sl@0
|
1 |
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
// Store database compression code
|
sl@0
|
15 |
//
|
sl@0
|
16 |
//
|
sl@0
|
17 |
|
sl@0
|
18 |
#include "US_STD.H"
|
sl@0
|
19 |
#include <s32mem.h>
|
sl@0
|
20 |
|
sl@0
|
21 |
#ifdef __WINS__
|
sl@0
|
22 |
#define __EXTRA_DEFLATE
|
sl@0
|
23 |
#endif
|
sl@0
|
24 |
|
sl@0
|
25 |
// deflation constants
|
sl@0
|
26 |
const TInt KDeflateMinLength=3;
|
sl@0
|
27 |
const TInt KDeflateMaxLength=258;
|
sl@0
|
28 |
const TInt KDeflateMaxDistance=4096;
|
sl@0
|
29 |
const TInt KDeflateDistCodeBase=0x200;
|
sl@0
|
30 |
// huffman coding/decoding
|
sl@0
|
31 |
const TInt KHuffMaxCodeLength=25;
|
sl@0
|
32 |
const TInt KHuffTerminate=1;
|
sl@0
|
33 |
const TUint KBitsEmpty=0x80000000u;
|
sl@0
|
34 |
const TUint KBitsInit=KBitsEmpty>>1;
|
sl@0
|
35 |
const TUint KBitsFull=KBitsEmpty>>8;
|
sl@0
|
36 |
const TUint KBitsEOF=KBitsEmpty>>9;
|
sl@0
|
37 |
const TUint KBitsNext=0x80u;
|
sl@0
|
38 |
// encoding storage
|
sl@0
|
39 |
const TInt KDeflateMetaCodes=26;
|
sl@0
|
40 |
// hashing
|
sl@0
|
41 |
const TUint KDeflateHashMultiplier=0xAC4B9B19u;
|
sl@0
|
42 |
const TInt KDeflateHashShift=24;
|
sl@0
|
43 |
|
sl@0
|
44 |
class Huffman
|
sl@0
|
45 |
{
|
sl@0
|
46 |
public:
|
sl@0
|
47 |
static void EncodingL(TUint32* aEncoding,TInt aCodes);
|
sl@0
|
48 |
static void Decoding(TUint32* aDecoding,TInt aCodes,TInt aBase=0);
|
sl@0
|
49 |
private:
|
sl@0
|
50 |
typedef TUint16 THuff;
|
sl@0
|
51 |
enum {KLeaf=0x8000};
|
sl@0
|
52 |
struct TNode
|
sl@0
|
53 |
{
|
sl@0
|
54 |
THuff iLeft;
|
sl@0
|
55 |
THuff iRight;
|
sl@0
|
56 |
};
|
sl@0
|
57 |
struct TLeaf
|
sl@0
|
58 |
{
|
sl@0
|
59 |
TUint iCount;
|
sl@0
|
60 |
THuff iVal;
|
sl@0
|
61 |
};
|
sl@0
|
62 |
private:
|
sl@0
|
63 |
static void Lengths(TUint32* aLengths,const TNode* aNodes,TInt aNode,TInt aLen);
|
sl@0
|
64 |
static TUint32* SubTree(TUint32* aPtr,const TUint32* aValue,TUint32** aLevel);
|
sl@0
|
65 |
};
|
sl@0
|
66 |
|
sl@0
|
67 |
class THuffEncoder
|
sl@0
|
68 |
{
|
sl@0
|
69 |
public:
|
sl@0
|
70 |
THuffEncoder(RWriteStream& aStream);
|
sl@0
|
71 |
//
|
sl@0
|
72 |
void EncodeL(TUint aCode,TInt aLength);
|
sl@0
|
73 |
void EncodeL(TUint32 aHuffCode);
|
sl@0
|
74 |
void CompleteL();
|
sl@0
|
75 |
private:
|
sl@0
|
76 |
enum {EBufSize=0x100};
|
sl@0
|
77 |
private:
|
sl@0
|
78 |
TUint8 iBuf[EBufSize];
|
sl@0
|
79 |
RWriteStream& iStream;
|
sl@0
|
80 |
TUint32 iCode; // code in production
|
sl@0
|
81 |
TInt iBits;
|
sl@0
|
82 |
TUint8* iWrite;
|
sl@0
|
83 |
};
|
sl@0
|
84 |
|
sl@0
|
85 |
class HDeflateHash
|
sl@0
|
86 |
{
|
sl@0
|
87 |
public:
|
sl@0
|
88 |
inline static HDeflateHash& NewLC(TInt aLinks);
|
sl@0
|
89 |
//
|
sl@0
|
90 |
inline TInt First(const TUint8* aPtr,TInt aPos);
|
sl@0
|
91 |
inline TInt Next(TInt aPos,TInt aOffset) const;
|
sl@0
|
92 |
private:
|
sl@0
|
93 |
inline HDeflateHash();
|
sl@0
|
94 |
inline static TInt Hash(const TUint8* aPtr);
|
sl@0
|
95 |
private:
|
sl@0
|
96 |
typedef TUint16 TOffset;
|
sl@0
|
97 |
private:
|
sl@0
|
98 |
TInt iHash[256];
|
sl@0
|
99 |
TOffset iOffset[1]; // or more
|
sl@0
|
100 |
};
|
sl@0
|
101 |
|
sl@0
|
102 |
class MDeflater
|
sl@0
|
103 |
{
|
sl@0
|
104 |
public:
|
sl@0
|
105 |
void DeflateL(const TUint8* aBase,TInt aLength);
|
sl@0
|
106 |
private:
|
sl@0
|
107 |
const TUint8* DoDeflateL(const TUint8* aBase,const TUint8* aEnd,HDeflateHash& aHash);
|
sl@0
|
108 |
static TInt Match(const TUint8* aPtr,const TUint8* aEnd,TInt aPos,HDeflateHash& aHas);
|
sl@0
|
109 |
void SegmentL(TInt aLength,TInt aDistance);
|
sl@0
|
110 |
virtual void LitLenL(TInt aCode) =0;
|
sl@0
|
111 |
virtual void OffsetL(TInt aCode) =0;
|
sl@0
|
112 |
virtual void ExtraL(TInt aLen,TUint aBits) =0;
|
sl@0
|
113 |
};
|
sl@0
|
114 |
|
sl@0
|
115 |
class TInflater
|
sl@0
|
116 |
{
|
sl@0
|
117 |
public:
|
sl@0
|
118 |
TInflater(const TUint8* aIn,const CDbStoreCompression::TEncoding& aDecoding);
|
sl@0
|
119 |
TInt Inflate();
|
sl@0
|
120 |
inline const TUint8* Ptr() const;
|
sl@0
|
121 |
inline static TInt BufferSize();
|
sl@0
|
122 |
private:
|
sl@0
|
123 |
const TUint8* iIn;
|
sl@0
|
124 |
TUint iBits;
|
sl@0
|
125 |
const TUint8* iRptr; // partial segment
|
sl@0
|
126 |
TInt iLen;
|
sl@0
|
127 |
const TUint32* iLitLenTree;
|
sl@0
|
128 |
const TUint32* iDistTree;
|
sl@0
|
129 |
TUint8 iOut[KDeflateMaxDistance]; // circular buffer for distance matches
|
sl@0
|
130 |
};
|
sl@0
|
131 |
|
sl@0
|
132 |
NONSHARABLE_CLASS(TDeflateStats) : public MDeflater
|
sl@0
|
133 |
{
|
sl@0
|
134 |
public:
|
sl@0
|
135 |
inline TDeflateStats(CDbStoreCompression::TEncoding& aEncoding);
|
sl@0
|
136 |
private:
|
sl@0
|
137 |
// from MDeflater
|
sl@0
|
138 |
void LitLenL(TInt aCode);
|
sl@0
|
139 |
void OffsetL(TInt aCode);
|
sl@0
|
140 |
void ExtraL(TInt aLen,TUint aBits);
|
sl@0
|
141 |
private:
|
sl@0
|
142 |
CDbStoreCompression::TEncoding& iEncoding;
|
sl@0
|
143 |
};
|
sl@0
|
144 |
|
sl@0
|
145 |
NONSHARABLE_CLASS(TDeflater) : public MDeflater
|
sl@0
|
146 |
{
|
sl@0
|
147 |
public:
|
sl@0
|
148 |
inline TDeflater(THuffEncoder& aEncoder,const CDbStoreCompression::TEncoding& aEncoding);
|
sl@0
|
149 |
private:
|
sl@0
|
150 |
// from MDeflater
|
sl@0
|
151 |
void LitLenL(TInt aCode);
|
sl@0
|
152 |
void OffsetL(TInt aCode);
|
sl@0
|
153 |
void ExtraL(TInt aLen,TUint aBits);
|
sl@0
|
154 |
private:
|
sl@0
|
155 |
THuffEncoder& iEncoder;
|
sl@0
|
156 |
const CDbStoreCompression::TEncoding& iEncoding;
|
sl@0
|
157 |
};
|
sl@0
|
158 |
|
sl@0
|
159 |
NONSHARABLE_CLASS(HDeflateBuf) : public TBufBuf
|
sl@0
|
160 |
{
|
sl@0
|
161 |
public:
|
sl@0
|
162 |
enum TMode {EAnalysis,EDeflate}; // mirror CDbStoreCompression enum
|
sl@0
|
163 |
public:
|
sl@0
|
164 |
static HDeflateBuf* NewL(MStreamBuf* aHost,CDbStoreCompression::TEncoding& aEncoding,TMode aMode);
|
sl@0
|
165 |
private:
|
sl@0
|
166 |
inline HDeflateBuf(MStreamBuf* aHost,CDbStoreCompression::TEncoding& aEncoding,CBufBase* aBuf,TMode aMode);
|
sl@0
|
167 |
virtual inline ~HDeflateBuf();
|
sl@0
|
168 |
// from MStreamBuf
|
sl@0
|
169 |
void DoSynchL();
|
sl@0
|
170 |
void DoRelease();
|
sl@0
|
171 |
private:
|
sl@0
|
172 |
RWriteStream iHost;
|
sl@0
|
173 |
CDbStoreCompression::TEncoding& iEncoding;
|
sl@0
|
174 |
CBufBase* iBuf;
|
sl@0
|
175 |
TMode iMode;
|
sl@0
|
176 |
};
|
sl@0
|
177 |
|
sl@0
|
178 |
NONSHARABLE_CLASS(HInflateBuf) : public TBufBuf
|
sl@0
|
179 |
{
|
sl@0
|
180 |
public:
|
sl@0
|
181 |
static HInflateBuf* NewL(MStreamBuf* aHost,const CDbStoreCompression::TEncoding& aEncoding);
|
sl@0
|
182 |
private:
|
sl@0
|
183 |
inline HInflateBuf(CBufBase* aBuf);
|
sl@0
|
184 |
virtual inline ~HInflateBuf();
|
sl@0
|
185 |
// from MStreamBuf
|
sl@0
|
186 |
void DoRelease();
|
sl@0
|
187 |
private:
|
sl@0
|
188 |
CBufBase* iBuf;
|
sl@0
|
189 |
};
|
sl@0
|
190 |
|
sl@0
|
191 |
NONSHARABLE_CLASS(CDbStoreTable::CCompressor) : public CBase, public CCluster::MAlter
|
sl@0
|
192 |
{
|
sl@0
|
193 |
public:
|
sl@0
|
194 |
inline CCompressor();
|
sl@0
|
195 |
~CCompressor();
|
sl@0
|
196 |
void ProcessL(CDbStoreTable* aTable);
|
sl@0
|
197 |
private:
|
sl@0
|
198 |
TUint8* AlterRecordL(TUint8* aWPtr,const TUint8* aRPtr,TInt aLength);
|
sl@0
|
199 |
private:
|
sl@0
|
200 |
CDbStoreTable* iTable;
|
sl@0
|
201 |
RDbRow iRow;
|
sl@0
|
202 |
};
|
sl@0
|
203 |
|
sl@0
|
204 |
// Class Huffman
|
sl@0
|
205 |
//
|
sl@0
|
206 |
// This class builds a huffman encoding from a frequency table and builds
|
sl@0
|
207 |
// a decoding tree from a code-lengths table
|
sl@0
|
208 |
//
|
sl@0
|
209 |
// the encoding generated is based on the rule that given two symbols s1 and s2, with
|
sl@0
|
210 |
// code length l1 and l2, and huffman codes h1 and h2:
|
sl@0
|
211 |
//
|
sl@0
|
212 |
// if l1<l2 then h1<h2 when compared lexicographically
|
sl@0
|
213 |
// if l1==l2 and s1<s2 then h1<h2 ditto
|
sl@0
|
214 |
//
|
sl@0
|
215 |
// This allows the encoding to be stored compactly as a table of code lengths
|
sl@0
|
216 |
|
sl@0
|
217 |
//
|
sl@0
|
218 |
// recursive function to calculate the code lengths from the node tree
|
sl@0
|
219 |
//
|
sl@0
|
220 |
void Huffman::Lengths(TUint32* aLengths,const TNode* aNodes,TInt aNode,TInt aLen)
|
sl@0
|
221 |
{
|
sl@0
|
222 |
__ASSERT(aLen<KHuffMaxCodeLength);
|
sl@0
|
223 |
++aLen;
|
sl@0
|
224 |
const TNode& node=aNodes[aNode];
|
sl@0
|
225 |
if (node.iLeft&KLeaf)
|
sl@0
|
226 |
aLengths[node.iLeft&~KLeaf]=aLen;
|
sl@0
|
227 |
else
|
sl@0
|
228 |
Lengths(aLengths,aNodes,node.iLeft,aLen);
|
sl@0
|
229 |
if (node.iRight&KLeaf)
|
sl@0
|
230 |
aLengths[node.iRight&~KLeaf]=aLen;
|
sl@0
|
231 |
else
|
sl@0
|
232 |
Lengths(aLengths,aNodes,node.iRight,aLen);
|
sl@0
|
233 |
}
|
sl@0
|
234 |
|
sl@0
|
235 |
//
|
sl@0
|
236 |
// write the subtree below aPtr and return the head
|
sl@0
|
237 |
//
|
sl@0
|
238 |
TUint32* Huffman::SubTree(TUint32* aPtr,const TUint32* aValue,TUint32** aLevel)
|
sl@0
|
239 |
{
|
sl@0
|
240 |
TUint32* l=*aLevel++;
|
sl@0
|
241 |
if (l>aValue)
|
sl@0
|
242 |
{
|
sl@0
|
243 |
TUint32* sub1=SubTree(aPtr,aValue,aLevel); // 0-tree first
|
sl@0
|
244 |
aPtr=SubTree(sub1,aValue-(aPtr-sub1)-1,aLevel); // 1-tree
|
sl@0
|
245 |
TInt branch=(TUint8*)sub1-(TUint8*)aPtr;
|
sl@0
|
246 |
*--aPtr=branch;
|
sl@0
|
247 |
}
|
sl@0
|
248 |
else if (l==aValue)
|
sl@0
|
249 |
{
|
sl@0
|
250 |
TUint term0=*aValue--; // 0-term
|
sl@0
|
251 |
aPtr=SubTree(aPtr,aValue,aLevel); // 1-tree
|
sl@0
|
252 |
*--aPtr=term0>>16;
|
sl@0
|
253 |
}
|
sl@0
|
254 |
else // l<iNext
|
sl@0
|
255 |
{
|
sl@0
|
256 |
TUint term0=*aValue--; // 0-term
|
sl@0
|
257 |
TUint term1=*aValue--;
|
sl@0
|
258 |
*--aPtr=(term1>>16<<16)|(term0>>16);
|
sl@0
|
259 |
}
|
sl@0
|
260 |
return aPtr;
|
sl@0
|
261 |
}
|
sl@0
|
262 |
|
sl@0
|
263 |
//
|
sl@0
|
264 |
// Build a huffman encoding table from a symbol frequency table
|
sl@0
|
265 |
// aTable contains frequency data on input for aCodes symbols
|
sl@0
|
266 |
// aTable contains the huffman encoding on output
|
sl@0
|
267 |
//
|
sl@0
|
268 |
void Huffman::EncodingL(TUint32* aTable,TInt aCodes)
|
sl@0
|
269 |
{
|
sl@0
|
270 |
//
|
sl@0
|
271 |
// step 1. Sort the values into decreasing order of frequency
|
sl@0
|
272 |
//
|
sl@0
|
273 |
TLeaf* leaves=new(ELeave) TLeaf[aCodes];
|
sl@0
|
274 |
CleanupArrayDeletePushL(leaves);
|
sl@0
|
275 |
TInt lCount=0;
|
sl@0
|
276 |
TInt ii;
|
sl@0
|
277 |
for (ii=0;ii<aCodes;++ii)
|
sl@0
|
278 |
{
|
sl@0
|
279 |
TUint c=aTable[ii];
|
sl@0
|
280 |
if (c==0)
|
sl@0
|
281 |
continue; // no coding for ii
|
sl@0
|
282 |
TInt jj;
|
sl@0
|
283 |
for (jj=0;jj<lCount;++jj)
|
sl@0
|
284 |
{
|
sl@0
|
285 |
if (leaves[jj].iCount<=c)
|
sl@0
|
286 |
break;
|
sl@0
|
287 |
}
|
sl@0
|
288 |
Mem::Move(leaves+jj+1,leaves+jj,sizeof(TLeaf)*(lCount-jj));
|
sl@0
|
289 |
leaves[jj].iCount=c;
|
sl@0
|
290 |
leaves[jj].iVal=THuff(ii|KLeaf);
|
sl@0
|
291 |
lCount++;
|
sl@0
|
292 |
}
|
sl@0
|
293 |
//
|
sl@0
|
294 |
// Huffman algorithm: pair off least frequent nodes and reorder
|
sl@0
|
295 |
// result is the code lengths in aTable[]
|
sl@0
|
296 |
//
|
sl@0
|
297 |
if (lCount==1) // special case for a single value (always encode as "0")
|
sl@0
|
298 |
aTable[leaves[0].iVal&~KLeaf]=1;
|
sl@0
|
299 |
else if (lCount>1)
|
sl@0
|
300 |
{ // don't encode for empty coding: leaves in order now
|
sl@0
|
301 |
TInt max=0;
|
sl@0
|
302 |
TNode* nodes=new(ELeave) TNode[lCount-1];
|
sl@0
|
303 |
while (--lCount>0)
|
sl@0
|
304 |
{
|
sl@0
|
305 |
TNode& node=nodes[max];
|
sl@0
|
306 |
node.iLeft=leaves[lCount-1].iVal;
|
sl@0
|
307 |
node.iRight=leaves[lCount].iVal;
|
sl@0
|
308 |
// re-order the leaves now to reflect new combined frequency
|
sl@0
|
309 |
TUint c=leaves[lCount-1].iCount+leaves[lCount].iCount;
|
sl@0
|
310 |
TInt jj=lCount;
|
sl@0
|
311 |
while (--jj>0)
|
sl@0
|
312 |
{
|
sl@0
|
313 |
if (leaves[jj-1].iCount>=c)
|
sl@0
|
314 |
break;
|
sl@0
|
315 |
}
|
sl@0
|
316 |
Mem::Move(leaves+jj+1,leaves+jj,sizeof(TLeaf)*(lCount-1-jj));
|
sl@0
|
317 |
// update new leaf
|
sl@0
|
318 |
leaves[jj].iCount=c;
|
sl@0
|
319 |
leaves[jj].iVal=THuff(max);
|
sl@0
|
320 |
max++;
|
sl@0
|
321 |
}
|
sl@0
|
322 |
Lengths(aTable,nodes,leaves[0].iVal,0);
|
sl@0
|
323 |
delete[] nodes;
|
sl@0
|
324 |
}
|
sl@0
|
325 |
CleanupStack::PopAndDestroy(); // leaves
|
sl@0
|
326 |
//
|
sl@0
|
327 |
// step 3: Generate the coding based on the code lengths
|
sl@0
|
328 |
//
|
sl@0
|
329 |
TInt lenCount[KHuffMaxCodeLength];
|
sl@0
|
330 |
Mem::FillZ(lenCount,sizeof(lenCount));
|
sl@0
|
331 |
|
sl@0
|
332 |
for (ii=aCodes;--ii>=0;)
|
sl@0
|
333 |
{
|
sl@0
|
334 |
TInt len=aTable[ii]-1;
|
sl@0
|
335 |
if (len>=0)
|
sl@0
|
336 |
++lenCount[len];
|
sl@0
|
337 |
}
|
sl@0
|
338 |
|
sl@0
|
339 |
TUint nextCode[KHuffMaxCodeLength];
|
sl@0
|
340 |
TUint code=0;
|
sl@0
|
341 |
for (ii=0;ii<KHuffMaxCodeLength;++ii)
|
sl@0
|
342 |
{
|
sl@0
|
343 |
nextCode[ii]=code;
|
sl@0
|
344 |
code=(code+lenCount[ii])<<1;
|
sl@0
|
345 |
}
|
sl@0
|
346 |
|
sl@0
|
347 |
for (ii=0;ii<aCodes;++ii)
|
sl@0
|
348 |
{
|
sl@0
|
349 |
TInt len=aTable[ii];
|
sl@0
|
350 |
if (len)
|
sl@0
|
351 |
{
|
sl@0
|
352 |
aTable[ii] = (nextCode[len-1]<<(KHuffMaxCodeLength-len))|(len<<KHuffMaxCodeLength);
|
sl@0
|
353 |
++nextCode[len-1];
|
sl@0
|
354 |
}
|
sl@0
|
355 |
}
|
sl@0
|
356 |
}
|
sl@0
|
357 |
|
sl@0
|
358 |
//
|
sl@0
|
359 |
// generate the decoding tree from the huffman code length data
|
sl@0
|
360 |
// output alphabet is [aBase,aBase+aCodes)
|
sl@0
|
361 |
//
|
sl@0
|
362 |
void Huffman::Decoding(TUint32* aDecoding,TInt aCodes,TInt aBase)
|
sl@0
|
363 |
{
|
sl@0
|
364 |
TInt counts[KHuffMaxCodeLength];
|
sl@0
|
365 |
Mem::FillZ(counts,sizeof(counts));
|
sl@0
|
366 |
TInt codes=0;
|
sl@0
|
367 |
TInt ii=aCodes;
|
sl@0
|
368 |
while (--ii>=0)
|
sl@0
|
369 |
{
|
sl@0
|
370 |
TUint len=aDecoding[ii];
|
sl@0
|
371 |
__ASSERT(len<=(TUint)KHuffMaxCodeLength);
|
sl@0
|
372 |
if (len)
|
sl@0
|
373 |
{
|
sl@0
|
374 |
++counts[len-1];
|
sl@0
|
375 |
++codes;
|
sl@0
|
376 |
}
|
sl@0
|
377 |
}
|
sl@0
|
378 |
//
|
sl@0
|
379 |
TUint32* level[KHuffMaxCodeLength];
|
sl@0
|
380 |
TUint32* lit=aDecoding+codes;
|
sl@0
|
381 |
for (ii=0;ii<KHuffMaxCodeLength;++ii)
|
sl@0
|
382 |
{
|
sl@0
|
383 |
level[ii]=lit;
|
sl@0
|
384 |
lit-=counts[ii];
|
sl@0
|
385 |
}
|
sl@0
|
386 |
aBase=(aBase<<17)+(KHuffTerminate<<16);
|
sl@0
|
387 |
for (ii=0;ii<aCodes;++ii)
|
sl@0
|
388 |
{
|
sl@0
|
389 |
TUint len=TUint8(aDecoding[ii]);
|
sl@0
|
390 |
if (len)
|
sl@0
|
391 |
*--level[len-1]|=(ii<<17)+aBase;
|
sl@0
|
392 |
}
|
sl@0
|
393 |
if (codes==1) // codes==1 special case: tree is not complete
|
sl@0
|
394 |
*aDecoding>>=16; // 0-terminate at root
|
sl@0
|
395 |
else if (codes>1)
|
sl@0
|
396 |
{
|
sl@0
|
397 |
__DEBUG(TUint32* p=) SubTree(aDecoding+codes-1,aDecoding+codes-1,level);
|
sl@0
|
398 |
__ASSERT(p==aDecoding);
|
sl@0
|
399 |
}
|
sl@0
|
400 |
}
|
sl@0
|
401 |
|
sl@0
|
402 |
// Class HDeflateHash
|
sl@0
|
403 |
|
sl@0
|
404 |
inline HDeflateHash::HDeflateHash()
|
sl@0
|
405 |
{TInt* p=iHash+256;do *--p=-KDeflateMaxDistance-1; while (p>iHash);}
|
sl@0
|
406 |
|
sl@0
|
407 |
inline HDeflateHash& HDeflateHash::NewLC(TInt aLinks)
|
sl@0
|
408 |
{
|
sl@0
|
409 |
__ASSERT(!(KDeflateMaxDistance&(KDeflateMaxDistance-1))); // ensure power of two
|
sl@0
|
410 |
return *new(User::AllocLC(_FOFF(HDeflateHash,iOffset[Min(aLinks,KDeflateMaxDistance)]))) HDeflateHash;
|
sl@0
|
411 |
}
|
sl@0
|
412 |
|
sl@0
|
413 |
inline TInt HDeflateHash::Hash(const TUint8* aPtr)
|
sl@0
|
414 |
{
|
sl@0
|
415 |
TUint x=aPtr[0]|(aPtr[1]<<8)|(aPtr[2]<<16);
|
sl@0
|
416 |
return (x*KDeflateHashMultiplier)>>KDeflateHashShift;
|
sl@0
|
417 |
}
|
sl@0
|
418 |
|
sl@0
|
419 |
inline TInt HDeflateHash::First(const TUint8* aPtr,TInt aPos)
|
sl@0
|
420 |
{
|
sl@0
|
421 |
TInt h=Hash(aPtr);
|
sl@0
|
422 |
TInt offset=Min(aPos-iHash[h],KDeflateMaxDistance<<1);
|
sl@0
|
423 |
iHash[h]=aPos;
|
sl@0
|
424 |
iOffset[aPos&(KDeflateMaxDistance-1)]=TOffset(offset);
|
sl@0
|
425 |
return offset;
|
sl@0
|
426 |
}
|
sl@0
|
427 |
|
sl@0
|
428 |
inline TInt HDeflateHash::Next(TInt aPos,TInt aOffset) const
|
sl@0
|
429 |
{return aOffset+iOffset[(aPos-aOffset)&(KDeflateMaxDistance-1)];}
|
sl@0
|
430 |
|
sl@0
|
431 |
|
sl@0
|
432 |
// Class TDeflater
|
sl@0
|
433 |
//
|
sl@0
|
434 |
// generic deflation algorithm, can do either statistics and the encoder
|
sl@0
|
435 |
|
sl@0
|
436 |
TInt MDeflater::Match(const TUint8* aPtr,const TUint8* aEnd,TInt aPos,HDeflateHash& aHash)
|
sl@0
|
437 |
{
|
sl@0
|
438 |
TInt offset=aHash.First(aPtr,aPos);
|
sl@0
|
439 |
if (offset>KDeflateMaxDistance)
|
sl@0
|
440 |
return 0;
|
sl@0
|
441 |
TInt match=0;
|
sl@0
|
442 |
aEnd=Min(aEnd,aPtr+KDeflateMaxLength);
|
sl@0
|
443 |
TUint8 c=*aPtr;
|
sl@0
|
444 |
do
|
sl@0
|
445 |
{
|
sl@0
|
446 |
const TUint8* p=aPtr-offset;
|
sl@0
|
447 |
if (p[match>>16]==c)
|
sl@0
|
448 |
{ // might be a better match
|
sl@0
|
449 |
const TUint8* m=aPtr;
|
sl@0
|
450 |
for (;;)
|
sl@0
|
451 |
{
|
sl@0
|
452 |
if (*p++!=*m++)
|
sl@0
|
453 |
break;
|
sl@0
|
454 |
if (m<aEnd)
|
sl@0
|
455 |
continue;
|
sl@0
|
456 |
return ((m-aPtr)<<16)|offset;
|
sl@0
|
457 |
}
|
sl@0
|
458 |
TInt l=m-aPtr-1;
|
sl@0
|
459 |
if (l>match>>16)
|
sl@0
|
460 |
{
|
sl@0
|
461 |
match=(l<<16)|offset;
|
sl@0
|
462 |
c=m[-1];
|
sl@0
|
463 |
}
|
sl@0
|
464 |
}
|
sl@0
|
465 |
offset=aHash.Next(aPos,offset);
|
sl@0
|
466 |
} while (offset<=KDeflateMaxDistance);
|
sl@0
|
467 |
return match;
|
sl@0
|
468 |
}
|
sl@0
|
469 |
|
sl@0
|
470 |
//
|
sl@0
|
471 |
// Apply the deflation algorithm to the data [aBase,aEnd)
|
sl@0
|
472 |
// Return a pointer after the last byte that was deflated (which may not be aEnd)
|
sl@0
|
473 |
//
|
sl@0
|
474 |
const TUint8* MDeflater::DoDeflateL(const TUint8* aBase,const TUint8* aEnd,HDeflateHash& aHash)
|
sl@0
|
475 |
{
|
sl@0
|
476 |
__ASSERT(aEnd-aBase>KDeflateMinLength);
|
sl@0
|
477 |
//
|
sl@0
|
478 |
const TUint8* ptr=aBase;
|
sl@0
|
479 |
#ifdef __EXTRA_DEFLATE
|
sl@0
|
480 |
TInt prev=0; // the previous deflation match
|
sl@0
|
481 |
#endif
|
sl@0
|
482 |
do
|
sl@0
|
483 |
{
|
sl@0
|
484 |
TInt match=Match(ptr,aEnd,ptr-aBase,aHash);
|
sl@0
|
485 |
#ifdef __EXTRA_DEFLATE
|
sl@0
|
486 |
// Extra deflation applies two optimisations which double the time taken
|
sl@0
|
487 |
// 1. If we have a match at p, then test for a better match at p+1 before using it
|
sl@0
|
488 |
// 2. When we have a match, add the hash links for all the data which will be skipped
|
sl@0
|
489 |
if (match>>16 < prev>>16)
|
sl@0
|
490 |
{ // use the previous match--it was better
|
sl@0
|
491 |
TInt len=prev>>16;
|
sl@0
|
492 |
SegmentL(len,prev-(len<<16));
|
sl@0
|
493 |
// fill in missing hash entries for better compression
|
sl@0
|
494 |
const TUint8* e=ptr+len-2;
|
sl@0
|
495 |
do
|
sl@0
|
496 |
{
|
sl@0
|
497 |
++ptr;
|
sl@0
|
498 |
aHash.First(ptr,ptr-aBase);
|
sl@0
|
499 |
} while (ptr<e);
|
sl@0
|
500 |
prev=0;
|
sl@0
|
501 |
}
|
sl@0
|
502 |
else if (match<=(KDeflateMinLength<<16))
|
sl@0
|
503 |
LitLenL(*ptr); // no deflation match here
|
sl@0
|
504 |
else
|
sl@0
|
505 |
{ // save this match and test the next position
|
sl@0
|
506 |
if (prev) // we had a match at ptr-1, but this is better
|
sl@0
|
507 |
LitLenL(ptr[-1]);
|
sl@0
|
508 |
prev=match;
|
sl@0
|
509 |
}
|
sl@0
|
510 |
++ptr;
|
sl@0
|
511 |
#else
|
sl@0
|
512 |
// Basic deflation will store any match found, and not update the hash links for the
|
sl@0
|
513 |
// data which is skipped
|
sl@0
|
514 |
if (match<=(KDeflateMinLength<<16)) // no match
|
sl@0
|
515 |
LitLenL(*ptr++);
|
sl@0
|
516 |
else
|
sl@0
|
517 |
{ // store the match
|
sl@0
|
518 |
TInt len=match>>16;
|
sl@0
|
519 |
SegmentL(len,match-(len<<16));
|
sl@0
|
520 |
ptr+=len;
|
sl@0
|
521 |
}
|
sl@0
|
522 |
#endif
|
sl@0
|
523 |
} while (ptr+KDeflateMinLength-1<aEnd);
|
sl@0
|
524 |
#ifdef __EXTRA_DEFLATE
|
sl@0
|
525 |
if (prev)
|
sl@0
|
526 |
{ // emit the stored match
|
sl@0
|
527 |
TInt len=prev>>16;
|
sl@0
|
528 |
SegmentL(len,prev-(len<<16));
|
sl@0
|
529 |
ptr+=len-1;
|
sl@0
|
530 |
}
|
sl@0
|
531 |
#endif
|
sl@0
|
532 |
return ptr;
|
sl@0
|
533 |
}
|
sl@0
|
534 |
|
sl@0
|
535 |
//
|
sl@0
|
536 |
// The generic deflation algorithm
|
sl@0
|
537 |
//
|
sl@0
|
538 |
void MDeflater::DeflateL(const TUint8* aBase,TInt aLength)
|
sl@0
|
539 |
{
|
sl@0
|
540 |
const TUint8* end=aBase+aLength;
|
sl@0
|
541 |
if (aLength>KDeflateMinLength)
|
sl@0
|
542 |
{ // deflation kicks in if there is enough data
|
sl@0
|
543 |
HDeflateHash& hash=HDeflateHash::NewLC(aLength);
|
sl@0
|
544 |
aBase=DoDeflateL(aBase,end,hash);
|
sl@0
|
545 |
CleanupStack::PopAndDestroy();
|
sl@0
|
546 |
}
|
sl@0
|
547 |
while (aBase<end) // emit remaining bytes
|
sl@0
|
548 |
LitLenL(*aBase++);
|
sl@0
|
549 |
LitLenL(CDbStoreCompression::TEncoding::EEos); // eos marker
|
sl@0
|
550 |
}
|
sl@0
|
551 |
|
sl@0
|
552 |
//
|
sl@0
|
553 |
// Turn a (length,offset) pair into the deflation codes+extra bits before calling
|
sl@0
|
554 |
// the specific LitLen(), Offset() and Extra() functions.
|
sl@0
|
555 |
//
|
sl@0
|
556 |
void MDeflater::SegmentL(TInt aLength,TInt aDistance)
|
sl@0
|
557 |
{
|
sl@0
|
558 |
__ASSERT(aLength>=KDeflateMinLength && aLength<=KDeflateMaxLength);
|
sl@0
|
559 |
aLength-=KDeflateMinLength;
|
sl@0
|
560 |
TInt extralen=0;
|
sl@0
|
561 |
TUint len=aLength;
|
sl@0
|
562 |
while (len>=8)
|
sl@0
|
563 |
{
|
sl@0
|
564 |
++extralen;
|
sl@0
|
565 |
len>>=1;
|
sl@0
|
566 |
}
|
sl@0
|
567 |
__ASSERT((extralen<<2)+len<CDbStoreCompression::TEncoding::ELengths);
|
sl@0
|
568 |
LitLenL((extralen<<2)+len+CDbStoreCompression::TEncoding::ELiterals);
|
sl@0
|
569 |
if (extralen)
|
sl@0
|
570 |
ExtraL(extralen,TUint(aLength)<<(32-extralen));
|
sl@0
|
571 |
//
|
sl@0
|
572 |
__ASSERT(aDistance>0 && aDistance<=KDeflateMaxDistance);
|
sl@0
|
573 |
aDistance--;
|
sl@0
|
574 |
extralen=0;
|
sl@0
|
575 |
TUint dist=aDistance;
|
sl@0
|
576 |
while (dist>=8)
|
sl@0
|
577 |
{
|
sl@0
|
578 |
++extralen;
|
sl@0
|
579 |
dist>>=1;
|
sl@0
|
580 |
}
|
sl@0
|
581 |
__ASSERT((extralen<<2)+dist<CDbStoreCompression::TEncoding::EDistances);
|
sl@0
|
582 |
OffsetL((extralen<<2)+dist);
|
sl@0
|
583 |
if (extralen)
|
sl@0
|
584 |
ExtraL(extralen,TUint(aDistance)<<(32-extralen));
|
sl@0
|
585 |
}
|
sl@0
|
586 |
|
sl@0
|
587 |
// Class TDeflateStats
|
sl@0
|
588 |
//
|
sl@0
|
589 |
// This class analyses the data stream to generate the frequency tables
|
sl@0
|
590 |
// for the deflation algorithm
|
sl@0
|
591 |
|
sl@0
|
592 |
inline TDeflateStats::TDeflateStats(CDbStoreCompression::TEncoding& aEncoding)
|
sl@0
|
593 |
:iEncoding(aEncoding)
|
sl@0
|
594 |
{}
|
sl@0
|
595 |
|
sl@0
|
596 |
void TDeflateStats::LitLenL(TInt aCode)
|
sl@0
|
597 |
{
|
sl@0
|
598 |
++iEncoding.iLitLen[aCode];
|
sl@0
|
599 |
}
|
sl@0
|
600 |
|
sl@0
|
601 |
void TDeflateStats::OffsetL(TInt aCode)
|
sl@0
|
602 |
{
|
sl@0
|
603 |
++iEncoding.iDistance[aCode];
|
sl@0
|
604 |
}
|
sl@0
|
605 |
|
sl@0
|
606 |
void TDeflateStats::ExtraL(TInt,TUint)
|
sl@0
|
607 |
{}
|
sl@0
|
608 |
|
sl@0
|
609 |
// Class THuffEncoder
|
sl@0
|
610 |
//
|
sl@0
|
611 |
// This class generates the byte stream of huffman codes, writing them out to the stream
|
sl@0
|
612 |
|
sl@0
|
613 |
THuffEncoder::THuffEncoder(RWriteStream& aStream)
|
sl@0
|
614 |
:iStream(aStream),iCode(0),iBits(-8),iWrite(iBuf)
|
sl@0
|
615 |
{}
|
sl@0
|
616 |
|
sl@0
|
617 |
//
|
sl@0
|
618 |
// Store a huffman code generated by Huffman::EncodingL()
|
sl@0
|
619 |
//
|
sl@0
|
620 |
void THuffEncoder::EncodeL(TUint32 aHuffCode)
|
sl@0
|
621 |
{
|
sl@0
|
622 |
EncodeL(aHuffCode<<(32-KHuffMaxCodeLength),aHuffCode>>KHuffMaxCodeLength);
|
sl@0
|
623 |
}
|
sl@0
|
624 |
|
sl@0
|
625 |
//
|
sl@0
|
626 |
// Store aLength bits from the most significant bits of aCode
|
sl@0
|
627 |
//
|
sl@0
|
628 |
void THuffEncoder::EncodeL(TUint aCode,TInt aLength)
|
sl@0
|
629 |
{
|
sl@0
|
630 |
TInt bits=iBits;
|
sl@0
|
631 |
TUint code=iCode|(aCode>>(bits+8));
|
sl@0
|
632 |
bits+=aLength;
|
sl@0
|
633 |
if (bits>=0)
|
sl@0
|
634 |
{
|
sl@0
|
635 |
TUint8* write=iWrite;
|
sl@0
|
636 |
do
|
sl@0
|
637 |
{
|
sl@0
|
638 |
if (write-EBufSize==iBuf)
|
sl@0
|
639 |
{
|
sl@0
|
640 |
iStream.WriteL(iBuf,EBufSize);
|
sl@0
|
641 |
write=iBuf;
|
sl@0
|
642 |
}
|
sl@0
|
643 |
*write++=TUint8(code>>24);
|
sl@0
|
644 |
code<<=8;
|
sl@0
|
645 |
bits-=8;
|
sl@0
|
646 |
} while (bits>=0);
|
sl@0
|
647 |
iWrite=write;
|
sl@0
|
648 |
}
|
sl@0
|
649 |
iCode=code;
|
sl@0
|
650 |
iBits=bits;
|
sl@0
|
651 |
}
|
sl@0
|
652 |
|
sl@0
|
653 |
//
|
sl@0
|
654 |
// Terminate the huffman coding. The longest code is always 1111111111
|
sl@0
|
655 |
//
|
sl@0
|
656 |
void THuffEncoder::CompleteL()
|
sl@0
|
657 |
{
|
sl@0
|
658 |
if (iBits>-8)
|
sl@0
|
659 |
EncodeL(0xffffffffu,-iBits);
|
sl@0
|
660 |
if (iWrite>iBuf)
|
sl@0
|
661 |
iStream.WriteL(iBuf,iWrite-iBuf);
|
sl@0
|
662 |
}
|
sl@0
|
663 |
|
sl@0
|
664 |
// Class TDeflater
|
sl@0
|
665 |
//
|
sl@0
|
666 |
// Extends MDeflater to provide huffman encoding of the output
|
sl@0
|
667 |
|
sl@0
|
668 |
//
|
sl@0
|
669 |
// construct for encoding
|
sl@0
|
670 |
//
|
sl@0
|
671 |
inline TDeflater::TDeflater(THuffEncoder& aEncoder,const CDbStoreCompression::TEncoding& aEncoding)
|
sl@0
|
672 |
:iEncoder(aEncoder),iEncoding(aEncoding)
|
sl@0
|
673 |
{}
|
sl@0
|
674 |
|
sl@0
|
675 |
void TDeflater::LitLenL(TInt aCode)
|
sl@0
|
676 |
{
|
sl@0
|
677 |
iEncoder.EncodeL(iEncoding.iLitLen[aCode]);
|
sl@0
|
678 |
}
|
sl@0
|
679 |
|
sl@0
|
680 |
void TDeflater::OffsetL(TInt aCode)
|
sl@0
|
681 |
{
|
sl@0
|
682 |
iEncoder.EncodeL(iEncoding.iDistance[aCode]);
|
sl@0
|
683 |
}
|
sl@0
|
684 |
|
sl@0
|
685 |
void TDeflater::ExtraL(TInt aLen,TUint aBits)
|
sl@0
|
686 |
{
|
sl@0
|
687 |
iEncoder.EncodeL(aBits,aLen);
|
sl@0
|
688 |
}
|
sl@0
|
689 |
|
sl@0
|
690 |
// Class TInflater
|
sl@0
|
691 |
//
|
sl@0
|
692 |
// The inflation algorithm, complete with huffman decoding
|
sl@0
|
693 |
|
sl@0
|
694 |
TInflater::TInflater(const TUint8* aIn,const CDbStoreCompression::TEncoding& aEncoding)
|
sl@0
|
695 |
:iIn(aIn),iBits(KBitsInit),iLen(0),iLitLenTree(aEncoding.iLitLen),iDistTree(aEncoding.iDistance)
|
sl@0
|
696 |
{}
|
sl@0
|
697 |
|
sl@0
|
698 |
//
|
sl@0
|
699 |
// consume all data lag in the history buffer, then decode to fill up the output buffer
|
sl@0
|
700 |
//
|
sl@0
|
701 |
TInt TInflater::Inflate()
|
sl@0
|
702 |
{
|
sl@0
|
703 |
// empty the history buffer into the output
|
sl@0
|
704 |
const TUint8* data=iIn;
|
sl@0
|
705 |
TUint bits=iBits;
|
sl@0
|
706 |
const TUint8* from=iRptr;
|
sl@0
|
707 |
TInt len=iLen;
|
sl@0
|
708 |
TUint8* out=iOut;
|
sl@0
|
709 |
TUint8* const end=out+KDeflateMaxDistance;
|
sl@0
|
710 |
const TUint32* node;
|
sl@0
|
711 |
if (len)
|
sl@0
|
712 |
goto useHistory;
|
sl@0
|
713 |
//
|
sl@0
|
714 |
if (bits&KBitsEOF)
|
sl@0
|
715 |
return 0;
|
sl@0
|
716 |
//
|
sl@0
|
717 |
node=iLitLenTree;
|
sl@0
|
718 |
while (out<end)
|
sl@0
|
719 |
{
|
sl@0
|
720 |
// get a huffman code
|
sl@0
|
721 |
{
|
sl@0
|
722 |
TUint huff;
|
sl@0
|
723 |
for (;;)
|
sl@0
|
724 |
{
|
sl@0
|
725 |
huff=*node++;
|
sl@0
|
726 |
if ((bits<<=1)&KBitsEmpty)
|
sl@0
|
727 |
bits=*data++|KBitsFull;
|
sl@0
|
728 |
if (bits&KBitsNext)
|
sl@0
|
729 |
{
|
sl@0
|
730 |
if (huff&(KHuffTerminate<<16))
|
sl@0
|
731 |
break;
|
sl@0
|
732 |
}
|
sl@0
|
733 |
else
|
sl@0
|
734 |
{
|
sl@0
|
735 |
if (huff&KHuffTerminate)
|
sl@0
|
736 |
{
|
sl@0
|
737 |
huff<<=16;
|
sl@0
|
738 |
break;
|
sl@0
|
739 |
}
|
sl@0
|
740 |
else
|
sl@0
|
741 |
node=PtrAdd(node,huff);
|
sl@0
|
742 |
}
|
sl@0
|
743 |
}
|
sl@0
|
744 |
TInt val=TInt(huff>>17)-CDbStoreCompression::TEncoding::ELiterals;
|
sl@0
|
745 |
if (val<0)
|
sl@0
|
746 |
{
|
sl@0
|
747 |
*out++=TUint8(val);
|
sl@0
|
748 |
node=iLitLenTree;
|
sl@0
|
749 |
continue; // another literal/length combo
|
sl@0
|
750 |
}
|
sl@0
|
751 |
if (val==CDbStoreCompression::TEncoding::EEos-CDbStoreCompression::TEncoding::ELiterals)
|
sl@0
|
752 |
{ // eos marker. we're done
|
sl@0
|
753 |
bits=KBitsEOF;
|
sl@0
|
754 |
break;
|
sl@0
|
755 |
}
|
sl@0
|
756 |
// get the extra bits for the code
|
sl@0
|
757 |
TInt code=val&0xff;
|
sl@0
|
758 |
if (code>=8)
|
sl@0
|
759 |
{ // xtra bits
|
sl@0
|
760 |
TInt xtra=(code>>2)-1;
|
sl@0
|
761 |
code-=xtra<<2;
|
sl@0
|
762 |
do
|
sl@0
|
763 |
{
|
sl@0
|
764 |
if ((bits<<=1)&KBitsEmpty)
|
sl@0
|
765 |
bits=*data++|KBitsFull;
|
sl@0
|
766 |
code<<=1;
|
sl@0
|
767 |
if (bits&KBitsNext)
|
sl@0
|
768 |
code|=1;
|
sl@0
|
769 |
} while (--xtra!=0);
|
sl@0
|
770 |
}
|
sl@0
|
771 |
if (val<KDeflateDistCodeBase-CDbStoreCompression::TEncoding::ELiterals)
|
sl@0
|
772 |
{ // length code... get the code
|
sl@0
|
773 |
len=code+KDeflateMinLength;
|
sl@0
|
774 |
__ASSERT(len<=KDeflateMaxLength);
|
sl@0
|
775 |
node=iDistTree;
|
sl@0
|
776 |
continue; // read the huffman code
|
sl@0
|
777 |
}
|
sl@0
|
778 |
// distance code
|
sl@0
|
779 |
__ASSERT(code<KDeflateMaxDistance);
|
sl@0
|
780 |
from=out-(code+1);
|
sl@0
|
781 |
if (from+KDeflateMaxDistance<end)
|
sl@0
|
782 |
from+=KDeflateMaxDistance;
|
sl@0
|
783 |
}
|
sl@0
|
784 |
useHistory:
|
sl@0
|
785 |
TInt tfr=Min(end-out,len);
|
sl@0
|
786 |
len-=tfr;
|
sl@0
|
787 |
do
|
sl@0
|
788 |
{
|
sl@0
|
789 |
*out++=*from++;
|
sl@0
|
790 |
if (from==end)
|
sl@0
|
791 |
from-=KDeflateMaxDistance;
|
sl@0
|
792 |
} while (--tfr!=0);
|
sl@0
|
793 |
node=iLitLenTree;
|
sl@0
|
794 |
};
|
sl@0
|
795 |
iIn=data;
|
sl@0
|
796 |
iBits=bits;
|
sl@0
|
797 |
iRptr=from;
|
sl@0
|
798 |
iLen=len;
|
sl@0
|
799 |
return out-iOut;
|
sl@0
|
800 |
}
|
sl@0
|
801 |
|
sl@0
|
802 |
inline const TUint8* TInflater::Ptr() const
|
sl@0
|
803 |
{return iOut;}
|
sl@0
|
804 |
inline TInt TInflater::BufferSize()
|
sl@0
|
805 |
{return KDeflateMaxDistance;}
|
sl@0
|
806 |
|
sl@0
|
807 |
// Class HDeflateBuf
|
sl@0
|
808 |
//
|
sl@0
|
809 |
// This stream buffer applies the analysis or deflation and huffman coding
|
sl@0
|
810 |
// on the entire stream data when it is committed
|
sl@0
|
811 |
|
sl@0
|
812 |
inline HDeflateBuf::HDeflateBuf(MStreamBuf* aHost,CDbStoreCompression::TEncoding& aEncoding,CBufBase* aBuf,TMode aMode)
|
sl@0
|
813 |
:iHost(aHost),iEncoding(aEncoding),iBuf(aBuf),iMode(aMode)
|
sl@0
|
814 |
{Set(*aBuf,0);}
|
sl@0
|
815 |
|
sl@0
|
816 |
HDeflateBuf* HDeflateBuf::NewL(MStreamBuf* aHost,CDbStoreCompression::TEncoding& aEncoding,TMode aMode)
|
sl@0
|
817 |
{
|
sl@0
|
818 |
CBufBase* buf=CBufFlat::NewL(512);
|
sl@0
|
819 |
CleanupStack::PushL(buf);
|
sl@0
|
820 |
HDeflateBuf* self=new(ELeave) HDeflateBuf(aHost,aEncoding,buf,aMode);
|
sl@0
|
821 |
CleanupStack::Pop();
|
sl@0
|
822 |
return self;
|
sl@0
|
823 |
}
|
sl@0
|
824 |
|
sl@0
|
825 |
inline HDeflateBuf::~HDeflateBuf()
|
sl@0
|
826 |
{delete iBuf;iHost.Release();}
|
sl@0
|
827 |
|
sl@0
|
828 |
void HDeflateBuf::DoRelease()
|
sl@0
|
829 |
{
|
sl@0
|
830 |
delete this;
|
sl@0
|
831 |
}
|
sl@0
|
832 |
|
sl@0
|
833 |
//
|
sl@0
|
834 |
// This is where it all happens
|
sl@0
|
835 |
//
|
sl@0
|
836 |
void HDeflateBuf::DoSynchL()
|
sl@0
|
837 |
{
|
sl@0
|
838 |
if (iMode==EAnalysis)
|
sl@0
|
839 |
{
|
sl@0
|
840 |
TDeflateStats deflater(iEncoding);
|
sl@0
|
841 |
deflater.DeflateL(iBuf->Ptr(0).Ptr(),iBuf->Size());
|
sl@0
|
842 |
}
|
sl@0
|
843 |
else
|
sl@0
|
844 |
{
|
sl@0
|
845 |
THuffEncoder encoder(iHost);
|
sl@0
|
846 |
TDeflater deflater(encoder,iEncoding);
|
sl@0
|
847 |
deflater.DeflateL(iBuf->Ptr(0).Ptr(),iBuf->Size());
|
sl@0
|
848 |
encoder.CompleteL();
|
sl@0
|
849 |
iHost.CommitL();
|
sl@0
|
850 |
}
|
sl@0
|
851 |
}
|
sl@0
|
852 |
|
sl@0
|
853 |
// Class HInflateBuf
|
sl@0
|
854 |
//
|
sl@0
|
855 |
// Inflate the input stream. This is not a filter, it reads all the input, inflates it and
|
sl@0
|
856 |
// keeps it in a memory buffer.
|
sl@0
|
857 |
|
sl@0
|
858 |
const TInt KInflateBufSize=0x800; // 2K
|
sl@0
|
859 |
|
sl@0
|
860 |
HInflateBuf::HInflateBuf(CBufBase* aBuf)
|
sl@0
|
861 |
:iBuf(aBuf)
|
sl@0
|
862 |
{
|
sl@0
|
863 |
Set(*aBuf,0,ERead);
|
sl@0
|
864 |
}
|
sl@0
|
865 |
|
sl@0
|
866 |
inline HInflateBuf::~HInflateBuf()
|
sl@0
|
867 |
{delete iBuf;}
|
sl@0
|
868 |
|
sl@0
|
869 |
void HInflateBuf::DoRelease()
|
sl@0
|
870 |
{
|
sl@0
|
871 |
delete this;
|
sl@0
|
872 |
}
|
sl@0
|
873 |
|
sl@0
|
874 |
HInflateBuf* HInflateBuf::NewL(MStreamBuf* aHost,const CDbStoreCompression::TEncoding& aEncoding)
|
sl@0
|
875 |
{
|
sl@0
|
876 |
CBufFlat* host=CBufFlat::NewL(256);
|
sl@0
|
877 |
CleanupStack::PushL(host);
|
sl@0
|
878 |
TUint8 buffer[KInflateBufSize];
|
sl@0
|
879 |
for (;;)
|
sl@0
|
880 |
{
|
sl@0
|
881 |
TInt len=aHost->ReadL(buffer,KInflateBufSize);
|
sl@0
|
882 |
if (len)
|
sl@0
|
883 |
host->InsertL(host->Size(),buffer,len);
|
sl@0
|
884 |
if (len<KInflateBufSize)
|
sl@0
|
885 |
break;
|
sl@0
|
886 |
}
|
sl@0
|
887 |
CBufSeg* out=CBufSeg::NewL(256);
|
sl@0
|
888 |
CleanupStack::PushL(out);
|
sl@0
|
889 |
TInflater* inflater=new(ELeave) TInflater(host->Ptr(0).Ptr(),aEncoding);
|
sl@0
|
890 |
CleanupStack::PushL(inflater);
|
sl@0
|
891 |
for (;;)
|
sl@0
|
892 |
{
|
sl@0
|
893 |
TInt len=inflater->Inflate();
|
sl@0
|
894 |
if (len)
|
sl@0
|
895 |
out->InsertL(out->Size(),inflater->Ptr(),len);
|
sl@0
|
896 |
if (len<inflater->BufferSize())
|
sl@0
|
897 |
break;
|
sl@0
|
898 |
}
|
sl@0
|
899 |
HInflateBuf* buf=new(ELeave) HInflateBuf(out);
|
sl@0
|
900 |
CleanupStack::PopAndDestroy(); // inflater
|
sl@0
|
901 |
CleanupStack::Pop(); // out
|
sl@0
|
902 |
CleanupStack::PopAndDestroy(); // host
|
sl@0
|
903 |
aHost->Release(); // don't need this anymore
|
sl@0
|
904 |
return buf;
|
sl@0
|
905 |
}
|
sl@0
|
906 |
|
sl@0
|
907 |
// Class CDbStoreTable::Compressor
|
sl@0
|
908 |
//
|
sl@0
|
909 |
// This class processes an entire table for analysis or compression, using the
|
sl@0
|
910 |
// CDbStoreRecords::AlterL() functionality and call back to ensure that all clusters
|
sl@0
|
911 |
// and BLOBs are read and written.
|
sl@0
|
912 |
|
sl@0
|
913 |
inline CDbStoreTable::CCompressor::CCompressor()
|
sl@0
|
914 |
{}
|
sl@0
|
915 |
|
sl@0
|
916 |
CDbStoreTable::CCompressor::~CCompressor()
|
sl@0
|
917 |
{
|
sl@0
|
918 |
if (iTable)
|
sl@0
|
919 |
iTable->Close();
|
sl@0
|
920 |
iRow.Close();
|
sl@0
|
921 |
}
|
sl@0
|
922 |
|
sl@0
|
923 |
//
|
sl@0
|
924 |
// Walk through every cluster in the table
|
sl@0
|
925 |
//
|
sl@0
|
926 |
void CDbStoreTable::CCompressor::ProcessL(CDbStoreTable* aTable)
|
sl@0
|
927 |
{
|
sl@0
|
928 |
iTable=aTable;
|
sl@0
|
929 |
CDbStoreRecords& rec=aTable->StoreRecordsL();
|
sl@0
|
930 |
for (TClusterId cluster=rec.Head();cluster!=KNullClusterId;cluster=rec.AlterL(cluster,*this))
|
sl@0
|
931 |
;
|
sl@0
|
932 |
}
|
sl@0
|
933 |
|
sl@0
|
934 |
//
|
sl@0
|
935 |
// Compress every blob, and transfer the record from aRPtr to aWPtr
|
sl@0
|
936 |
//
|
sl@0
|
937 |
TUint8* CDbStoreTable::CCompressor::AlterRecordL(TUint8* aWPtr,const TUint8* aRPtr,TInt aLength)
|
sl@0
|
938 |
{
|
sl@0
|
939 |
if (iTable->Def().Columns().HasLongColumns())
|
sl@0
|
940 |
{
|
sl@0
|
941 |
iTable->CopyToRowL(iRow,TPtrC8(aRPtr,aLength));
|
sl@0
|
942 |
CDbBlobSpace* blobs=iTable->BlobsL();
|
sl@0
|
943 |
TDbColNo col=1;
|
sl@0
|
944 |
HDbColumnSet::TIteratorC iter=iTable->Def().Columns().Begin();
|
sl@0
|
945 |
const HDbColumnSet::TIteratorC end=iTable->Def().Columns().End();
|
sl@0
|
946 |
do
|
sl@0
|
947 |
{
|
sl@0
|
948 |
if (!TDbCol::IsLong(iter->Type()))
|
sl@0
|
949 |
continue;
|
sl@0
|
950 |
TDbBlob& blob=CONST_CAST(TDbBlob&,TDbColumnC(iRow,col).Blob());
|
sl@0
|
951 |
if (blob.IsInline())
|
sl@0
|
952 |
continue;
|
sl@0
|
953 |
// do what has to be done...?
|
sl@0
|
954 |
TUint8* data=(TUint8*)User::AllocLC(blob.Size());
|
sl@0
|
955 |
blobs->ReadLC(blob.Id(),iter->Type())->ReadL(data,blob.Size());
|
sl@0
|
956 |
CleanupStack::PopAndDestroy(); // stream buffer
|
sl@0
|
957 |
// re-write the Blob to compress it
|
sl@0
|
958 |
blobs->DeleteL(blob.Id());
|
sl@0
|
959 |
blob.SetId(blobs->CreateL(iter->Type(),data,blob.Size()));
|
sl@0
|
960 |
CleanupStack::PopAndDestroy(); // data
|
sl@0
|
961 |
} while (++col,++iter<end);
|
sl@0
|
962 |
iTable->CopyFromRow(aWPtr,iRow);
|
sl@0
|
963 |
}
|
sl@0
|
964 |
else
|
sl@0
|
965 |
Mem::Copy(aWPtr,aRPtr,aLength);
|
sl@0
|
966 |
return aWPtr+aLength;
|
sl@0
|
967 |
}
|
sl@0
|
968 |
|
sl@0
|
969 |
// Class CDbStoreCompression
|
sl@0
|
970 |
//
|
sl@0
|
971 |
// This class manages the compression for the database, applying filters as appropriate
|
sl@0
|
972 |
// It also defines the extrenalisation format for the huffman trees
|
sl@0
|
973 |
|
sl@0
|
974 |
const TInt KDeflationCodes=3*(CDbStoreCompression::TEncoding::ELitLens+CDbStoreCompression::TEncoding::EDistances);
|
sl@0
|
975 |
|
sl@0
|
976 |
inline CDbStoreCompression::CDbStoreCompression()
|
sl@0
|
977 |
// :iState(EAnalysis)
|
sl@0
|
978 |
{}
|
sl@0
|
979 |
|
sl@0
|
980 |
CDbStoreCompression* CDbStoreCompression::NewL()
|
sl@0
|
981 |
{
|
sl@0
|
982 |
return new(ELeave) CDbStoreCompression;
|
sl@0
|
983 |
}
|
sl@0
|
984 |
|
sl@0
|
985 |
//
|
sl@0
|
986 |
// Build huffman codings from the freqeuncy tables
|
sl@0
|
987 |
//
|
sl@0
|
988 |
void CDbStoreCompression::EncodeL()
|
sl@0
|
989 |
{
|
sl@0
|
990 |
//Check the comments in CDbStoreCompression::InternalizeL().
|
sl@0
|
991 |
//The implementation there is very similar to this one and is commented why the "array overrun"
|
sl@0
|
992 |
//case is impossible.
|
sl@0
|
993 |
__ASSERT(iState==EAnalysis);
|
sl@0
|
994 |
TUint32* p=iEncoding[0].iLitLen;
|
sl@0
|
995 |
TUint32* end=p+KDeflationCodes;
|
sl@0
|
996 |
do
|
sl@0
|
997 |
{
|
sl@0
|
998 |
Huffman::EncodingL(p,TEncoding::ELitLens);
|
sl@0
|
999 |
p+=TEncoding::ELitLens;
|
sl@0
|
1000 |
//coverity[overrun-local]
|
sl@0
|
1001 |
Huffman::EncodingL(p,TEncoding::EDistances);
|
sl@0
|
1002 |
//coverity[overrun-local]
|
sl@0
|
1003 |
p+=TEncoding::EDistances;
|
sl@0
|
1004 |
} while (p<end);
|
sl@0
|
1005 |
iState=EEncoding;
|
sl@0
|
1006 |
}
|
sl@0
|
1007 |
|
sl@0
|
1008 |
//
|
sl@0
|
1009 |
// Store the encoding tables as a sequence of code lengths
|
sl@0
|
1010 |
// The code lengths (0-25) are themselves huffman coded, and the meta coding is stored first
|
sl@0
|
1011 |
//
|
sl@0
|
1012 |
void CDbStoreCompression::ExternalizeL(RWriteStream& aStream) const
|
sl@0
|
1013 |
{
|
sl@0
|
1014 |
__ASSERT(iState==EEncoding);
|
sl@0
|
1015 |
const TUint32* base=iEncoding[0].iLitLen;
|
sl@0
|
1016 |
const TUint32* end=base+KDeflationCodes;
|
sl@0
|
1017 |
TUint32 codes[KDeflateMetaCodes];
|
sl@0
|
1018 |
Mem::FillZ(codes,sizeof(codes));
|
sl@0
|
1019 |
const TUint32* p=base;
|
sl@0
|
1020 |
do ++codes[*p++>>KHuffMaxCodeLength]; while (p<end);
|
sl@0
|
1021 |
Huffman::EncodingL(codes,KDeflateMetaCodes);
|
sl@0
|
1022 |
// save the meta encoding
|
sl@0
|
1023 |
p=codes+KDeflateMetaCodes;
|
sl@0
|
1024 |
do
|
sl@0
|
1025 |
{
|
sl@0
|
1026 |
TUint c0=*--p;
|
sl@0
|
1027 |
TUint c1=*--p;
|
sl@0
|
1028 |
c0>>=KHuffMaxCodeLength;
|
sl@0
|
1029 |
c1>>=KHuffMaxCodeLength;
|
sl@0
|
1030 |
aStream.WriteUint8L((c0<<4)|c1);
|
sl@0
|
1031 |
} while (p>codes);
|
sl@0
|
1032 |
// write the encoding
|
sl@0
|
1033 |
THuffEncoder encoder(aStream);
|
sl@0
|
1034 |
p=base;
|
sl@0
|
1035 |
do encoder.EncodeL(codes[*p++>>KHuffMaxCodeLength]); while (p<end);
|
sl@0
|
1036 |
encoder.CompleteL();
|
sl@0
|
1037 |
}
|
sl@0
|
1038 |
|
sl@0
|
1039 |
//
|
sl@0
|
1040 |
// Internalize a previous saved encoding
|
sl@0
|
1041 |
//
|
sl@0
|
1042 |
void CDbStoreCompression::InternalizeL(RReadStream& aStream)
|
sl@0
|
1043 |
{
|
sl@0
|
1044 |
__ASSERT(iState!=EEncoding);
|
sl@0
|
1045 |
//
|
sl@0
|
1046 |
// read the meta encoding
|
sl@0
|
1047 |
TUint32 decode[KDeflateMetaCodes];
|
sl@0
|
1048 |
TUint32* p=decode+KDeflateMetaCodes;
|
sl@0
|
1049 |
do
|
sl@0
|
1050 |
{
|
sl@0
|
1051 |
TUint8 c=aStream.ReadUint8L();
|
sl@0
|
1052 |
*--p=c>>4;
|
sl@0
|
1053 |
*--p=c&0xf;
|
sl@0
|
1054 |
} while (p>decode);
|
sl@0
|
1055 |
Huffman::Decoding(decode,KDeflateMetaCodes);
|
sl@0
|
1056 |
// decode the encoding
|
sl@0
|
1057 |
p=iEncoding[0].iLitLen;
|
sl@0
|
1058 |
TUint32* end=p+KDeflationCodes;
|
sl@0
|
1059 |
TUint bits=KBitsInit;
|
sl@0
|
1060 |
do
|
sl@0
|
1061 |
{
|
sl@0
|
1062 |
const TUint32* node=decode;
|
sl@0
|
1063 |
TUint huff;
|
sl@0
|
1064 |
for (;;)
|
sl@0
|
1065 |
{
|
sl@0
|
1066 |
huff=*node++;
|
sl@0
|
1067 |
if ((bits<<=1)&KBitsEmpty)
|
sl@0
|
1068 |
bits=aStream.ReadUint8L()|KBitsFull;
|
sl@0
|
1069 |
if (bits&KBitsNext)
|
sl@0
|
1070 |
{
|
sl@0
|
1071 |
if (huff&(KHuffTerminate<<16))
|
sl@0
|
1072 |
break;
|
sl@0
|
1073 |
}
|
sl@0
|
1074 |
else
|
sl@0
|
1075 |
{
|
sl@0
|
1076 |
if (huff&KHuffTerminate)
|
sl@0
|
1077 |
{
|
sl@0
|
1078 |
huff<<=16;
|
sl@0
|
1079 |
break;
|
sl@0
|
1080 |
}
|
sl@0
|
1081 |
else
|
sl@0
|
1082 |
node=PtrAdd(node,huff);
|
sl@0
|
1083 |
}
|
sl@0
|
1084 |
}
|
sl@0
|
1085 |
*p++=huff>>17;
|
sl@0
|
1086 |
} while (p<end);
|
sl@0
|
1087 |
// convert the length tables into huffman decoding trees
|
sl@0
|
1088 |
//The iEncoding data member is an array of 3 elements of TEncoding type.
|
sl@0
|
1089 |
//The TEncoding layout is: TUint32 iLitLen[ELitLens], TUint32 iDistance[EDistances].
|
sl@0
|
1090 |
//Then the in-memory presentation of iEncoding is:
|
sl@0
|
1091 |
// ELitLens EDistances
|
sl@0
|
1092 |
//iEncoding[0] ........ ........
|
sl@0
|
1093 |
//iEncoding[1] ........ ........
|
sl@0
|
1094 |
//iEncoding[2] ........ ........
|
sl@0
|
1095 |
//
|
sl@0
|
1096 |
//Bellow, in the loop:
|
sl@0
|
1097 |
// p+=TEncoding::ELitLens; - moves the pointer to the beginning of iDistance data
|
sl@0
|
1098 |
// p+=TEncoding::EDistances; - moves the pointer to the beginning of iLitLen data of the next element of iEncoding.
|
sl@0
|
1099 |
//The loop will process the data until "p<end", and "end" is defined as:
|
sl@0
|
1100 |
// p=iEncoding[0].iLitLen;
|
sl@0
|
1101 |
// TUint32* end=p+KDeflationCodes;
|
sl@0
|
1102 |
//KDeflationCodes value is: 3*(CDbStoreCompression::TEncoding::ELitLens+CDbStoreCompression::TEncoding::EDistances),
|
sl@0
|
1103 |
//so that is the end of the iEncoding array.
|
sl@0
|
1104 |
//Conclusion: the code incrementing the "p" pointer in the loop bellow won't cause array overrun.
|
sl@0
|
1105 |
p=iEncoding[0].iLitLen;
|
sl@0
|
1106 |
do
|
sl@0
|
1107 |
{
|
sl@0
|
1108 |
Huffman::Decoding(p,TEncoding::ELitLens);
|
sl@0
|
1109 |
p+=TEncoding::ELitLens;
|
sl@0
|
1110 |
//coverity[overrun-local]
|
sl@0
|
1111 |
Huffman::Decoding(p,TEncoding::EDistances,KDeflateDistCodeBase);
|
sl@0
|
1112 |
//coverity[overrun-local]
|
sl@0
|
1113 |
p+=TEncoding::EDistances;
|
sl@0
|
1114 |
} while (p<end);
|
sl@0
|
1115 |
if (iState==EAnalysis)
|
sl@0
|
1116 |
iState=EDecoding;
|
sl@0
|
1117 |
}
|
sl@0
|
1118 |
|
sl@0
|
1119 |
//
|
sl@0
|
1120 |
// Apply an inflation filter to a read stream
|
sl@0
|
1121 |
//
|
sl@0
|
1122 |
MStreamBuf* CDbStoreCompression::FilterL(MStreamBuf* aHost,TUint32,RDbStoreReadStream::TType aType)
|
sl@0
|
1123 |
{
|
sl@0
|
1124 |
if (iState==EDecoding || iState==EInflating)
|
sl@0
|
1125 |
return HInflateBuf::NewL(aHost,iEncoding[aType]);
|
sl@0
|
1126 |
return aHost;
|
sl@0
|
1127 |
}
|
sl@0
|
1128 |
|
sl@0
|
1129 |
//
|
sl@0
|
1130 |
// Apply a statistics or inflation filter to a write stream
|
sl@0
|
1131 |
//
|
sl@0
|
1132 |
MStreamBuf* CDbStoreCompression::FilterL(MStreamBuf* aHost,TUint32,RDbStoreWriteStream::TType aType)
|
sl@0
|
1133 |
{
|
sl@0
|
1134 |
TState s=iState;
|
sl@0
|
1135 |
if (s==EDecoding)
|
sl@0
|
1136 |
__LEAVE(KErrWrite); // read-only database
|
sl@0
|
1137 |
else if (s!=EInflating)
|
sl@0
|
1138 |
{
|
sl@0
|
1139 |
__ASSERT(TInt(EAnalysis)==TInt(HDeflateBuf::EAnalysis));
|
sl@0
|
1140 |
__ASSERT(TInt(EEncoding)==TInt(HDeflateBuf::EDeflate));
|
sl@0
|
1141 |
return HDeflateBuf::NewL(aHost,iEncoding[aType],HDeflateBuf::TMode(s));
|
sl@0
|
1142 |
}
|
sl@0
|
1143 |
return aHost;
|
sl@0
|
1144 |
}
|
sl@0
|
1145 |
|
sl@0
|
1146 |
// Class CDbStoreDatabase
|
sl@0
|
1147 |
//
|
sl@0
|
1148 |
// Compression related code is maintained in this source file
|
sl@0
|
1149 |
|
sl@0
|
1150 |
//
|
sl@0
|
1151 |
// Iterate across all tables applying analysis or compression to them
|
sl@0
|
1152 |
//
|
sl@0
|
1153 |
void CDbStoreDatabase::CompressTablesL()
|
sl@0
|
1154 |
{
|
sl@0
|
1155 |
TSglQueIterC<CDbStoreDef> iter(SchemaL());
|
sl@0
|
1156 |
const CDbStoreDef* def;
|
sl@0
|
1157 |
while ((def=iter++)!=0)
|
sl@0
|
1158 |
{
|
sl@0
|
1159 |
CDbStoreTable::CCompressor* comp=new(ELeave) CDbStoreTable::CCompressor;
|
sl@0
|
1160 |
CleanupStack::PushL(comp);
|
sl@0
|
1161 |
comp->ProcessL(STATIC_CAST(CDbStoreTable*,TableL(*def)));
|
sl@0
|
1162 |
CleanupStack::PopAndDestroy(); // comp
|
sl@0
|
1163 |
}
|
sl@0
|
1164 |
}
|
sl@0
|
1165 |
|
sl@0
|
1166 |
//
|
sl@0
|
1167 |
// Compress or decompress the whole database
|
sl@0
|
1168 |
//
|
sl@0
|
1169 |
void CDbStoreDatabase::CompressL(TStreamId aStreamId,TZipType aZip)
|
sl@0
|
1170 |
{
|
sl@0
|
1171 |
__ASSERT(iStore);
|
sl@0
|
1172 |
iSchemaId=aStreamId;
|
sl@0
|
1173 |
// read the databse header for encryption information
|
sl@0
|
1174 |
RStoreReadStream strm;
|
sl@0
|
1175 |
strm.OpenLC(Store(),aStreamId);
|
sl@0
|
1176 |
ReadHeaderL(strm);
|
sl@0
|
1177 |
CleanupStack::PopAndDestroy(); // strm
|
sl@0
|
1178 |
InitPagePoolL();
|
sl@0
|
1179 |
//
|
sl@0
|
1180 |
if (iVersion==EDbStoreCompressed)
|
sl@0
|
1181 |
{
|
sl@0
|
1182 |
iCompression->Inflate();
|
sl@0
|
1183 |
if (aZip==EDeflate)
|
sl@0
|
1184 |
__LEAVE(KErrArgument); // already compressed
|
sl@0
|
1185 |
}
|
sl@0
|
1186 |
else if (aZip==EInflate)
|
sl@0
|
1187 |
__LEAVE(KErrArgument); // not compressed
|
sl@0
|
1188 |
else
|
sl@0
|
1189 |
{ // deflate pass #1: analyse the database
|
sl@0
|
1190 |
CompressionL(); // construct the compression filter
|
sl@0
|
1191 |
Transaction().DDLBeginLC();
|
sl@0
|
1192 |
CompressTablesL();
|
sl@0
|
1193 |
iClusterCache->FlushL(); // force through the stats buffer
|
sl@0
|
1194 |
ReplaceSchemaL(); // force through the stats buffer
|
sl@0
|
1195 |
CleanupStack::PopAndDestroy(); // rollback after analysis!
|
sl@0
|
1196 |
iCompression->EncodeL();
|
sl@0
|
1197 |
}
|
sl@0
|
1198 |
// now inflate or deflate the data
|
sl@0
|
1199 |
Transaction().DDLBeginLC();
|
sl@0
|
1200 |
CompressTablesL();
|
sl@0
|
1201 |
iVersion=TUint8(aZip==EDeflate ? EDbStoreCompressed : EDbStoreVersion2);
|
sl@0
|
1202 |
Transaction().DDLCommitL();
|
sl@0
|
1203 |
CleanupStack::Pop(); // rollback not required
|
sl@0
|
1204 |
}
|
sl@0
|
1205 |
|
sl@0
|
1206 |
void CDbStoreDatabase::CompressL(CStreamStore* aStore,TStreamId aStreamId,TZipType aZip)
|
sl@0
|
1207 |
{
|
sl@0
|
1208 |
//It looks like there is a potential memory leak in the next 4 lines of code, because:
|
sl@0
|
1209 |
//1) CDbStoreDatabase* self=NewLC(aStore) - new CDbStoreDatabase object is created on the heap
|
sl@0
|
1210 |
//2) CDbObject* db=self->InterfaceL() - new CDbObject is created on the heap
|
sl@0
|
1211 |
//3) CleanupStack::Pop() - the CDbStoreDatabase object from (1) - out from the cleanup stack
|
sl@0
|
1212 |
//4) db->PushL() - the CDbObject from (2) - in the cleanup stack
|
sl@0
|
1213 |
//If one of the DDLPrepareL() or CompressL() leaves, looks like the CDbStoreDatabase object from (1) will be leaked.
|
sl@0
|
1214 |
//This is not a correct guess, becuse:
|
sl@0
|
1215 |
// - CDbObject* db=self->InterfaceL() - this call creates a new CInterface object
|
sl@0
|
1216 |
// on the heap. The CInterface() constructor will store the "this" pointer
|
sl@0
|
1217 |
// passed from the InterfaceL() (so the "self" pointer),
|
sl@0
|
1218 |
// into its "iDatabase" private data member.
|
sl@0
|
1219 |
// In which case, the returned CDbObject, of CInterface type, will have
|
sl@0
|
1220 |
// its "iDatabase" data member initialized.
|
sl@0
|
1221 |
// The inheritance tree is:
|
sl@0
|
1222 |
// CBase <-- CDbObject <-- CDbDatabase <-- CInterface
|
sl@0
|
1223 |
// - db->PushL() - this call puts on the cleanup stack CDbObject::Destroy().
|
sl@0
|
1224 |
// The "db" object which real type is CInterface with "iDatabase" data member
|
sl@0
|
1225 |
// initialized with "self", is on the cleanup stack.
|
sl@0
|
1226 |
// - If one of the next "L" functions leaves, then CDbObject::Destroy() will be executed.
|
sl@0
|
1227 |
// - CDbObject::Destroy() will call CInterface::~CInterface() - CBase is at the root of the inheritance tree, with
|
sl@0
|
1228 |
// virtual ~CBase() destructor.
|
sl@0
|
1229 |
// - CInterface::~CInterface() implementation calls Database().Close(), so that is CDbStoreDatabase::Close() called on
|
sl@0
|
1230 |
// the "self" pointer.
|
sl@0
|
1231 |
// - The CDbStoreDatabase::Close() will call "delete this" when its reference count reaches 0.
|
sl@0
|
1232 |
// The reference counter is increased by 1 in the InterfaceL() chain of calls.
|
sl@0
|
1233 |
// -------- Conclusion ---------
|
sl@0
|
1234 |
// No memory leak will occur in the next lines of code. Coverity errors - disabled.
|
sl@0
|
1235 |
CDbStoreDatabase* self=NewLC(aStore);
|
sl@0
|
1236 |
//coverity[alloc_fn]
|
sl@0
|
1237 |
//coverity[var_assign]
|
sl@0
|
1238 |
CDbObject* db=self->InterfaceL(); // a reference to the database is required
|
sl@0
|
1239 |
CleanupStack::Pop(); // self
|
sl@0
|
1240 |
//coverity[noescape]
|
sl@0
|
1241 |
db->PushL();
|
sl@0
|
1242 |
//coverity[noescape]
|
sl@0
|
1243 |
self->Transaction().DDLPrepareL(*db);
|
sl@0
|
1244 |
self->CompressL(aStreamId,aZip);
|
sl@0
|
1245 |
CleanupStack::PopAndDestroy(); // db
|
sl@0
|
1246 |
//coverity[leaked_storage]
|
sl@0
|
1247 |
}
|
sl@0
|
1248 |
|
sl@0
|
1249 |
// Class RDbStoreDatabase
|
sl@0
|
1250 |
|
sl@0
|
1251 |
EXPORT_C void RDbStoreDatabase::CompressL(CStreamStore& aStore,TStreamId aId)
|
sl@0
|
1252 |
{
|
sl@0
|
1253 |
CDbStoreDatabase::CompressL(&aStore,aId,CDbStoreDatabase::EDeflate);
|
sl@0
|
1254 |
}
|
sl@0
|
1255 |
|
sl@0
|
1256 |
EXPORT_C void RDbStoreDatabase::DecompressL(CStreamStore& aStore,TStreamId aId)
|
sl@0
|
1257 |
{
|
sl@0
|
1258 |
CDbStoreDatabase::CompressL(&aStore,aId,CDbStoreDatabase::EInflate);
|
sl@0
|
1259 |
}
|