor to be closed to the pending list.
sl@0
   333
*/
sl@0
   334
struct openCnt {
sl@0
   335
  struct openKey key;   /* The lookup key */
sl@0
   336
  int nRef;             /* Number of pointers to this structure */
sl@0
   337
  int nLock;            /* Number of outstanding locks */
sl@0
   338
  int nPending;         /* Number of pending close() operations */
sl@0
   339
  int *aPending;        /* Malloced space holding fd's awaiting a close() */
sl@0
   340
  struct openCnt *pNext, *pPrev;   /* List of all openCnt objects */
sl@0
   341
};
sl@0
   342
sl@0
   343
/*
sl@0
   344
** List of all lockInfo and openCnt objects.  This used to be a hash
sl@0
   345
** table.  But the number of objects is rarely more than a dozen and
sl@0
   346
** never exceeds a few thousand.  And lookup is not on a critical
sl@0
   347
** path oo a simple linked list will suffice.
sl@0
   348
*/
sl@0
   349
static struct lockInfo *lockList = 0;
sl@0
   350
static struct openCnt *openList = 0;
sl@0
   351
sl@0
   352
/*
sl@0
   353
** The locking styles are associated with the different file locking
sl@0
   354
** capabilities supported by different file systems.  
sl@0
   355
**
sl@0
   356
** POSIX locking style fully supports shared and exclusive byte-range locks 
sl@0
   357
** AFP locking only supports exclusive byte-range locks
sl@0
   358
** FLOCK only supports a single file-global exclusive lock
sl@0
   359
** DOTLOCK isn't a true locking style, it refers to the use of a special
sl@0
   360
**   file named the same as the database file with a '.lock' extension, this
sl@0
   361
**   can be used on file systems that do not offer any reliable file locking
sl@0
   362
** NO locking means that no locking will be attempted, this is only used for
sl@0
   363
**   read-only file systems currently
sl@0
   364
** UNSUPPORTED means that no locking will be attempted, this is only used for
sl@0
   365
**   file systems that are known to be unsupported
sl@0
   366
*/
sl@0
   367
#define LOCKING_STYLE_POSIX        1
sl@0
   368
#define LOCKING_STYLE_NONE         2
sl@0
   369
#define LOCKING_STYLE_DOTFILE      3
sl@0
   370
#define LOCKING_STYLE_FLOCK        4
sl@0
   371
#define LOCKING_STYLE_AFP          5
sl@0
   372
sl@0
   373
/*
sl@0
   374
** Helper functions to obtain and relinquish the global mutex.
sl@0
   375
*/
sl@0
   376
static void enterMutex(){
sl@0
   377
  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
sl@0
   378
}
sl@0
   379
static void leaveMutex(){
sl@0
   380
  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
sl@0
   381
}
sl@0
   382
sl@0
   383
#if SQLITE_THREADSAFE
sl@0
   384
/*
sl@0
   385
** This variable records whether or not threads can override each others
sl@0
   386
** locks.
sl@0
   387
**
sl@0
   388
**    0:  No.  Threads cannot override each others locks.
sl@0
   389
**    1:  Yes.  Threads can override each others locks.
sl@0
   390
**   -1:  We don't know yet.
sl@0
   391
**
sl@0
   392
** On some systems, we know at compile-time if threads can override each
sl@0
   393
** others locks.  On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
sl@0
   394
** will be set appropriately.  On other systems, we have to check at
sl@0
   395
** runtime.  On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
sl@0
   396
** undefined.
sl@0
   397
**
sl@0
   398
** This variable normally has file scope only.  But during testing, we make
sl@0
   399
** it a global so that the test code can change its value in order to verify
sl@0
   400
** that the right stuff happens in either case.
sl@0
   401
*/
sl@0
   402
#ifndef SQLITE_THREAD_OVERRIDE_LOCK
sl@0
   403
# define SQLITE_THREAD_OVERRIDE_LOCK -1
sl@0
   404
#endif
sl@0
   405
#ifdef SQLITE_TEST
sl@0
   406
int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
sl@0
   407
#else
sl@0
   408
static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
sl@0
   409
#endif
sl@0
   410
sl@0
   411
/*
sl@0
   412
** This structure holds information passed into individual test
sl@0
   413
** threads by the testThreadLockingBehavior() routine.
sl@0
   414
*/
sl@0
   415
struct threadTestData {
sl@0
   416
  int fd;                /* File to be locked */
sl@0
   417
  struct flock lock;     /* The locking operation */
sl@0
   418
  int result;            /* Result of the locking operation */
sl@0
   419
};
sl@0
   420
sl@0
   421
#ifdef SQLITE_LOCK_TRACE
sl@0
   422
/*
sl@0
   423
** Print out information about all locking operations.
sl@0
   424
**
sl@0
   425
** This routine is used for troubleshooting locks on multithreaded
sl@0
   426
** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
sl@0
   427
** command-line option on the compiler.  This code is normally
sl@0
   428
** turned off.
sl@0
   429
*/
sl@0
   430
static int lockTrace(int fd, int op, struct flock *p){
sl@0
   431
  char *zOpName, *zType;
sl@0
   432
  int s;
sl@0
   433
  int savedErrno;
sl@0
   434
  if( op==F_GETLK ){
sl@0
   435
    zOpName = "GETLK";
sl@0
   436
  }else if( op==F_SETLK ){
sl@0
   437
    zOpName = "SETLK";
sl@0
   438
  }else{
sl@0
   439
    s = fcntl(fd, op, p);
sl@0
   440
    sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
sl@0
   441
    return s;
sl@0
   442
  }
sl@0
   443
  if( p->l_type==F_RDLCK ){
sl@0
   444
    zType = "RDLCK";
sl@0
   445
  }else if( p->l_type==F_WRLCK ){
sl@0
   446
    zType = "WRLCK";
sl@0
   447
  }else if( p->l_type==F_UNLCK ){
sl@0
   448
    zType = "UNLCK";
sl@0
   449
  }else{
sl@0
   450
    assert( 0 );
sl@0
   451
  }
sl@0
   452
  assert( p->l_whence==SEEK_SET );
sl@0
   453
  s = fcntl(fd, op, p);
sl@0
   454
  savedErrno = errno;
sl@0
   455
  sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
sl@0
   456
     threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
sl@0
   457
     (int)p->l_pid, s);
sl@0
   458
  if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
sl@0
   459
    struct flock l2;
sl@0
   460
    l2 = *p;
sl@0
   461
    fcntl(fd, F_GETLK, &l2);
sl@0
   462
    if( l2.l_type==F_RDLCK ){
sl@0
   463
      zType = "RDLCK";
sl@0
   464
    }else if( l2.l_type==F_WRLCK ){
sl@0
   465
      zType = "WRLCK";
sl@0
   466
    }else if( l2.l_type==F_UNLCK ){
sl@0
   467
      zType = "UNLCK";
sl@0
   468
    }else{
sl@0
   469
      assert( 0 );
sl@0
   470
    }
sl@0
   471
    sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
sl@0
   472
       zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
sl@0
   473
  }
sl@0
   474
  errno = savedErrno;
sl@0
   475
  return s;
sl@0
   476
}
sl@0
   477
#define fcntl lockTrace
sl@0
   478
#endif /* SQLITE_LOCK_TRACE */
sl@0
   479
sl@0
   480
/*
sl@0
   481
** The testThreadLockingBehavior() routine launches two separate
sl@0
   482
** threads on this routine.  This routine attempts to lock a file
sl@0
   483
** descriptor then returns.  The success or failure of that attempt
sl@0
   484
** allows the testThreadLockingBehavior() procedure to determine
sl@0
   485
** whether or not threads can override each others locks.
sl@0
   486
*/
sl@0
   487
static void *threadLockingTest(void *pArg){
sl@0
   488
  struct threadTestData *pData = (struct threadTestData*)pArg;
sl@0
   489
  pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
sl@0
   490
  return pArg;
sl@0
   491
}
sl@0
   492
sl@0
   493
/*
sl@0
   494
** This procedure attempts to determine whether or not threads
sl@0
   495
** can override each others locks then sets the 
sl@0
   496
** threadsOverrideEachOthersLocks variable appropriately.
sl@0
   497
*/
sl@0
   498
static void testThreadLockingBehavior(int fd_orig){
sl@0
   499
  int fd;
sl@0
   500
  struct threadTestData d[2];
sl@0
   501
  pthread_t t[2];
sl@0
   502
sl@0
   503
  fd = dup(fd_orig);
sl@0
   504
  if( fd<0 ) return;
sl@0
   505
  memset(d, 0, sizeof(d));
sl@0
   506
  d[0].fd = fd;
sl@0
   507
  d[0].lock.l_type = F_RDLCK;
sl@0
   508
  d[0].lock.l_len = 1;
sl@0
   509
  d[0].lock.l_start = 0;
sl@0
   510
  d[0].lock.l_whence = SEEK_SET;
sl@0
   511
  d[1] = d[0];
sl@0
   512
  d[1].lock.l_type = F_WRLCK;
sl@0
   513
  pthread_create(&t[0], 0, threadLockingTest, &d[0]);
sl@0
   514
  pthread_create(&t[1], 0, threadLockingTest, &d[1]);
sl@0
   515
  pthread_join(t[0], 0);
sl@0
   516
  pthread_join(t[1], 0);
sl@0
   517
  close(fd);
sl@0
   518
  threadsOverrideEachOthersLocks =  d[0].result==0 && d[1].result==0;
sl@0
   519
}
sl@0
   520
#endif /* SQLITE_THREADSAFE */
sl@0
   521
sl@0
   522
/*
sl@0
   523
** Release a lockInfo structure previously allocated by findLockInfo().
sl@0
   524
*/
sl@0
   525
static void releaseLockInfo(struct lockInfo *pLock){
sl@0
   526
  if( pLock ){
sl@0
   527
    pLock->nRef--;
sl@0
   528
    if( pLock->nRef==0 ){
sl@0
   529
      if( pLock->pPrev ){
sl@0
   530
        assert( pLock->pPrev->pNext==pLock );
sl@0
   531
        pLock->pPrev->pNext = pLock->pNext;
sl@0
   532
      }else{
sl@0
   533
        assert( lockList==pLock );
sl@0
   534
        lockList = pLock->pNext;
sl@0
   535
      }
sl@0
   536
      if( pLock->pNext ){
sl@0
   537
        assert( pLock->pNext->pPrev==pLock );
sl@0
   538
        pLock->pNext->pPrev = pLock->pPrev;
sl@0
   539
      }
sl@0
   540
      sqlite3_free(pLock);
sl@0
   541
    }
sl@0
   542
  }
sl@0
   543
}
sl@0
   544
sl@0
   545
/*
sl@0
   546
** Release a openCnt structure previously allocated by findLockInfo().
sl@0
   547
*/
sl@0
   548
static void releaseOpenCnt(struct openCnt *pOpen){
sl@0
   549
  if( pOpen ){
sl@0
   550
    pOpen->nRef--;
sl@0
   551
    if( pOpen->nRef==0 ){
sl@0
   552
      if( pOpen->pPrev ){
sl@0
   553
        assert( pOpen->pPrev->pNext==pOpen );
sl@0
   554
        pOpen->pPrev->pNext = pOpen->pNext;
sl@0
   555
      }else{
sl@0
   556
        assert( openList==pOpen );
sl@0
   557
        openList = pOpen->pNext;
sl@0
   558
      }
sl@0
   559
      if( pOpen->pNext ){
sl@0
   560
        assert( pOpen->pNext->pPrev==pOpen );
sl@0
   561
        pOpen->pNext->pPrev = pOpen->pPrev;
sl@0
   562
      }
sl@0
   563
      sqlite3_free(pOpen->aPending);
sl@0
   564
      sqlite3_free(pOpen);
sl@0
   565
    }
sl@0
   566
  }
sl@0
   567
}
sl@0
   568
sl@0
   569
#ifdef SQLITE_ENABLE_LOCKING_STYLE
sl@0
   570
/*
sl@0
   571
** Tests a byte-range locking query to see if byte range locks are 
sl@0
   572
** supported, if not we fall back to dotlockLockingStyle.
sl@0
   573
*/
sl@0
   574
static int testLockingStyle(int fd){
sl@0
   575
  struct flock lockInfo;
sl@0
   576
sl@0
   577
  /* Test byte-range lock using fcntl(). If the call succeeds, 
sl@0
   578
  ** assume that the file-system supports POSIX style locks. 
sl@0
   579
  */
sl@0
   580
  lockInfo.l_len = 1;
sl@0
   581
  lockInfo.l_start = 0;
sl@0
   582
  lockInfo.l_whence = SEEK_SET;
sl@0
   583
  lockInfo.l_type = F_RDLCK;
sl@0
   584
  if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
sl@0
   585
    return LOCKING_STYLE_POSIX;
sl@0
   586
  }
sl@0
   587
  
sl@0
   588
  /* Testing for flock() can give false positives.  So if if the above 
sl@0
   589
  ** test fails, then we fall back to using dot-file style locking.
sl@0
   590
  */  
sl@0
   591
  return LOCKING_STYLE_DOTFILE;
sl@0
   592
}
sl@0
   593
#endif
sl@0
   594
sl@0
   595
/* 
sl@0
   596
** If SQLITE_ENABLE_LOCKING_STYLE is defined, this function Examines the 
sl@0
   597
** f_fstypename entry in the statfs structure as returned by stat() for 
sl@0
   598
** the file system hosting the database file and selects  the appropriate
sl@0
   599
** locking style based on its value.  These values and assignments are 
sl@0
   600
** based on Darwin/OSX behavior and have not been thoroughly tested on 
sl@0
   601
** other systems.
sl@0
   602
**
sl@0
   603
** If SQLITE_ENABLE_LOCKING_STYLE is not defined, this function always
sl@0
   604
** returns LOCKING_STYLE_POSIX.
sl@0
   605
*/
sl@0
   606
static int detectLockingStyle(
sl@0
   607
  sqlite3_vfs *pVfs,
sl@0
   608
  const char *filePath, 
sl@0
   609
  int fd
sl@0
   610
){
sl@0
   611
#ifdef SQLITE_ENABLE_LOCKING_STYLE
sl@0
   612
  struct Mapping {
sl@0
   613
    const char *zFilesystem;
sl@0
   614
    int eLockingStyle;
sl@0
   615
  } aMap[] = {
sl@0
   616
    { "hfs",    LOCKING_STYLE_POSIX },
sl@0
   617
    { "ufs",    LOCKING_STYLE_POSIX },
sl@0
   618
    { "afpfs",  LOCKING_STYLE_AFP },
sl@0
   619
    { "smbfs",  LOCKING_STYLE_FLOCK },
sl@0
   620
    { "msdos",  LOCKING_STYLE_DOTFILE },
sl@0
   621
    { "webdav", LOCKING_STYLE_NONE },
sl@0
   622
    { 0, 0 }
sl@0
   623
  };
sl@0
   624
  int i;
sl@0
   625
  struct statfs fsInfo;
sl@0
   626
sl@0
   627
  if( !filePath ){
sl@0
   628
    return LOCKING_STYLE_NONE;
sl@0
   629
  }
sl@0
   630
  if( pVfs->pAppData ){
sl@0
   631
    return (int)pVfs->pAppData;
sl@0
   632
  }
sl@0
   633
sl@0
   634
  if( statfs(filePath, &fsInfo) != -1 ){
sl@0
   635
    if( fsInfo.f_flags & MNT_RDONLY ){
sl@0
   636
      return LOCKING_STYLE_NONE;
sl@0
   637
    }
sl@0
   638
    for(i=0; aMap[i].zFilesystem; i++){
sl@0
   639
      if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
sl@0
   640
        return aMap[i].eLockingStyle;
sl@0
   641
      }
sl@0
   642
    }
sl@0
   643
  }
sl@0
   644
sl@0
   645
  /* Default case. Handles, amongst others, "nfs". */
sl@0
   646
  return testLockingStyle(fd);  
sl@0
   647
#endif
sl@0
   648
  return LOCKING_STYLE_POSIX;
sl@0
   649
}
sl@0
   650
sl@0
   651
/*
sl@0
   652
** Given a file descriptor, locate lockInfo and openCnt structures that
sl@0
   653
** describes that file descriptor.  Create new ones if necessary.  The
sl@0
   654
** return values might be uninitialized if an error occurs.
sl@0
   655
**
sl@0
   656
** Return an appropriate error code.
sl@0
   657
*/
sl@0
   658
static int findLockInfo(
sl@0
   659
  int fd,                      /* The file descriptor used in the key */
sl@0
   660
  struct lockInfo **ppLock,    /* Return the lockInfo structure here */
sl@0
   661
  struct openCnt **ppOpen      /* Return the openCnt structure here */
sl@0
   662
){
sl@0
   663
  int rc;
sl@0
   664
  struct lockKey key1;
sl@0
   665
  struct openKey key2;
sl@0
   666
  struct stat statbuf;
sl@0
   667
  struct lockInfo *pLock;
sl@0
   668
  struct openCnt *pOpen;
sl@0
   669
  rc = fstat(fd, &statbuf);
sl@0
   670
  if( rc!=0 ){
sl@0
   671
#ifdef EOVERFLOW
sl@0
   672
    if( errno==EOVERFLOW ) return SQLITE_NOLFS;
sl@0
   673
#endif
sl@0
   674
    return SQLITE_IOERR;
sl@0
   675
  }
sl@0
   676
sl@0
   677
  /* On OS X on an msdos filesystem, the inode number is reported
sl@0
   678
  ** incorrectly for zero-size files.  See ticket #3260.  To work
sl@0
   679
  ** around this problem (we consider it a bug in OS X, not SQLite)
sl@0
   680
  ** we always increase the file size to 1 by writing a single byte
sl@0
   681
  ** prior to accessing the inode number.  The one byte written is
sl@0
   682
  ** an ASCII 'S' character which also happens to be the first byte
sl@0
   683
  ** in the header of every SQLite database.  In this way, if there
sl@0
   684
  ** is a race condition such that another thread has already populated
sl@0
   685
  ** the first page of the database, no damage is done.
sl@0
   686
  */
sl@0
   687
  if( statbuf.st_size==0 ){
sl@0
   688
    write(fd, "S", 1);
sl@0
   689
    rc = fstat(fd, &statbuf);
sl@0
   690
    if( rc!=0 ){
sl@0
   691
      return SQLITE_IOERR;
sl@0
   692
    }
sl@0
   693
  }
sl@0
   694
sl@0
   695
  memset(&key1, 0, sizeof(key1));
sl@0
   696
  key1.dev = statbuf.st_dev;
sl@0
   697
  key1.ino = statbuf.st_ino;
sl@0
   698
#if SQLITE_THREADSAFE
sl@0
   699
  if( threadsOverrideEachOthersLocks<0 ){
sl@0
   700
    testThreadLockingBehavior(fd);
sl@0
   701
  }
sl@0
   702
  key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
sl@0
   703
#endif
sl@0
   704
  memset(&key2, 0, sizeof(key2));
sl@0
   705
  key2.dev = statbuf.st_dev;
sl@0
   706
  key2.ino = statbuf.st_ino;
sl@0
   707
  pLock = lockList;
sl@0
   708
  while( pLock && memcmp(&key1, &pLock->key, sizeof(key1)) ){
sl@0
   709
    pLock = pLock->pNext;
sl@0
   710
  }
sl@0
   711
  if( pLock==0 ){
sl@0
   712
    pLock = sqlite3_malloc( sizeof(*pLock) );
sl@0
   713
    if( pLock==0 ){
sl@0
   714
      rc = SQLITE_NOMEM;
sl@0
   715
      goto exit_findlockinfo;
sl@0
   716
    }
sl@0
   717
    pLock->key = key1;
sl@0
   718
    pLock->nRef = 1;
sl@0
   719
    pLock->cnt = 0;
sl@0
   720
    pLock->locktype = 0;
sl@0
   721
    pLock->pNext = lockList;
sl@0
   722
    pLock->pPrev = 0;
sl@0
   723
    if( lockList ) lockList->pPrev = pLock;
sl@0
   724
    lockList = pLock;
sl@0
   725
  }else{
sl@0
   726
    pLock->nRef++;
sl@0
   727
  }
sl@0
   728
  *ppLock = pLock;
sl@0
   729
  if( ppOpen!=0 ){
sl@0
   730
    pOpen = openList;
sl@0
   731
    while( pOpen && memcmp(&key2, &pOpen->key, sizeof(key2)) ){
sl@0
   732
      pOpen = pOpen->pNext;
sl@0
   733
    }
sl@0
   734
    if( pOpen==0 ){
sl@0
   735
      pOpen = sqlite3_malloc( sizeof(*pOpen) );
sl@0
   736
      if( pOpen==0 ){
sl@0
   737
        releaseLockInfo(pLock);
sl@0
   738
        rc = SQLITE_NOMEM;
sl@0
   739
        goto exit_findlockinfo;
sl@0
   740
      }
sl@0
   741
      pOpen->key = key2;
sl@0
   742
      pOpen->nRef = 1;
sl@0
   743
      pOpen->nLock = 0;
sl@0
   744
      pOpen->nPending = 0;
sl@0
   745
      pOpen->aPending = 0;
sl@0
   746
      pOpen->pNext = openList;
sl@0
   747
      pOpen->pPrev = 0;
sl@0
   748
      if( openList ) openList->pPrev = pOpen;
sl@0
   749
      openList = pOpen;
sl@0
   750
    }else{
sl@0
   751
      pOpen->nRef++;
sl@0
   752
    }
sl@0
   753
    *ppOpen = pOpen;
sl@0
   754
  }
sl@0
   755
sl@0
   756
exit_findlockinfo:
sl@0
   757
  return rc;
sl@0
   758
}
sl@0
   759
sl@0
   760
#ifdef SQLITE_DEBUG
sl@0
   761
/*
sl@0
   762
** Helper function for printing out trace information from debugging
sl@0
   763
** binaries. This returns the string represetation of the supplied
sl@0
   764
** integer lock-type.
sl@0
   765
*/
sl@0
   766
static const char *locktypeName(int locktype){
sl@0
   767
  switch( locktype ){
sl@0
   768
  case NO_LOCK: return "NONE";
sl@0
   769
  case SHARED_LOCK: return "SHARED";
sl@0
   770
  case RESERVED_LOCK: return "RESERVED";
sl@0
   771
  case PENDING_LOCK: return "PENDING";
sl@0
   772
  case EXCLUSIVE_LOCK: return "EXCLUSIVE";
sl@0
   773
  }
sl@0
   774
  return "ERROR";
sl@0
   775
}
sl@0
   776
#endif
sl@0
   777
sl@0
   778
/*
sl@0
   779
** If we are currently in a different thread than the thread that the
sl@0
   780
** unixFile argument belongs to, then transfer ownership of the unixFile
sl@0
   781
** over to the current thread.
sl@0
   782
**
sl@0
   783
** A unixFile is only owned by a thread on systems where one thread is
sl@0
   784
** unable to override locks created by a different thread.  RedHat9 is
sl@0
   785
** an example of such a system.
sl@0
   786
**
sl@0
   787
** Ownership transfer is only allowed if the unixFile is currently unlocked.
sl@0
   788
** If the unixFile is locked and an ownership is wrong, then return
sl@0
   789
** SQLITE_MISUSE.  SQLITE_OK is returned if everything works.
sl@0
   790
*/
sl@0
   791
#if SQLITE_THREADSAFE
sl@0
   792
static int transferOwnership(unixFile *pFile){
sl@0
   793
  int rc;
sl@0
   794
  pthread_t hSelf;
sl@0
   795
  if( threadsOverrideEachOthersLocks ){
sl@0
   796
    /* Ownership transfers not needed on this system */
sl@0
   797
    return SQLITE_OK;
sl@0
   798
  }
sl@0
   799
  hSelf = pthread_self();
sl@0
   800
  if( pthread_equal(pFile->tid, hSelf) ){
sl@0
   801
    /* We are still in the same thread */
sl@0
   802
    OSTRACE1("No-transfer, same thread\n");
sl@0
   803
    return SQLITE_OK;
sl@0
   804
  }
sl@0
   805
  if( pFile->locktype!=NO_LOCK ){
sl@0
   806
    /* We cannot change ownership while we are holding a lock! */
sl@0
   807
    return SQLITE_MISUSE;
sl@0
   808
  }
sl@0
   809
  OSTRACE4("Transfer ownership of %d from %d to %d\n",
sl@0
   810
            pFile->h, pFile->tid, hSelf);
sl@0
   811
  pFile->tid = hSelf;
sl@0
   812
  if (pFile->pLock != NULL) {
sl@0
   813
    releaseLockInfo(pFile->pLock);
sl@0
   814
    rc = findLockInfo(pFile->h, &pFile->pLock, 0);
sl@0
   815
    OSTRACE5("LOCK    %d is now %s(%s,%d)\n", pFile->h,
sl@0
   816
           locktypeName(pFile->locktype),
sl@0
   817
           locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
sl@0
   818
    return rc;
sl@0
   819
  } else {
sl@0
   820
    return SQLITE_OK;
sl@0
   821
  }
sl@0
   822
}
sl@0
   823
#else
sl@0
   824
  /* On single-threaded builds, ownership transfer is a no-op */
sl@0
   825
# define transferOwnership(X) SQLITE_OK
sl@0
   826
#endif
sl@0
   827
sl@0
   828
/*
sl@0
   829
** Seek to the offset passed as the second argument, then read cnt 
sl@0
   830
** bytes into pBuf. Return the number of bytes actually read.
sl@0
   831
**
sl@0
   832
** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
sl@0
   833
** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
sl@0
   834
** one system to another.  Since SQLite does not define USE_PREAD
sl@0
   835
** any any form by default, we will not attempt to define _XOPEN_SOURCE.
sl@0
   836
** See tickets #2741 and #2681.
sl@0
   837
*/
sl@0
   838
static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
sl@0
   839
  int got;
sl@0
   840
  i64 newOffset;
sl@0
   841
  TIMER_START;
sl@0
   842
#if defined(USE_PREAD)
sl@0
   843
  got = pread(id->h, pBuf, cnt, offset);
sl@0
   844
  SimulateIOError( got = -1 );
sl@0
   845
#elif defined(USE_PREAD64)
sl@0
   846
  got = pread64(id->h, pBuf, cnt, offset);
sl@0
   847
  SimulateIOError( got = -1 );
sl@0
   848
#else
sl@0
   849
  newOffset = lseek(id->h, offset, SEEK_SET);
sl@0
   850
  SimulateIOError( newOffset-- );
sl@0
   851
  if( newOffset!=offset ){
sl@0
   852
    return -1;
sl@0
   853
  }
sl@0
   854
  got = read(id->h, pBuf, cnt);
sl@0
   855
#endif
sl@0
   856
  TIMER_END;
sl@0
   857
  OSTRACE5("READ    %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
sl@0
   858
  return got;
sl@0
   859
}
sl@0
   860
sl@0
   861
/*
sl@0
   862
** Read data from a file into a buffer.  Return SQLITE_OK if all
sl@0
   863
** bytes were read successfully and SQLITE_IOERR if anything goes
sl@0
   864
** wrong.
sl@0
   865
*/
sl@0
   866
static int unixRead(
sl@0
   867
  sqlite3_file *id, 
sl@0
   868
  void *pBuf, 
sl@0
   869
  int amt,
sl@0
   870
  sqlite3_int64 offset
sl@0
   871
){
sl@0
   872
  int got;
sl@0
   873
  assert( id );
sl@0
   874
  got = seekAndRead((unixFile*)id, offset, pBuf, amt);
sl@0
   875
  if( got==amt ){
sl@0
   876
    return SQLITE_OK;
sl@0
   877
  }else if( got<0 ){
sl@0
   878
    return SQLITE_IOERR_READ;
sl@0
   879
  }else{
sl@0
   880
    memset(&((char*)pBuf)[got], 0, amt-got);
sl@0
   881
    return SQLITE_IOERR_SHORT_READ;
sl@0
   882
  }
sl@0
   883
}
sl@0
   884
sl@0
   885
/*
sl@0
   886
** Seek to the offset in id->offset then read cnt bytes into pBuf.
sl@0
   887
** Return the number of bytes actually read.  Update the offset.
sl@0
   888
*/
sl@0
   889
static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
sl@0
   890
  int got;
sl@0
   891
  i64 newOffset;
sl@0
   892
  TIMER_START;
sl@0
   893
#if defined(USE_PREAD)
sl@0
   894
  got = pwrite(id->h, pBuf, cnt, offset);
sl@0
   895
#elif defined(USE_PREAD64)
sl@0
   896
  got = pwrite64(id->h, pBuf, cnt, offset);
sl@0
   897
#else
sl@0
   898
  newOffset = lseek(id->h, offset, SEEK_SET);
sl@0
   899
  if( newOffset!=offset ){
sl@0
   900
    return -1;
sl@0
   901
  }
sl@0
   902
  got = write(id->h, pBuf, cnt);
sl@0
   903
#endif
sl@0
   904
  TIMER_END;
sl@0
   905
  OSTRACE5("WRITE   %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
sl@0
   906
  return got;
sl@0
   907
}
sl@0
   908
sl@0
   909
sl@0
   910
/*
sl@0
   911
** Write data from a buffer into a file.  Return SQLITE_OK on success
sl@0
   912
** or some other error code on failure.
sl@0
   913
*/
sl@0
   914
static int unixWrite(
sl@0
   915
  sqlite3_file *id, 
sl@0
   916
  const void *pBuf, 
sl@0
   917
  int amt,
sl@0
   918
  sqlite3_int64 offset 
sl@0
   919
){
sl@0
   920
  int wrote = 0;
sl@0
   921
  assert( id );
sl@0
   922
  assert( amt>0 );
sl@0
   923
  while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){
sl@0
   924
    amt -= wrote;
sl@0
   925
    offset += wrote;
sl@0
   926
    pBuf = &((char*)pBuf)[wrote];
sl@0
   927
  }
sl@0
   928
  SimulateIOError(( wrote=(-1), amt=1 ));
sl@0
   929
  SimulateDiskfullError(( wrote=0, amt=1 ));
sl@0
   930
  if( amt>0 ){
sl@0
   931
    if( wrote<0 ){
sl@0
   932
      return SQLITE_IOERR_WRITE;
sl@0
   933
    }else{
sl@0
   934
      return SQLITE_FULL;
sl@0
   935
    }
sl@0
   936
  }
sl@0
   937
  return SQLITE_OK;
sl@0
   938
}
sl@0
   939
sl@0
   940
#ifdef SQLITE_TEST
sl@0
   941
/*
sl@0
   942
** Count the number of fullsyncs and normal syncs.  This is used to test
sl@0
   943
** that syncs and fullsyncs are occuring at the right times.
sl@0
   944
*/
sl@0
   945
int sqlite3_sync_count = 0;
sl@0
   946
int sqlite3_fullsync_count = 0;
sl@0
   947
#endif
sl@0
   948
sl@0
   949
/*
sl@0
   950
** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
sl@0
   951
** Otherwise use fsync() in its place.
sl@0
   952
*/
sl@0
   953
#ifndef HAVE_FDATASYNC
sl@0
   954
# define fdatasync fsync
sl@0
   955
#endif
sl@0
   956
sl@0
   957
/*
sl@0
   958
** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
sl@0
   959
** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
sl@0
   960
** only available on Mac OS X.  But that could change.
sl@0
   961
*/
sl@0
   962
#ifdef F_FULLFSYNC
sl@0
   963
# define HAVE_FULLFSYNC 1
sl@0
   964
#else
sl@0
   965
# define HAVE_FULLFSYNC 0
sl@0
   966
#endif
sl@0
   967
sl@0
   968
sl@0
   969
/*
sl@0
   970
** The fsync() system call does not work as advertised on many
sl@0
   971
** unix systems.  The following procedure is an attempt to make
sl@0
   972
** it work better.
sl@0
   973
**
sl@0
   974
** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
sl@0
   975
** for testing when we want to run through the test suite quickly.
sl@0
   976
** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
sl@0
   977
** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
sl@0
   978
** or power failure will likely corrupt the database file.
sl@0
   979
*/
sl@0
   980
static int full_fsync(int fd, int fullSync, int dataOnly){
sl@0
   981
  int rc;
sl@0
   982
sl@0
   983
  /* Record the number of times that we do a normal fsync() and 
sl@0
   984
  ** FULLSYNC.  This is used during testing to verify that this procedure
sl@0
   985
  ** gets called with the correct arguments.
sl@0
   986
  */
sl@0
   987
#ifdef SQLITE_TEST
sl@0
   988
  if( fullSync ) sqlite3_fullsync_count++;
sl@0
   989
  sqlite3_sync_count++;
sl@0
   990
#endif
sl@0
   991
sl@0
   992
  /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
sl@0
   993
  ** no-op
sl@0
   994
  */
sl@0
   995
#ifdef SQLITE_NO_SYNC
sl@0
   996
  rc = SQLITE_OK;
sl@0
   997
#else
sl@0
   998
sl@0
   999
#if HAVE_FULLFSYNC
sl@0
  1000
  if( fullSync ){
sl@0
  1001
    rc = fcntl(fd, F_FULLFSYNC, 0);
sl@0
  1002
  }else{
sl@0
  1003
    rc = 1;
sl@0
  1004
  }
sl@0
  1005
  /* If the FULLFSYNC failed, fall back to attempting an fsync().
sl@0
  1006
   * It shouldn't be possible for fullfsync to fail on the local 
sl@0
  1007
   * file system (on OSX), so failure indicates that FULLFSYNC
sl@0
  1008
   * isn't supported for this file system. So, attempt an fsync 
sl@0
  1009
   * and (for now) ignore the overhead of a superfluous fcntl call.  
sl@0
  1010
   * It'd be better to detect fullfsync support once and avoid 
sl@0
  1011
   * the fcntl call every time sync is called.
sl@0
  1012
   */
sl@0
  1013
  if( rc ) rc = fsync(fd);
sl@0
  1014
sl@0
  1015
#else 
sl@0
  1016
  if( dataOnly ){
sl@0
  1017
    rc = fdatasync(fd);
sl@0
  1018
  }else{
sl@0
  1019
    rc = fsync(fd);
sl@0
  1020
  }
sl@0
  1021
#endif /* HAVE_FULLFSYNC */
sl@0
  1022
#endif /* defined(SQLITE_NO_SYNC) */
sl@0
  1023
sl@0
  1024
  return rc;
sl@0
  1025
}
sl@0
  1026
sl@0
  1027
/*
sl@0
  1028
** Make sure all writes to a particular file are committed to disk.
sl@0
  1029
**
sl@0
  1030
** If dataOnly==0 then both the file itself and its metadata (file
sl@0
  1031
** size, access time, etc) are synced.  If dataOnly!=0 then only the
sl@0
  1032
** file data is synced.
sl@0
  1033
**
sl@0
  1034
** Under Unix, also make sure that the directory entry for the file
sl@0
  1035
** has been created by fsync-ing the directory that contains the file.
sl@0
  1036
** If we do not do this and we encounter a power failure, the directory
sl@0
  1037
** entry for the journal might not exist after we reboot.  The next
sl@0
  1038
** SQLite to access the file will not know that the journal exists (because
sl@0
  1039
** the directory entry for the journal was never created) and the transaction
sl@0
  1040
** will not roll back - possibly leading to database corruption.
sl@0
  1041
*/
sl@0
  1042
static int unixSync(sqlite3_file *id, int flags){
sl@0
  1043
  int rc;
sl@0
  1044
  unixFile *pFile = (unixFile*)id;
sl@0
  1045
sl@0
  1046
  int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
sl@0
  1047
  int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
sl@0
  1048
sl@0
  1049
  /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
sl@0
  1050
  assert((flags&0x0F)==SQLITE_SYNC_NORMAL
sl@0
  1051
      || (flags&0x0F)==SQLITE_SYNC_FULL
sl@0
  1052
  );
sl@0
  1053
sl@0
  1054
  assert( pFile );
sl@0
  1055
  OSTRACE2("SYNC    %-3d\n", pFile->h);
sl@0
  1056
  rc = full_fsync(pFile->h, isFullsync, isDataOnly);
sl@0
  1057
  SimulateIOError( rc=1 );
sl@0
  1058
  if( rc ){
sl@0
  1059
    return SQLITE_IOERR_FSYNC;
sl@0
  1060
  }
sl@0
  1061
  if( pFile->dirfd>=0 ){
sl@0
  1062
    OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
sl@0
  1063
            HAVE_FULLFSYNC, isFullsync);
sl@0
  1064
#ifndef SQLITE_DISABLE_DIRSYNC
sl@0
  1065
    /* The directory sync is only attempted if full_fsync is
sl@0
  1066
    ** turned off or unavailable.  If a full_fsync occurred above,
sl@0
  1067
    ** then the directory sync is superfluous.
sl@0
  1068
    */
sl@0
  1069
    if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
sl@0
  1070
       /*
sl@0
  1071
       ** We have received multiple reports of fsync() returning
sl@0
  1072
       ** errors when applied to directories on certain file systems.
sl@0
  1073
       ** A failed directory sync is not a big deal.  So it seems
sl@0
  1074
       ** better to ignore the error.  Ticket #1657
sl@0
  1075
       */
sl@0
  1076
       /* return SQLITE_IOERR; */
sl@0
  1077
    }
sl@0
  1078
#endif
sl@0
  1079
    close(pFile->dirfd);  /* Only need to sync once, so close the directory */
sl@0
  1080
    pFile->dirfd = -1;    /* when we are done. */
sl@0
  1081
  }
sl@0
  1082
  return SQLITE_OK;
sl@0
  1083
}
sl@0
  1084
sl@0
  1085
/*
sl@0
  1086
** Truncate an open file to a specified size
sl@0
  1087
*/
sl@0
  1088
static int unixTruncate(sqlite3_file *id, i64 nByte){
sl@0
  1089
  int rc;
sl@0
  1090
  assert( id );
sl@0
  1091
  SimulateIOError( return SQLITE_IOERR_TRUNCATE );
sl@0
  1092
  rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
sl@0
  1093
  if( rc ){
sl@0
  1094
    return SQLITE_IOERR_TRUNCATE;
sl@0
  1095
  }else{
sl@0
  1096
    return SQLITE_OK;
sl@0
  1097
  }
sl@0
  1098
}
sl@0
  1099
sl@0
  1100
/*
sl@0
  1101
** Determine the current size of a file in bytes
sl@0
  1102
*/
sl@0
  1103
static int unixFileSize(sqlite3_file *id, i64 *pSize){
sl@0
  1104
  int rc;
sl@0
  1105
  struct stat buf;
sl@0
  1106
  assert( id );
sl@0
  1107
  rc = fstat(((unixFile*)id)->h, &buf);
sl@0
  1108
  SimulateIOError( rc=1 );
sl@0
  1109
  if( rc!=0 ){
sl@0
  1110
    return SQLITE_IOERR_FSTAT;
sl@0
  1111
  }
sl@0
  1112
  *pSize = buf.st_size;
sl@0
  1113
sl@0
  1114
  /* When opening a zero-size database, the findLockInfo() procedure
sl@0
  1115
  ** writes a single byte into that file in order to work around a bug
sl@0
  1116
  ** in the OS-X msdos filesystem.  In order to avoid problems with upper
sl@0
  1117
  ** layers, we need to report this file size as zero even though it is
sl@0
  1118
  ** really 1.   Ticket #3260.
sl@0
  1119
  */
sl@0
  1120
  if( *pSize==1 ) *pSize = 0;
sl@0
  1121
sl@0
  1122
sl@0
  1123
  return SQLITE_OK;
sl@0
  1124
}
sl@0
  1125
sl@0
  1126
/*
sl@0
  1127
** This routine checks if there is a RESERVED lock held on the specified
sl@0
  1128
** file by this or any other process. If such a lock is held, return
sl@0
  1129
** non-zero.  If the file is unlocked or holds only SHARED locks, then
sl@0
  1130
** return zero.
sl@0
  1131
*/
sl@0
  1132
static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
sl@0
  1133
  int r = 0;
sl@0
  1134
  unixFile *pFile = (unixFile*)id;
sl@0
  1135
sl@0
  1136
  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
sl@0
  1137
sl@0
  1138
  assert( pFile );
sl@0
  1139
  enterMutex(); /* Because pFile->pLock is shared across threads */
sl@0
  1140
sl@0
  1141
  /* Check if a thread in this process holds such a lock */
sl@0
  1142
  if( pFile->pLock->locktype>SHARED_LOCK ){
sl@0
  1143
    r = 1;
sl@0
  1144
  }
sl@0
  1145
sl@0
  1146
  /* Otherwise see if some other process holds it.
sl@0
  1147
  */
sl@0
  1148
  if( !r ){
sl@0
  1149
    struct flock lock;
sl@0
  1150
    lock.l_whence = SEEK_SET;
sl@0
  1151
    lock.l_start = RESERVED_BYTE;
sl@0
  1152
    lock.l_len = 1;
sl@0
  1153
    lock.l_type = F_WRLCK;
sl@0
  1154
    fcntl(pFile->h, F_GETLK, &lock);
sl@0
  1155
    if( lock.l_type!=F_UNLCK ){
sl@0
  1156
      r = 1;
sl@0
  1157
    }
sl@0
  1158
  }
sl@0
  1159
  
sl@0
  1160
  leaveMutex();
sl@0
  1161
  OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
sl@0
  1162
sl@0
  1163
  *pResOut = r;
sl@0
  1164
  return SQLITE_OK;
sl@0
  1165
}
sl@0
  1166
sl@0
  1167
/*
sl@0
  1168
** Lock the file with the lock specified by parameter locktype - one
sl@0
  1169
** of the following:
sl@0
  1170
**
sl@0
  1171
**     (1) SHARED_LOCK
sl@0
  1172
**     (2) RESERVED_LOCK
sl@0
  1173
**     (3) PENDING_LOCK
sl@0
  1174
**     (4) EXCLUSIVE_LOCK
sl@0
  1175
**
sl@0
  1176
** Sometimes when requesting one lock state, additional lock states
sl@0
  1177
** are inserted in between.  The locking might fail on one of the later
sl@0
  1178
** transitions leaving the lock state different from what it started but
sl@0
  1179
** still short of its goal.  The following chart shows the allowed
sl@0
  1180
** transitions and the inserted intermediate states:
sl@0
  1181
**
sl@0
  1182
**    UNLOCKED -> SHARED
sl@0
  1183
**    SHARED -> RESERVED
sl@0
  1184
**    SHARED -> (PENDING) -> EXCLUSIVE
sl@0
  1185
**    RESERVED -> (PENDING) -> EXCLUSIVE
sl@0
  1186
**    PENDING -> EXCLUSIVE
sl@0
  1187
**
sl@0
  1188
** This routine will only increase a lock.  Use the sqlite3OsUnlock()
sl@0
  1189
** routine to lower a locking level.
sl@0
  1190
*/
sl@0
  1191
static int unixLock(sqlite3_file *id, int locktype){
sl@0
  1192
  /* The following describes the implementation of the various locks and
sl@0
  1193
  ** lock transitions in terms of the POSIX advisory shared and exclusive
sl@0
  1194
  ** lock primitives (called read-locks and write-locks below, to avoid
sl@0
  1195
  ** confusion with SQLite lock names). The algorithms are complicated
sl@0
  1196
  ** slightly in order to be compatible with windows systems simultaneously
sl@0
  1197
  ** accessing the same database file, in case that is ever required.
sl@0
  1198
  **
sl@0
  1199
  ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
sl@0
  1200
  ** byte', each single bytes at well known offsets, and the 'shared byte
sl@0
  1201
  ** range', a range of 510 bytes at a well known offset.
sl@0
  1202
  **
sl@0
  1203
  ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
sl@0
  1204
  ** byte'.  If this is successful, a random byte from the 'shared byte
sl@0
  1205
  ** range' is read-locked and the lock on the 'pending byte' released.
sl@0
  1206
  **
sl@0
  1207
  ** A process may only obtain a RESERVED lock after it has a SHARED lock.
sl@0
  1208
  ** A RESERVED lock is implemented by grabbing a write-lock on the
sl@0
  1209
  ** 'reserved byte'. 
sl@0
  1210
  **
sl@0
  1211
  ** A process may only obtain a PENDING lock after it has obtained a
sl@0
  1212
  ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
sl@0
  1213
  ** on the 'pending byte'. This ensures that no new SHARED locks can be
sl@0
  1214
  ** obtained, but existing SHARED locks are allowed to persist. A process
sl@0
  1215
  ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
sl@0
  1216
  ** This property is used by the algorithm for rolling back a journal file
sl@0
  1217
  ** after a crash.
sl@0
  1218
  **
sl@0
  1219
  ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
sl@0
  1220
  ** implemented by obtaining a write-lock on the entire 'shared byte
sl@0
  1221
  ** range'. Since all other locks require a read-lock on one of the bytes
sl@0
  1222
  ** within this range, this ensures that no other locks are held on the
sl@0
  1223
  ** database. 
sl@0
  1224
  **
sl@0
  1225
  ** The reason a single byte cannot be used instead of the 'shared byte
sl@0
  1226
  ** range' is that some versions of windows do not support read-locks. By
sl@0
  1227
  ** locking a random byte from a range, concurrent SHARED locks may exist
sl@0
  1228
  ** even if the locking primitive used is always a write-lock.
sl@0
  1229
  */
sl@0
  1230
  int rc = SQLITE_OK;
sl@0
  1231
  unixFile *pFile = (unixFile*)id;
sl@0
  1232
  struct lockInfo *pLock = pFile->pLock;
sl@0
  1233
  struct flock lock;
sl@0
  1234
  int s;
sl@0
  1235
sl@0
  1236
  assert( pFile );
sl@0
  1237
  OSTRACE7("LOCK    %d %s was %s(%s,%d) pid=%d\n", pFile->h,
sl@0
  1238
      locktypeName(locktype), locktypeName(pFile->locktype),
sl@0
  1239
      locktypeName(pLock->locktype), pLock->cnt , getpid());
sl@0
  1240
sl@0
  1241
  /* If there is already a lock of this type or more restrictive on the
sl@0
  1242
  ** unixFile, do nothing. Don't use the end_lock: exit path, as
sl@0
  1243
  ** enterMutex() hasn't been called yet.
sl@0
  1244
  */
sl@0
  1245
  if( pFile->locktype>=locktype ){
sl@0
  1246
    OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
sl@0
  1247
            locktypeName(locktype));
sl@0
  1248
    return SQLITE_OK;
sl@0
  1249
  }
sl@0
  1250
sl@0
  1251
  /* Make sure the locking sequence is correct
sl@0
  1252
  */
sl@0
  1253
  assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
sl@0
  1254
  assert( locktype!=PENDING_LOCK );
sl@0
  1255
  assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
sl@0
  1256
sl@0
  1257
  /* This mutex is needed because pFile->pLock is shared across threads
sl@0
  1258
  */
sl@0
  1259
  enterMutex();
sl@0
  1260
sl@0
  1261
  /* Make sure the current thread owns the pFile.
sl@0
  1262
  */
sl@0
  1263
  rc = transferOwnership(pFile);
sl@0
  1264
  if( rc!=SQLITE_OK ){
sl@0
  1265
    leaveMutex();
sl@0
  1266
    return rc;
sl@0
  1267
  }
sl@0
  1268
  pLock = pFile->pLock;
sl@0
  1269
sl@0
  1270
  /* If some thread using this PID has a lock via a different unixFile*
sl@0
  1271
  ** handle that precludes the requested lock, return BUSY.
sl@0
  1272
  */
sl@0
  1273
  if( (pFile->locktype!=pLock->locktype && 
sl@0
  1274
          (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
sl@0
  1275
  ){
sl@0
  1276
    rc = SQLITE_BUSY;
sl@0
  1277
    goto end_lock;
sl@0
  1278
  }
sl@0
  1279
sl@0
  1280
  /* If a SHARED lock is requested, and some thread using this PID already
sl@0
  1281
  ** has a SHARED or RESERVED lock, then increment reference counts and
sl@0
  1282
  ** return SQLITE_OK.
sl@0
  1283
  */
sl@0
  1284
  if( locktype==SHARED_LOCK && 
sl@0
  1285
      (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
sl@0
  1286
    assert( locktype==SHARED_LOCK );
sl@0
  1287
    assert( pFile->locktype==0 );
sl@0
  1288
    assert( pLock->cnt>0 );
sl@0
  1289
    pFile->locktype = SHARED_LOCK;
sl@0
  1290
    pLock->cnt++;
sl@0
  1291
    pFile->pOpen->nLock++;
sl@0
  1292
    goto end_lock;
sl@0
  1293
  }
sl@0
  1294
sl@0
  1295
  lock.l_len = 1L;
sl@0
  1296
sl@0
  1297
  lock.l_whence = SEEK_SET;
sl@0
  1298
sl@0
  1299
  /* A PENDING lock is needed before acquiring a SHARED lock and before
sl@0
  1300
  ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
sl@0
  1301
  ** be released.
sl@0
  1302
  */
sl@0
  1303
  if( locktype==SHARED_LOCK 
sl@0
  1304
      || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
sl@0
  1305
  ){
sl@0
  1306
    lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
sl@0
  1307
    lock.l_start = PENDING_BYTE;
sl@0
  1308
    s = fcntl(pFile->h, F_SETLK, &lock);
sl@0
  1309
    if( s==(-1) ){
sl@0
  1310
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
sl@0
  1311
      goto end_lock;
sl@0
  1312
    }
sl@0
  1313
  }
sl@0
  1314
sl@0
  1315
sl@0
  1316
  /* If control gets to this point, then actually go ahead and make
sl@0
  1317
  ** operating system calls for the specified lock.
sl@0
  1318
  */
sl@0
  1319
  if( locktype==SHARED_LOCK ){
sl@0
  1320
    assert( pLock->cnt==0 );
sl@0
  1321
    assert( pLock->locktype==0 );
sl@0
  1322
sl@0
  1323
    /* Now get the read-lock */
sl@0
  1324
    lock.l_start = SHARED_FIRST;
sl@0
  1325
    lock.l_len = SHARED_SIZE;
sl@0
  1326
    s = fcntl(pFile->h, F_SETLK, &lock);
sl@0
  1327
sl@0
  1328
    /* Drop the temporary PENDING lock */
sl@0
  1329
    lock.l_start = PENDING_BYTE;
sl@0
  1330
    lock.l_len = 1L;
sl@0
  1331
    lock.l_type = F_UNLCK;
sl@0
  1332
    if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
sl@0
  1333
      rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
sl@0
  1334
      goto end_lock;
sl@0
  1335
    }
sl@0
  1336
    if( s==(-1) ){
sl@0
  1337
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
sl@0
  1338
    }else{
sl@0
  1339
      pFile->locktype = SHARED_LOCK;
sl@0
  1340
      pFile->pOpen->nLock++;
sl@0
  1341
      pLock->cnt = 1;
sl@0
  1342
    }
sl@0
  1343
  }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
sl@0
  1344
    /* We are trying for an exclusive lock but another thread in this
sl@0
  1345
    ** same process is still holding a shared lock. */
sl@0
  1346
    rc = SQLITE_BUSY;
sl@0
  1347
  }else{
sl@0
  1348
    /* The request was for a RESERVED or EXCLUSIVE lock.  It is
sl@0
  1349
    ** assumed that there is a SHARED or greater lock on the file
sl@0
  1350
    ** already.
sl@0
  1351
    */
sl@0
  1352
    assert( 0!=pFile->locktype );
sl@0
  1353
    lock.l_type = F_WRLCK;
sl@0
  1354
    switch( locktype ){
sl@0
  1355
      case RESERVED_LOCK:
sl@0
  1356
        lock.l_start = RESERVED_BYTE;
sl@0
  1357
        break;
sl@0
  1358
      case EXCLUSIVE_LOCK:
sl@0
  1359
        lock.l_start = SHARED_FIRST;
sl@0
  1360
        lock.l_len = SHARED_SIZE;
sl@0
  1361
        break;
sl@0
  1362
      default:
sl@0
  1363
        assert(0);
sl@0
  1364
    }
sl@0
  1365
    s = fcntl(pFile->h, F_SETLK, &lock);
sl@0
  1366
    if( s==(-1) ){
sl@0
  1367
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
sl@0
  1368
    }
sl@0
  1369
  }
sl@0
  1370
  
sl@0
  1371
  if( rc==SQLITE_OK ){
sl@0
  1372
    pFile->locktype = locktype;
sl@0
  1373
    pLock->locktype = locktype;
sl@0
  1374
  }else if( locktype==EXCLUSIVE_LOCK ){
sl@0
  1375
    pFile->locktype = PENDING_LOCK;
sl@0
  1376
    pLock->locktype = PENDING_LOCK;
sl@0
  1377
  }
sl@0
  1378
sl@0
  1379
end_lock:
sl@0
  1380
  leaveMutex();
sl@0
  1381
  OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
sl@0
  1382
      rc==SQLITE_OK ? "ok" : "failed");
sl@0
  1383
  return rc;
sl@0
  1384
}
sl@0
  1385
sl@0
  1386
/*
sl@0
  1387
** Lower the locking level on file descriptor pFile to locktype.  locktype
sl@0
  1388
** must be either NO_LOCK or SHARED_LOCK.
sl@0
  1389
**
sl@0
  1390
** If the locking level of the file descriptor is already at or below
sl@0
  1391
** the requested locking level, this routine is a no-op.
sl@0
  1392
*/
sl@0
  1393
static int unixUnlock(sqlite3_file *id, int locktype){
sl@0
  1394
  struct lockInfo *pLock;
sl@0
  1395
  struct flock lock;
sl@0
  1396
  int rc = SQLITE_OK;
sl@0
  1397
  unixFile *pFile = (unixFile*)id;
sl@0
  1398
  int h;
sl@0
  1399
sl@0
  1400
  assert( pFile );
sl@0
  1401
  OSTRACE7("UNLOCK  %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
sl@0
  1402
      pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
sl@0
  1403
sl@0
  1404
  assert( locktype<=SHARED_LOCK );
sl@0
  1405
  if( pFile->locktype<=locktype ){
sl@0
  1406
    return SQLITE_OK;
sl@0
  1407
  }
sl@0
  1408
  if( CHECK_THREADID(pFile) ){
sl@0
  1409
    return SQLITE_MISUSE;
sl@0
  1410
  }
sl@0
  1411
  enterMutex();
sl@0
  1412
  h = pFile->h;
sl@0
  1413
  pLock = pFile->pLock;
sl@0
  1414
  assert( pLock->cnt!=0 );
sl@0
  1415
  if( pFile->locktype>SHARED_LOCK ){
sl@0
  1416
    assert( pLock->locktype==pFile->locktype );
sl@0
  1417
    SimulateIOErrorBenign(1);
sl@0
  1418
    SimulateIOError( h=(-1) )
sl@0
  1419
    SimulateIOErrorBenign(0);
sl@0
  1420
    if( locktype==SHARED_LOCK ){
sl@0
  1421
      lock.l_type = F_RDLCK;
sl@0
  1422
      lock.l_whence = SEEK_SET;
sl@0
  1423
      lock.l_start = SHARED_FIRST;
sl@0
  1424
      lock.l_len = SHARED_SIZE;
sl@0
  1425
      if( fcntl(h, F_SETLK, &lock)==(-1) ){
sl@0
  1426
        rc = SQLITE_IOERR_RDLOCK;
sl@0
  1427
      }
sl@0
  1428
    }
sl@0
  1429
    lock.l_type = F_UNLCK;
sl@0
  1430
    lock.l_whence = SEEK_SET;
sl@0
  1431
    lock.l_start = PENDING_BYTE;
sl@0
  1432
    lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
sl@0
  1433
    if( fcntl(h, F_SETLK, &lock)!=(-1) ){
sl@0
  1434
      pLock->locktype = SHARED_LOCK;
sl@0
  1435
    }else{
sl@0
  1436
      rc = SQLITE_IOERR_UNLOCK;
sl@0
  1437
    }
sl@0
  1438
  }
sl@0
  1439
  if( locktype==NO_LOCK ){
sl@0
  1440
    struct openCnt *pOpen;
sl@0
  1441
sl@0
  1442
    /* Decrement the shared lock counter.  Release the lock using an
sl@0
  1443
    ** OS call only when all threads in this same process have released
sl@0
  1444
    ** the lock.
sl@0
  1445
    */
sl@0
  1446
    pLock->cnt--;
sl@0
  1447
    if( pLock->cnt==0 ){
sl@0
  1448
      lock.l_type = F_UNLCK;
sl@0
  1449
      lock.l_whence = SEEK_SET;
sl@0
  1450
      lock.l_start = lock.l_len = 0L;
sl@0
  1451
      SimulateIOErrorBenign(1);
sl@0
  1452
      SimulateIOError( h=(-1) )
sl@0
  1453
      SimulateIOErrorBenign(0);
sl@0
  1454
      if( fcntl(h, F_SETLK, &lock)!=(-1) ){
sl@0
  1455
        pLock->locktype = NO_LOCK;
sl@0
  1456
      }else{
sl@0
  1457
        rc = SQLITE_IOERR_UNLOCK;
sl@0
  1458
        pLock->cnt = 1;
sl@0
  1459
      }
sl@0
  1460
    }
sl@0
  1461
sl@0
  1462
    /* Decrement the count of locks against this same file.  When the
sl@0
  1463
    ** count reaches zero, close any other file descriptors whose close
sl@0
  1464
    ** was deferred because of outstanding locks.
sl@0
  1465
    */
sl@0
  1466
    if( rc==SQLITE_OK ){
sl@0
  1467
      pOpen = pFile->pOpen;
sl@0
  1468
      pOpen->nLock--;
sl@0
  1469
      assert( pOpen->nLock>=0 );
sl@0
  1470
      if( pOpen->nLock==0 && pOpen->nPending>0 ){
sl@0
  1471
        int i;
sl@0
  1472
        for(i=0; i<pOpen->nPending; i++){
sl@0
  1473
          close(pOpen->aPending[i]);
sl@0
  1474
        }
sl@0
  1475
        sqlite3_free(pOpen->aPending);
sl@0
  1476
        pOpen->nPending = 0;
sl@0
  1477
        pOpen->aPending = 0;
sl@0
  1478
      }
sl@0
  1479
    }
sl@0
  1480
  }
sl@0
  1481
  leaveMutex();
sl@0
  1482
  if( rc==SQLITE_OK ) pFile->locktype = locktype;
sl@0
  1483
  return rc;
sl@0
  1484
}
sl@0
  1485
sl@0
  1486
/*
sl@0
  1487
** This function performs the parts of the "close file" operation 
sl@0
  1488
** common to all locking schemes. It closes the directory and file
sl@0
  1489
** handles, if they are valid, and sets all fields of the unixFile
sl@0
  1490
** structure to 0.
sl@0
  1491
*/
sl@0
  1492
static int closeUnixFile(sqlite3_file *id){
sl@0
  1493
  unixFile *pFile = (unixFile*)id;
sl@0
  1494
  if( pFile ){
sl@0
  1495
    if( pFile->dirfd>=0 ){
sl@0
  1496
      close(pFile->dirfd);
sl@0
  1497
    }
sl@0
  1498
    if( pFile->h>=0 ){
sl@0
  1499
      close(pFile->h);
sl@0
  1500
    }
sl@0
  1501
    OSTRACE2("CLOSE   %-3d\n", pFile->h);
sl@0
  1502
    OpenCounter(-1);
sl@0
  1503
    memset(pFile, 0, sizeof(unixFile));
sl@0
  1504
  }
sl@0
  1505
  return SQLITE_OK;
sl@0
  1506
}
sl@0
  1507
sl@0
  1508
/*
sl@0
  1509
** Close a file.
sl@0
  1510
*/
sl@0
  1511
static int unixClose(sqlite3_file *id){
sl@0
  1512
  if( id ){
sl@0
  1513
    unixFile *pFile = (unixFile *)id;
sl@0
  1514
    unixUnlock(id, NO_LOCK);
sl@0
  1515
    enterMutex();
sl@0
  1516
    if( pFile->pOpen && pFile->pOpen->nLock ){
sl@0
  1517
      /* If there are outstanding locks, do not actually close the file just
sl@0
  1518
      ** yet because that would clear those locks.  Instead, add the file
sl@0
  1519
      ** descriptor to pOpen->aPending.  It will be automatically closed when
sl@0
  1520
      ** the last lock is cleared.
sl@0
  1521
      */
sl@0
  1522
      int *aNew;
sl@0
  1523
      struct openCnt *pOpen = pFile->pOpen;
sl@0
  1524
      aNew = sqlite3_realloc(pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
sl@0
  1525
      if( aNew==0 ){
sl@0
  1526
        /* If a malloc fails, just leak the file descriptor */
sl@0
  1527
      }else{
sl@0
  1528
        pOpen->aPending = aNew;
sl@0
  1529
        pOpen->aPending[pOpen->nPending] = pFile->h;
sl@0
  1530
        pOpen->nPending++;
sl@0
  1531
        pFile->h = -1;
sl@0
  1532
      }
sl@0
  1533
    }
sl@0
  1534
    releaseLockInfo(pFile->pLock);
sl@0
  1535
    releaseOpenCnt(pFile->pOpen);
sl@0
  1536
    closeUnixFile(id);
sl@0
  1537
    leaveMutex();
sl@0
  1538
  }
sl@0
  1539
  return SQLITE_OK;
sl@0
  1540
}
sl@0
  1541
sl@0
  1542
sl@0
  1543
#ifdef SQLITE_ENABLE_LOCKING_STYLE
sl@0
  1544
#pragma mark AFP Support
sl@0
  1545
sl@0
  1546
/*
sl@0
  1547
 ** The afpLockingContext structure contains all afp lock specific state
sl@0
  1548
 */
sl@0
  1549
typedef struct afpLockingContext afpLockingContext;
sl@0
  1550
struct afpLockingContext {
sl@0
  1551
  unsigned long long sharedLockByte;
sl@0
  1552
  const char *filePath;
sl@0
  1553
};
sl@0
  1554
sl@0
  1555
struct ByteRangeLockPB2
sl@0
  1556
{
sl@0
  1557
  unsigned long long offset;        /* offset to first byte to lock */
sl@0
  1558
  unsigned long long length;        /* nbr of bytes to lock */
sl@0
  1559
  unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
sl@0
  1560
  unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
sl@0
  1561
  unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
sl@0
  1562
  int fd;                           /* file desc to assoc this lock with */
sl@0
  1563
};
sl@0
  1564
sl@0
  1565
#define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
sl@0
  1566
sl@0
  1567
/* 
sl@0
  1568
** Return 0 on success, 1 on failure.  To match the behavior of the 
sl@0
  1569
** normal posix file locking (used in unixLock for example), we should 
sl@0
  1570
** provide 'richer' return codes - specifically to differentiate between
sl@0
  1571
** 'file busy' and 'file system error' results.
sl@0
  1572
*/
sl@0
  1573
static int _AFPFSSetLock(
sl@0
  1574
  const char *path, 
sl@0
  1575
  int fd, 
sl@0
  1576
  unsigned long long offset, 
sl@0
  1577
  unsigned long long length, 
sl@0
  1578
  int setLockFlag
sl@0
  1579
){
sl@0
  1580
  struct ByteRangeLockPB2       pb;
sl@0
  1581
  int                     err;
sl@0
  1582
  
sl@0
  1583
  pb.unLockFlag = setLockFlag ? 0 : 1;
sl@0
  1584
  pb.startEndFlag = 0;
sl@0
  1585
  pb.offset = offset;
sl@0
  1586
  pb.length = length; 
sl@0
  1587
  pb.fd = fd;
sl@0
  1588
  OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n", 
sl@0
  1589
    (setLockFlag?"ON":"OFF"), fd, offset, length);
sl@0
  1590
  err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
sl@0
  1591
  if ( err==-1 ) {
sl@0
  1592
    OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno, 
sl@0
  1593
      strerror(errno));
sl@0
  1594
    return 1; /* error */
sl@0
  1595
  } else {
sl@0
  1596
    return 0;
sl@0
  1597
  }
sl@0
  1598
}
sl@0
  1599
sl@0
  1600
/*
sl@0
  1601
 ** This routine checks if there is a RESERVED lock held on the specified
sl@0
  1602
 ** file by this or any other process. If such a lock is held, return
sl@0
  1603
 ** non-zero.  If the file is unlocked or holds only SHARED locks, then
sl@0
  1604
 ** return zero.
sl@0
  1605
 */
sl@0
  1606
static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
sl@0
  1607
  int r = 0;
sl@0
  1608
  unixFile *pFile = (unixFile*)id;
sl@0
  1609
  
sl@0
  1610
  assert( pFile ); 
sl@0
  1611
  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
sl@0
  1612
  
sl@0
  1613
  /* Check if a thread in this process holds such a lock */
sl@0
  1614
  if( pFile->locktype>SHARED_LOCK ){
sl@0
  1615
    r = 1;
sl@0
  1616
  }
sl@0
  1617
  
sl@0
  1618
  /* Otherwise see if some other process holds it.
sl@0
  1619
   */
sl@0
  1620
  if ( !r ) {
sl@0
  1621
    /* lock the byte */
sl@0
  1622
    int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);  
sl@0
  1623
    if (failed) {
sl@0
  1624
      /* if we failed to get the lock then someone else must have it */
sl@0
  1625
      r = 1;
sl@0
  1626
    } else {
sl@0
  1627
      /* if we succeeded in taking the reserved lock, unlock it to restore
sl@0
  1628
      ** the original state */
sl@0
  1629
      _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
sl@0
  1630
    }
sl@0
  1631
  }
sl@0
  1632
  OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
sl@0
  1633
  
sl@0
  1634
  *pResOut = r;
sl@0
  1635
  return SQLITE_OK;
sl@0
  1636
}
sl@0
  1637
sl@0
  1638
/* AFP-style locking following the behavior of unixLock, see the unixLock 
sl@0
  1639
** function comments for details of lock management. */
sl@0
  1640
static int afpLock(sqlite3_file *id, int locktype){
sl@0
  1641
  int rc = SQLITE_OK;
sl@0
  1642
  unixFile *pFile = (unixFile*)id;
sl@0
  1643
  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
sl@0
  1644
  
sl@0
  1645
  assert( pFile );
sl@0
  1646
  OSTRACE5("LOCK    %d %s was %s pid=%d\n", pFile->h,
sl@0
  1647
         locktypeName(locktype), locktypeName(pFile->locktype), getpid());
sl@0
  1648
sl@0
  1649
  /* If there is already a lock of this type or more restrictive on the
sl@0
  1650
  ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
sl@0
  1651
  ** enterMutex() hasn't been called yet.
sl@0
  1652
  */
sl@0
  1653
  if( pFile->locktype>=locktype ){
sl@0
  1654
    OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
sl@0
  1655
           locktypeName(locktype));
sl@0
  1656
    return SQLITE_OK;
sl@0
  1657
  }
sl@0
  1658
sl@0
  1659
  /* Make sure the locking sequence is correct
sl@0
  1660
  */
sl@0
  1661
  assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
sl@0
  1662
  assert( locktype!=PENDING_LOCK );
sl@0
  1663
  assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
sl@0
  1664
  
sl@0
  1665
  /* This mutex is needed because pFile->pLock is shared across threads
sl@0
  1666
  */
sl@0
  1667
  enterMutex();
sl@0
  1668
sl@0
  1669
  /* Make sure the current thread owns the pFile.
sl@0
  1670
  */
sl@0
  1671
  rc = transferOwnership(pFile);
sl@0
  1672
  if( rc!=SQLITE_OK ){
sl@0
  1673
    leaveMutex();
sl@0
  1674
    return rc;
sl@0
  1675
  }
sl@0
  1676
    
sl@0
  1677
  /* A PENDING lock is needed before acquiring a SHARED lock and before
sl@0
  1678
  ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
sl@0
  1679
  ** be released.
sl@0
  1680
  */
sl@0
  1681
  if( locktype==SHARED_LOCK 
sl@0
  1682
      || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
sl@0
  1683
  ){
sl@0
  1684
    int failed;
sl@0
  1685
    failed = _AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 1);
sl@0
  1686
    if (failed) {
sl@0
  1687
      rc = SQLITE_BUSY;
sl@0
  1688
      goto afp_end_lock;
sl@0
  1689
    }
sl@0
  1690
  }
sl@0
  1691
  
sl@0
  1692
  /* If control gets to this point, then actually go ahead and make
sl@0
  1693
  ** operating system calls for the specified lock.
sl@0
  1694
  */
sl@0
  1695
  if( locktype==SHARED_LOCK ){
sl@0
  1696
    int lk, failed;
sl@0
  1697
    
sl@0
  1698
    /* Now get the read-lock */
sl@0
  1699
    /* note that the quality of the randomness doesn't matter that much */
sl@0
  1700
    lk = random(); 
sl@0
  1701
    context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
sl@0
  1702
    failed = _AFPFSSetLock(context->filePath, pFile->h, 
sl@0
  1703
      SHARED_FIRST+context->sharedLockByte, 1, 1);
sl@0
  1704
    
sl@0
  1705
    /* Drop the temporary PENDING lock */
sl@0
  1706
    if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) {
sl@0
  1707
      rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
sl@0
  1708
      goto afp_end_lock;
sl@0
  1709
    }
sl@0
  1710
    
sl@0
  1711
    if( failed ){
sl@0
  1712
      rc = SQLITE_BUSY;
sl@0
  1713
    } else {
sl@0
  1714
      pFile->locktype = SHARED_LOCK;
sl@0
  1715
    }
sl@0
  1716
  }else{
sl@0
  1717
    /* The request was for a RESERVED or EXCLUSIVE lock.  It is
sl@0
  1718
    ** assumed that there is a SHARED or greater lock on the file
sl@0
  1719
    ** already.
sl@0
  1720
    */
sl@0
  1721
    int failed = 0;
sl@0
  1722
    assert( 0!=pFile->locktype );
sl@0
  1723
    if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
sl@0
  1724
        /* Acquire a RESERVED lock */
sl@0
  1725
        failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
sl@0
  1726
    }
sl@0
  1727
    if (!failed && locktype == EXCLUSIVE_LOCK) {
sl@0
  1728
      /* Acquire an EXCLUSIVE lock */
sl@0
  1729
        
sl@0
  1730
      /* Remove the shared lock before trying the range.  we'll need to 
sl@0
  1731
      ** reestablish the shared lock if we can't get the  afpUnlock
sl@0
  1732
      */
sl@0
  1733
      if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
sl@0
  1734
                         context->sharedLockByte, 1, 0)) {
sl@0
  1735
        /* now attemmpt to get the exclusive lock range */
sl@0
  1736
        failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST, 
sl@0
  1737
                               SHARED_SIZE, 1);
sl@0
  1738
        if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
sl@0
  1739
                                    context->sharedLockByte, 1, 1)) {
sl@0
  1740
          rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
sl@0
  1741
        }
sl@0
  1742
      } else {
sl@0
  1743
        /* */
sl@0
  1744
        rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
sl@0
  1745
      }
sl@0
  1746
    }
sl@0
  1747
    if( failed && rc == SQLITE_OK){
sl@0
  1748
      rc = SQLITE_BUSY;
sl@0
  1749
    }
sl@0
  1750
  }
sl@0
  1751
  
sl@0
  1752
  if( rc==SQLITE_OK ){
sl@0
  1753
    pFile->locktype = locktype;
sl@0
  1754
  }else if( locktype==EXCLUSIVE_LOCK ){
sl@0
  1755
    pFile->locktype = PENDING_LOCK;
sl@0
  1756
  }
sl@0
  1757
  
sl@0
  1758
afp_end_lock:
sl@0
  1759
  leaveMutex();
sl@0
  1760
  OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
sl@0
  1761
         rc==SQLITE_OK ? "ok" : "failed");
sl@0
  1762
  return rc;
sl@0
  1763
}
sl@0
  1764
sl@0
  1765
/*
sl@0
  1766
** Lower the locking level on file descriptor pFile to locktype.  locktype
sl@0
  1767
** must be either NO_LOCK or SHARED_LOCK.
sl@0
  1768
**
sl@0
  1769
** If the locking level of the file descriptor is already at or below
sl@0
  1770
** the requested locking level, this routine is a no-op.
sl@0
  1771
*/
sl@0
  1772
static int afpUnlock(sqlite3_file *id, int locktype) {
sl@0
  1773
  int rc = SQLITE_OK;
sl@0
  1774
  unixFile *pFile = (unixFile*)id;
sl@0
  1775
  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
sl@0
  1776
sl@0
  1777
  assert( pFile );
sl@0
  1778
  OSTRACE5("UNLOCK  %d %d was %d pid=%d\n", pFile->h, locktype,
sl@0
  1779
         pFile->locktype, getpid());
sl@0
  1780
  
sl@0
  1781
  assert( locktype<=SHARED_LOCK );
sl@0
  1782
  if( pFile->locktype<=locktype ){
sl@0
  1783
    return SQLITE_OK;
sl@0
  1784
  }
sl@0
  1785
  if( CHECK_THREADID(pFile) ){
sl@0
  1786
    return SQLITE_MISUSE;
sl@0
  1787
  }
sl@0
  1788
  enterMutex();
sl@0
  1789
  if( pFile->locktype>SHARED_LOCK ){
sl@0
  1790
    if( locktype==SHARED_LOCK ){
sl@0
  1791
      int failed = 0;
sl@0
  1792
sl@0
  1793
      /* unlock the exclusive range - then re-establish the shared lock */
sl@0
  1794
      if (pFile->locktype==EXCLUSIVE_LOCK) {
sl@0
  1795
        failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST, 
sl@0
  1796
                                 SHARED_SIZE, 0);
sl@0
  1797
        if (!failed) {
sl@0
  1798
          /* successfully removed the exclusive lock */
sl@0
  1799
          if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+
sl@0
  1800
                            context->sharedLockByte, 1, 1)) {
sl@0
  1801
            /* failed to re-establish our shared lock */
sl@0
  1802
            rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
sl@0
  1803
          }
sl@0
  1804
        } else {
sl@0
  1805
          /* This should never happen - failed to unlock the exclusive range */
sl@0
  1806
          rc = SQLITE_IOERR_UNLOCK;
sl@0
  1807
        } 
sl@0
  1808
      }
sl@0
  1809
    }
sl@0
  1810
    if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
sl@0
  1811
      if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){
sl@0
  1812
        /* failed to release the pending lock */
sl@0
  1813
        rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
sl@0
  1814
      }
sl@0
  1815
    } 
sl@0
  1816
    if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
sl@0
  1817
      if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) {
sl@0
  1818
        /* failed to release the reserved lock */
sl@0
  1819
        rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
sl@0
  1820
      }
sl@0
  1821
    } 
sl@0
  1822
  }
sl@0
  1823
  if( locktype==NO_LOCK ){
sl@0
  1824
    int failed = _AFPFSSetLock(context->filePath, pFile->h, 
sl@0
  1825
                               SHARED_FIRST + context->sharedLockByte, 1, 0);
sl@0
  1826
    if (failed) {
sl@0
  1827
      rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
sl@0
  1828
    }
sl@0
  1829
  }
sl@0
  1830
  if (rc == SQLITE_OK)
sl@0
  1831
    pFile->locktype = locktype;
sl@0
  1832
  leaveMutex();
sl@0
  1833
  return rc;
sl@0
  1834
}
sl@0
  1835
sl@0
  1836
/*
sl@0
  1837
** Close a file & cleanup AFP specific locking context 
sl@0
  1838
*/
sl@0
  1839
static int afpClose(sqlite3_file *id) {
sl@0
  1840
  if( id ){
sl@0
  1841
    unixFile *pFile = (unixFile*)id;
sl@0
  1842
    afpUnlock(id, NO_LOCK);
sl@0
  1843
    sqlite3_free(pFile->lockingContext);
sl@0
  1844
  }
sl@0
  1845
  return closeUnixFile(id);
sl@0
  1846
}
sl@0
  1847
sl@0
  1848
sl@0
  1849
#pragma mark flock() style locking
sl@0
  1850
sl@0
  1851
/*
sl@0
  1852
** The flockLockingContext is not used
sl@0
  1853
*/
sl@0
  1854
typedef void flockLockingContext;
sl@0
  1855
sl@0
  1856
static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
sl@0
  1857
  int r = 1;
sl@0
  1858
  unixFile *pFile = (unixFile*)id;
sl@0
  1859
  
sl@0
  1860
  if (pFile->locktype != RESERVED_LOCK) {
sl@0
  1861
    /* attempt to get the lock */
sl@0
  1862
    int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
sl@0
  1863
    if (!rc) {
sl@0
  1864
      /* got the lock, unlock it */
sl@0
  1865
      flock(pFile->h, LOCK_UN);
sl@0
  1866
      r = 0;  /* no one has it reserved */
sl@0
  1867
    }
sl@0
  1868
  }
sl@0
  1869
sl@0
  1870
  *pResOut = r;
sl@0
  1871
  return SQLITE_OK;
sl@0
  1872
}
sl@0
  1873
sl@0
  1874
static int flockLock(sqlite3_file *id, int locktype) {
sl@0
  1875
  unixFile *pFile = (unixFile*)id;
sl@0
  1876
  
sl@0
  1877
  /* if we already have a lock, it is exclusive.  
sl@0
  1878
  ** Just adjust level and punt on outta here. */
sl@0
  1879
  if (pFile->locktype > NO_LOCK) {
sl@0
  1880
    pFile->locktype = locktype;
sl@0
  1881
    return SQLITE_OK;
sl@0
  1882
  }
sl@0
  1883
  
sl@0
  1884
  /* grab an exclusive lock */
sl@0
  1885
  int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
sl@0
  1886
  if (rc) {
sl@0
  1887
    /* didn't get, must be busy */
sl@0
  1888
    return SQLITE_BUSY;
sl@0
  1889
  } else {
sl@0
  1890
    /* got it, set the type and return ok */
sl@0
  1891
    pFile->locktype = locktype;
sl@0
  1892
    return SQLITE_OK;
sl@0
  1893
  }
sl@0
  1894
}
sl@0
  1895
sl@0
  1896
static int flockUnlock(sqlite3_file *id, int locktype) {
sl@0
  1897
  unixFile *pFile = (unixFile*)id;
sl@0
  1898
  
sl@0
  1899
  assert( locktype<=SHARED_LOCK );
sl@0
  1900
  
sl@0
  1901
  /* no-op if possible */
sl@0
  1902
  if( pFile->locktype==locktype ){
sl@0
  1903
    return SQLITE_OK;
sl@0
  1904
  }
sl@0
  1905
  
sl@0
  1906
  /* shared can just be set because we always have an exclusive */
sl@0
  1907
  if (locktype==SHARED_LOCK) {
sl@0
  1908
    pFile->locktype = locktype;
sl@0
  1909
    return SQLITE_OK;
sl@0
  1910
  }
sl@0
  1911
  
sl@0
  1912
  /* no, really, unlock. */
sl@0
  1913
  int rc = flock(pFile->h, LOCK_UN);
sl@0
  1914
  if (rc)
sl@0
  1915
    return SQLITE_IOERR_UNLOCK;
sl@0
  1916
  else {
sl@0
  1917
    pFile->locktype = NO_LOCK;
sl@0
  1918
    return SQLITE_OK;
sl@0
  1919
  }
sl@0
  1920
}
sl@0
  1921
sl@0
  1922
/*
sl@0
  1923
** Close a file.
sl@0
  1924
*/
sl@0
  1925
static int flockClose(sqlite3_file *id) {
sl@0
  1926
  if( id ){
sl@0
  1927
    flockUnlock(id, NO_LOCK);
sl@0
  1928
  }
sl@0
  1929
  return closeUnixFile(id);
sl@0
  1930
}
sl@0
  1931
sl@0
  1932
#pragma mark Old-School .lock file based locking
sl@0
  1933
sl@0
  1934
static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
sl@0
  1935
  int r = 1;
sl@0
  1936
  unixFile *pFile = (unixFile*)id;
sl@0
  1937
  char *zLockFile = (char *)pFile->lockingContext;
sl@0
  1938
sl@0
  1939
  if (pFile->locktype != RESERVED_LOCK) {
sl@0
  1940
    struct stat statBuf;
sl@0
  1941
    if (lstat(zLockFile, &statBuf) != 0){
sl@0
  1942
      /* file does not exist, we could have it if we want it */
sl@0
  1943
      r = 0;
sl@0
  1944
    }
sl@0
  1945
  }
sl@0
  1946
sl@0
  1947
  *pResOut = r;
sl@0
  1948
  return SQLITE_OK;
sl@0
  1949
}
sl@0
  1950
sl@0
  1951
static int dotlockLock(sqlite3_file *id, int locktype) {
sl@0
  1952
  unixFile *pFile = (unixFile*)id;
sl@0
  1953
  int fd;
sl@0
  1954
  char *zLockFile = (char *)pFile->lockingContext;
sl@0
  1955
sl@0
  1956
  /* if we already have a lock, it is exclusive.  
sl@0
  1957
  ** Just adjust level and punt on outta here. */
sl@0
  1958
  if (pFile->locktype > NO_LOCK) {
sl@0
  1959
    pFile->locktype = locktype;
sl@0
  1960
    
sl@0
  1961
    /* Always update the timestamp on the old file */
sl@0
  1962
    utimes(zLockFile, NULL);
sl@0
  1963
    return SQLITE_OK;
sl@0
  1964
  }
sl@0
  1965
  
sl@0
  1966
  /* check to see if lock file already exists */
sl@0
  1967
  struct stat statBuf;
sl@0
  1968
  if (lstat(zLockFile,&statBuf) == 0){
sl@0
  1969
    return SQLITE_BUSY; /* it does, busy */
sl@0
  1970
  }
sl@0
  1971
  
sl@0
  1972
  /* grab an exclusive lock */
sl@0
  1973
  fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
sl@0
  1974
  if( fd<0 ){
sl@0
  1975
    /* failed to open/create the file, someone else may have stolen the lock */
sl@0
  1976
    return SQLITE_BUSY; 
sl@0
  1977
  }
sl@0
  1978
  close(fd);
sl@0
  1979
  
sl@0
  1980
  /* got it, set the type and return ok */
sl@0
  1981
  pFile->locktype = locktype;
sl@0
  1982
  return SQLITE_OK;
sl@0
  1983
}
sl@0
  1984
sl@0
  1985
static int dotlockUnlock(sqlite3_file *id, int locktype) {
sl@0
  1986
  unixFile *pFile = (unixFile*)id;
sl@0
  1987
  char *zLockFile = (char *)pFile->lockingContext;
sl@0
  1988
sl@0
  1989
  assert( locktype<=SHARED_LOCK );
sl@0
  1990
  
sl@0
  1991
  /* no-op if possible */
sl@0
  1992
  if( pFile->locktype==locktype ){
sl@0
  1993
    return SQLITE_OK;
sl@0
  1994
  }
sl@0
  1995
  
sl@0
  1996
  /* shared can just be set because we always have an exclusive */
sl@0
  1997
  if (locktype==SHARED_LOCK) {
sl@0
  1998
    pFile->locktype = locktype;
sl@0
  1999
    return SQLITE_OK;
sl@0
  2000
  }
sl@0
  2001
  
sl@0
  2002
  /* no, really, unlock. */
sl@0
  2003
  unlink(zLockFile);
sl@0
  2004
  pFile->locktype = NO_LOCK;
sl@0
  2005
  return SQLITE_OK;
sl@0
  2006
}
sl@0
  2007
sl@0
  2008
/*
sl@0
  2009
 ** Close a file.
sl@0
  2010
 */
sl@0
  2011
static int dotlockClose(sqlite3_file *id) {
sl@0
  2012
  if( id ){
sl@0
  2013
    unixFile *pFile = (unixFile*)id;
sl@0
  2014
    dotlockUnlock(id, NO_LOCK);
sl@0
  2015
    sqlite3_free(pFile->lockingContext);
sl@0
  2016
  }
sl@0
  2017
  return closeUnixFile(id);
sl@0
  2018
}
sl@0
  2019
sl@0
  2020
sl@0
  2021
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
sl@0
  2022
sl@0
  2023
/*
sl@0
  2024
** The nolockLockingContext is void
sl@0
  2025
*/
sl@0
  2026
typedef void nolockLockingContext;
sl@0
  2027
sl@0
  2028
static int nolockCheckReservedLock(sqlite3_file *id, int *pResOut) {
sl@0
  2029
  *pResOut = 0;
sl@0
  2030
  return SQLITE_OK;
sl@0
  2031
}
sl@0
  2032
sl@0
  2033
static int nolockLock(sqlite3_file *id, int locktype) {
sl@0
  2034
  return SQLITE_OK;
sl@0
  2035
}
sl@0
  2036
sl@0
  2037
static int nolockUnlock(sqlite3_file *id, int locktype) {
sl@0
  2038
  return SQLITE_OK;
sl@0
  2039
}
sl@0
  2040
sl@0
  2041
/*
sl@0
  2042
** Close a file.
sl@0
  2043
*/
sl@0
  2044
static int nolockClose(sqlite3_file *id) {
sl@0
  2045
  return closeUnixFile(id);
sl@0
  2046
}
sl@0
  2047
sl@0
  2048
sl@0
  2049
/*
sl@0
  2050
** Information and control of an open file handle.
sl@0
  2051
*/
sl@0
  2052
static int unixFileControl(sqlite3_file *id, int op, void *pArg){
sl@0
  2053
  switch( op ){
sl@0
  2054
    case SQLITE_FCNTL_LOCKSTATE: {
sl@0
  2055
      *(int*)pArg = ((unixFile*)id)->locktype;
sl@0
  2056
      return SQLITE_OK;
sl@0
  2057
    }
sl@0
  2058
  }
sl@0
  2059
  return SQLITE_ERROR;
sl@0
  2060
}
sl@0
  2061
sl@0
  2062
/*
sl@0
  2063
** Return the sector size in bytes of the underlying block device for
sl@0
  2064
** the specified file. This is almost always 512 bytes, but may be
sl@0
  2065
** larger for some devices.
sl@0
  2066
**
sl@0
  2067
** SQLite code assumes this function cannot fail. It also assumes that
sl@0
  2068
** if two files are created in the same file-system directory (i.e.
sl@0
  2069
** a database and its journal file) that the sector size will be the
sl@0
  2070
** same for both.
sl@0
  2071
*/
sl@0
  2072
static int unixSectorSize(sqlite3_file *id){
sl@0
  2073
  return SQLITE_DEFAULT_SECTOR_SIZE;
sl@0
  2074
}
sl@0
  2075
sl@0
  2076
/*
sl@0
  2077
** Return the device characteristics for the file. This is always 0.
sl@0
  2078
*/
sl@0
  2079
static int unixDeviceCharacteristics(sqlite3_file *id){
sl@0
  2080
  return 0;
sl@0
  2081
}
sl@0
  2082
sl@0
  2083
/*
sl@0
  2084
** Initialize the contents of the unixFile structure pointed to by pId.
sl@0
  2085
**
sl@0
  2086
** When locking extensions are enabled, the filepath and locking style 
sl@0
  2087
** are needed to determine the unixFile pMethod to use for locking operations.
sl@0
  2088
** The locking-style specific lockingContext data structure is created 
sl@0
  2089
** and assigned here also.
sl@0
  2090
*/
sl@0
  2091
static int fillInUnixFile(
sl@0
  2092
  sqlite3_vfs *pVfs,      /* Pointer to vfs object */
sl@0
  2093
  int h,                  /* Open file descriptor of file being opened */
sl@0
  2094
  int dirfd,              /* Directory file descriptor */
sl@0
  2095
  sqlite3_file *pId,      /* Write to the unixFile structure here */
sl@0
  2096
  const char *zFilename,  /* Name of the file being opened */
sl@0
  2097
  int noLock              /* Omit locking if true */
sl@0
  2098
){
sl@0
  2099
  int eLockingStyle;
sl@0
  2100
  unixFile *pNew = (unixFile *)pId;
sl@0
  2101
  int rc = SQLITE_OK;
sl@0
  2102
sl@0
  2103
  /* Macro to define the static contents of an sqlite3_io_methods 
sl@0
  2104
  ** structure for a unix backend file. Different locking methods
sl@0
  2105
  ** require different functions for the xClose, xLock, xUnlock and
sl@0
  2106
  ** xCheckReservedLock methods.
sl@0
  2107
  */
sl@0
  2108
  #define IOMETHODS(xClose, xLock, xUnlock, xCheckReservedLock) {    \
sl@0
  2109
    1,                          /* iVersion */                           \
sl@0
  2110
    xClose,                     /* xClose */                             \
sl@0
  2111
    unixRead,                   /* xRead */                              \
sl@0
  2112
    unixWrite,                  /* xWrite */                             \
sl@0
  2113
    unixTruncate,               /* xTruncate */                          \
sl@0
  2114
    unixSync,                   /* xSync */                              \
sl@0
  2115
    unixFileSize,               /* xFileSize */                          \
sl@0
  2116
    xLock,                      /* xLock */                              \
sl@0
  2117
    xUnlock,                    /* xUnlock */                            \
sl@0
  2118
    xCheckReservedLock,         /* xCheckReservedLock */                 \
sl@0
  2119
    unixFileControl,            /* xFileControl */                       \
sl@0
  2120
    unixSectorSize,             /* xSectorSize */                        \
sl@0
  2121
    unixDeviceCharacteristics   /* xDeviceCapabilities */                \
sl@0
  2122
  }
sl@0
  2123
  static sqlite3_io_methods aIoMethod[] = {
sl@0
  2124
    IOMETHODS(unixClose, unixLock, unixUnlock, unixCheckReservedLock) 
sl@0
  2125
   ,IOMETHODS(nolockClose, nolockLock, nolockUnlock, nolockCheckReservedLock)
sl@0
  2126
#ifdef SQLITE_ENABLE_LOCKING_STYLE
sl@0
  2127
   ,IOMETHODS(dotlockClose, dotlockLock, dotlockUnlock,dotlockCheckReservedLock)
sl@0
  2128
   ,IOMETHODS(flockClose, flockLock, flockUnlock, flockCheckReservedLock)
sl@0
  2129
   ,IOMETHODS(afpClose, afpLock, afpUnlock, afpCheckReservedLock)
sl@0
  2130
#endif
sl@0
  2131
  };
sl@0
  2132
  /* The order of the IOMETHODS macros above is important.  It must be the
sl@0
  2133
  ** same order as the LOCKING_STYLE numbers
sl@0
  2134
  */
sl@0
  2135
  assert(LOCKING_STYLE_POSIX==1);
sl@0
  2136
  assert(LOCKING_STYLE_NONE==2);
sl@0
  2137
  assert(LOCKING_STYLE_DOTFILE==3);
sl@0
  2138
  assert(LOCKING_STYLE_FLOCK==4);
sl@0
  2139
  assert(LOCKING_STYLE_AFP==5);
sl@0
  2140
sl@0
  2141
  assert( pNew->pLock==NULL );
sl@0
  2142
  assert( pNew->pOpen==NULL );
sl@0
  2143
sl@0
  2144
  OSTRACE3("OPEN    %-3d %s\n", h, zFilename);    
sl@0
  2145
  pNew->h = h;
sl@0
  2146
  pNew->dirfd = dirfd;
sl@0
  2147
  SET_THREADID(pNew);
sl@0
  2148
sl@0
  2149
  if( noLock ){
sl@0
  2150
    eLockingStyle = LOCKING_STYLE_NONE;
sl@0
  2151
  }else{
sl@0
  2152
    eLockingStyle = detectLockingStyle(pVfs, zFilename, h);
sl@0
  2153
  }
sl@0
  2154
sl@0
  2155
  switch( eLockingStyle ){
sl@0
  2156
sl@0
  2157
    case LOCKING_STYLE_POSIX: {
sl@0
  2158
      enterMutex();
sl@0
  2159
      rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
sl@0
  2160
      leaveMutex();
sl@0
  2161
      break;
sl@0
  2162
    }
sl@0
  2163
sl@0
  2164
#ifdef SQLITE_ENABLE_LOCKING_STYLE
sl@0
  2165
    case LOCKING_STYLE_AFP: {
sl@0
  2166
      /* AFP locking uses the file path so it needs to be included in
sl@0
  2167
      ** the afpLockingContext.
sl@0
  2168
      */
sl@0
  2169
      afpLockingContext *pCtx;
sl@0
  2170
      pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
sl@0
  2171
      if( pCtx==0 ){
sl@0
  2172
        rc = SQLITE_NOMEM;
sl@0
  2173
      }else{
sl@0
  2174
        /* NB: zFilename exists and remains valid until the file is closed
sl@0
  2175
        ** according to requirement F11141.  So we do not need to make a
sl@0
  2176
        ** copy of the filename. */
sl@0
  2177
        pCtx->filePath = zFilename;
sl@0
  2178
        srandomdev();
sl@0
  2179
      }
sl@0
  2180
      break;
sl@0
  2181
    }
sl@0
  2182
sl@0
  2183
    case LOCKING_STYLE_DOTFILE: {
sl@0
  2184
      /* Dotfile locking uses the file path so it needs to be included in
sl@0
  2185
      ** the dotlockLockingContext 
sl@0
  2186
      */
sl@0
  2187
      char *zLockFile;
sl@0
  2188
      int nFilename;
sl@0
  2189
      nFilename = strlen(zFilename) + 6;
sl@0
  2190
      zLockFile = (char *)sqlite3_malloc(nFilename);
sl@0
  2191
      if( zLockFile==0 ){
sl@0
  2192
        rc = SQLITE_NOMEM;
sl@0
  2193
      }else{
sl@0
  2194
        sqlite3_snprintf(nFilename, zLockFile, "%s.lock", zFilename);
sl@0
  2195
      }
sl@0
  2196
      pNew->lockingContext = zLockFile;
sl@0
  2197
      break;
sl@0
  2198
    }
sl@0
  2199
sl@0
  2200
    case LOCKING_STYLE_FLOCK: 
sl@0
  2201
    case LOCKING_STYLE_NONE: 
sl@0
  2202
      break;
sl@0
  2203
#endif
sl@0
  2204
  }
sl@0
  2205
sl@0
  2206
  if( rc!=SQLITE_OK ){
sl@0
  2207
    if( dirfd>=0 ) close(dirfd);
sl@0
  2208
    close(h);
sl@0
  2209
  }else{
sl@0
  2210
    pNew->pMethod = &aIoMethod[eLockingStyle-1];
sl@0
  2211
    OpenCounter(+1);
sl@0
  2212
  }
sl@0
  2213
  return rc;
sl@0
  2214
}
sl@0
  2215
sl@0
  2216
/*
sl@0
  2217
** Open a file descriptor to the directory containing file zFilename.
sl@0
  2218
** If successful, *pFd is set to the opened file descriptor and
sl@0
  2219
** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
sl@0
  2220
** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
sl@0
  2221
** value.
sl@0
  2222
**
sl@0
  2223
** If SQLITE_OK is returned, the caller is responsible for closing
sl@0
  2224
** the file descriptor *pFd using close().
sl@0
  2225
*/
sl@0
  2226
static int openDirectory(const char *zFilename, int *pFd){
sl@0
  2227
  int ii;
sl@0
  2228
  int fd = -1;
sl@0
  2229
  char zDirname[MAX_PATHNAME+1];
sl@0
  2230
sl@0
  2231
  sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
sl@0
  2232
  for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--);
sl@0
  2233
  if( ii>0 ){
sl@0
  2234
    zDirname[ii] = '\0';
sl@0
  2235
    fd = open(zDirname, O_RDONLY|O_BINARY, 0);
sl@0
  2236
    if( fd>=0 ){
sl@0
  2237
#ifdef FD_CLOEXEC
sl@0
  2238
      fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
sl@0
  2239
#endif
sl@0
  2240
      OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
sl@0
  2241
    }
sl@0
  2242
  }
sl@0
  2243
  *pFd = fd;
sl@0
  2244
  return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
sl@0
  2245
}
sl@0
  2246
sl@0
  2247
/*
sl@0
  2248
** Create a temporary file name in zBuf.  zBuf must be allocated
sl@0
  2249
** by the calling process and must be big enough to hold at least
sl@0
  2250
** pVfs->mxPathname bytes.
sl@0
  2251
*/
sl@0
  2252
static int getTempname(int nBuf, char *zBuf){
sl@0
  2253
  static const char *azDirs[] = {
sl@0
  2254
     0,
sl@0
  2255
     "/var/tmp",
sl@0
  2256
     "/usr/tmp",
sl@0
  2257
     "/tmp",
sl@0
  2258
     ".",
sl@0
  2259
  };
sl@0
  2260
  static const unsigned char zChars[] =
sl@0
  2261
    "abcdefghijklmnopqrstuvwxyz"
sl@0
  2262
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
sl@0
  2263
    "0123456789";
sl@0
  2264
  int i, j;
sl@0
  2265
  struct stat buf;
sl@0
  2266
  const char *zDir = ".";
sl@0
  2267
sl@0
  2268
  /* It's odd to simulate an io-error here, but really this is just
sl@0
  2269
  ** using the io-error infrastructure to test that SQLite handles this
sl@0
  2270
  ** function failing. 
sl@0
  2271
  */
sl@0
  2272
  SimulateIOError( return SQLITE_IOERR );
sl@0
  2273
sl@0
  2274
  azDirs[0] = sqlite3_temp_directory;
sl@0
  2275
  for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
sl@0
  2276
    if( azDirs[i]==0 ) continue;
sl@0
  2277
    if( stat(azDirs[i], &buf) ) continue;
sl@0
  2278
    if( !S_ISDIR(buf.st_mode) ) continue;
sl@0
  2279
    if( access(azDirs[i], 07) ) continue;
sl@0
  2280
    zDir = azDirs[i];
sl@0
  2281
    break;
sl@0
  2282
  }
sl@0
  2283
sl@0
  2284
  /* Check that the output buffer is large enough for the temporary file 
sl@0
  2285
  ** name. If it is not, return SQLITE_ERROR.
sl@0
  2286
  */
sl@0
  2287
  if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
sl@0
  2288
    return SQLITE_ERROR;
sl@0
  2289
  }
sl@0
  2290
sl@0
  2291
  do{
sl@0
  2292
    sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
sl@0
  2293
    j = strlen(zBuf);
sl@0
  2294
    sqlite3_randomness(15, &zBuf[j]);
sl@0
  2295
    for(i=0; i<15; i++, j++){
sl@0
  2296
      zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
sl@0
  2297
    }
sl@0
  2298
    zBuf[j] = 0;
sl@0
  2299
  }while( access(zBuf,0)==0 );
sl@0
  2300
  return SQLITE_OK;
sl@0
  2301
}
sl@0
  2302
sl@0
  2303
sl@0
  2304
/*
sl@0
  2305
** Open the file zPath.
sl@0
  2306
** 
sl@0
  2307
** Previously, the SQLite OS layer used three functions in place of this
sl@0
  2308
** one:
sl@0
  2309
**
sl@0
  2310
**     sqlite3OsOpenReadWrite();
sl@0
  2311
**     sqlite3OsOpenReadOnly();
sl@0
  2312
**     sqlite3OsOpenExclusive();
sl@0
  2313
**
sl@0
  2314
** These calls correspond to the following combinations of flags:
sl@0
  2315
**
sl@0
  2316
**     ReadWrite() ->     (READWRITE | CREATE)
sl@0
  2317
**     ReadOnly()  ->     (READONLY) 
sl@0
  2318
**     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
sl@0
  2319
**
sl@0
  2320
** The old OpenExclusive() accepted a boolean argument - "delFlag". If
sl@0
  2321
** true, the file was configured to be automatically deleted when the
sl@0
  2322
** file handle closed. To achieve the same effect using this new 
sl@0
  2323
** interface, add the DELETEONCLOSE flag to those specified above for 
sl@0
  2324
** OpenExclusive().
sl@0
  2325
*/
sl@0
  2326
static int unixOpen(
sl@0
  2327
  sqlite3_vfs *pVfs, 
sl@0
  2328
  const char *zPath, 
sl@0
  2329
  sqlite3_file *pFile,
sl@0
  2330
  int flags,
sl@0
  2331
  int *pOutFlags
sl@0
  2332
){
sl@0
  2333
  int fd = 0;                    /* File descriptor returned by open() */
sl@0
  2334
  int dirfd = -1;                /* Directory file descriptor */
sl@0
  2335
  int oflags = 0;                /* Flags to pass to open() */
sl@0
  2336
  int eType = flags&0xFFFFFF00;  /* Type of file to open */
sl@0
  2337
  int noLock;                    /* True to omit locking primitives */
sl@0
  2338
sl@0
  2339
  int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
sl@0
  2340
  int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
sl@0
  2341
  int isCreate     = (flags & SQLITE_OPEN_CREATE);
sl@0
  2342
  int isReadonly   = (flags & SQLITE_OPEN_READONLY);
sl@0
  2343
  int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
sl@0
  2344
sl@0
  2345
  /* If creating a master or main-file journal, this function will open
sl@0
  2346
  ** a file-descriptor on the directory too. The first time unixSync()
sl@0
  2347
  ** is called the directory file descriptor will be fsync()ed and close()d.
sl@0
  2348
  */
sl@0
  2349
  int isOpenDirectory = (isCreate && 
sl@0
  2350
      (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
sl@0
  2351
  );
sl@0
  2352
sl@0
  2353
  /* If argument zPath is a NULL pointer, this function is required to open
sl@0
  2354
  ** a temporary file. Use this buffer to store the file name in.
sl@0
  2355
  */
sl@0
  2356
  char zTmpname[MAX_PATHNAME+1];
sl@0
  2357
  const char *zName = zPath;
sl@0
  2358
sl@0
  2359
  /* Check the following statements are true: 
sl@0
  2360
  **
sl@0
  2361
  **   (a) Exactly one of the READWRITE and READONLY flags must be set, and 
sl@0
  2362
  **   (b) if CREATE is set, then READWRITE must also be set, and
sl@0
  2363
  **   (c) if EXCLUSIVE is set, then CREATE must also be set.
sl@0
  2364
  **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
sl@0
  2365
  */
sl@0
  2366
  assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
sl@0
  2367
  assert(isCreate==0 || isReadWrite);
sl@0
  2368
  assert(isExclusive==0 || isCreate);
sl@0
  2369
  assert(isDelete==0 || isCreate);
sl@0
  2370
sl@0
  2371
  /* The main DB, main journal, and master journal are never automatically
sl@0
  2372
  ** deleted
sl@0
  2373
  */
sl@0
  2374
  assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete );
sl@0
  2375
  assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete );
sl@0
  2376
  assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete );
sl@0
  2377
sl@0
  2378
  /* Assert that the upper layer has set one of the "file-type" flags. */
sl@0
  2379
  assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
sl@0
  2380
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
sl@0
  2381
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
sl@0
  2382
       || eType==SQLITE_OPEN_TRANSIENT_DB
sl@0
  2383
  );
sl@0
  2384
sl@0
  2385
  memset(pFile, 0, sizeof(unixFile));
sl@0
  2386
sl@0
  2387
  if( !zName ){
sl@0
  2388
    int rc;
sl@0
  2389
    assert(isDelete && !isOpenDirectory);
sl@0
  2390
    rc = getTempname(MAX_PATHNAME+1, zTmpname);
sl@0
  2391
    if( rc!=SQLITE_OK ){
sl@0
  2392
      return rc;
sl@0
  2393
    }
sl@0
  2394
    zName = zTmpname;
sl@0
  2395
  }
sl@0
  2396
sl@0
  2397
  if( isReadonly )  oflags |= O_RDONLY;
sl@0
  2398
  if( isReadWrite ) oflags |= O_RDWR;
sl@0
  2399
  if( isCreate )    oflags |= O_CREAT;
sl@0
  2400
  if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW);
sl@0
  2401
  oflags |= (O_LARGEFILE|O_BINARY);
sl@0
  2402
sl@0
  2403
  fd = open(zName, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
sl@0
  2404
  if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
sl@0
  2405
    /* Failed to open the file for read/write access. Try read-only. */
sl@0
  2406
    flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
sl@0
  2407
    flags |= SQLITE_OPEN_READONLY;
sl@0
  2408
    return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);
sl@0
  2409
  }
sl@0
  2410
  if( fd<0 ){
sl@0
  2411
    return SQLITE_CANTOPEN;
sl@0
  2412
  }
sl@0
  2413
  if( isDelete ){
sl@0
  2414
    unlink(zName);
sl@0
  2415
  }
sl@0
  2416
  if( pOutFlags ){
sl@0
  2417
    *pOutFlags = flags;
sl@0
  2418
  }
sl@0
  2419
sl@0
  2420
  assert(fd!=0);
sl@0
  2421
  if( isOpenDirectory ){
sl@0
  2422
    int rc = openDirectory(zPath, &dirfd);
sl@0
  2423
    if( rc!=SQLITE_OK ){
sl@0
  2424
      close(fd);
sl@0
  2425
      return rc;
sl@0
  2426
    }
sl@0
  2427
  }
sl@0
  2428
sl@0
  2429
#ifdef FD_CLOEXEC
sl@0
  2430
  fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
sl@0
  2431
#endif
sl@0
  2432
sl@0
  2433
  noLock = eType!=SQLITE_OPEN_MAIN_DB;
sl@0
  2434
  return fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock);
sl@0
  2435
}
sl@0
  2436
sl@0
  2437
/*
sl@0
  2438
** Delete the file at zPath. If the dirSync argument is true, fsync()
sl@0
  2439
** the directory after deleting the file.
sl@0
  2440
*/
sl@0
  2441
static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
sl@0
  2442
  int rc = SQLITE_OK;
sl@0
  2443
  SimulateIOError(return SQLITE_IOERR_DELETE);
sl@0
  2444
  unlink(zPath);
sl@0
  2445
  if( dirSync ){
sl@0
  2446
    int fd;
sl@0
  2447
    rc = openDirectory(zPath, &fd);
sl@0
  2448
    if( rc==SQLITE_OK ){
sl@0
  2449
      if( fsync(fd) ){
sl@0
  2450
        rc = SQLITE_IOERR_DIR_FSYNC;
sl@0
  2451
      }
sl@0
  2452
      close(fd);
sl@0
  2453
    }
sl@0
  2454
  }
sl@0
  2455
  return rc;
sl@0
  2456
}
sl@0
  2457
sl@0
  2458
/*
sl@0
  2459
** Test the existance of or access permissions of file zPath. The
sl@0
  2460
** test performed depends on the value of flags:
sl@0
  2461
**
sl@0
  2462
**     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
sl@0
  2463
**     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
sl@0
  2464
**     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
sl@0
  2465
**
sl@0
  2466
** Otherwise return 0.
sl@0
  2467
*/
sl@0
  2468
static int unixAccess(
sl@0
  2469
  sqlite3_vfs *pVfs, 
sl@0
  2470
  const char *zPath, 
sl@0
  2471
  int flags, 
sl@0
  2472
  int *pResOut
sl@0
  2473
){
sl@0
  2474
  int amode = 0;
sl@0
  2475
  SimulateIOError( return SQLITE_IOERR_ACCESS; );
sl@0
  2476
  switch( flags ){
sl@0
  2477
    case SQLITE_ACCESS_EXISTS:
sl@0
  2478
      amode = F_OK;
sl@0
  2479
      break;
sl@0
  2480
    case SQLITE_ACCESS_READWRITE:
sl@0
  2481
      amode = W_OK|R_OK;
sl@0
  2482
      break;
sl@0
  2483
    case SQLITE_ACCESS_READ:
sl@0
  2484
      amode = R_OK;
sl@0
  2485
      break;
sl@0
  2486
sl@0
  2487
    default:
sl@0
  2488
      assert(!"Invalid flags argument");
sl@0
  2489
  }
sl@0
  2490
  *pResOut = (access(zPath, amode)==0);
sl@0
  2491
  return SQLITE_OK;
sl@0
  2492
}
sl@0
  2493
sl@0
  2494
sl@0
  2495
/*
sl@0
  2496
** Turn a relative pathname into a full pathname. The relative path
sl@0
  2497
** is stored as a nul-terminated string in the buffer pointed to by
sl@0
  2498
** zPath. 
sl@0
  2499
**
sl@0
  2500
** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
sl@0
  2501
** (in this case, MAX_PATHNAME bytes). The full-path is written to
sl@0
  2502
** this buffer before returning.
sl@0
  2503
*/
sl@0
  2504
static int unixFullPathname(
sl@0
  2505
  sqlite3_vfs *pVfs,            /* Pointer to vfs object */
sl@0
  2506
  const char *zPath,            /* Possibly relative input path */
sl@0
  2507
  int nOut,                     /* Size of output buffer in bytes */
sl@0
  2508
  char *zOut                    /* Output buffer */
sl@0
  2509
){
sl@0
  2510
sl@0
  2511
  /* It's odd to simulate an io-error here, but really this is just
sl@0
  2512
  ** using the io-error infrastructure to test that SQLite handles this
sl@0
  2513
  ** function failing. This function could fail if, for example, the
sl@0
  2514
  ** current working directly has been unlinked.
sl@0
  2515
  */
sl@0
  2516
  SimulateIOError( return SQLITE_ERROR );
sl@0
  2517
sl@0
  2518
  assert( pVfs->mxPathname==MAX_PATHNAME );
sl@0
  2519
  zOut[nOut-1] = '\0';
sl@0
  2520
  if( zPath[0]=='/' ){
sl@0
  2521
    sqlite3_snprintf(nOut, zOut, "%s", zPath);
sl@0
  2522
  }else{
sl@0
  2523
    int nCwd;
sl@0
  2524
    if( getcwd(zOut, nOut-1)==0 ){
sl@0
  2525
      return SQLITE_CANTOPEN;
sl@0
  2526
    }
sl@0
  2527
    nCwd = strlen(zOut);
sl@0
  2528
    sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
sl@0
  2529
  }
sl@0
  2530
  return SQLITE_OK;
sl@0
  2531
sl@0
  2532
#if 0
sl@0
  2533
  /*
sl@0
  2534
  ** Remove "/./" path elements and convert "/A/./" path elements
sl@0
  2535
  ** to just "/".
sl@0
  2536
  */
sl@0
  2537
  if( zFull ){
sl@0
  2538
    int i, j;
sl@0
  2539
    for(i=j=0; zFull[i]; i++){
sl@0
  2540
      if( zFull[i]=='/' ){
sl@0
  2541
        if( zFull[i+1]=='/' ) continue;
sl@0
  2542
        if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
sl@0
  2543
          i += 1;
sl@0
  2544
          continue;
sl@0
  2545
        }
sl@0
  2546
        if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
sl@0
  2547
          while( j>0 && zFull[j-1]!='/' ){ j--; }
sl@0
  2548
          i += 3;
sl@0
  2549
          continue;
sl@0
  2550
        }
sl@0
  2551
      }
sl@0
  2552
      zFull[j++] = zFull[i];
sl@0
  2553
    }
sl@0
  2554
    zFull[j] = 0;
sl@0
  2555
  }
sl@0
  2556
#endif
sl@0
  2557
}
sl@0
  2558
sl@0
  2559
sl@0
  2560
#ifndef SQLITE_OMIT_LOAD_EXTENSION
sl@0
  2561
/*
sl@0
  2562
** Interfaces for opening a shared library, finding entry points
sl@0
  2563
** within the shared library, and closing the shared library.
sl@0
  2564
*/
sl@0
  2565
#include <dlfcn.h>
sl@0
  2566
static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
sl@0
  2567
  return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
sl@0
  2568
}
sl@0
  2569
sl@0
  2570
/*
sl@0
  2571
** SQLite calls this function immediately after a call to unixDlSym() or
sl@0
  2572
** unixDlOpen() fails (returns a null pointer). If a more detailed error
sl@0
  2573
** message is available, it is written to zBufOut. If no error message
sl@0
  2574
** is available, zBufOut is left unmodified and SQLite uses a default
sl@0
  2575
** error message.
sl@0
  2576
*/
sl@0
  2577
static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
sl@0
  2578
  char *zErr;
sl@0
  2579
  enterMutex();
sl@0
  2580
  zErr = dlerror();
sl@0
  2581
  if( zErr ){
sl@0
  2582
    sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
sl@0
  2583
  }
sl@0
  2584
  leaveMutex();
sl@0
  2585
}
sl@0
  2586
static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
sl@0
  2587
  return dlsym(pHandle, zSymbol);
sl@0
  2588
}
sl@0
  2589
static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){
sl@0
  2590
  dlclose(pHandle);
sl@0
  2591
}
sl@0
  2592
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
sl@0
  2593
  #define unixDlOpen  0
sl@0
  2594
  #define unixDlError 0
sl@0
  2595
  #define unixDlSym   0
sl@0
  2596
  #define unixDlClose 0
sl@0
  2597
#endif
sl@0
  2598
sl@0
  2599
/*
sl@0
  2600
** Write nBuf bytes of random data to the supplied buffer zBuf.
sl@0
  2601
*/
sl@0
  2602
static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
sl@0
  2603
sl@0
  2604
  assert(nBuf>=(sizeof(time_t)+sizeof(int)));
sl@0
  2605
sl@0
  2606
  /* We have to initialize zBuf to prevent valgrind from reporting
sl@0
  2607
  ** errors.  The reports issued by valgrind are incorrect - we would
sl@0
  2608
  ** prefer that the randomness be increased by making use of the
sl@0
  2609
  ** uninitialized space in zBuf - but valgrind errors tend to worry
sl@0
  2610
  ** some users.  Rather than argue, it seems easier just to initialize
sl@0
  2611
  ** the whole array and silence valgrind, even if that means less randomness
sl@0
  2612
  ** in the random seed.
sl@0
  2613
  **
sl@0
  2614
  ** When testing, initializing zBuf[] to zero is all we do.  That means
sl@0
  2615
  ** that we always use the same random number sequence.  This makes the
sl@0
  2616
  ** tests repeatable.
sl@0
  2617
  */
sl@0
  2618
  memset(zBuf, 0, nBuf);
sl@0
  2619
#if !defined(SQLITE_TEST)
sl@0
  2620
  {
sl@0
  2621
    int pid, fd;
sl@0
  2622
    fd = open("/dev/urandom", O_RDONLY);
sl@0
  2623
    if( fd<0 ){
sl@0
  2624
      time_t t;
sl@0
  2625
      time(&t);
sl@0
  2626
      memcpy(zBuf, &t, sizeof(t));
sl@0
  2627
      pid = getpid();
sl@0
  2628
      memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
sl@0
  2629
    }else{
sl@0
  2630
      read(fd, zBuf, nBuf);
sl@0
  2631
      close(fd);
sl@0
  2632
    }
sl@0
  2633
  }
sl@0
  2634
#endif
sl@0
  2635
  return SQLITE_OK;
sl@0
  2636
}
sl@0
  2637
sl@0
  2638
sl@0
  2639
/*
sl@0
  2640
** Sleep for a little while.  Return the amount of time slept.
sl@0
  2641
** The argument is the number of microseconds we want to sleep.
sl@0
  2642
** The return value is the number of microseconds of sleep actually
sl@0
  2643
** requested from the underlying operating system, a number which
sl@0
  2644
** might be greater than or equal to the argument, but not less
sl@0
  2645
** than the argument.
sl@0
  2646
*/
sl@0
  2647
static int unixSleep(sqlite3_vfs *pVfs, int microseconds){
sl@0
  2648
#if defined(HAVE_USLEEP) && HAVE_USLEEP
sl@0
  2649
  usleep(microseconds);
sl@0
  2650
  return microseconds;
sl@0
  2651
#else
sl@0
  2652
  int seconds = (microseconds+999999)/1000000;
sl@0
  2653
  sleep(seconds);
sl@0
  2654
  return seconds*1000000;
sl@0
  2655
#endif
sl@0
  2656
}
sl@0
  2657
sl@0
  2658
/*
sl@0
  2659
** The following variable, if set to a non-zero value, becomes the result
sl@0
  2660
** returned from sqlite3OsCurrentTime().  This is used for testing.
sl@0
  2661
*/
sl@0
  2662
#ifdef SQLITE_TEST
sl@0
  2663
int sqlite3_current_time = 0;
sl@0
  2664
#endif
sl@0
  2665
sl@0
  2666
/*
sl@0
  2667
** Find the current time (in Universal Coordinated Time).  Write the
sl@0
  2668
** current time and date as a Julian Day number into *prNow and
sl@0
  2669
** return 0.  Return 1 if the time and date cannot be found.
sl@0
  2670
*/
sl@0
  2671
static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){
sl@0
  2672
#ifdef NO_GETTOD
sl@0
  2673
  time_t t;
sl@0
  2674
  time(&t);
sl@0
  2675
  *prNow = t/86400.0 + 2440587.5;
sl@0
  2676
#else
sl@0
  2677
  struct timeval sNow;
sl@0
  2678
  gettimeofday(&sNow, 0);
sl@0
  2679
  *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
sl@0
  2680
#endif
sl@0
  2681
#ifdef SQLITE_TEST
sl@0
  2682
  if( sqlite3_current_time ){
sl@0
  2683
    *prNow = sqlite3_current_time/86400.0 + 2440587.5;
sl@0
  2684
  }
sl@0
  2685
#endif
sl@0
  2686
  return 0;
sl@0
  2687
}
sl@0
  2688
sl@0
  2689
static int unixGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
sl@0
  2690
  return 0;
sl@0
  2691
}
sl@0
  2692
sl@0
  2693
/*
sl@0
  2694
** Initialize the operating system interface.
sl@0
  2695
*/
sl@0
  2696
int sqlite3_os_init(void){ 
sl@0
  2697
  /* Macro to define the static contents of an sqlite3_vfs structure for
sl@0
  2698
  ** the unix backend. The two parameters are the values to use for
sl@0
  2699
  ** the sqlite3_vfs.zName and sqlite3_vfs.pAppData fields, respectively.
sl@0
  2700
  ** 
sl@0
  2701
  */
sl@0
  2702
  #define UNIXVFS(zVfsName, pVfsAppData) {                  \
sl@0
  2703
    1,                    /* iVersion */                    \
sl@0
  2704
    sizeof(unixFile),     /* szOsFile */                    \
sl@0
  2705
    MAX_PATHNAME,         /* mxPathname */                  \
sl@0
  2706
    0,                    /* pNext */                       \
sl@0
  2707
    zVfsName,             /* zName */                       \
sl@0
  2708
    (void *)pVfsAppData,  /* pAppData */                    \
sl@0
  2709
    unixOpen,             /* xOpen */                       \
sl@0
  2710
    unixDelete,           /* xDelete */                     \
sl@0
  2711
    unixAccess,           /* xAccess */                     \
sl@0
  2712
    unixFullPathname,     /* xFullPathname */               \
sl@0
  2713
    unixDlOpen,           /* xDlOpen */                     \
sl@0
  2714
    unixDlError,          /* xDlError */                    \
sl@0
  2715
    unixDlSym,            /* xDlSym */                      \
sl@0
  2716
    unixDlClose,          /* xDlClose */                    \
sl@0
  2717
    unixRandomness,       /* xRandomness */                 \
sl@0
  2718
    unixSleep,            /* xSleep */                      \
sl@0
  2719
    unixCurrentTime,      /* xCurrentTime */                \
sl@0
  2720
    unixGetLastError      /* xGetLastError */               \
sl@0
  2721
  }
sl@0
  2722
sl@0
  2723
  static sqlite3_vfs unixVfs = UNIXVFS("unix", 0);
sl@0
  2724
#ifdef SQLITE_ENABLE_LOCKING_STYLE
sl@0
  2725
#if 0
sl@0
  2726
  int i;
sl@0
  2727
  static sqlite3_vfs aVfs[] = {
sl@0
  2728
    UNIXVFS("unix-posix",   LOCKING_STYLE_POSIX), 
sl@0
  2729
    UNIXVFS("unix-afp",     LOCKING_STYLE_AFP), 
sl@0
  2730
    UNIXVFS("unix-flock",   LOCKING_STYLE_FLOCK), 
sl@0
  2731
    UNIXVFS("unix-dotfile", LOCKING_STYLE_DOTFILE), 
sl@0
  2732
    UNIXVFS("unix-none",    LOCKING_STYLE_NONE)
sl@0
  2733
  };
sl@0
  2734
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
sl@0
  2735
    sqlite3_vfs_register(&aVfs[i], 0);
sl@0
  2736
  }
sl@0
  2737
#endif
sl@0
  2738
#endif
sl@0
  2739
  sqlite3_vfs_register(&unixVfs, 1);
sl@0
  2740
  return SQLITE_OK; 
sl@0
  2741
}
sl@0
  2742
sl@0
  2743
/*
sl@0
  2744
** Shutdown the operating system interface. This is a no-op for unix.
sl@0
  2745
*/
sl@0
  2746
int sqlite3_os_end(void){ 
sl@0
  2747
  return SQLITE_OK; 
sl@0
  2748
}
sl@0
  2749
 
sl@0
  2750
#endif /* SQLITE_OS_UNIX */