os/persistentdata/persistentstorage/sql/SQLite/btreeInt.h
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/*
sl@0
     2
** 2004 April 6
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** $Id: btreeInt.h,v 1.30 2008/08/01 20:10:08 drh Exp $
sl@0
    13
**
sl@0
    14
** This file implements a external (disk-based) database using BTrees.
sl@0
    15
** For a detailed discussion of BTrees, refer to
sl@0
    16
**
sl@0
    17
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
sl@0
    18
**     "Sorting And Searching", pages 473-480. Addison-Wesley
sl@0
    19
**     Publishing Company, Reading, Massachusetts.
sl@0
    20
**
sl@0
    21
** The basic idea is that each page of the file contains N database
sl@0
    22
** entries and N+1 pointers to subpages.
sl@0
    23
**
sl@0
    24
**   ----------------------------------------------------------------
sl@0
    25
**   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
sl@0
    26
**   ----------------------------------------------------------------
sl@0
    27
**
sl@0
    28
** All of the keys on the page that Ptr(0) points to have values less
sl@0
    29
** than Key(0).  All of the keys on page Ptr(1) and its subpages have
sl@0
    30
** values greater than Key(0) and less than Key(1).  All of the keys
sl@0
    31
** on Ptr(N) and its subpages have values greater than Key(N-1).  And
sl@0
    32
** so forth.
sl@0
    33
**
sl@0
    34
** Finding a particular key requires reading O(log(M)) pages from the 
sl@0
    35
** disk where M is the number of entries in the tree.
sl@0
    36
**
sl@0
    37
** In this implementation, a single file can hold one or more separate 
sl@0
    38
** BTrees.  Each BTree is identified by the index of its root page.  The
sl@0
    39
** key and data for any entry are combined to form the "payload".  A
sl@0
    40
** fixed amount of payload can be carried directly on the database
sl@0
    41
** page.  If the payload is larger than the preset amount then surplus
sl@0
    42
** bytes are stored on overflow pages.  The payload for an entry
sl@0
    43
** and the preceding pointer are combined to form a "Cell".  Each 
sl@0
    44
** page has a small header which contains the Ptr(N) pointer and other
sl@0
    45
** information such as the size of key and data.
sl@0
    46
**
sl@0
    47
** FORMAT DETAILS
sl@0
    48
**
sl@0
    49
** The file is divided into pages.  The first page is called page 1,
sl@0
    50
** the second is page 2, and so forth.  A page number of zero indicates
sl@0
    51
** "no such page".  The page size can be anything between 512 and 65536.
sl@0
    52
** Each page can be either a btree page, a freelist page or an overflow
sl@0
    53
** page.
sl@0
    54
**
sl@0
    55
** The first page is always a btree page.  The first 100 bytes of the first
sl@0
    56
** page contain a special header (the "file header") that describes the file.
sl@0
    57
** The format of the file header is as follows:
sl@0
    58
**
sl@0
    59
**   OFFSET   SIZE    DESCRIPTION
sl@0
    60
**      0      16     Header string: "SQLite format 3\000"
sl@0
    61
**     16       2     Page size in bytes.  
sl@0
    62
**     18       1     File format write version
sl@0
    63
**     19       1     File format read version
sl@0
    64
**     20       1     Bytes of unused space at the end of each page
sl@0
    65
**     21       1     Max embedded payload fraction
sl@0
    66
**     22       1     Min embedded payload fraction
sl@0
    67
**     23       1     Min leaf payload fraction
sl@0
    68
**     24       4     File change counter
sl@0
    69
**     28       4     Reserved for future use
sl@0
    70
**     32       4     First freelist page
sl@0
    71
**     36       4     Number of freelist pages in the file
sl@0
    72
**     40      60     15 4-byte meta values passed to higher layers
sl@0
    73
**
sl@0
    74
** All of the integer values are big-endian (most significant byte first).
sl@0
    75
**
sl@0
    76
** The file change counter is incremented when the database is changed
sl@0
    77
** This counter allows other processes to know when the file has changed
sl@0
    78
** and thus when they need to flush their cache.
sl@0
    79
**
sl@0
    80
** The max embedded payload fraction is the amount of the total usable
sl@0
    81
** space in a page that can be consumed by a single cell for standard
sl@0
    82
** B-tree (non-LEAFDATA) tables.  A value of 255 means 100%.  The default
sl@0
    83
** is to limit the maximum cell size so that at least 4 cells will fit
sl@0
    84
** on one page.  Thus the default max embedded payload fraction is 64.
sl@0
    85
**
sl@0
    86
** If the payload for a cell is larger than the max payload, then extra
sl@0
    87
** payload is spilled to overflow pages.  Once an overflow page is allocated,
sl@0
    88
** as many bytes as possible are moved into the overflow pages without letting
sl@0
    89
** the cell size drop below the min embedded payload fraction.
sl@0
    90
**
sl@0
    91
** The min leaf payload fraction is like the min embedded payload fraction
sl@0
    92
** except that it applies to leaf nodes in a LEAFDATA tree.  The maximum
sl@0
    93
** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
sl@0
    94
** not specified in the header.
sl@0
    95
**
sl@0
    96
** Each btree pages is divided into three sections:  The header, the
sl@0
    97
** cell pointer array, and the cell content area.  Page 1 also has a 100-byte
sl@0
    98
** file header that occurs before the page header.
sl@0
    99
**
sl@0
   100
**      |----------------|
sl@0
   101
**      | file header    |   100 bytes.  Page 1 only.
sl@0
   102
**      |----------------|
sl@0
   103
**      | page header    |   8 bytes for leaves.  12 bytes for interior nodes
sl@0
   104
**      |----------------|
sl@0
   105
**      | cell pointer   |   |  2 bytes per cell.  Sorted order.
sl@0
   106
**      | array          |   |  Grows downward
sl@0
   107
**      |                |   v
sl@0
   108
**      |----------------|
sl@0
   109
**      | unallocated    |
sl@0
   110
**      | space          |
sl@0
   111
**      |----------------|   ^  Grows upwards
sl@0
   112
**      | cell content   |   |  Arbitrary order interspersed with freeblocks.
sl@0
   113
**      | area           |   |  and free space fragments.
sl@0
   114
**      |----------------|
sl@0
   115
**
sl@0
   116
** The page headers looks like this:
sl@0
   117
**
sl@0
   118
**   OFFSET   SIZE     DESCRIPTION
sl@0
   119
**      0       1      Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
sl@0
   120
**      1       2      byte offset to the first freeblock
sl@0
   121
**      3       2      number of cells on this page
sl@0
   122
**      5       2      first byte of the cell content area
sl@0
   123
**      7       1      number of fragmented free bytes
sl@0
   124
**      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
sl@0
   125
**
sl@0
   126
** The flags define the format of this btree page.  The leaf flag means that
sl@0
   127
** this page has no children.  The zerodata flag means that this page carries
sl@0
   128
** only keys and no data.  The intkey flag means that the key is a integer
sl@0
   129
** which is stored in the key size entry of the cell header rather than in
sl@0
   130
** the payload area.
sl@0
   131
**
sl@0
   132
** The cell pointer array begins on the first byte after the page header.
sl@0
   133
** The cell pointer array contains zero or more 2-byte numbers which are
sl@0
   134
** offsets from the beginning of the page to the cell content in the cell
sl@0
   135
** content area.  The cell pointers occur in sorted order.  The system strives
sl@0
   136
** to keep free space after the last cell pointer so that new cells can
sl@0
   137
** be easily added without having to defragment the page.
sl@0
   138
**
sl@0
   139
** Cell content is stored at the very end of the page and grows toward the
sl@0
   140
** beginning of the page.
sl@0
   141
**
sl@0
   142
** Unused space within the cell content area is collected into a linked list of
sl@0
   143
** freeblocks.  Each freeblock is at least 4 bytes in size.  The byte offset
sl@0
   144
** to the first freeblock is given in the header.  Freeblocks occur in
sl@0
   145
** increasing order.  Because a freeblock must be at least 4 bytes in size,
sl@0
   146
** any group of 3 or fewer unused bytes in the cell content area cannot
sl@0
   147
** exist on the freeblock chain.  A group of 3 or fewer free bytes is called
sl@0
   148
** a fragment.  The total number of bytes in all fragments is recorded.
sl@0
   149
** in the page header at offset 7.
sl@0
   150
**
sl@0
   151
**    SIZE    DESCRIPTION
sl@0
   152
**      2     Byte offset of the next freeblock
sl@0
   153
**      2     Bytes in this freeblock
sl@0
   154
**
sl@0
   155
** Cells are of variable length.  Cells are stored in the cell content area at
sl@0
   156
** the end of the page.  Pointers to the cells are in the cell pointer array
sl@0
   157
** that immediately follows the page header.  Cells is not necessarily
sl@0
   158
** contiguous or in order, but cell pointers are contiguous and in order.
sl@0
   159
**
sl@0
   160
** Cell content makes use of variable length integers.  A variable
sl@0
   161
** length integer is 1 to 9 bytes where the lower 7 bits of each 
sl@0
   162
** byte are used.  The integer consists of all bytes that have bit 8 set and
sl@0
   163
** the first byte with bit 8 clear.  The most significant byte of the integer
sl@0
   164
** appears first.  A variable-length integer may not be more than 9 bytes long.
sl@0
   165
** As a special case, all 8 bytes of the 9th byte are used as data.  This
sl@0
   166
** allows a 64-bit integer to be encoded in 9 bytes.
sl@0
   167
**
sl@0
   168
**    0x00                      becomes  0x00000000
sl@0
   169
**    0x7f                      becomes  0x0000007f
sl@0
   170
**    0x81 0x00                 becomes  0x00000080
sl@0
   171
**    0x82 0x00                 becomes  0x00000100
sl@0
   172
**    0x80 0x7f                 becomes  0x0000007f
sl@0
   173
**    0x8a 0x91 0xd1 0xac 0x78  becomes  0x12345678
sl@0
   174
**    0x81 0x81 0x81 0x81 0x01  becomes  0x10204081
sl@0
   175
**
sl@0
   176
** Variable length integers are used for rowids and to hold the number of
sl@0
   177
** bytes of key and data in a btree cell.
sl@0
   178
**
sl@0
   179
** The content of a cell looks like this:
sl@0
   180
**
sl@0
   181
**    SIZE    DESCRIPTION
sl@0
   182
**      4     Page number of the left child. Omitted if leaf flag is set.
sl@0
   183
**     var    Number of bytes of data. Omitted if the zerodata flag is set.
sl@0
   184
**     var    Number of bytes of key. Or the key itself if intkey flag is set.
sl@0
   185
**      *     Payload
sl@0
   186
**      4     First page of the overflow chain.  Omitted if no overflow
sl@0
   187
**
sl@0
   188
** Overflow pages form a linked list.  Each page except the last is completely
sl@0
   189
** filled with data (pagesize - 4 bytes).  The last page can have as little
sl@0
   190
** as 1 byte of data.
sl@0
   191
**
sl@0
   192
**    SIZE    DESCRIPTION
sl@0
   193
**      4     Page number of next overflow page
sl@0
   194
**      *     Data
sl@0
   195
**
sl@0
   196
** Freelist pages come in two subtypes: trunk pages and leaf pages.  The
sl@0
   197
** file header points to the first in a linked list of trunk page.  Each trunk
sl@0
   198
** page points to multiple leaf pages.  The content of a leaf page is
sl@0
   199
** unspecified.  A trunk page looks like this:
sl@0
   200
**
sl@0
   201
**    SIZE    DESCRIPTION
sl@0
   202
**      4     Page number of next trunk page
sl@0
   203
**      4     Number of leaf pointers on this page
sl@0
   204
**      *     zero or more pages numbers of leaves
sl@0
   205
*/
sl@0
   206
#include "sqliteInt.h"
sl@0
   207
#include "pager.h"
sl@0
   208
#include "btree.h"
sl@0
   209
#include "os.h"
sl@0
   210
#include <assert.h>
sl@0
   211
sl@0
   212
/* Round up a number to the next larger multiple of 8.  This is used
sl@0
   213
** to force 8-byte alignment on 64-bit architectures.
sl@0
   214
*/
sl@0
   215
#define ROUND8(x)   ((x+7)&~7)
sl@0
   216
sl@0
   217
sl@0
   218
/* The following value is the maximum cell size assuming a maximum page
sl@0
   219
** size give above.
sl@0
   220
*/
sl@0
   221
#define MX_CELL_SIZE(pBt)  (pBt->pageSize-8)
sl@0
   222
sl@0
   223
/* The maximum number of cells on a single page of the database.  This
sl@0
   224
** assumes a minimum cell size of 6 bytes  (4 bytes for the cell itself
sl@0
   225
** plus 2 bytes for the index to the cell in the page header).  Such
sl@0
   226
** small cells will be rare, but they are possible.
sl@0
   227
*/
sl@0
   228
#define MX_CELL(pBt) ((pBt->pageSize-8)/6)
sl@0
   229
sl@0
   230
/* Forward declarations */
sl@0
   231
typedef struct MemPage MemPage;
sl@0
   232
typedef struct BtLock BtLock;
sl@0
   233
sl@0
   234
/*
sl@0
   235
** This is a magic string that appears at the beginning of every
sl@0
   236
** SQLite database in order to identify the file as a real database.
sl@0
   237
**
sl@0
   238
** You can change this value at compile-time by specifying a
sl@0
   239
** -DSQLITE_FILE_HEADER="..." on the compiler command-line.  The
sl@0
   240
** header must be exactly 16 bytes including the zero-terminator so
sl@0
   241
** the string itself should be 15 characters long.  If you change
sl@0
   242
** the header, then your custom library will not be able to read 
sl@0
   243
** databases generated by the standard tools and the standard tools
sl@0
   244
** will not be able to read databases created by your custom library.
sl@0
   245
*/
sl@0
   246
#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
sl@0
   247
#  define SQLITE_FILE_HEADER "SQLite format 3"
sl@0
   248
#endif
sl@0
   249
sl@0
   250
/*
sl@0
   251
** Page type flags.  An ORed combination of these flags appear as the
sl@0
   252
** first byte of on-disk image of every BTree page.
sl@0
   253
*/
sl@0
   254
#define PTF_INTKEY    0x01
sl@0
   255
#define PTF_ZERODATA  0x02
sl@0
   256
#define PTF_LEAFDATA  0x04
sl@0
   257
#define PTF_LEAF      0x08
sl@0
   258
sl@0
   259
/*
sl@0
   260
** As each page of the file is loaded into memory, an instance of the following
sl@0
   261
** structure is appended and initialized to zero.  This structure stores
sl@0
   262
** information about the page that is decoded from the raw file page.
sl@0
   263
**
sl@0
   264
** The pParent field points back to the parent page.  This allows us to
sl@0
   265
** walk up the BTree from any leaf to the root.  Care must be taken to
sl@0
   266
** unref() the parent page pointer when this page is no longer referenced.
sl@0
   267
** The pageDestructor() routine handles that chore.
sl@0
   268
**
sl@0
   269
** Access to all fields of this structure is controlled by the mutex
sl@0
   270
** stored in MemPage.pBt->mutex.
sl@0
   271
*/
sl@0
   272
struct MemPage {
sl@0
   273
  u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
sl@0
   274
  u8 idxShift;         /* True if Cell indices have changed */
sl@0
   275
  u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
sl@0
   276
  u8 intKey;           /* True if intkey flag is set */
sl@0
   277
  u8 leaf;             /* True if leaf flag is set */
sl@0
   278
  u8 hasData;          /* True if this page stores data */
sl@0
   279
  u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
sl@0
   280
  u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
sl@0
   281
  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
sl@0
   282
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
sl@0
   283
  u16 cellOffset;      /* Index in aData of first cell pointer */
sl@0
   284
  u16 idxParent;       /* Index in parent of this node */
sl@0
   285
  u16 nFree;           /* Number of free bytes on the page */
sl@0
   286
  u16 nCell;           /* Number of cells on this page, local and ovfl */
sl@0
   287
  u16 maskPage;        /* Mask for page offset */
sl@0
   288
  struct _OvflCell {   /* Cells that will not fit on aData[] */
sl@0
   289
    u8 *pCell;          /* Pointers to the body of the overflow cell */
sl@0
   290
    u16 idx;            /* Insert this cell before idx-th non-overflow cell */
sl@0
   291
  } aOvfl[5];
sl@0
   292
  BtShared *pBt;       /* Pointer to BtShared that this page is part of */
sl@0
   293
  u8 *aData;           /* Pointer to disk image of the page data */
sl@0
   294
  DbPage *pDbPage;     /* Pager page handle */
sl@0
   295
  Pgno pgno;           /* Page number for this page */
sl@0
   296
  MemPage *pParent;    /* The parent of this page.  NULL for root */
sl@0
   297
};
sl@0
   298
sl@0
   299
/*
sl@0
   300
** The in-memory image of a disk page has the auxiliary information appended
sl@0
   301
** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
sl@0
   302
** that extra information.
sl@0
   303
*/
sl@0
   304
#define EXTRA_SIZE sizeof(MemPage)
sl@0
   305
sl@0
   306
/* A Btree handle
sl@0
   307
**
sl@0
   308
** A database connection contains a pointer to an instance of
sl@0
   309
** this object for every database file that it has open.  This structure
sl@0
   310
** is opaque to the database connection.  The database connection cannot
sl@0
   311
** see the internals of this structure and only deals with pointers to
sl@0
   312
** this structure.
sl@0
   313
**
sl@0
   314
** For some database files, the same underlying database cache might be 
sl@0
   315
** shared between multiple connections.  In that case, each contection
sl@0
   316
** has it own pointer to this object.  But each instance of this object
sl@0
   317
** points to the same BtShared object.  The database cache and the
sl@0
   318
** schema associated with the database file are all contained within
sl@0
   319
** the BtShared object.
sl@0
   320
**
sl@0
   321
** All fields in this structure are accessed under sqlite3.mutex.
sl@0
   322
** The pBt pointer itself may not be changed while there exists cursors 
sl@0
   323
** in the referenced BtShared that point back to this Btree since those
sl@0
   324
** cursors have to do go through this Btree to find their BtShared and
sl@0
   325
** they often do so without holding sqlite3.mutex.
sl@0
   326
*/
sl@0
   327
struct Btree {
sl@0
   328
  sqlite3 *db;       /* The database connection holding this btree */
sl@0
   329
  BtShared *pBt;     /* Sharable content of this btree */
sl@0
   330
  u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
sl@0
   331
  u8 sharable;       /* True if we can share pBt with another db */
sl@0
   332
  u8 locked;         /* True if db currently has pBt locked */
sl@0
   333
  int wantToLock;    /* Number of nested calls to sqlite3BtreeEnter() */
sl@0
   334
  Btree *pNext;      /* List of other sharable Btrees from the same db */
sl@0
   335
  Btree *pPrev;      /* Back pointer of the same list */
sl@0
   336
};
sl@0
   337
sl@0
   338
/*
sl@0
   339
** Btree.inTrans may take one of the following values.
sl@0
   340
**
sl@0
   341
** If the shared-data extension is enabled, there may be multiple users
sl@0
   342
** of the Btree structure. At most one of these may open a write transaction,
sl@0
   343
** but any number may have active read transactions.
sl@0
   344
*/
sl@0
   345
#define TRANS_NONE  0
sl@0
   346
#define TRANS_READ  1
sl@0
   347
#define TRANS_WRITE 2
sl@0
   348
sl@0
   349
/*
sl@0
   350
** An instance of this object represents a single database file.
sl@0
   351
** 
sl@0
   352
** A single database file can be in use as the same time by two
sl@0
   353
** or more database connections.  When two or more connections are
sl@0
   354
** sharing the same database file, each connection has it own
sl@0
   355
** private Btree object for the file and each of those Btrees points
sl@0
   356
** to this one BtShared object.  BtShared.nRef is the number of
sl@0
   357
** connections currently sharing this database file.
sl@0
   358
**
sl@0
   359
** Fields in this structure are accessed under the BtShared.mutex
sl@0
   360
** mutex, except for nRef and pNext which are accessed under the
sl@0
   361
** global SQLITE_MUTEX_STATIC_MASTER mutex.  The pPager field
sl@0
   362
** may not be modified once it is initially set as long as nRef>0.
sl@0
   363
** The pSchema field may be set once under BtShared.mutex and
sl@0
   364
** thereafter is unchanged as long as nRef>0.
sl@0
   365
*/
sl@0
   366
struct BtShared {
sl@0
   367
  Pager *pPager;        /* The page cache */
sl@0
   368
  sqlite3 *db;          /* Database connection currently using this Btree */
sl@0
   369
  BtCursor *pCursor;    /* A list of all open cursors */
sl@0
   370
  MemPage *pPage1;      /* First page of the database */
sl@0
   371
  u8 inStmt;            /* True if we are in a statement subtransaction */
sl@0
   372
  u8 readOnly;          /* True if the underlying file is readonly */
sl@0
   373
  u8 pageSizeFixed;     /* True if the page size can no longer be changed */
sl@0
   374
#ifndef SQLITE_OMIT_AUTOVACUUM
sl@0
   375
  u8 autoVacuum;        /* True if auto-vacuum is enabled */
sl@0
   376
  u8 incrVacuum;        /* True if incr-vacuum is enabled */
sl@0
   377
  Pgno nTrunc;          /* Non-zero if the db will be truncated (incr vacuum) */
sl@0
   378
#endif
sl@0
   379
  u16 pageSize;         /* Total number of bytes on a page */
sl@0
   380
  u16 usableSize;       /* Number of usable bytes on each page */
sl@0
   381
  int maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
sl@0
   382
  int minLocal;         /* Minimum local payload in non-LEAFDATA tables */
sl@0
   383
  int maxLeaf;          /* Maximum local payload in a LEAFDATA table */
sl@0
   384
  int minLeaf;          /* Minimum local payload in a LEAFDATA table */
sl@0
   385
  u8 inTransaction;     /* Transaction state */
sl@0
   386
  int nTransaction;     /* Number of open transactions (read + write) */
sl@0
   387
  void *pSchema;        /* Pointer to space allocated by sqlite3BtreeSchema() */
sl@0
   388
  void (*xFreeSchema)(void*);  /* Destructor for BtShared.pSchema */
sl@0
   389
  sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
sl@0
   390
  BusyHandler busyHdr;  /* The busy handler for this btree */
sl@0
   391
#ifndef SQLITE_OMIT_SHARED_CACHE
sl@0
   392
  int nRef;             /* Number of references to this structure */
sl@0
   393
  BtShared *pNext;      /* Next on a list of sharable BtShared structs */
sl@0
   394
  BtLock *pLock;        /* List of locks held on this shared-btree struct */
sl@0
   395
  Btree *pExclusive;    /* Btree with an EXCLUSIVE lock on the whole db */
sl@0
   396
#endif
sl@0
   397
  u8 *pTmpSpace;        /* BtShared.pageSize bytes of space for tmp use */
sl@0
   398
};
sl@0
   399
sl@0
   400
/*
sl@0
   401
** An instance of the following structure is used to hold information
sl@0
   402
** about a cell.  The parseCellPtr() function fills in this structure
sl@0
   403
** based on information extract from the raw disk page.
sl@0
   404
*/
sl@0
   405
typedef struct CellInfo CellInfo;
sl@0
   406
struct CellInfo {
sl@0
   407
  u8 *pCell;     /* Pointer to the start of cell content */
sl@0
   408
  i64 nKey;      /* The key for INTKEY tables, or number of bytes in key */
sl@0
   409
  u32 nData;     /* Number of bytes of data */
sl@0
   410
  u32 nPayload;  /* Total amount of payload */
sl@0
   411
  u16 nHeader;   /* Size of the cell content header in bytes */
sl@0
   412
  u16 nLocal;    /* Amount of payload held locally */
sl@0
   413
  u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
sl@0
   414
  u16 nSize;     /* Size of the cell content on the main b-tree page */
sl@0
   415
};
sl@0
   416
sl@0
   417
/*
sl@0
   418
** A cursor is a pointer to a particular entry within a particular
sl@0
   419
** b-tree within a database file.
sl@0
   420
**
sl@0
   421
** The entry is identified by its MemPage and the index in
sl@0
   422
** MemPage.aCell[] of the entry.
sl@0
   423
**
sl@0
   424
** When a single database file can shared by two more database connections,
sl@0
   425
** but cursors cannot be shared.  Each cursor is associated with a
sl@0
   426
** particular database connection identified BtCursor.pBtree.db.
sl@0
   427
**
sl@0
   428
** Fields in this structure are accessed under the BtShared.mutex
sl@0
   429
** found at self->pBt->mutex. 
sl@0
   430
*/
sl@0
   431
struct BtCursor {
sl@0
   432
  Btree *pBtree;            /* The Btree to which this cursor belongs */
sl@0
   433
  BtShared *pBt;            /* The BtShared this cursor points to */
sl@0
   434
  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
sl@0
   435
  struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
sl@0
   436
  Pgno pgnoRoot;            /* The root page of this tree */
sl@0
   437
  MemPage *pPage;           /* Page that contains the entry */
sl@0
   438
  int idx;                  /* Index of the entry in pPage->aCell[] */
sl@0
   439
  CellInfo info;            /* A parse of the cell we are pointing at */
sl@0
   440
  u8 wrFlag;                /* True if writable */
sl@0
   441
  u8 atLast;                /* Cursor pointing to the last entry */
sl@0
   442
  u8 validNKey;             /* True if info.nKey is valid */
sl@0
   443
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
sl@0
   444
  void *pKey;      /* Saved key that was cursor's last known position */
sl@0
   445
  i64 nKey;        /* Size of pKey, or last integer key */
sl@0
   446
  int skip;        /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
sl@0
   447
#ifndef SQLITE_OMIT_INCRBLOB
sl@0
   448
  u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
sl@0
   449
  Pgno *aOverflow;          /* Cache of overflow page locations */
sl@0
   450
#endif
sl@0
   451
};
sl@0
   452
sl@0
   453
/*
sl@0
   454
** Potential values for BtCursor.eState.
sl@0
   455
**
sl@0
   456
** CURSOR_VALID:
sl@0
   457
**   Cursor points to a valid entry. getPayload() etc. may be called.
sl@0
   458
**
sl@0
   459
** CURSOR_INVALID:
sl@0
   460
**   Cursor does not point to a valid entry. This can happen (for example) 
sl@0
   461
**   because the table is empty or because BtreeCursorFirst() has not been
sl@0
   462
**   called.
sl@0
   463
**
sl@0
   464
** CURSOR_REQUIRESEEK:
sl@0
   465
**   The table that this cursor was opened on still exists, but has been 
sl@0
   466
**   modified since the cursor was last used. The cursor position is saved
sl@0
   467
**   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
sl@0
   468
**   this state, restoreCursorPosition() can be called to attempt to
sl@0
   469
**   seek the cursor to the saved position.
sl@0
   470
**
sl@0
   471
** CURSOR_FAULT:
sl@0
   472
**   A unrecoverable error (an I/O error or a malloc failure) has occurred
sl@0
   473
**   on a different connection that shares the BtShared cache with this
sl@0
   474
**   cursor.  The error has left the cache in an inconsistent state.
sl@0
   475
**   Do nothing else with this cursor.  Any attempt to use the cursor
sl@0
   476
**   should return the error code stored in BtCursor.skip
sl@0
   477
*/
sl@0
   478
#define CURSOR_INVALID           0
sl@0
   479
#define CURSOR_VALID             1
sl@0
   480
#define CURSOR_REQUIRESEEK       2
sl@0
   481
#define CURSOR_FAULT             3
sl@0
   482
sl@0
   483
/* The database page the PENDING_BYTE occupies. This page is never used.
sl@0
   484
** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
sl@0
   485
** should possibly be consolidated (presumably in pager.h).
sl@0
   486
**
sl@0
   487
** If disk I/O is omitted (meaning that the database is stored purely
sl@0
   488
** in memory) then there is no pending byte.
sl@0
   489
*/
sl@0
   490
#ifdef SQLITE_OMIT_DISKIO
sl@0
   491
# define PENDING_BYTE_PAGE(pBt)  0x7fffffff
sl@0
   492
#else
sl@0
   493
# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
sl@0
   494
#endif
sl@0
   495
sl@0
   496
/*
sl@0
   497
** A linked list of the following structures is stored at BtShared.pLock.
sl@0
   498
** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor 
sl@0
   499
** is opened on the table with root page BtShared.iTable. Locks are removed
sl@0
   500
** from this list when a transaction is committed or rolled back, or when
sl@0
   501
** a btree handle is closed.
sl@0
   502
*/
sl@0
   503
struct BtLock {
sl@0
   504
  Btree *pBtree;        /* Btree handle holding this lock */
sl@0
   505
  Pgno iTable;          /* Root page of table */
sl@0
   506
  u8 eLock;             /* READ_LOCK or WRITE_LOCK */
sl@0
   507
  BtLock *pNext;        /* Next in BtShared.pLock list */
sl@0
   508
};
sl@0
   509
sl@0
   510
/* Candidate values for BtLock.eLock */
sl@0
   511
#define READ_LOCK     1
sl@0
   512
#define WRITE_LOCK    2
sl@0
   513
sl@0
   514
/*
sl@0
   515
** These macros define the location of the pointer-map entry for a 
sl@0
   516
** database page. The first argument to each is the number of usable
sl@0
   517
** bytes on each page of the database (often 1024). The second is the
sl@0
   518
** page number to look up in the pointer map.
sl@0
   519
**
sl@0
   520
** PTRMAP_PAGENO returns the database page number of the pointer-map
sl@0
   521
** page that stores the required pointer. PTRMAP_PTROFFSET returns
sl@0
   522
** the offset of the requested map entry.
sl@0
   523
**
sl@0
   524
** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
sl@0
   525
** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
sl@0
   526
** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
sl@0
   527
** this test.
sl@0
   528
*/
sl@0
   529
#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
sl@0
   530
#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
sl@0
   531
#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
sl@0
   532
sl@0
   533
/*
sl@0
   534
** The pointer map is a lookup table that identifies the parent page for
sl@0
   535
** each child page in the database file.  The parent page is the page that
sl@0
   536
** contains a pointer to the child.  Every page in the database contains
sl@0
   537
** 0 or 1 parent pages.  (In this context 'database page' refers
sl@0
   538
** to any page that is not part of the pointer map itself.)  Each pointer map
sl@0
   539
** entry consists of a single byte 'type' and a 4 byte parent page number.
sl@0
   540
** The PTRMAP_XXX identifiers below are the valid types.
sl@0
   541
**
sl@0
   542
** The purpose of the pointer map is to facility moving pages from one
sl@0
   543
** position in the file to another as part of autovacuum.  When a page
sl@0
   544
** is moved, the pointer in its parent must be updated to point to the
sl@0
   545
** new location.  The pointer map is used to locate the parent page quickly.
sl@0
   546
**
sl@0
   547
** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
sl@0
   548
**                  used in this case.
sl@0
   549
**
sl@0
   550
** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number 
sl@0
   551
**                  is not used in this case.
sl@0
   552
**
sl@0
   553
** PTRMAP_OVERFLOW1: The database page is the first page in a list of 
sl@0
   554
**                   overflow pages. The page number identifies the page that
sl@0
   555
**                   contains the cell with a pointer to this overflow page.
sl@0
   556
**
sl@0
   557
** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
sl@0
   558
**                   overflow pages. The page-number identifies the previous
sl@0
   559
**                   page in the overflow page list.
sl@0
   560
**
sl@0
   561
** PTRMAP_BTREE: The database page is a non-root btree page. The page number
sl@0
   562
**               identifies the parent page in the btree.
sl@0
   563
*/
sl@0
   564
#define PTRMAP_ROOTPAGE 1
sl@0
   565
#define PTRMAP_FREEPAGE 2
sl@0
   566
#define PTRMAP_OVERFLOW1 3
sl@0
   567
#define PTRMAP_OVERFLOW2 4
sl@0
   568
#define PTRMAP_BTREE 5
sl@0
   569
sl@0
   570
/* A bunch of assert() statements to check the transaction state variables
sl@0
   571
** of handle p (type Btree*) are internally consistent.
sl@0
   572
*/
sl@0
   573
#define btreeIntegrity(p) \
sl@0
   574
  assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
sl@0
   575
  assert( p->pBt->inTransaction>=p->inTrans ); 
sl@0
   576
sl@0
   577
sl@0
   578
/*
sl@0
   579
** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
sl@0
   580
** if the database supports auto-vacuum or not. Because it is used
sl@0
   581
** within an expression that is an argument to another macro 
sl@0
   582
** (sqliteMallocRaw), it is not possible to use conditional compilation.
sl@0
   583
** So, this macro is defined instead.
sl@0
   584
*/
sl@0
   585
#ifndef SQLITE_OMIT_AUTOVACUUM
sl@0
   586
#define ISAUTOVACUUM (pBt->autoVacuum)
sl@0
   587
#else
sl@0
   588
#define ISAUTOVACUUM 0
sl@0
   589
#endif
sl@0
   590
sl@0
   591
sl@0
   592
/*
sl@0
   593
** This structure is passed around through all the sanity checking routines
sl@0
   594
** in order to keep track of some global state information.
sl@0
   595
*/
sl@0
   596
typedef struct IntegrityCk IntegrityCk;
sl@0
   597
struct IntegrityCk {
sl@0
   598
  BtShared *pBt;    /* The tree being checked out */
sl@0
   599
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
sl@0
   600
  int nPage;        /* Number of pages in the database */
sl@0
   601
  int *anRef;       /* Number of times each page is referenced */
sl@0
   602
  int mxErr;        /* Stop accumulating errors when this reaches zero */
sl@0
   603
  int nErr;         /* Number of messages written to zErrMsg so far */
sl@0
   604
  int mallocFailed; /* A memory allocation error has occurred */
sl@0
   605
  StrAccum errMsg;  /* Accumulate the error message text here */
sl@0
   606
};
sl@0
   607
sl@0
   608
/*
sl@0
   609
** Read or write a two- and four-byte big-endian integer values.
sl@0
   610
*/
sl@0
   611
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
sl@0
   612
#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
sl@0
   613
#define get4byte sqlite3Get4byte
sl@0
   614
#define put4byte sqlite3Put4byte
sl@0
   615
sl@0
   616
/*
sl@0
   617
** Internal routines that should be accessed by the btree layer only.
sl@0
   618
*/
sl@0
   619
int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
sl@0
   620
int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
sl@0
   621
void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
sl@0
   622
void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
sl@0
   623
int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur);
sl@0
   624
void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
sl@0
   625
void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
sl@0
   626
int sqlite3BtreeIsRootPage(MemPage *pPage);
sl@0
   627
void sqlite3BtreeMoveToParent(BtCursor *pCur);