sl@0
|
1 |
/*
|
sl@0
|
2 |
* Support for VIA PadLock Advanced Cryptography Engine (ACE)
|
sl@0
|
3 |
* Written by Michal Ludvig <michal@logix.cz>
|
sl@0
|
4 |
* http://www.logix.cz/michal
|
sl@0
|
5 |
*
|
sl@0
|
6 |
* Big thanks to Andy Polyakov for a help with optimization,
|
sl@0
|
7 |
* assembler fixes, port to MS Windows and a lot of other
|
sl@0
|
8 |
* valuable work on this engine!
|
sl@0
|
9 |
*/
|
sl@0
|
10 |
|
sl@0
|
11 |
/* ====================================================================
|
sl@0
|
12 |
* Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
|
sl@0
|
13 |
*
|
sl@0
|
14 |
* Redistribution and use in source and binary forms, with or without
|
sl@0
|
15 |
* modification, are permitted provided that the following conditions
|
sl@0
|
16 |
* are met:
|
sl@0
|
17 |
*
|
sl@0
|
18 |
* 1. Redistributions of source code must retain the above copyright
|
sl@0
|
19 |
* notice, this list of conditions and the following disclaimer.
|
sl@0
|
20 |
*
|
sl@0
|
21 |
* 2. Redistributions in binary form must reproduce the above copyright
|
sl@0
|
22 |
* notice, this list of conditions and the following disclaimer in
|
sl@0
|
23 |
* the documentation and/or other materials provided with the
|
sl@0
|
24 |
* distribution.
|
sl@0
|
25 |
*
|
sl@0
|
26 |
* 3. All advertising materials mentioning features or use of this
|
sl@0
|
27 |
* software must display the following acknowledgment:
|
sl@0
|
28 |
* "This product includes software developed by the OpenSSL Project
|
sl@0
|
29 |
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
sl@0
|
30 |
*
|
sl@0
|
31 |
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
sl@0
|
32 |
* endorse or promote products derived from this software without
|
sl@0
|
33 |
* prior written permission. For written permission, please contact
|
sl@0
|
34 |
* licensing@OpenSSL.org.
|
sl@0
|
35 |
*
|
sl@0
|
36 |
* 5. Products derived from this software may not be called "OpenSSL"
|
sl@0
|
37 |
* nor may "OpenSSL" appear in their names without prior written
|
sl@0
|
38 |
* permission of the OpenSSL Project.
|
sl@0
|
39 |
*
|
sl@0
|
40 |
* 6. Redistributions of any form whatsoever must retain the following
|
sl@0
|
41 |
* acknowledgment:
|
sl@0
|
42 |
* "This product includes software developed by the OpenSSL Project
|
sl@0
|
43 |
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
sl@0
|
44 |
*
|
sl@0
|
45 |
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
sl@0
|
46 |
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
sl@0
|
47 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
sl@0
|
48 |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
sl@0
|
49 |
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
sl@0
|
50 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
sl@0
|
51 |
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
sl@0
|
52 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
sl@0
|
53 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
sl@0
|
54 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
sl@0
|
55 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
sl@0
|
56 |
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
sl@0
|
57 |
* ====================================================================
|
sl@0
|
58 |
*
|
sl@0
|
59 |
* This product includes cryptographic software written by Eric Young
|
sl@0
|
60 |
* (eay@cryptsoft.com). This product includes software written by Tim
|
sl@0
|
61 |
* Hudson (tjh@cryptsoft.com).
|
sl@0
|
62 |
*
|
sl@0
|
63 |
*/
|
sl@0
|
64 |
|
sl@0
|
65 |
|
sl@0
|
66 |
#include <stdio.h>
|
sl@0
|
67 |
#include <string.h>
|
sl@0
|
68 |
|
sl@0
|
69 |
#include <openssl/opensslconf.h>
|
sl@0
|
70 |
#include <openssl/crypto.h>
|
sl@0
|
71 |
#include <openssl/dso.h>
|
sl@0
|
72 |
#include <openssl/engine.h>
|
sl@0
|
73 |
#include <openssl/evp.h>
|
sl@0
|
74 |
#ifndef OPENSSL_NO_AES
|
sl@0
|
75 |
#include <openssl/aes.h>
|
sl@0
|
76 |
#endif
|
sl@0
|
77 |
#include <openssl/rand.h>
|
sl@0
|
78 |
#include <openssl/err.h>
|
sl@0
|
79 |
|
sl@0
|
80 |
#ifndef OPENSSL_NO_HW
|
sl@0
|
81 |
#ifndef OPENSSL_NO_HW_PADLOCK
|
sl@0
|
82 |
|
sl@0
|
83 |
/* Attempt to have a single source for both 0.9.7 and 0.9.8 :-) */
|
sl@0
|
84 |
#if (OPENSSL_VERSION_NUMBER >= 0x00908000L)
|
sl@0
|
85 |
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
|
sl@0
|
86 |
# define DYNAMIC_ENGINE
|
sl@0
|
87 |
# endif
|
sl@0
|
88 |
#elif (OPENSSL_VERSION_NUMBER >= 0x00907000L)
|
sl@0
|
89 |
# ifdef ENGINE_DYNAMIC_SUPPORT
|
sl@0
|
90 |
# define DYNAMIC_ENGINE
|
sl@0
|
91 |
# endif
|
sl@0
|
92 |
#else
|
sl@0
|
93 |
# error "Only OpenSSL >= 0.9.7 is supported"
|
sl@0
|
94 |
#endif
|
sl@0
|
95 |
|
sl@0
|
96 |
/* VIA PadLock AES is available *ONLY* on some x86 CPUs.
|
sl@0
|
97 |
Not only that it doesn't exist elsewhere, but it
|
sl@0
|
98 |
even can't be compiled on other platforms!
|
sl@0
|
99 |
|
sl@0
|
100 |
In addition, because of the heavy use of inline assembler,
|
sl@0
|
101 |
compiler choice is limited to GCC and Microsoft C. */
|
sl@0
|
102 |
#undef COMPILE_HW_PADLOCK
|
sl@0
|
103 |
#if !defined(I386_ONLY) && !defined(OPENSSL_NO_INLINE_ASM)
|
sl@0
|
104 |
# if (defined(__GNUC__) && (defined(__i386__) || defined(__i386))) || \
|
sl@0
|
105 |
(defined(_MSC_VER) && defined(_M_IX86))
|
sl@0
|
106 |
# define COMPILE_HW_PADLOCK
|
sl@0
|
107 |
static ENGINE *ENGINE_padlock (void);
|
sl@0
|
108 |
# endif
|
sl@0
|
109 |
#endif
|
sl@0
|
110 |
|
sl@0
|
111 |
EXPORT_C void ENGINE_load_padlock (void)
|
sl@0
|
112 |
{
|
sl@0
|
113 |
/* On non-x86 CPUs it just returns. */
|
sl@0
|
114 |
#ifdef COMPILE_HW_PADLOCK
|
sl@0
|
115 |
ENGINE *toadd = ENGINE_padlock ();
|
sl@0
|
116 |
if (!toadd) return;
|
sl@0
|
117 |
ENGINE_add (toadd);
|
sl@0
|
118 |
ENGINE_free (toadd);
|
sl@0
|
119 |
ERR_clear_error ();
|
sl@0
|
120 |
#endif
|
sl@0
|
121 |
}
|
sl@0
|
122 |
|
sl@0
|
123 |
#ifdef COMPILE_HW_PADLOCK
|
sl@0
|
124 |
/* We do these includes here to avoid header problems on platforms that
|
sl@0
|
125 |
do not have the VIA padlock anyway... */
|
sl@0
|
126 |
#ifdef _MSC_VER
|
sl@0
|
127 |
# include <malloc.h>
|
sl@0
|
128 |
# define alloca _alloca
|
sl@0
|
129 |
#else
|
sl@0
|
130 |
# include <stdlib.h>
|
sl@0
|
131 |
#endif
|
sl@0
|
132 |
|
sl@0
|
133 |
/* Function for ENGINE detection and control */
|
sl@0
|
134 |
static int padlock_available(void);
|
sl@0
|
135 |
static int padlock_init(ENGINE *e);
|
sl@0
|
136 |
|
sl@0
|
137 |
/* RNG Stuff */
|
sl@0
|
138 |
static RAND_METHOD padlock_rand;
|
sl@0
|
139 |
|
sl@0
|
140 |
/* Cipher Stuff */
|
sl@0
|
141 |
#ifndef OPENSSL_NO_AES
|
sl@0
|
142 |
static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid);
|
sl@0
|
143 |
#endif
|
sl@0
|
144 |
|
sl@0
|
145 |
/* Engine names */
|
sl@0
|
146 |
static const char *padlock_id = "padlock";
|
sl@0
|
147 |
static char padlock_name[100];
|
sl@0
|
148 |
|
sl@0
|
149 |
/* Available features */
|
sl@0
|
150 |
static int padlock_use_ace = 0; /* Advanced Cryptography Engine */
|
sl@0
|
151 |
static int padlock_use_rng = 0; /* Random Number Generator */
|
sl@0
|
152 |
#ifndef OPENSSL_NO_AES
|
sl@0
|
153 |
static int padlock_aes_align_required = 1;
|
sl@0
|
154 |
#endif
|
sl@0
|
155 |
|
sl@0
|
156 |
/* ===== Engine "management" functions ===== */
|
sl@0
|
157 |
|
sl@0
|
158 |
/* Prepare the ENGINE structure for registration */
|
sl@0
|
159 |
static int
|
sl@0
|
160 |
padlock_bind_helper(ENGINE *e)
|
sl@0
|
161 |
{
|
sl@0
|
162 |
/* Check available features */
|
sl@0
|
163 |
padlock_available();
|
sl@0
|
164 |
|
sl@0
|
165 |
#if 1 /* disable RNG for now, see commentary in vicinity of RNG code */
|
sl@0
|
166 |
padlock_use_rng=0;
|
sl@0
|
167 |
#endif
|
sl@0
|
168 |
|
sl@0
|
169 |
/* Generate a nice engine name with available features */
|
sl@0
|
170 |
BIO_snprintf(padlock_name, sizeof(padlock_name),
|
sl@0
|
171 |
"VIA PadLock (%s, %s)",
|
sl@0
|
172 |
padlock_use_rng ? "RNG" : "no-RNG",
|
sl@0
|
173 |
padlock_use_ace ? "ACE" : "no-ACE");
|
sl@0
|
174 |
|
sl@0
|
175 |
/* Register everything or return with an error */
|
sl@0
|
176 |
if (!ENGINE_set_id(e, padlock_id) ||
|
sl@0
|
177 |
!ENGINE_set_name(e, padlock_name) ||
|
sl@0
|
178 |
|
sl@0
|
179 |
!ENGINE_set_init_function(e, padlock_init) ||
|
sl@0
|
180 |
#ifndef OPENSSL_NO_AES
|
sl@0
|
181 |
(padlock_use_ace && !ENGINE_set_ciphers (e, padlock_ciphers)) ||
|
sl@0
|
182 |
#endif
|
sl@0
|
183 |
(padlock_use_rng && !ENGINE_set_RAND (e, &padlock_rand))) {
|
sl@0
|
184 |
return 0;
|
sl@0
|
185 |
}
|
sl@0
|
186 |
|
sl@0
|
187 |
/* Everything looks good */
|
sl@0
|
188 |
return 1;
|
sl@0
|
189 |
}
|
sl@0
|
190 |
|
sl@0
|
191 |
/* Constructor */
|
sl@0
|
192 |
static ENGINE *
|
sl@0
|
193 |
ENGINE_padlock(void)
|
sl@0
|
194 |
{
|
sl@0
|
195 |
ENGINE *eng = ENGINE_new();
|
sl@0
|
196 |
|
sl@0
|
197 |
if (!eng) {
|
sl@0
|
198 |
return NULL;
|
sl@0
|
199 |
}
|
sl@0
|
200 |
|
sl@0
|
201 |
if (!padlock_bind_helper(eng)) {
|
sl@0
|
202 |
ENGINE_free(eng);
|
sl@0
|
203 |
return NULL;
|
sl@0
|
204 |
}
|
sl@0
|
205 |
|
sl@0
|
206 |
return eng;
|
sl@0
|
207 |
}
|
sl@0
|
208 |
|
sl@0
|
209 |
/* Check availability of the engine */
|
sl@0
|
210 |
static int
|
sl@0
|
211 |
padlock_init(ENGINE *e)
|
sl@0
|
212 |
{
|
sl@0
|
213 |
return (padlock_use_rng || padlock_use_ace);
|
sl@0
|
214 |
}
|
sl@0
|
215 |
|
sl@0
|
216 |
/* This stuff is needed if this ENGINE is being compiled into a self-contained
|
sl@0
|
217 |
* shared-library.
|
sl@0
|
218 |
*/
|
sl@0
|
219 |
#ifdef DYNAMIC_ENGINE
|
sl@0
|
220 |
static int
|
sl@0
|
221 |
padlock_bind_fn(ENGINE *e, const char *id)
|
sl@0
|
222 |
{
|
sl@0
|
223 |
if (id && (strcmp(id, padlock_id) != 0)) {
|
sl@0
|
224 |
return 0;
|
sl@0
|
225 |
}
|
sl@0
|
226 |
|
sl@0
|
227 |
if (!padlock_bind_helper(e)) {
|
sl@0
|
228 |
return 0;
|
sl@0
|
229 |
}
|
sl@0
|
230 |
|
sl@0
|
231 |
return 1;
|
sl@0
|
232 |
}
|
sl@0
|
233 |
|
sl@0
|
234 |
IMPLEMENT_DYNAMIC_CHECK_FN ();
|
sl@0
|
235 |
IMPLEMENT_DYNAMIC_BIND_FN (padlock_bind_fn);
|
sl@0
|
236 |
#endif /* DYNAMIC_ENGINE */
|
sl@0
|
237 |
|
sl@0
|
238 |
/* ===== Here comes the "real" engine ===== */
|
sl@0
|
239 |
|
sl@0
|
240 |
#ifndef OPENSSL_NO_AES
|
sl@0
|
241 |
/* Some AES-related constants */
|
sl@0
|
242 |
#define AES_BLOCK_SIZE 16
|
sl@0
|
243 |
#define AES_KEY_SIZE_128 16
|
sl@0
|
244 |
#define AES_KEY_SIZE_192 24
|
sl@0
|
245 |
#define AES_KEY_SIZE_256 32
|
sl@0
|
246 |
|
sl@0
|
247 |
/* Here we store the status information relevant to the
|
sl@0
|
248 |
current context. */
|
sl@0
|
249 |
/* BIG FAT WARNING:
|
sl@0
|
250 |
* Inline assembler in PADLOCK_XCRYPT_ASM()
|
sl@0
|
251 |
* depends on the order of items in this structure.
|
sl@0
|
252 |
* Don't blindly modify, reorder, etc!
|
sl@0
|
253 |
*/
|
sl@0
|
254 |
struct padlock_cipher_data
|
sl@0
|
255 |
{
|
sl@0
|
256 |
unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */
|
sl@0
|
257 |
union { unsigned int pad[4];
|
sl@0
|
258 |
struct {
|
sl@0
|
259 |
int rounds:4;
|
sl@0
|
260 |
int dgst:1; /* n/a in C3 */
|
sl@0
|
261 |
int align:1; /* n/a in C3 */
|
sl@0
|
262 |
int ciphr:1; /* n/a in C3 */
|
sl@0
|
263 |
unsigned int keygen:1;
|
sl@0
|
264 |
int interm:1;
|
sl@0
|
265 |
unsigned int encdec:1;
|
sl@0
|
266 |
int ksize:2;
|
sl@0
|
267 |
} b;
|
sl@0
|
268 |
} cword; /* Control word */
|
sl@0
|
269 |
AES_KEY ks; /* Encryption key */
|
sl@0
|
270 |
};
|
sl@0
|
271 |
|
sl@0
|
272 |
/*
|
sl@0
|
273 |
* Essentially this variable belongs in thread local storage.
|
sl@0
|
274 |
* Having this variable global on the other hand can only cause
|
sl@0
|
275 |
* few bogus key reloads [if any at all on single-CPU system],
|
sl@0
|
276 |
* so we accept the penatly...
|
sl@0
|
277 |
*/
|
sl@0
|
278 |
static volatile struct padlock_cipher_data *padlock_saved_context;
|
sl@0
|
279 |
#endif
|
sl@0
|
280 |
|
sl@0
|
281 |
/*
|
sl@0
|
282 |
* =======================================================
|
sl@0
|
283 |
* Inline assembler section(s).
|
sl@0
|
284 |
* =======================================================
|
sl@0
|
285 |
* Order of arguments is chosen to facilitate Windows port
|
sl@0
|
286 |
* using __fastcall calling convention. If you wish to add
|
sl@0
|
287 |
* more routines, keep in mind that first __fastcall
|
sl@0
|
288 |
* argument is passed in %ecx and second - in %edx.
|
sl@0
|
289 |
* =======================================================
|
sl@0
|
290 |
*/
|
sl@0
|
291 |
#if defined(__GNUC__) && __GNUC__>=2
|
sl@0
|
292 |
/*
|
sl@0
|
293 |
* As for excessive "push %ebx"/"pop %ebx" found all over.
|
sl@0
|
294 |
* When generating position-independent code GCC won't let
|
sl@0
|
295 |
* us use "b" in assembler templates nor even respect "ebx"
|
sl@0
|
296 |
* in "clobber description." Therefore the trouble...
|
sl@0
|
297 |
*/
|
sl@0
|
298 |
|
sl@0
|
299 |
/* Helper function - check if a CPUID instruction
|
sl@0
|
300 |
is available on this CPU */
|
sl@0
|
301 |
static int
|
sl@0
|
302 |
padlock_insn_cpuid_available(void)
|
sl@0
|
303 |
{
|
sl@0
|
304 |
int result = -1;
|
sl@0
|
305 |
|
sl@0
|
306 |
/* We're checking if the bit #21 of EFLAGS
|
sl@0
|
307 |
can be toggled. If yes = CPUID is available. */
|
sl@0
|
308 |
asm volatile (
|
sl@0
|
309 |
"pushf\n"
|
sl@0
|
310 |
"popl %%eax\n"
|
sl@0
|
311 |
"xorl $0x200000, %%eax\n"
|
sl@0
|
312 |
"movl %%eax, %%ecx\n"
|
sl@0
|
313 |
"andl $0x200000, %%ecx\n"
|
sl@0
|
314 |
"pushl %%eax\n"
|
sl@0
|
315 |
"popf\n"
|
sl@0
|
316 |
"pushf\n"
|
sl@0
|
317 |
"popl %%eax\n"
|
sl@0
|
318 |
"andl $0x200000, %%eax\n"
|
sl@0
|
319 |
"xorl %%eax, %%ecx\n"
|
sl@0
|
320 |
"movl %%ecx, %0\n"
|
sl@0
|
321 |
: "=r" (result) : : "eax", "ecx");
|
sl@0
|
322 |
|
sl@0
|
323 |
return (result == 0);
|
sl@0
|
324 |
}
|
sl@0
|
325 |
|
sl@0
|
326 |
/* Load supported features of the CPU to see if
|
sl@0
|
327 |
the PadLock is available. */
|
sl@0
|
328 |
static int
|
sl@0
|
329 |
padlock_available(void)
|
sl@0
|
330 |
{
|
sl@0
|
331 |
char vendor_string[16];
|
sl@0
|
332 |
unsigned int eax, edx;
|
sl@0
|
333 |
|
sl@0
|
334 |
/* First check if the CPUID instruction is available at all... */
|
sl@0
|
335 |
if (! padlock_insn_cpuid_available())
|
sl@0
|
336 |
return 0;
|
sl@0
|
337 |
|
sl@0
|
338 |
/* Are we running on the Centaur (VIA) CPU? */
|
sl@0
|
339 |
eax = 0x00000000;
|
sl@0
|
340 |
vendor_string[12] = 0;
|
sl@0
|
341 |
asm volatile (
|
sl@0
|
342 |
"pushl %%ebx\n"
|
sl@0
|
343 |
"cpuid\n"
|
sl@0
|
344 |
"movl %%ebx,(%%edi)\n"
|
sl@0
|
345 |
"movl %%edx,4(%%edi)\n"
|
sl@0
|
346 |
"movl %%ecx,8(%%edi)\n"
|
sl@0
|
347 |
"popl %%ebx"
|
sl@0
|
348 |
: "+a"(eax) : "D"(vendor_string) : "ecx", "edx");
|
sl@0
|
349 |
if (strcmp(vendor_string, "CentaurHauls") != 0)
|
sl@0
|
350 |
return 0;
|
sl@0
|
351 |
|
sl@0
|
352 |
/* Check for Centaur Extended Feature Flags presence */
|
sl@0
|
353 |
eax = 0xC0000000;
|
sl@0
|
354 |
asm volatile ("pushl %%ebx; cpuid; popl %%ebx"
|
sl@0
|
355 |
: "+a"(eax) : : "ecx", "edx");
|
sl@0
|
356 |
if (eax < 0xC0000001)
|
sl@0
|
357 |
return 0;
|
sl@0
|
358 |
|
sl@0
|
359 |
/* Read the Centaur Extended Feature Flags */
|
sl@0
|
360 |
eax = 0xC0000001;
|
sl@0
|
361 |
asm volatile ("pushl %%ebx; cpuid; popl %%ebx"
|
sl@0
|
362 |
: "+a"(eax), "=d"(edx) : : "ecx");
|
sl@0
|
363 |
|
sl@0
|
364 |
/* Fill up some flags */
|
sl@0
|
365 |
padlock_use_ace = ((edx & (0x3<<6)) == (0x3<<6));
|
sl@0
|
366 |
padlock_use_rng = ((edx & (0x3<<2)) == (0x3<<2));
|
sl@0
|
367 |
|
sl@0
|
368 |
return padlock_use_ace + padlock_use_rng;
|
sl@0
|
369 |
}
|
sl@0
|
370 |
|
sl@0
|
371 |
#ifndef OPENSSL_NO_AES
|
sl@0
|
372 |
/* Our own htonl()/ntohl() */
|
sl@0
|
373 |
static inline void
|
sl@0
|
374 |
padlock_bswapl(AES_KEY *ks)
|
sl@0
|
375 |
{
|
sl@0
|
376 |
size_t i = sizeof(ks->rd_key)/sizeof(ks->rd_key[0]);
|
sl@0
|
377 |
unsigned int *key = ks->rd_key;
|
sl@0
|
378 |
|
sl@0
|
379 |
while (i--) {
|
sl@0
|
380 |
asm volatile ("bswapl %0" : "+r"(*key));
|
sl@0
|
381 |
key++;
|
sl@0
|
382 |
}
|
sl@0
|
383 |
}
|
sl@0
|
384 |
#endif
|
sl@0
|
385 |
|
sl@0
|
386 |
/* Force key reload from memory to the CPU microcode.
|
sl@0
|
387 |
Loading EFLAGS from the stack clears EFLAGS[30]
|
sl@0
|
388 |
which does the trick. */
|
sl@0
|
389 |
static inline void
|
sl@0
|
390 |
padlock_reload_key(void)
|
sl@0
|
391 |
{
|
sl@0
|
392 |
asm volatile ("pushfl; popfl");
|
sl@0
|
393 |
}
|
sl@0
|
394 |
|
sl@0
|
395 |
#ifndef OPENSSL_NO_AES
|
sl@0
|
396 |
/*
|
sl@0
|
397 |
* This is heuristic key context tracing. At first one
|
sl@0
|
398 |
* believes that one should use atomic swap instructions,
|
sl@0
|
399 |
* but it's not actually necessary. Point is that if
|
sl@0
|
400 |
* padlock_saved_context was changed by another thread
|
sl@0
|
401 |
* after we've read it and before we compare it with cdata,
|
sl@0
|
402 |
* our key *shall* be reloaded upon thread context switch
|
sl@0
|
403 |
* and we are therefore set in either case...
|
sl@0
|
404 |
*/
|
sl@0
|
405 |
static inline void
|
sl@0
|
406 |
padlock_verify_context(struct padlock_cipher_data *cdata)
|
sl@0
|
407 |
{
|
sl@0
|
408 |
asm volatile (
|
sl@0
|
409 |
"pushfl\n"
|
sl@0
|
410 |
" btl $30,(%%esp)\n"
|
sl@0
|
411 |
" jnc 1f\n"
|
sl@0
|
412 |
" cmpl %2,%1\n"
|
sl@0
|
413 |
" je 1f\n"
|
sl@0
|
414 |
" popfl\n"
|
sl@0
|
415 |
" subl $4,%%esp\n"
|
sl@0
|
416 |
"1: addl $4,%%esp\n"
|
sl@0
|
417 |
" movl %2,%0"
|
sl@0
|
418 |
:"+m"(padlock_saved_context)
|
sl@0
|
419 |
: "r"(padlock_saved_context), "r"(cdata) : "cc");
|
sl@0
|
420 |
}
|
sl@0
|
421 |
|
sl@0
|
422 |
/* Template for padlock_xcrypt_* modes */
|
sl@0
|
423 |
/* BIG FAT WARNING:
|
sl@0
|
424 |
* The offsets used with 'leal' instructions
|
sl@0
|
425 |
* describe items of the 'padlock_cipher_data'
|
sl@0
|
426 |
* structure.
|
sl@0
|
427 |
*/
|
sl@0
|
428 |
#define PADLOCK_XCRYPT_ASM(name,rep_xcrypt) \
|
sl@0
|
429 |
static inline void *name(size_t cnt, \
|
sl@0
|
430 |
struct padlock_cipher_data *cdata, \
|
sl@0
|
431 |
void *out, const void *inp) \
|
sl@0
|
432 |
{ void *iv; \
|
sl@0
|
433 |
asm volatile ( "pushl %%ebx\n" \
|
sl@0
|
434 |
" leal 16(%0),%%edx\n" \
|
sl@0
|
435 |
" leal 32(%0),%%ebx\n" \
|
sl@0
|
436 |
rep_xcrypt "\n" \
|
sl@0
|
437 |
" popl %%ebx" \
|
sl@0
|
438 |
: "=a"(iv), "=c"(cnt), "=D"(out), "=S"(inp) \
|
sl@0
|
439 |
: "0"(cdata), "1"(cnt), "2"(out), "3"(inp) \
|
sl@0
|
440 |
: "edx", "cc", "memory"); \
|
sl@0
|
441 |
return iv; \
|
sl@0
|
442 |
}
|
sl@0
|
443 |
|
sl@0
|
444 |
/* Generate all functions with appropriate opcodes */
|
sl@0
|
445 |
PADLOCK_XCRYPT_ASM(padlock_xcrypt_ecb, ".byte 0xf3,0x0f,0xa7,0xc8") /* rep xcryptecb */
|
sl@0
|
446 |
PADLOCK_XCRYPT_ASM(padlock_xcrypt_cbc, ".byte 0xf3,0x0f,0xa7,0xd0") /* rep xcryptcbc */
|
sl@0
|
447 |
PADLOCK_XCRYPT_ASM(padlock_xcrypt_cfb, ".byte 0xf3,0x0f,0xa7,0xe0") /* rep xcryptcfb */
|
sl@0
|
448 |
PADLOCK_XCRYPT_ASM(padlock_xcrypt_ofb, ".byte 0xf3,0x0f,0xa7,0xe8") /* rep xcryptofb */
|
sl@0
|
449 |
#endif
|
sl@0
|
450 |
|
sl@0
|
451 |
/* The RNG call itself */
|
sl@0
|
452 |
static inline unsigned int
|
sl@0
|
453 |
padlock_xstore(void *addr, unsigned int edx_in)
|
sl@0
|
454 |
{
|
sl@0
|
455 |
unsigned int eax_out;
|
sl@0
|
456 |
|
sl@0
|
457 |
asm volatile (".byte 0x0f,0xa7,0xc0" /* xstore */
|
sl@0
|
458 |
: "=a"(eax_out),"=m"(*(unsigned *)addr)
|
sl@0
|
459 |
: "D"(addr), "d" (edx_in)
|
sl@0
|
460 |
);
|
sl@0
|
461 |
|
sl@0
|
462 |
return eax_out;
|
sl@0
|
463 |
}
|
sl@0
|
464 |
|
sl@0
|
465 |
/* Why not inline 'rep movsd'? I failed to find information on what
|
sl@0
|
466 |
* value in Direction Flag one can expect and consequently have to
|
sl@0
|
467 |
* apply "better-safe-than-sorry" approach and assume "undefined."
|
sl@0
|
468 |
* I could explicitly clear it and restore the original value upon
|
sl@0
|
469 |
* return from padlock_aes_cipher, but it's presumably too much
|
sl@0
|
470 |
* trouble for too little gain...
|
sl@0
|
471 |
*
|
sl@0
|
472 |
* In case you wonder 'rep xcrypt*' instructions above are *not*
|
sl@0
|
473 |
* affected by the Direction Flag and pointers advance toward
|
sl@0
|
474 |
* larger addresses unconditionally.
|
sl@0
|
475 |
*/
|
sl@0
|
476 |
static inline unsigned char *
|
sl@0
|
477 |
padlock_memcpy(void *dst,const void *src,size_t n)
|
sl@0
|
478 |
{
|
sl@0
|
479 |
long *d=dst;
|
sl@0
|
480 |
const long *s=src;
|
sl@0
|
481 |
|
sl@0
|
482 |
n /= sizeof(*d);
|
sl@0
|
483 |
do { *d++ = *s++; } while (--n);
|
sl@0
|
484 |
|
sl@0
|
485 |
return dst;
|
sl@0
|
486 |
}
|
sl@0
|
487 |
|
sl@0
|
488 |
#elif defined(_MSC_VER)
|
sl@0
|
489 |
/*
|
sl@0
|
490 |
* Unlike GCC these are real functions. In order to minimize impact
|
sl@0
|
491 |
* on performance we adhere to __fastcall calling convention in
|
sl@0
|
492 |
* order to get two first arguments passed through %ecx and %edx.
|
sl@0
|
493 |
* Which kind of suits very well, as instructions in question use
|
sl@0
|
494 |
* both %ecx and %edx as input:-)
|
sl@0
|
495 |
*/
|
sl@0
|
496 |
#define REP_XCRYPT(code) \
|
sl@0
|
497 |
_asm _emit 0xf3 \
|
sl@0
|
498 |
_asm _emit 0x0f _asm _emit 0xa7 \
|
sl@0
|
499 |
_asm _emit code
|
sl@0
|
500 |
|
sl@0
|
501 |
/* BIG FAT WARNING:
|
sl@0
|
502 |
* The offsets used with 'lea' instructions
|
sl@0
|
503 |
* describe items of the 'padlock_cipher_data'
|
sl@0
|
504 |
* structure.
|
sl@0
|
505 |
*/
|
sl@0
|
506 |
#define PADLOCK_XCRYPT_ASM(name,code) \
|
sl@0
|
507 |
static void * __fastcall \
|
sl@0
|
508 |
name (size_t cnt, void *cdata, \
|
sl@0
|
509 |
void *outp, const void *inp) \
|
sl@0
|
510 |
{ _asm mov eax,edx \
|
sl@0
|
511 |
_asm lea edx,[eax+16] \
|
sl@0
|
512 |
_asm lea ebx,[eax+32] \
|
sl@0
|
513 |
_asm mov edi,outp \
|
sl@0
|
514 |
_asm mov esi,inp \
|
sl@0
|
515 |
REP_XCRYPT(code) \
|
sl@0
|
516 |
}
|
sl@0
|
517 |
|
sl@0
|
518 |
PADLOCK_XCRYPT_ASM(padlock_xcrypt_ecb,0xc8)
|
sl@0
|
519 |
PADLOCK_XCRYPT_ASM(padlock_xcrypt_cbc,0xd0)
|
sl@0
|
520 |
PADLOCK_XCRYPT_ASM(padlock_xcrypt_cfb,0xe0)
|
sl@0
|
521 |
PADLOCK_XCRYPT_ASM(padlock_xcrypt_ofb,0xe8)
|
sl@0
|
522 |
|
sl@0
|
523 |
static int __fastcall
|
sl@0
|
524 |
padlock_xstore(void *outp,unsigned int code)
|
sl@0
|
525 |
{ _asm mov edi,ecx
|
sl@0
|
526 |
_asm _emit 0x0f _asm _emit 0xa7 _asm _emit 0xc0
|
sl@0
|
527 |
}
|
sl@0
|
528 |
|
sl@0
|
529 |
static void __fastcall
|
sl@0
|
530 |
padlock_reload_key(void)
|
sl@0
|
531 |
{ _asm pushfd _asm popfd }
|
sl@0
|
532 |
|
sl@0
|
533 |
static void __fastcall
|
sl@0
|
534 |
padlock_verify_context(void *cdata)
|
sl@0
|
535 |
{ _asm {
|
sl@0
|
536 |
pushfd
|
sl@0
|
537 |
bt DWORD PTR[esp],30
|
sl@0
|
538 |
jnc skip
|
sl@0
|
539 |
cmp ecx,padlock_saved_context
|
sl@0
|
540 |
je skip
|
sl@0
|
541 |
popfd
|
sl@0
|
542 |
sub esp,4
|
sl@0
|
543 |
skip: add esp,4
|
sl@0
|
544 |
mov padlock_saved_context,ecx
|
sl@0
|
545 |
}
|
sl@0
|
546 |
}
|
sl@0
|
547 |
|
sl@0
|
548 |
static int
|
sl@0
|
549 |
padlock_available(void)
|
sl@0
|
550 |
{ _asm {
|
sl@0
|
551 |
pushfd
|
sl@0
|
552 |
pop eax
|
sl@0
|
553 |
mov ecx,eax
|
sl@0
|
554 |
xor eax,1<<21
|
sl@0
|
555 |
push eax
|
sl@0
|
556 |
popfd
|
sl@0
|
557 |
pushfd
|
sl@0
|
558 |
pop eax
|
sl@0
|
559 |
xor eax,ecx
|
sl@0
|
560 |
bt eax,21
|
sl@0
|
561 |
jnc noluck
|
sl@0
|
562 |
mov eax,0
|
sl@0
|
563 |
cpuid
|
sl@0
|
564 |
xor eax,eax
|
sl@0
|
565 |
cmp ebx,'tneC'
|
sl@0
|
566 |
jne noluck
|
sl@0
|
567 |
cmp edx,'Hrua'
|
sl@0
|
568 |
jne noluck
|
sl@0
|
569 |
cmp ecx,'slua'
|
sl@0
|
570 |
jne noluck
|
sl@0
|
571 |
mov eax,0xC0000000
|
sl@0
|
572 |
cpuid
|
sl@0
|
573 |
mov edx,eax
|
sl@0
|
574 |
xor eax,eax
|
sl@0
|
575 |
cmp edx,0xC0000001
|
sl@0
|
576 |
jb noluck
|
sl@0
|
577 |
mov eax,0xC0000001
|
sl@0
|
578 |
cpuid
|
sl@0
|
579 |
xor eax,eax
|
sl@0
|
580 |
bt edx,6
|
sl@0
|
581 |
jnc skip_a
|
sl@0
|
582 |
bt edx,7
|
sl@0
|
583 |
jnc skip_a
|
sl@0
|
584 |
mov padlock_use_ace,1
|
sl@0
|
585 |
inc eax
|
sl@0
|
586 |
skip_a: bt edx,2
|
sl@0
|
587 |
jnc skip_r
|
sl@0
|
588 |
bt edx,3
|
sl@0
|
589 |
jnc skip_r
|
sl@0
|
590 |
mov padlock_use_rng,1
|
sl@0
|
591 |
inc eax
|
sl@0
|
592 |
skip_r:
|
sl@0
|
593 |
noluck:
|
sl@0
|
594 |
}
|
sl@0
|
595 |
}
|
sl@0
|
596 |
|
sl@0
|
597 |
static void __fastcall
|
sl@0
|
598 |
padlock_bswapl(void *key)
|
sl@0
|
599 |
{ _asm {
|
sl@0
|
600 |
pushfd
|
sl@0
|
601 |
cld
|
sl@0
|
602 |
mov esi,ecx
|
sl@0
|
603 |
mov edi,ecx
|
sl@0
|
604 |
mov ecx,60
|
sl@0
|
605 |
up: lodsd
|
sl@0
|
606 |
bswap eax
|
sl@0
|
607 |
stosd
|
sl@0
|
608 |
loop up
|
sl@0
|
609 |
popfd
|
sl@0
|
610 |
}
|
sl@0
|
611 |
}
|
sl@0
|
612 |
|
sl@0
|
613 |
/* MS actually specifies status of Direction Flag and compiler even
|
sl@0
|
614 |
* manages to compile following as 'rep movsd' all by itself...
|
sl@0
|
615 |
*/
|
sl@0
|
616 |
#define padlock_memcpy(o,i,n) ((unsigned char *)memcpy((o),(i),(n)&~3U))
|
sl@0
|
617 |
#endif
|
sl@0
|
618 |
|
sl@0
|
619 |
/* ===== AES encryption/decryption ===== */
|
sl@0
|
620 |
#ifndef OPENSSL_NO_AES
|
sl@0
|
621 |
|
sl@0
|
622 |
#if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb)
|
sl@0
|
623 |
#define NID_aes_128_cfb NID_aes_128_cfb128
|
sl@0
|
624 |
#endif
|
sl@0
|
625 |
|
sl@0
|
626 |
#if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb)
|
sl@0
|
627 |
#define NID_aes_128_ofb NID_aes_128_ofb128
|
sl@0
|
628 |
#endif
|
sl@0
|
629 |
|
sl@0
|
630 |
#if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb)
|
sl@0
|
631 |
#define NID_aes_192_cfb NID_aes_192_cfb128
|
sl@0
|
632 |
#endif
|
sl@0
|
633 |
|
sl@0
|
634 |
#if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb)
|
sl@0
|
635 |
#define NID_aes_192_ofb NID_aes_192_ofb128
|
sl@0
|
636 |
#endif
|
sl@0
|
637 |
|
sl@0
|
638 |
#if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb)
|
sl@0
|
639 |
#define NID_aes_256_cfb NID_aes_256_cfb128
|
sl@0
|
640 |
#endif
|
sl@0
|
641 |
|
sl@0
|
642 |
#if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb)
|
sl@0
|
643 |
#define NID_aes_256_ofb NID_aes_256_ofb128
|
sl@0
|
644 |
#endif
|
sl@0
|
645 |
|
sl@0
|
646 |
/* List of supported ciphers. */
|
sl@0
|
647 |
static int padlock_cipher_nids[] = {
|
sl@0
|
648 |
NID_aes_128_ecb,
|
sl@0
|
649 |
NID_aes_128_cbc,
|
sl@0
|
650 |
NID_aes_128_cfb,
|
sl@0
|
651 |
NID_aes_128_ofb,
|
sl@0
|
652 |
|
sl@0
|
653 |
NID_aes_192_ecb,
|
sl@0
|
654 |
NID_aes_192_cbc,
|
sl@0
|
655 |
#if 0
|
sl@0
|
656 |
NID_aes_192_cfb, /* FIXME: AES192/256 CFB/OFB don't work. */
|
sl@0
|
657 |
NID_aes_192_ofb,
|
sl@0
|
658 |
#endif
|
sl@0
|
659 |
|
sl@0
|
660 |
NID_aes_256_ecb,
|
sl@0
|
661 |
NID_aes_256_cbc,
|
sl@0
|
662 |
#if 0
|
sl@0
|
663 |
NID_aes_256_cfb,
|
sl@0
|
664 |
NID_aes_256_ofb,
|
sl@0
|
665 |
#endif
|
sl@0
|
666 |
};
|
sl@0
|
667 |
static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids)/
|
sl@0
|
668 |
sizeof(padlock_cipher_nids[0]));
|
sl@0
|
669 |
|
sl@0
|
670 |
/* Function prototypes ... */
|
sl@0
|
671 |
static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
sl@0
|
672 |
const unsigned char *iv, int enc);
|
sl@0
|
673 |
static int padlock_aes_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
sl@0
|
674 |
const unsigned char *in, size_t nbytes);
|
sl@0
|
675 |
|
sl@0
|
676 |
#define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \
|
sl@0
|
677 |
( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) )
|
sl@0
|
678 |
#define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\
|
sl@0
|
679 |
NEAREST_ALIGNED(ctx->cipher_data))
|
sl@0
|
680 |
|
sl@0
|
681 |
#define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE
|
sl@0
|
682 |
#define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE
|
sl@0
|
683 |
#define EVP_CIPHER_block_size_OFB 1
|
sl@0
|
684 |
#define EVP_CIPHER_block_size_CFB 1
|
sl@0
|
685 |
/* Declaring so many ciphers by hand would be a pain.
|
sl@0
|
686 |
Instead introduce a bit of preprocessor magic :-) */
|
sl@0
|
687 |
#define DECLARE_AES_EVP(ksize,lmode,umode) \
|
sl@0
|
688 |
static const EVP_CIPHER padlock_aes_##ksize##_##lmode = { \
|
sl@0
|
689 |
NID_aes_##ksize##_##lmode, \
|
sl@0
|
690 |
EVP_CIPHER_block_size_##umode, \
|
sl@0
|
691 |
AES_KEY_SIZE_##ksize, \
|
sl@0
|
692 |
AES_BLOCK_SIZE, \
|
sl@0
|
693 |
0 | EVP_CIPH_##umode##_MODE, \
|
sl@0
|
694 |
padlock_aes_init_key, \
|
sl@0
|
695 |
padlock_aes_cipher, \
|
sl@0
|
696 |
NULL, \
|
sl@0
|
697 |
sizeof(struct padlock_cipher_data) + 16, \
|
sl@0
|
698 |
EVP_CIPHER_set_asn1_iv, \
|
sl@0
|
699 |
EVP_CIPHER_get_asn1_iv, \
|
sl@0
|
700 |
NULL, \
|
sl@0
|
701 |
NULL \
|
sl@0
|
702 |
}
|
sl@0
|
703 |
|
sl@0
|
704 |
DECLARE_AES_EVP(128,ecb,ECB);
|
sl@0
|
705 |
DECLARE_AES_EVP(128,cbc,CBC);
|
sl@0
|
706 |
DECLARE_AES_EVP(128,cfb,CFB);
|
sl@0
|
707 |
DECLARE_AES_EVP(128,ofb,OFB);
|
sl@0
|
708 |
|
sl@0
|
709 |
DECLARE_AES_EVP(192,ecb,ECB);
|
sl@0
|
710 |
DECLARE_AES_EVP(192,cbc,CBC);
|
sl@0
|
711 |
DECLARE_AES_EVP(192,cfb,CFB);
|
sl@0
|
712 |
DECLARE_AES_EVP(192,ofb,OFB);
|
sl@0
|
713 |
|
sl@0
|
714 |
DECLARE_AES_EVP(256,ecb,ECB);
|
sl@0
|
715 |
DECLARE_AES_EVP(256,cbc,CBC);
|
sl@0
|
716 |
DECLARE_AES_EVP(256,cfb,CFB);
|
sl@0
|
717 |
DECLARE_AES_EVP(256,ofb,OFB);
|
sl@0
|
718 |
|
sl@0
|
719 |
static int
|
sl@0
|
720 |
padlock_ciphers (ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid)
|
sl@0
|
721 |
{
|
sl@0
|
722 |
/* No specific cipher => return a list of supported nids ... */
|
sl@0
|
723 |
if (!cipher) {
|
sl@0
|
724 |
*nids = padlock_cipher_nids;
|
sl@0
|
725 |
return padlock_cipher_nids_num;
|
sl@0
|
726 |
}
|
sl@0
|
727 |
|
sl@0
|
728 |
/* ... or the requested "cipher" otherwise */
|
sl@0
|
729 |
switch (nid) {
|
sl@0
|
730 |
case NID_aes_128_ecb:
|
sl@0
|
731 |
*cipher = &padlock_aes_128_ecb;
|
sl@0
|
732 |
break;
|
sl@0
|
733 |
case NID_aes_128_cbc:
|
sl@0
|
734 |
*cipher = &padlock_aes_128_cbc;
|
sl@0
|
735 |
break;
|
sl@0
|
736 |
case NID_aes_128_cfb:
|
sl@0
|
737 |
*cipher = &padlock_aes_128_cfb;
|
sl@0
|
738 |
break;
|
sl@0
|
739 |
case NID_aes_128_ofb:
|
sl@0
|
740 |
*cipher = &padlock_aes_128_ofb;
|
sl@0
|
741 |
break;
|
sl@0
|
742 |
|
sl@0
|
743 |
case NID_aes_192_ecb:
|
sl@0
|
744 |
*cipher = &padlock_aes_192_ecb;
|
sl@0
|
745 |
break;
|
sl@0
|
746 |
case NID_aes_192_cbc:
|
sl@0
|
747 |
*cipher = &padlock_aes_192_cbc;
|
sl@0
|
748 |
break;
|
sl@0
|
749 |
case NID_aes_192_cfb:
|
sl@0
|
750 |
*cipher = &padlock_aes_192_cfb;
|
sl@0
|
751 |
break;
|
sl@0
|
752 |
case NID_aes_192_ofb:
|
sl@0
|
753 |
*cipher = &padlock_aes_192_ofb;
|
sl@0
|
754 |
break;
|
sl@0
|
755 |
|
sl@0
|
756 |
case NID_aes_256_ecb:
|
sl@0
|
757 |
*cipher = &padlock_aes_256_ecb;
|
sl@0
|
758 |
break;
|
sl@0
|
759 |
case NID_aes_256_cbc:
|
sl@0
|
760 |
*cipher = &padlock_aes_256_cbc;
|
sl@0
|
761 |
break;
|
sl@0
|
762 |
case NID_aes_256_cfb:
|
sl@0
|
763 |
*cipher = &padlock_aes_256_cfb;
|
sl@0
|
764 |
break;
|
sl@0
|
765 |
case NID_aes_256_ofb:
|
sl@0
|
766 |
*cipher = &padlock_aes_256_ofb;
|
sl@0
|
767 |
break;
|
sl@0
|
768 |
|
sl@0
|
769 |
default:
|
sl@0
|
770 |
/* Sorry, we don't support this NID */
|
sl@0
|
771 |
*cipher = NULL;
|
sl@0
|
772 |
return 0;
|
sl@0
|
773 |
}
|
sl@0
|
774 |
|
sl@0
|
775 |
return 1;
|
sl@0
|
776 |
}
|
sl@0
|
777 |
|
sl@0
|
778 |
/* Prepare the encryption key for PadLock usage */
|
sl@0
|
779 |
static int
|
sl@0
|
780 |
padlock_aes_init_key (EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
sl@0
|
781 |
const unsigned char *iv, int enc)
|
sl@0
|
782 |
{
|
sl@0
|
783 |
struct padlock_cipher_data *cdata;
|
sl@0
|
784 |
int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8;
|
sl@0
|
785 |
|
sl@0
|
786 |
if (key==NULL) return 0; /* ERROR */
|
sl@0
|
787 |
|
sl@0
|
788 |
cdata = ALIGNED_CIPHER_DATA(ctx);
|
sl@0
|
789 |
memset(cdata, 0, sizeof(struct padlock_cipher_data));
|
sl@0
|
790 |
|
sl@0
|
791 |
/* Prepare Control word. */
|
sl@0
|
792 |
if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_OFB_MODE)
|
sl@0
|
793 |
cdata->cword.b.encdec = 0;
|
sl@0
|
794 |
else
|
sl@0
|
795 |
cdata->cword.b.encdec = (ctx->encrypt == 0);
|
sl@0
|
796 |
cdata->cword.b.rounds = 10 + (key_len - 128) / 32;
|
sl@0
|
797 |
cdata->cword.b.ksize = (key_len - 128) / 64;
|
sl@0
|
798 |
|
sl@0
|
799 |
switch(key_len) {
|
sl@0
|
800 |
case 128:
|
sl@0
|
801 |
/* PadLock can generate an extended key for
|
sl@0
|
802 |
AES128 in hardware */
|
sl@0
|
803 |
memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128);
|
sl@0
|
804 |
cdata->cword.b.keygen = 0;
|
sl@0
|
805 |
break;
|
sl@0
|
806 |
|
sl@0
|
807 |
case 192:
|
sl@0
|
808 |
case 256:
|
sl@0
|
809 |
/* Generate an extended AES key in software.
|
sl@0
|
810 |
Needed for AES192/AES256 */
|
sl@0
|
811 |
/* Well, the above applies to Stepping 8 CPUs
|
sl@0
|
812 |
and is listed as hardware errata. They most
|
sl@0
|
813 |
likely will fix it at some point and then
|
sl@0
|
814 |
a check for stepping would be due here. */
|
sl@0
|
815 |
if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_CFB_MODE ||
|
sl@0
|
816 |
EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_OFB_MODE ||
|
sl@0
|
817 |
enc)
|
sl@0
|
818 |
AES_set_encrypt_key(key, key_len, &cdata->ks);
|
sl@0
|
819 |
else
|
sl@0
|
820 |
AES_set_decrypt_key(key, key_len, &cdata->ks);
|
sl@0
|
821 |
#ifndef AES_ASM
|
sl@0
|
822 |
/* OpenSSL C functions use byte-swapped extended key. */
|
sl@0
|
823 |
padlock_bswapl(&cdata->ks);
|
sl@0
|
824 |
#endif
|
sl@0
|
825 |
cdata->cword.b.keygen = 1;
|
sl@0
|
826 |
break;
|
sl@0
|
827 |
|
sl@0
|
828 |
default:
|
sl@0
|
829 |
/* ERROR */
|
sl@0
|
830 |
return 0;
|
sl@0
|
831 |
}
|
sl@0
|
832 |
|
sl@0
|
833 |
/*
|
sl@0
|
834 |
* This is done to cover for cases when user reuses the
|
sl@0
|
835 |
* context for new key. The catch is that if we don't do
|
sl@0
|
836 |
* this, padlock_eas_cipher might proceed with old key...
|
sl@0
|
837 |
*/
|
sl@0
|
838 |
padlock_reload_key ();
|
sl@0
|
839 |
|
sl@0
|
840 |
return 1;
|
sl@0
|
841 |
}
|
sl@0
|
842 |
|
sl@0
|
843 |
/*
|
sl@0
|
844 |
* Simplified version of padlock_aes_cipher() used when
|
sl@0
|
845 |
* 1) both input and output buffers are at aligned addresses.
|
sl@0
|
846 |
* or when
|
sl@0
|
847 |
* 2) running on a newer CPU that doesn't require aligned buffers.
|
sl@0
|
848 |
*/
|
sl@0
|
849 |
static int
|
sl@0
|
850 |
padlock_aes_cipher_omnivorous(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
sl@0
|
851 |
const unsigned char *in_arg, size_t nbytes)
|
sl@0
|
852 |
{
|
sl@0
|
853 |
struct padlock_cipher_data *cdata;
|
sl@0
|
854 |
void *iv;
|
sl@0
|
855 |
|
sl@0
|
856 |
cdata = ALIGNED_CIPHER_DATA(ctx);
|
sl@0
|
857 |
padlock_verify_context(cdata);
|
sl@0
|
858 |
|
sl@0
|
859 |
switch (EVP_CIPHER_CTX_mode(ctx)) {
|
sl@0
|
860 |
case EVP_CIPH_ECB_MODE:
|
sl@0
|
861 |
padlock_xcrypt_ecb(nbytes/AES_BLOCK_SIZE, cdata, out_arg, in_arg);
|
sl@0
|
862 |
break;
|
sl@0
|
863 |
|
sl@0
|
864 |
case EVP_CIPH_CBC_MODE:
|
sl@0
|
865 |
memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE);
|
sl@0
|
866 |
iv = padlock_xcrypt_cbc(nbytes/AES_BLOCK_SIZE, cdata, out_arg, in_arg);
|
sl@0
|
867 |
memcpy(ctx->iv, iv, AES_BLOCK_SIZE);
|
sl@0
|
868 |
break;
|
sl@0
|
869 |
|
sl@0
|
870 |
case EVP_CIPH_CFB_MODE:
|
sl@0
|
871 |
memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE);
|
sl@0
|
872 |
iv = padlock_xcrypt_cfb(nbytes/AES_BLOCK_SIZE, cdata, out_arg, in_arg);
|
sl@0
|
873 |
memcpy(ctx->iv, iv, AES_BLOCK_SIZE);
|
sl@0
|
874 |
break;
|
sl@0
|
875 |
|
sl@0
|
876 |
case EVP_CIPH_OFB_MODE:
|
sl@0
|
877 |
memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE);
|
sl@0
|
878 |
padlock_xcrypt_ofb(nbytes/AES_BLOCK_SIZE, cdata, out_arg, in_arg);
|
sl@0
|
879 |
memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE);
|
sl@0
|
880 |
break;
|
sl@0
|
881 |
|
sl@0
|
882 |
default:
|
sl@0
|
883 |
return 0;
|
sl@0
|
884 |
}
|
sl@0
|
885 |
|
sl@0
|
886 |
memset(cdata->iv, 0, AES_BLOCK_SIZE);
|
sl@0
|
887 |
|
sl@0
|
888 |
return 1;
|
sl@0
|
889 |
}
|
sl@0
|
890 |
|
sl@0
|
891 |
#ifndef PADLOCK_CHUNK
|
sl@0
|
892 |
# define PADLOCK_CHUNK 512 /* Must be a power of 2 larger than 16 */
|
sl@0
|
893 |
#endif
|
sl@0
|
894 |
#if PADLOCK_CHUNK<16 || PADLOCK_CHUNK&(PADLOCK_CHUNK-1)
|
sl@0
|
895 |
# error "insane PADLOCK_CHUNK..."
|
sl@0
|
896 |
#endif
|
sl@0
|
897 |
|
sl@0
|
898 |
/* Re-align the arguments to 16-Bytes boundaries and run the
|
sl@0
|
899 |
encryption function itself. This function is not AES-specific. */
|
sl@0
|
900 |
static int
|
sl@0
|
901 |
padlock_aes_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
sl@0
|
902 |
const unsigned char *in_arg, size_t nbytes)
|
sl@0
|
903 |
{
|
sl@0
|
904 |
struct padlock_cipher_data *cdata;
|
sl@0
|
905 |
const void *inp;
|
sl@0
|
906 |
unsigned char *out;
|
sl@0
|
907 |
void *iv;
|
sl@0
|
908 |
int inp_misaligned, out_misaligned, realign_in_loop;
|
sl@0
|
909 |
size_t chunk, allocated=0;
|
sl@0
|
910 |
|
sl@0
|
911 |
/* ctx->num is maintained in byte-oriented modes,
|
sl@0
|
912 |
such as CFB and OFB... */
|
sl@0
|
913 |
if ((chunk = ctx->num)) { /* borrow chunk variable */
|
sl@0
|
914 |
unsigned char *ivp=ctx->iv;
|
sl@0
|
915 |
|
sl@0
|
916 |
switch (EVP_CIPHER_CTX_mode(ctx)) {
|
sl@0
|
917 |
case EVP_CIPH_CFB_MODE:
|
sl@0
|
918 |
if (chunk >= AES_BLOCK_SIZE)
|
sl@0
|
919 |
return 0; /* bogus value */
|
sl@0
|
920 |
|
sl@0
|
921 |
if (ctx->encrypt)
|
sl@0
|
922 |
while (chunk<AES_BLOCK_SIZE && nbytes!=0) {
|
sl@0
|
923 |
ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk];
|
sl@0
|
924 |
chunk++, nbytes--;
|
sl@0
|
925 |
}
|
sl@0
|
926 |
else while (chunk<AES_BLOCK_SIZE && nbytes!=0) {
|
sl@0
|
927 |
unsigned char c = *(in_arg++);
|
sl@0
|
928 |
*(out_arg++) = c ^ ivp[chunk];
|
sl@0
|
929 |
ivp[chunk++] = c, nbytes--;
|
sl@0
|
930 |
}
|
sl@0
|
931 |
|
sl@0
|
932 |
ctx->num = chunk%AES_BLOCK_SIZE;
|
sl@0
|
933 |
break;
|
sl@0
|
934 |
case EVP_CIPH_OFB_MODE:
|
sl@0
|
935 |
if (chunk >= AES_BLOCK_SIZE)
|
sl@0
|
936 |
return 0; /* bogus value */
|
sl@0
|
937 |
|
sl@0
|
938 |
while (chunk<AES_BLOCK_SIZE && nbytes!=0) {
|
sl@0
|
939 |
*(out_arg++) = *(in_arg++) ^ ivp[chunk];
|
sl@0
|
940 |
chunk++, nbytes--;
|
sl@0
|
941 |
}
|
sl@0
|
942 |
|
sl@0
|
943 |
ctx->num = chunk%AES_BLOCK_SIZE;
|
sl@0
|
944 |
break;
|
sl@0
|
945 |
}
|
sl@0
|
946 |
}
|
sl@0
|
947 |
|
sl@0
|
948 |
if (nbytes == 0)
|
sl@0
|
949 |
return 1;
|
sl@0
|
950 |
#if 0
|
sl@0
|
951 |
if (nbytes % AES_BLOCK_SIZE)
|
sl@0
|
952 |
return 0; /* are we expected to do tail processing? */
|
sl@0
|
953 |
#else
|
sl@0
|
954 |
/* nbytes is always multiple of AES_BLOCK_SIZE in ECB and CBC
|
sl@0
|
955 |
modes and arbitrary value in byte-oriented modes, such as
|
sl@0
|
956 |
CFB and OFB... */
|
sl@0
|
957 |
#endif
|
sl@0
|
958 |
|
sl@0
|
959 |
/* VIA promises CPUs that won't require alignment in the future.
|
sl@0
|
960 |
For now padlock_aes_align_required is initialized to 1 and
|
sl@0
|
961 |
the condition is never met... */
|
sl@0
|
962 |
/* C7 core is capable to manage unaligned input in non-ECB[!]
|
sl@0
|
963 |
mode, but performance penalties appear to be approximately
|
sl@0
|
964 |
same as for software alignment below or ~3x. They promise to
|
sl@0
|
965 |
improve it in the future, but for now we can just as well
|
sl@0
|
966 |
pretend that it can only handle aligned input... */
|
sl@0
|
967 |
if (!padlock_aes_align_required && (nbytes%AES_BLOCK_SIZE)==0)
|
sl@0
|
968 |
return padlock_aes_cipher_omnivorous(ctx, out_arg, in_arg, nbytes);
|
sl@0
|
969 |
|
sl@0
|
970 |
inp_misaligned = (((size_t)in_arg) & 0x0F);
|
sl@0
|
971 |
out_misaligned = (((size_t)out_arg) & 0x0F);
|
sl@0
|
972 |
|
sl@0
|
973 |
/* Note that even if output is aligned and input not,
|
sl@0
|
974 |
* I still prefer to loop instead of copy the whole
|
sl@0
|
975 |
* input and then encrypt in one stroke. This is done
|
sl@0
|
976 |
* in order to improve L1 cache utilization... */
|
sl@0
|
977 |
realign_in_loop = out_misaligned|inp_misaligned;
|
sl@0
|
978 |
|
sl@0
|
979 |
if (!realign_in_loop && (nbytes%AES_BLOCK_SIZE)==0)
|
sl@0
|
980 |
return padlock_aes_cipher_omnivorous(ctx, out_arg, in_arg, nbytes);
|
sl@0
|
981 |
|
sl@0
|
982 |
/* this takes one "if" out of the loops */
|
sl@0
|
983 |
chunk = nbytes;
|
sl@0
|
984 |
chunk %= PADLOCK_CHUNK;
|
sl@0
|
985 |
if (chunk==0) chunk = PADLOCK_CHUNK;
|
sl@0
|
986 |
|
sl@0
|
987 |
if (out_misaligned) {
|
sl@0
|
988 |
/* optmize for small input */
|
sl@0
|
989 |
allocated = (chunk<nbytes?PADLOCK_CHUNK:nbytes);
|
sl@0
|
990 |
out = alloca(0x10 + allocated);
|
sl@0
|
991 |
out = NEAREST_ALIGNED(out);
|
sl@0
|
992 |
}
|
sl@0
|
993 |
else
|
sl@0
|
994 |
out = out_arg;
|
sl@0
|
995 |
|
sl@0
|
996 |
cdata = ALIGNED_CIPHER_DATA(ctx);
|
sl@0
|
997 |
padlock_verify_context(cdata);
|
sl@0
|
998 |
|
sl@0
|
999 |
switch (EVP_CIPHER_CTX_mode(ctx)) {
|
sl@0
|
1000 |
case EVP_CIPH_ECB_MODE:
|
sl@0
|
1001 |
do {
|
sl@0
|
1002 |
if (inp_misaligned)
|
sl@0
|
1003 |
inp = padlock_memcpy(out, in_arg, chunk);
|
sl@0
|
1004 |
else
|
sl@0
|
1005 |
inp = in_arg;
|
sl@0
|
1006 |
in_arg += chunk;
|
sl@0
|
1007 |
|
sl@0
|
1008 |
padlock_xcrypt_ecb(chunk/AES_BLOCK_SIZE, cdata, out, inp);
|
sl@0
|
1009 |
|
sl@0
|
1010 |
if (out_misaligned)
|
sl@0
|
1011 |
out_arg = padlock_memcpy(out_arg, out, chunk) + chunk;
|
sl@0
|
1012 |
else
|
sl@0
|
1013 |
out = out_arg+=chunk;
|
sl@0
|
1014 |
|
sl@0
|
1015 |
nbytes -= chunk;
|
sl@0
|
1016 |
chunk = PADLOCK_CHUNK;
|
sl@0
|
1017 |
} while (nbytes);
|
sl@0
|
1018 |
break;
|
sl@0
|
1019 |
|
sl@0
|
1020 |
case EVP_CIPH_CBC_MODE:
|
sl@0
|
1021 |
memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE);
|
sl@0
|
1022 |
goto cbc_shortcut;
|
sl@0
|
1023 |
do {
|
sl@0
|
1024 |
if (iv != cdata->iv)
|
sl@0
|
1025 |
memcpy(cdata->iv, iv, AES_BLOCK_SIZE);
|
sl@0
|
1026 |
chunk = PADLOCK_CHUNK;
|
sl@0
|
1027 |
cbc_shortcut: /* optimize for small input */
|
sl@0
|
1028 |
if (inp_misaligned)
|
sl@0
|
1029 |
inp = padlock_memcpy(out, in_arg, chunk);
|
sl@0
|
1030 |
else
|
sl@0
|
1031 |
inp = in_arg;
|
sl@0
|
1032 |
in_arg += chunk;
|
sl@0
|
1033 |
|
sl@0
|
1034 |
iv = padlock_xcrypt_cbc(chunk/AES_BLOCK_SIZE, cdata, out, inp);
|
sl@0
|
1035 |
|
sl@0
|
1036 |
if (out_misaligned)
|
sl@0
|
1037 |
out_arg = padlock_memcpy(out_arg, out, chunk) + chunk;
|
sl@0
|
1038 |
else
|
sl@0
|
1039 |
out = out_arg+=chunk;
|
sl@0
|
1040 |
|
sl@0
|
1041 |
} while (nbytes -= chunk);
|
sl@0
|
1042 |
memcpy(ctx->iv, iv, AES_BLOCK_SIZE);
|
sl@0
|
1043 |
break;
|
sl@0
|
1044 |
|
sl@0
|
1045 |
case EVP_CIPH_CFB_MODE:
|
sl@0
|
1046 |
memcpy (iv = cdata->iv, ctx->iv, AES_BLOCK_SIZE);
|
sl@0
|
1047 |
chunk &= ~(AES_BLOCK_SIZE-1);
|
sl@0
|
1048 |
if (chunk) goto cfb_shortcut;
|
sl@0
|
1049 |
else goto cfb_skiploop;
|
sl@0
|
1050 |
do {
|
sl@0
|
1051 |
if (iv != cdata->iv)
|
sl@0
|
1052 |
memcpy(cdata->iv, iv, AES_BLOCK_SIZE);
|
sl@0
|
1053 |
chunk = PADLOCK_CHUNK;
|
sl@0
|
1054 |
cfb_shortcut: /* optimize for small input */
|
sl@0
|
1055 |
if (inp_misaligned)
|
sl@0
|
1056 |
inp = padlock_memcpy(out, in_arg, chunk);
|
sl@0
|
1057 |
else
|
sl@0
|
1058 |
inp = in_arg;
|
sl@0
|
1059 |
in_arg += chunk;
|
sl@0
|
1060 |
|
sl@0
|
1061 |
iv = padlock_xcrypt_cfb(chunk/AES_BLOCK_SIZE, cdata, out, inp);
|
sl@0
|
1062 |
|
sl@0
|
1063 |
if (out_misaligned)
|
sl@0
|
1064 |
out_arg = padlock_memcpy(out_arg, out, chunk) + chunk;
|
sl@0
|
1065 |
else
|
sl@0
|
1066 |
out = out_arg+=chunk;
|
sl@0
|
1067 |
|
sl@0
|
1068 |
nbytes -= chunk;
|
sl@0
|
1069 |
} while (nbytes >= AES_BLOCK_SIZE);
|
sl@0
|
1070 |
|
sl@0
|
1071 |
cfb_skiploop:
|
sl@0
|
1072 |
if (nbytes) {
|
sl@0
|
1073 |
unsigned char *ivp = cdata->iv;
|
sl@0
|
1074 |
|
sl@0
|
1075 |
if (iv != ivp) {
|
sl@0
|
1076 |
memcpy(ivp, iv, AES_BLOCK_SIZE);
|
sl@0
|
1077 |
iv = ivp;
|
sl@0
|
1078 |
}
|
sl@0
|
1079 |
ctx->num = nbytes;
|
sl@0
|
1080 |
if (cdata->cword.b.encdec) {
|
sl@0
|
1081 |
cdata->cword.b.encdec=0;
|
sl@0
|
1082 |
padlock_reload_key();
|
sl@0
|
1083 |
padlock_xcrypt_ecb(1,cdata,ivp,ivp);
|
sl@0
|
1084 |
cdata->cword.b.encdec=1;
|
sl@0
|
1085 |
padlock_reload_key();
|
sl@0
|
1086 |
while(nbytes) {
|
sl@0
|
1087 |
unsigned char c = *(in_arg++);
|
sl@0
|
1088 |
*(out_arg++) = c ^ *ivp;
|
sl@0
|
1089 |
*(ivp++) = c, nbytes--;
|
sl@0
|
1090 |
}
|
sl@0
|
1091 |
}
|
sl@0
|
1092 |
else { padlock_reload_key();
|
sl@0
|
1093 |
padlock_xcrypt_ecb(1,cdata,ivp,ivp);
|
sl@0
|
1094 |
padlock_reload_key();
|
sl@0
|
1095 |
while (nbytes) {
|
sl@0
|
1096 |
*ivp = *(out_arg++) = *(in_arg++) ^ *ivp;
|
sl@0
|
1097 |
ivp++, nbytes--;
|
sl@0
|
1098 |
}
|
sl@0
|
1099 |
}
|
sl@0
|
1100 |
}
|
sl@0
|
1101 |
memcpy(ctx->iv, iv, AES_BLOCK_SIZE);
|
sl@0
|
1102 |
break;
|
sl@0
|
1103 |
|
sl@0
|
1104 |
case EVP_CIPH_OFB_MODE:
|
sl@0
|
1105 |
memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE);
|
sl@0
|
1106 |
chunk &= ~(AES_BLOCK_SIZE-1);
|
sl@0
|
1107 |
if (chunk) do {
|
sl@0
|
1108 |
if (inp_misaligned)
|
sl@0
|
1109 |
inp = padlock_memcpy(out, in_arg, chunk);
|
sl@0
|
1110 |
else
|
sl@0
|
1111 |
inp = in_arg;
|
sl@0
|
1112 |
in_arg += chunk;
|
sl@0
|
1113 |
|
sl@0
|
1114 |
padlock_xcrypt_ofb(chunk/AES_BLOCK_SIZE, cdata, out, inp);
|
sl@0
|
1115 |
|
sl@0
|
1116 |
if (out_misaligned)
|
sl@0
|
1117 |
out_arg = padlock_memcpy(out_arg, out, chunk) + chunk;
|
sl@0
|
1118 |
else
|
sl@0
|
1119 |
out = out_arg+=chunk;
|
sl@0
|
1120 |
|
sl@0
|
1121 |
nbytes -= chunk;
|
sl@0
|
1122 |
chunk = PADLOCK_CHUNK;
|
sl@0
|
1123 |
} while (nbytes >= AES_BLOCK_SIZE);
|
sl@0
|
1124 |
|
sl@0
|
1125 |
if (nbytes) {
|
sl@0
|
1126 |
unsigned char *ivp = cdata->iv;
|
sl@0
|
1127 |
|
sl@0
|
1128 |
ctx->num = nbytes;
|
sl@0
|
1129 |
padlock_reload_key(); /* empirically found */
|
sl@0
|
1130 |
padlock_xcrypt_ecb(1,cdata,ivp,ivp);
|
sl@0
|
1131 |
padlock_reload_key(); /* empirically found */
|
sl@0
|
1132 |
while (nbytes) {
|
sl@0
|
1133 |
*(out_arg++) = *(in_arg++) ^ *ivp;
|
sl@0
|
1134 |
ivp++, nbytes--;
|
sl@0
|
1135 |
}
|
sl@0
|
1136 |
}
|
sl@0
|
1137 |
memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE);
|
sl@0
|
1138 |
break;
|
sl@0
|
1139 |
|
sl@0
|
1140 |
default:
|
sl@0
|
1141 |
return 0;
|
sl@0
|
1142 |
}
|
sl@0
|
1143 |
|
sl@0
|
1144 |
/* Clean the realign buffer if it was used */
|
sl@0
|
1145 |
if (out_misaligned) {
|
sl@0
|
1146 |
volatile unsigned long *p=(void *)out;
|
sl@0
|
1147 |
size_t n = allocated/sizeof(*p);
|
sl@0
|
1148 |
while (n--) *p++=0;
|
sl@0
|
1149 |
}
|
sl@0
|
1150 |
|
sl@0
|
1151 |
memset(cdata->iv, 0, AES_BLOCK_SIZE);
|
sl@0
|
1152 |
|
sl@0
|
1153 |
return 1;
|
sl@0
|
1154 |
}
|
sl@0
|
1155 |
|
sl@0
|
1156 |
#endif /* OPENSSL_NO_AES */
|
sl@0
|
1157 |
|
sl@0
|
1158 |
/* ===== Random Number Generator ===== */
|
sl@0
|
1159 |
/*
|
sl@0
|
1160 |
* This code is not engaged. The reason is that it does not comply
|
sl@0
|
1161 |
* with recommendations for VIA RNG usage for secure applications
|
sl@0
|
1162 |
* (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it
|
sl@0
|
1163 |
* provide meaningful error control...
|
sl@0
|
1164 |
*/
|
sl@0
|
1165 |
/* Wrapper that provides an interface between the API and
|
sl@0
|
1166 |
the raw PadLock RNG */
|
sl@0
|
1167 |
static int
|
sl@0
|
1168 |
padlock_rand_bytes(unsigned char *output, int count)
|
sl@0
|
1169 |
{
|
sl@0
|
1170 |
unsigned int eax, buf;
|
sl@0
|
1171 |
|
sl@0
|
1172 |
while (count >= 8) {
|
sl@0
|
1173 |
eax = padlock_xstore(output, 0);
|
sl@0
|
1174 |
if (!(eax&(1<<6))) return 0; /* RNG disabled */
|
sl@0
|
1175 |
/* this ---vv--- covers DC bias, Raw Bits and String Filter */
|
sl@0
|
1176 |
if (eax&(0x1F<<10)) return 0;
|
sl@0
|
1177 |
if ((eax&0x1F)==0) continue; /* no data, retry... */
|
sl@0
|
1178 |
if ((eax&0x1F)!=8) return 0; /* fatal failure... */
|
sl@0
|
1179 |
output += 8;
|
sl@0
|
1180 |
count -= 8;
|
sl@0
|
1181 |
}
|
sl@0
|
1182 |
while (count > 0) {
|
sl@0
|
1183 |
eax = padlock_xstore(&buf, 3);
|
sl@0
|
1184 |
if (!(eax&(1<<6))) return 0; /* RNG disabled */
|
sl@0
|
1185 |
/* this ---vv--- covers DC bias, Raw Bits and String Filter */
|
sl@0
|
1186 |
if (eax&(0x1F<<10)) return 0;
|
sl@0
|
1187 |
if ((eax&0x1F)==0) continue; /* no data, retry... */
|
sl@0
|
1188 |
if ((eax&0x1F)!=1) return 0; /* fatal failure... */
|
sl@0
|
1189 |
*output++ = (unsigned char)buf;
|
sl@0
|
1190 |
count--;
|
sl@0
|
1191 |
}
|
sl@0
|
1192 |
*(volatile unsigned int *)&buf=0;
|
sl@0
|
1193 |
|
sl@0
|
1194 |
return 1;
|
sl@0
|
1195 |
}
|
sl@0
|
1196 |
|
sl@0
|
1197 |
/* Dummy but necessary function */
|
sl@0
|
1198 |
static int
|
sl@0
|
1199 |
padlock_rand_status(void)
|
sl@0
|
1200 |
{
|
sl@0
|
1201 |
return 1;
|
sl@0
|
1202 |
}
|
sl@0
|
1203 |
|
sl@0
|
1204 |
/* Prepare structure for registration */
|
sl@0
|
1205 |
static RAND_METHOD padlock_rand = {
|
sl@0
|
1206 |
NULL, /* seed */
|
sl@0
|
1207 |
padlock_rand_bytes, /* bytes */
|
sl@0
|
1208 |
NULL, /* cleanup */
|
sl@0
|
1209 |
NULL, /* add */
|
sl@0
|
1210 |
padlock_rand_bytes, /* pseudorand */
|
sl@0
|
1211 |
padlock_rand_status, /* rand status */
|
sl@0
|
1212 |
};
|
sl@0
|
1213 |
|
sl@0
|
1214 |
#endif /* COMPILE_HW_PADLOCK */
|
sl@0
|
1215 |
|
sl@0
|
1216 |
#endif /* !OPENSSL_NO_HW_PADLOCK */
|
sl@0
|
1217 |
#endif /* !OPENSSL_NO_HW */
|