sl@0
|
1 |
/* crypto/bn/bn_sqrt.c */
|
sl@0
|
2 |
/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
|
sl@0
|
3 |
* and Bodo Moeller for the OpenSSL project. */
|
sl@0
|
4 |
/* ====================================================================
|
sl@0
|
5 |
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
|
sl@0
|
6 |
*
|
sl@0
|
7 |
* Redistribution and use in source and binary forms, with or without
|
sl@0
|
8 |
* modification, are permitted provided that the following conditions
|
sl@0
|
9 |
* are met:
|
sl@0
|
10 |
*
|
sl@0
|
11 |
* 1. Redistributions of source code must retain the above copyright
|
sl@0
|
12 |
* notice, this list of conditions and the following disclaimer.
|
sl@0
|
13 |
*
|
sl@0
|
14 |
* 2. Redistributions in binary form must reproduce the above copyright
|
sl@0
|
15 |
* notice, this list of conditions and the following disclaimer in
|
sl@0
|
16 |
* the documentation and/or other materials provided with the
|
sl@0
|
17 |
* distribution.
|
sl@0
|
18 |
*
|
sl@0
|
19 |
* 3. All advertising materials mentioning features or use of this
|
sl@0
|
20 |
* software must display the following acknowledgment:
|
sl@0
|
21 |
* "This product includes software developed by the OpenSSL Project
|
sl@0
|
22 |
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
sl@0
|
23 |
*
|
sl@0
|
24 |
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
sl@0
|
25 |
* endorse or promote products derived from this software without
|
sl@0
|
26 |
* prior written permission. For written permission, please contact
|
sl@0
|
27 |
* openssl-core@openssl.org.
|
sl@0
|
28 |
*
|
sl@0
|
29 |
* 5. Products derived from this software may not be called "OpenSSL"
|
sl@0
|
30 |
* nor may "OpenSSL" appear in their names without prior written
|
sl@0
|
31 |
* permission of the OpenSSL Project.
|
sl@0
|
32 |
*
|
sl@0
|
33 |
* 6. Redistributions of any form whatsoever must retain the following
|
sl@0
|
34 |
* acknowledgment:
|
sl@0
|
35 |
* "This product includes software developed by the OpenSSL Project
|
sl@0
|
36 |
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
sl@0
|
37 |
*
|
sl@0
|
38 |
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
sl@0
|
39 |
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
sl@0
|
40 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
sl@0
|
41 |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
sl@0
|
42 |
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
sl@0
|
43 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
sl@0
|
44 |
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
sl@0
|
45 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
sl@0
|
46 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
sl@0
|
47 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
sl@0
|
48 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
sl@0
|
49 |
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
sl@0
|
50 |
* ====================================================================
|
sl@0
|
51 |
*
|
sl@0
|
52 |
* This product includes cryptographic software written by Eric Young
|
sl@0
|
53 |
* (eay@cryptsoft.com). This product includes software written by Tim
|
sl@0
|
54 |
* Hudson (tjh@cryptsoft.com).
|
sl@0
|
55 |
*
|
sl@0
|
56 |
*/
|
sl@0
|
57 |
|
sl@0
|
58 |
#include "cryptlib.h"
|
sl@0
|
59 |
#include "bn_lcl.h"
|
sl@0
|
60 |
|
sl@0
|
61 |
|
sl@0
|
62 |
EXPORT_C BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
sl@0
|
63 |
/* Returns 'ret' such that
|
sl@0
|
64 |
* ret^2 == a (mod p),
|
sl@0
|
65 |
* using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
|
sl@0
|
66 |
* in Algebraic Computational Number Theory", algorithm 1.5.1).
|
sl@0
|
67 |
* 'p' must be prime!
|
sl@0
|
68 |
*/
|
sl@0
|
69 |
{
|
sl@0
|
70 |
BIGNUM *ret = in;
|
sl@0
|
71 |
int err = 1;
|
sl@0
|
72 |
int r;
|
sl@0
|
73 |
BIGNUM *A, *b, *q, *t, *x, *y;
|
sl@0
|
74 |
int e, i, j;
|
sl@0
|
75 |
|
sl@0
|
76 |
if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
|
sl@0
|
77 |
{
|
sl@0
|
78 |
if (BN_abs_is_word(p, 2))
|
sl@0
|
79 |
{
|
sl@0
|
80 |
if (ret == NULL)
|
sl@0
|
81 |
ret = BN_new();
|
sl@0
|
82 |
if (ret == NULL)
|
sl@0
|
83 |
goto end;
|
sl@0
|
84 |
if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
|
sl@0
|
85 |
{
|
sl@0
|
86 |
if (ret != in)
|
sl@0
|
87 |
BN_free(ret);
|
sl@0
|
88 |
return NULL;
|
sl@0
|
89 |
}
|
sl@0
|
90 |
bn_check_top(ret);
|
sl@0
|
91 |
return ret;
|
sl@0
|
92 |
}
|
sl@0
|
93 |
|
sl@0
|
94 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
sl@0
|
95 |
return(NULL);
|
sl@0
|
96 |
}
|
sl@0
|
97 |
|
sl@0
|
98 |
if (BN_is_zero(a) || BN_is_one(a))
|
sl@0
|
99 |
{
|
sl@0
|
100 |
if (ret == NULL)
|
sl@0
|
101 |
ret = BN_new();
|
sl@0
|
102 |
if (ret == NULL)
|
sl@0
|
103 |
goto end;
|
sl@0
|
104 |
if (!BN_set_word(ret, BN_is_one(a)))
|
sl@0
|
105 |
{
|
sl@0
|
106 |
if (ret != in)
|
sl@0
|
107 |
BN_free(ret);
|
sl@0
|
108 |
return NULL;
|
sl@0
|
109 |
}
|
sl@0
|
110 |
bn_check_top(ret);
|
sl@0
|
111 |
return ret;
|
sl@0
|
112 |
}
|
sl@0
|
113 |
|
sl@0
|
114 |
BN_CTX_start(ctx);
|
sl@0
|
115 |
A = BN_CTX_get(ctx);
|
sl@0
|
116 |
b = BN_CTX_get(ctx);
|
sl@0
|
117 |
q = BN_CTX_get(ctx);
|
sl@0
|
118 |
t = BN_CTX_get(ctx);
|
sl@0
|
119 |
x = BN_CTX_get(ctx);
|
sl@0
|
120 |
y = BN_CTX_get(ctx);
|
sl@0
|
121 |
if (y == NULL) goto end;
|
sl@0
|
122 |
|
sl@0
|
123 |
if (ret == NULL)
|
sl@0
|
124 |
ret = BN_new();
|
sl@0
|
125 |
if (ret == NULL) goto end;
|
sl@0
|
126 |
|
sl@0
|
127 |
/* A = a mod p */
|
sl@0
|
128 |
if (!BN_nnmod(A, a, p, ctx)) goto end;
|
sl@0
|
129 |
|
sl@0
|
130 |
/* now write |p| - 1 as 2^e*q where q is odd */
|
sl@0
|
131 |
e = 1;
|
sl@0
|
132 |
while (!BN_is_bit_set(p, e))
|
sl@0
|
133 |
e++;
|
sl@0
|
134 |
/* we'll set q later (if needed) */
|
sl@0
|
135 |
|
sl@0
|
136 |
if (e == 1)
|
sl@0
|
137 |
{
|
sl@0
|
138 |
/* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
|
sl@0
|
139 |
* modulo (|p|-1)/2, and square roots can be computed
|
sl@0
|
140 |
* directly by modular exponentiation.
|
sl@0
|
141 |
* We have
|
sl@0
|
142 |
* 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
|
sl@0
|
143 |
* so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
|
sl@0
|
144 |
*/
|
sl@0
|
145 |
if (!BN_rshift(q, p, 2)) goto end;
|
sl@0
|
146 |
q->neg = 0;
|
sl@0
|
147 |
if (!BN_add_word(q, 1)) goto end;
|
sl@0
|
148 |
if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
|
sl@0
|
149 |
err = 0;
|
sl@0
|
150 |
goto vrfy;
|
sl@0
|
151 |
}
|
sl@0
|
152 |
|
sl@0
|
153 |
if (e == 2)
|
sl@0
|
154 |
{
|
sl@0
|
155 |
/* |p| == 5 (mod 8)
|
sl@0
|
156 |
*
|
sl@0
|
157 |
* In this case 2 is always a non-square since
|
sl@0
|
158 |
* Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
|
sl@0
|
159 |
* So if a really is a square, then 2*a is a non-square.
|
sl@0
|
160 |
* Thus for
|
sl@0
|
161 |
* b := (2*a)^((|p|-5)/8),
|
sl@0
|
162 |
* i := (2*a)*b^2
|
sl@0
|
163 |
* we have
|
sl@0
|
164 |
* i^2 = (2*a)^((1 + (|p|-5)/4)*2)
|
sl@0
|
165 |
* = (2*a)^((p-1)/2)
|
sl@0
|
166 |
* = -1;
|
sl@0
|
167 |
* so if we set
|
sl@0
|
168 |
* x := a*b*(i-1),
|
sl@0
|
169 |
* then
|
sl@0
|
170 |
* x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
|
sl@0
|
171 |
* = a^2 * b^2 * (-2*i)
|
sl@0
|
172 |
* = a*(-i)*(2*a*b^2)
|
sl@0
|
173 |
* = a*(-i)*i
|
sl@0
|
174 |
* = a.
|
sl@0
|
175 |
*
|
sl@0
|
176 |
* (This is due to A.O.L. Atkin,
|
sl@0
|
177 |
* <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
|
sl@0
|
178 |
* November 1992.)
|
sl@0
|
179 |
*/
|
sl@0
|
180 |
|
sl@0
|
181 |
/* t := 2*a */
|
sl@0
|
182 |
if (!BN_mod_lshift1_quick(t, A, p)) goto end;
|
sl@0
|
183 |
|
sl@0
|
184 |
/* b := (2*a)^((|p|-5)/8) */
|
sl@0
|
185 |
if (!BN_rshift(q, p, 3)) goto end;
|
sl@0
|
186 |
q->neg = 0;
|
sl@0
|
187 |
if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
|
sl@0
|
188 |
|
sl@0
|
189 |
/* y := b^2 */
|
sl@0
|
190 |
if (!BN_mod_sqr(y, b, p, ctx)) goto end;
|
sl@0
|
191 |
|
sl@0
|
192 |
/* t := (2*a)*b^2 - 1*/
|
sl@0
|
193 |
if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
|
sl@0
|
194 |
if (!BN_sub_word(t, 1)) goto end;
|
sl@0
|
195 |
|
sl@0
|
196 |
/* x = a*b*t */
|
sl@0
|
197 |
if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
|
sl@0
|
198 |
if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
|
sl@0
|
199 |
|
sl@0
|
200 |
if (!BN_copy(ret, x)) goto end;
|
sl@0
|
201 |
err = 0;
|
sl@0
|
202 |
goto vrfy;
|
sl@0
|
203 |
}
|
sl@0
|
204 |
|
sl@0
|
205 |
/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
|
sl@0
|
206 |
* First, find some y that is not a square. */
|
sl@0
|
207 |
if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
|
sl@0
|
208 |
q->neg = 0;
|
sl@0
|
209 |
i = 2;
|
sl@0
|
210 |
do
|
sl@0
|
211 |
{
|
sl@0
|
212 |
/* For efficiency, try small numbers first;
|
sl@0
|
213 |
* if this fails, try random numbers.
|
sl@0
|
214 |
*/
|
sl@0
|
215 |
if (i < 22)
|
sl@0
|
216 |
{
|
sl@0
|
217 |
if (!BN_set_word(y, i)) goto end;
|
sl@0
|
218 |
}
|
sl@0
|
219 |
else
|
sl@0
|
220 |
{
|
sl@0
|
221 |
if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
|
sl@0
|
222 |
if (BN_ucmp(y, p) >= 0)
|
sl@0
|
223 |
{
|
sl@0
|
224 |
if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
|
sl@0
|
225 |
}
|
sl@0
|
226 |
/* now 0 <= y < |p| */
|
sl@0
|
227 |
if (BN_is_zero(y))
|
sl@0
|
228 |
if (!BN_set_word(y, i)) goto end;
|
sl@0
|
229 |
}
|
sl@0
|
230 |
|
sl@0
|
231 |
r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
|
sl@0
|
232 |
if (r < -1) goto end;
|
sl@0
|
233 |
if (r == 0)
|
sl@0
|
234 |
{
|
sl@0
|
235 |
/* m divides p */
|
sl@0
|
236 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
sl@0
|
237 |
goto end;
|
sl@0
|
238 |
}
|
sl@0
|
239 |
}
|
sl@0
|
240 |
while (r == 1 && ++i < 82);
|
sl@0
|
241 |
|
sl@0
|
242 |
if (r != -1)
|
sl@0
|
243 |
{
|
sl@0
|
244 |
/* Many rounds and still no non-square -- this is more likely
|
sl@0
|
245 |
* a bug than just bad luck.
|
sl@0
|
246 |
* Even if p is not prime, we should have found some y
|
sl@0
|
247 |
* such that r == -1.
|
sl@0
|
248 |
*/
|
sl@0
|
249 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
|
sl@0
|
250 |
goto end;
|
sl@0
|
251 |
}
|
sl@0
|
252 |
|
sl@0
|
253 |
/* Here's our actual 'q': */
|
sl@0
|
254 |
if (!BN_rshift(q, q, e)) goto end;
|
sl@0
|
255 |
|
sl@0
|
256 |
/* Now that we have some non-square, we can find an element
|
sl@0
|
257 |
* of order 2^e by computing its q'th power. */
|
sl@0
|
258 |
if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
|
sl@0
|
259 |
if (BN_is_one(y))
|
sl@0
|
260 |
{
|
sl@0
|
261 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
sl@0
|
262 |
goto end;
|
sl@0
|
263 |
}
|
sl@0
|
264 |
|
sl@0
|
265 |
/* Now we know that (if p is indeed prime) there is an integer
|
sl@0
|
266 |
* k, 0 <= k < 2^e, such that
|
sl@0
|
267 |
*
|
sl@0
|
268 |
* a^q * y^k == 1 (mod p).
|
sl@0
|
269 |
*
|
sl@0
|
270 |
* As a^q is a square and y is not, k must be even.
|
sl@0
|
271 |
* q+1 is even, too, so there is an element
|
sl@0
|
272 |
*
|
sl@0
|
273 |
* X := a^((q+1)/2) * y^(k/2),
|
sl@0
|
274 |
*
|
sl@0
|
275 |
* and it satisfies
|
sl@0
|
276 |
*
|
sl@0
|
277 |
* X^2 = a^q * a * y^k
|
sl@0
|
278 |
* = a,
|
sl@0
|
279 |
*
|
sl@0
|
280 |
* so it is the square root that we are looking for.
|
sl@0
|
281 |
*/
|
sl@0
|
282 |
|
sl@0
|
283 |
/* t := (q-1)/2 (note that q is odd) */
|
sl@0
|
284 |
if (!BN_rshift1(t, q)) goto end;
|
sl@0
|
285 |
|
sl@0
|
286 |
/* x := a^((q-1)/2) */
|
sl@0
|
287 |
if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
|
sl@0
|
288 |
{
|
sl@0
|
289 |
if (!BN_nnmod(t, A, p, ctx)) goto end;
|
sl@0
|
290 |
if (BN_is_zero(t))
|
sl@0
|
291 |
{
|
sl@0
|
292 |
/* special case: a == 0 (mod p) */
|
sl@0
|
293 |
BN_zero(ret);
|
sl@0
|
294 |
err = 0;
|
sl@0
|
295 |
goto end;
|
sl@0
|
296 |
}
|
sl@0
|
297 |
else
|
sl@0
|
298 |
if (!BN_one(x)) goto end;
|
sl@0
|
299 |
}
|
sl@0
|
300 |
else
|
sl@0
|
301 |
{
|
sl@0
|
302 |
if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
|
sl@0
|
303 |
if (BN_is_zero(x))
|
sl@0
|
304 |
{
|
sl@0
|
305 |
/* special case: a == 0 (mod p) */
|
sl@0
|
306 |
BN_zero(ret);
|
sl@0
|
307 |
err = 0;
|
sl@0
|
308 |
goto end;
|
sl@0
|
309 |
}
|
sl@0
|
310 |
}
|
sl@0
|
311 |
|
sl@0
|
312 |
/* b := a*x^2 (= a^q) */
|
sl@0
|
313 |
if (!BN_mod_sqr(b, x, p, ctx)) goto end;
|
sl@0
|
314 |
if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
|
sl@0
|
315 |
|
sl@0
|
316 |
/* x := a*x (= a^((q+1)/2)) */
|
sl@0
|
317 |
if (!BN_mod_mul(x, x, A, p, ctx)) goto end;
|
sl@0
|
318 |
|
sl@0
|
319 |
while (1)
|
sl@0
|
320 |
{
|
sl@0
|
321 |
/* Now b is a^q * y^k for some even k (0 <= k < 2^E
|
sl@0
|
322 |
* where E refers to the original value of e, which we
|
sl@0
|
323 |
* don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
|
sl@0
|
324 |
*
|
sl@0
|
325 |
* We have a*b = x^2,
|
sl@0
|
326 |
* y^2^(e-1) = -1,
|
sl@0
|
327 |
* b^2^(e-1) = 1.
|
sl@0
|
328 |
*/
|
sl@0
|
329 |
|
sl@0
|
330 |
if (BN_is_one(b))
|
sl@0
|
331 |
{
|
sl@0
|
332 |
if (!BN_copy(ret, x)) goto end;
|
sl@0
|
333 |
err = 0;
|
sl@0
|
334 |
goto vrfy;
|
sl@0
|
335 |
}
|
sl@0
|
336 |
|
sl@0
|
337 |
|
sl@0
|
338 |
/* find smallest i such that b^(2^i) = 1 */
|
sl@0
|
339 |
i = 1;
|
sl@0
|
340 |
if (!BN_mod_sqr(t, b, p, ctx)) goto end;
|
sl@0
|
341 |
while (!BN_is_one(t))
|
sl@0
|
342 |
{
|
sl@0
|
343 |
i++;
|
sl@0
|
344 |
if (i == e)
|
sl@0
|
345 |
{
|
sl@0
|
346 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
sl@0
|
347 |
goto end;
|
sl@0
|
348 |
}
|
sl@0
|
349 |
if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
|
sl@0
|
350 |
}
|
sl@0
|
351 |
|
sl@0
|
352 |
|
sl@0
|
353 |
/* t := y^2^(e - i - 1) */
|
sl@0
|
354 |
if (!BN_copy(t, y)) goto end;
|
sl@0
|
355 |
for (j = e - i - 1; j > 0; j--)
|
sl@0
|
356 |
{
|
sl@0
|
357 |
if (!BN_mod_sqr(t, t, p, ctx)) goto end;
|
sl@0
|
358 |
}
|
sl@0
|
359 |
if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
|
sl@0
|
360 |
if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
|
sl@0
|
361 |
if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
|
sl@0
|
362 |
e = i;
|
sl@0
|
363 |
}
|
sl@0
|
364 |
|
sl@0
|
365 |
vrfy:
|
sl@0
|
366 |
if (!err)
|
sl@0
|
367 |
{
|
sl@0
|
368 |
/* verify the result -- the input might have been not a square
|
sl@0
|
369 |
* (test added in 0.9.8) */
|
sl@0
|
370 |
|
sl@0
|
371 |
if (!BN_mod_sqr(x, ret, p, ctx))
|
sl@0
|
372 |
err = 1;
|
sl@0
|
373 |
|
sl@0
|
374 |
if (!err && 0 != BN_cmp(x, A))
|
sl@0
|
375 |
{
|
sl@0
|
376 |
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
sl@0
|
377 |
err = 1;
|
sl@0
|
378 |
}
|
sl@0
|
379 |
}
|
sl@0
|
380 |
|
sl@0
|
381 |
end:
|
sl@0
|
382 |
if (err)
|
sl@0
|
383 |
{
|
sl@0
|
384 |
if (ret != NULL && ret != in)
|
sl@0
|
385 |
{
|
sl@0
|
386 |
BN_clear_free(ret);
|
sl@0
|
387 |
}
|
sl@0
|
388 |
ret = NULL;
|
sl@0
|
389 |
}
|
sl@0
|
390 |
BN_CTX_end(ctx);
|
sl@0
|
391 |
bn_check_top(ret);
|
sl@0
|
392 |
return ret;
|
sl@0
|
393 |
}
|