sl@0
|
1 |
/* crypto/bn/bn_gf2m.c */
|
sl@0
|
2 |
/* ====================================================================
|
sl@0
|
3 |
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
sl@0
|
4 |
*
|
sl@0
|
5 |
* The Elliptic Curve Public-Key Crypto Library (ECC Code) included
|
sl@0
|
6 |
* herein is developed by SUN MICROSYSTEMS, INC., and is contributed
|
sl@0
|
7 |
* to the OpenSSL project.
|
sl@0
|
8 |
*
|
sl@0
|
9 |
* The ECC Code is licensed pursuant to the OpenSSL open source
|
sl@0
|
10 |
* license provided below.
|
sl@0
|
11 |
*
|
sl@0
|
12 |
* In addition, Sun covenants to all licensees who provide a reciprocal
|
sl@0
|
13 |
* covenant with respect to their own patents if any, not to sue under
|
sl@0
|
14 |
* current and future patent claims necessarily infringed by the making,
|
sl@0
|
15 |
* using, practicing, selling, offering for sale and/or otherwise
|
sl@0
|
16 |
* disposing of the ECC Code as delivered hereunder (or portions thereof),
|
sl@0
|
17 |
* provided that such covenant shall not apply:
|
sl@0
|
18 |
* 1) for code that a licensee deletes from the ECC Code;
|
sl@0
|
19 |
* 2) separates from the ECC Code; or
|
sl@0
|
20 |
* 3) for infringements caused by:
|
sl@0
|
21 |
* i) the modification of the ECC Code or
|
sl@0
|
22 |
* ii) the combination of the ECC Code with other software or
|
sl@0
|
23 |
* devices where such combination causes the infringement.
|
sl@0
|
24 |
*
|
sl@0
|
25 |
* The software is originally written by Sheueling Chang Shantz and
|
sl@0
|
26 |
* Douglas Stebila of Sun Microsystems Laboratories.
|
sl@0
|
27 |
*
|
sl@0
|
28 |
*/
|
sl@0
|
29 |
|
sl@0
|
30 |
/* NOTE: This file is licensed pursuant to the OpenSSL license below
|
sl@0
|
31 |
* and may be modified; but after modifications, the above covenant
|
sl@0
|
32 |
* may no longer apply! In such cases, the corresponding paragraph
|
sl@0
|
33 |
* ["In addition, Sun covenants ... causes the infringement."] and
|
sl@0
|
34 |
* this note can be edited out; but please keep the Sun copyright
|
sl@0
|
35 |
* notice and attribution. */
|
sl@0
|
36 |
|
sl@0
|
37 |
/* ====================================================================
|
sl@0
|
38 |
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
|
sl@0
|
39 |
*
|
sl@0
|
40 |
* Redistribution and use in source and binary forms, with or without
|
sl@0
|
41 |
* modification, are permitted provided that the following conditions
|
sl@0
|
42 |
* are met:
|
sl@0
|
43 |
*
|
sl@0
|
44 |
* 1. Redistributions of source code must retain the above copyright
|
sl@0
|
45 |
* notice, this list of conditions and the following disclaimer.
|
sl@0
|
46 |
*
|
sl@0
|
47 |
* 2. Redistributions in binary form must reproduce the above copyright
|
sl@0
|
48 |
* notice, this list of conditions and the following disclaimer in
|
sl@0
|
49 |
* the documentation and/or other materials provided with the
|
sl@0
|
50 |
* distribution.
|
sl@0
|
51 |
*
|
sl@0
|
52 |
* 3. All advertising materials mentioning features or use of this
|
sl@0
|
53 |
* software must display the following acknowledgment:
|
sl@0
|
54 |
* "This product includes software developed by the OpenSSL Project
|
sl@0
|
55 |
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
sl@0
|
56 |
*
|
sl@0
|
57 |
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
sl@0
|
58 |
* endorse or promote products derived from this software without
|
sl@0
|
59 |
* prior written permission. For written permission, please contact
|
sl@0
|
60 |
* openssl-core@openssl.org.
|
sl@0
|
61 |
*
|
sl@0
|
62 |
* 5. Products derived from this software may not be called "OpenSSL"
|
sl@0
|
63 |
* nor may "OpenSSL" appear in their names without prior written
|
sl@0
|
64 |
* permission of the OpenSSL Project.
|
sl@0
|
65 |
*
|
sl@0
|
66 |
* 6. Redistributions of any form whatsoever must retain the following
|
sl@0
|
67 |
* acknowledgment:
|
sl@0
|
68 |
* "This product includes software developed by the OpenSSL Project
|
sl@0
|
69 |
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
sl@0
|
70 |
*
|
sl@0
|
71 |
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
sl@0
|
72 |
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
sl@0
|
73 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
sl@0
|
74 |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
sl@0
|
75 |
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
sl@0
|
76 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
sl@0
|
77 |
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
sl@0
|
78 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
sl@0
|
79 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
sl@0
|
80 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
sl@0
|
81 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
sl@0
|
82 |
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
sl@0
|
83 |
* ====================================================================
|
sl@0
|
84 |
*
|
sl@0
|
85 |
* This product includes cryptographic software written by Eric Young
|
sl@0
|
86 |
* (eay@cryptsoft.com). This product includes software written by Tim
|
sl@0
|
87 |
* Hudson (tjh@cryptsoft.com).
|
sl@0
|
88 |
*
|
sl@0
|
89 |
*/
|
sl@0
|
90 |
|
sl@0
|
91 |
#include <assert.h>
|
sl@0
|
92 |
#include <limits.h>
|
sl@0
|
93 |
#include <stdio.h>
|
sl@0
|
94 |
#include "cryptlib.h"
|
sl@0
|
95 |
#include "bn_lcl.h"
|
sl@0
|
96 |
|
sl@0
|
97 |
/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
|
sl@0
|
98 |
#define MAX_ITERATIONS 50
|
sl@0
|
99 |
|
sl@0
|
100 |
static const BN_ULONG SQR_tb[16] =
|
sl@0
|
101 |
{ 0, 1, 4, 5, 16, 17, 20, 21,
|
sl@0
|
102 |
64, 65, 68, 69, 80, 81, 84, 85 };
|
sl@0
|
103 |
/* Platform-specific macros to accelerate squaring. */
|
sl@0
|
104 |
#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
|
sl@0
|
105 |
#define SQR1(w) \
|
sl@0
|
106 |
SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
|
sl@0
|
107 |
SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
|
sl@0
|
108 |
SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
|
sl@0
|
109 |
SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
|
sl@0
|
110 |
#define SQR0(w) \
|
sl@0
|
111 |
SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
|
sl@0
|
112 |
SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
|
sl@0
|
113 |
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
|
sl@0
|
114 |
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
|
sl@0
|
115 |
#endif
|
sl@0
|
116 |
#ifdef THIRTY_TWO_BIT
|
sl@0
|
117 |
#define SQR1(w) \
|
sl@0
|
118 |
SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
|
sl@0
|
119 |
SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
|
sl@0
|
120 |
#define SQR0(w) \
|
sl@0
|
121 |
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
|
sl@0
|
122 |
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
|
sl@0
|
123 |
#endif
|
sl@0
|
124 |
#ifdef SIXTEEN_BIT
|
sl@0
|
125 |
#define SQR1(w) \
|
sl@0
|
126 |
SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF]
|
sl@0
|
127 |
#define SQR0(w) \
|
sl@0
|
128 |
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
|
sl@0
|
129 |
#endif
|
sl@0
|
130 |
#ifdef EIGHT_BIT
|
sl@0
|
131 |
#define SQR1(w) \
|
sl@0
|
132 |
SQR_tb[(w) >> 4 & 0xF]
|
sl@0
|
133 |
#define SQR0(w) \
|
sl@0
|
134 |
SQR_tb[(w) & 15]
|
sl@0
|
135 |
#endif
|
sl@0
|
136 |
|
sl@0
|
137 |
/* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
|
sl@0
|
138 |
* result is a polynomial r with degree < 2 * BN_BITS - 1
|
sl@0
|
139 |
* The caller MUST ensure that the variables have the right amount
|
sl@0
|
140 |
* of space allocated.
|
sl@0
|
141 |
*/
|
sl@0
|
142 |
#ifdef EIGHT_BIT
|
sl@0
|
143 |
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
|
sl@0
|
144 |
{
|
sl@0
|
145 |
register BN_ULONG h, l, s;
|
sl@0
|
146 |
BN_ULONG tab[4], top1b = a >> 7;
|
sl@0
|
147 |
register BN_ULONG a1, a2;
|
sl@0
|
148 |
|
sl@0
|
149 |
a1 = a & (0x7F); a2 = a1 << 1;
|
sl@0
|
150 |
|
sl@0
|
151 |
tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
|
sl@0
|
152 |
|
sl@0
|
153 |
s = tab[b & 0x3]; l = s;
|
sl@0
|
154 |
s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6;
|
sl@0
|
155 |
s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
|
sl@0
|
156 |
s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2;
|
sl@0
|
157 |
|
sl@0
|
158 |
/* compensate for the top bit of a */
|
sl@0
|
159 |
|
sl@0
|
160 |
if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
|
sl@0
|
161 |
|
sl@0
|
162 |
*r1 = h; *r0 = l;
|
sl@0
|
163 |
}
|
sl@0
|
164 |
#endif
|
sl@0
|
165 |
#ifdef SIXTEEN_BIT
|
sl@0
|
166 |
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
|
sl@0
|
167 |
{
|
sl@0
|
168 |
register BN_ULONG h, l, s;
|
sl@0
|
169 |
BN_ULONG tab[4], top1b = a >> 15;
|
sl@0
|
170 |
register BN_ULONG a1, a2;
|
sl@0
|
171 |
|
sl@0
|
172 |
a1 = a & (0x7FFF); a2 = a1 << 1;
|
sl@0
|
173 |
|
sl@0
|
174 |
tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
|
sl@0
|
175 |
|
sl@0
|
176 |
s = tab[b & 0x3]; l = s;
|
sl@0
|
177 |
s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14;
|
sl@0
|
178 |
s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12;
|
sl@0
|
179 |
s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10;
|
sl@0
|
180 |
s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8;
|
sl@0
|
181 |
s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6;
|
sl@0
|
182 |
s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4;
|
sl@0
|
183 |
s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2;
|
sl@0
|
184 |
|
sl@0
|
185 |
/* compensate for the top bit of a */
|
sl@0
|
186 |
|
sl@0
|
187 |
if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
|
sl@0
|
188 |
|
sl@0
|
189 |
*r1 = h; *r0 = l;
|
sl@0
|
190 |
}
|
sl@0
|
191 |
#endif
|
sl@0
|
192 |
#ifdef THIRTY_TWO_BIT
|
sl@0
|
193 |
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
|
sl@0
|
194 |
{
|
sl@0
|
195 |
register BN_ULONG h, l, s;
|
sl@0
|
196 |
BN_ULONG tab[8], top2b = a >> 30;
|
sl@0
|
197 |
register BN_ULONG a1, a2, a4;
|
sl@0
|
198 |
|
sl@0
|
199 |
a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
|
sl@0
|
200 |
|
sl@0
|
201 |
tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
|
sl@0
|
202 |
tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
|
sl@0
|
203 |
|
sl@0
|
204 |
s = tab[b & 0x7]; l = s;
|
sl@0
|
205 |
s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
|
sl@0
|
206 |
s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
|
sl@0
|
207 |
s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
|
sl@0
|
208 |
s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
|
sl@0
|
209 |
s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
|
sl@0
|
210 |
s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
|
sl@0
|
211 |
s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
|
sl@0
|
212 |
s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
|
sl@0
|
213 |
s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
|
sl@0
|
214 |
s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
|
sl@0
|
215 |
|
sl@0
|
216 |
/* compensate for the top two bits of a */
|
sl@0
|
217 |
|
sl@0
|
218 |
if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
|
sl@0
|
219 |
if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
|
sl@0
|
220 |
|
sl@0
|
221 |
*r1 = h; *r0 = l;
|
sl@0
|
222 |
}
|
sl@0
|
223 |
#endif
|
sl@0
|
224 |
#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
|
sl@0
|
225 |
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
|
sl@0
|
226 |
{
|
sl@0
|
227 |
register BN_ULONG h, l, s;
|
sl@0
|
228 |
BN_ULONG tab[16], top3b = a >> 61;
|
sl@0
|
229 |
register BN_ULONG a1, a2, a4, a8;
|
sl@0
|
230 |
|
sl@0
|
231 |
a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
|
sl@0
|
232 |
|
sl@0
|
233 |
tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
|
sl@0
|
234 |
tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
|
sl@0
|
235 |
tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
|
sl@0
|
236 |
tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
|
sl@0
|
237 |
|
sl@0
|
238 |
s = tab[b & 0xF]; l = s;
|
sl@0
|
239 |
s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
|
sl@0
|
240 |
s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
|
sl@0
|
241 |
s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
|
sl@0
|
242 |
s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
|
sl@0
|
243 |
s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
|
sl@0
|
244 |
s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
|
sl@0
|
245 |
s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
|
sl@0
|
246 |
s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
|
sl@0
|
247 |
s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
|
sl@0
|
248 |
s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
|
sl@0
|
249 |
s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
|
sl@0
|
250 |
s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
|
sl@0
|
251 |
s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
|
sl@0
|
252 |
s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
|
sl@0
|
253 |
s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
|
sl@0
|
254 |
|
sl@0
|
255 |
/* compensate for the top three bits of a */
|
sl@0
|
256 |
|
sl@0
|
257 |
if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
|
sl@0
|
258 |
if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
|
sl@0
|
259 |
if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
|
sl@0
|
260 |
|
sl@0
|
261 |
*r1 = h; *r0 = l;
|
sl@0
|
262 |
}
|
sl@0
|
263 |
#endif
|
sl@0
|
264 |
|
sl@0
|
265 |
/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
|
sl@0
|
266 |
* result is a polynomial r with degree < 4 * BN_BITS2 - 1
|
sl@0
|
267 |
* The caller MUST ensure that the variables have the right amount
|
sl@0
|
268 |
* of space allocated.
|
sl@0
|
269 |
*/
|
sl@0
|
270 |
static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
|
sl@0
|
271 |
{
|
sl@0
|
272 |
BN_ULONG m1, m0;
|
sl@0
|
273 |
/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
|
sl@0
|
274 |
bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
|
sl@0
|
275 |
bn_GF2m_mul_1x1(r+1, r, a0, b0);
|
sl@0
|
276 |
bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
|
sl@0
|
277 |
/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
|
sl@0
|
278 |
r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
|
sl@0
|
279 |
r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
|
sl@0
|
280 |
}
|
sl@0
|
281 |
|
sl@0
|
282 |
|
sl@0
|
283 |
/* Add polynomials a and b and store result in r; r could be a or b, a and b
|
sl@0
|
284 |
* could be equal; r is the bitwise XOR of a and b.
|
sl@0
|
285 |
*/
|
sl@0
|
286 |
EXPORT_C int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
|
sl@0
|
287 |
{
|
sl@0
|
288 |
int i;
|
sl@0
|
289 |
const BIGNUM *at, *bt;
|
sl@0
|
290 |
|
sl@0
|
291 |
bn_check_top(a);
|
sl@0
|
292 |
bn_check_top(b);
|
sl@0
|
293 |
|
sl@0
|
294 |
if (a->top < b->top) { at = b; bt = a; }
|
sl@0
|
295 |
else { at = a; bt = b; }
|
sl@0
|
296 |
|
sl@0
|
297 |
bn_wexpand(r, at->top);
|
sl@0
|
298 |
|
sl@0
|
299 |
for (i = 0; i < bt->top; i++)
|
sl@0
|
300 |
{
|
sl@0
|
301 |
r->d[i] = at->d[i] ^ bt->d[i];
|
sl@0
|
302 |
}
|
sl@0
|
303 |
for (; i < at->top; i++)
|
sl@0
|
304 |
{
|
sl@0
|
305 |
r->d[i] = at->d[i];
|
sl@0
|
306 |
}
|
sl@0
|
307 |
|
sl@0
|
308 |
r->top = at->top;
|
sl@0
|
309 |
bn_correct_top(r);
|
sl@0
|
310 |
|
sl@0
|
311 |
return 1;
|
sl@0
|
312 |
}
|
sl@0
|
313 |
|
sl@0
|
314 |
|
sl@0
|
315 |
/* Some functions allow for representation of the irreducible polynomials
|
sl@0
|
316 |
* as an int[], say p. The irreducible f(t) is then of the form:
|
sl@0
|
317 |
* t^p[0] + t^p[1] + ... + t^p[k]
|
sl@0
|
318 |
* where m = p[0] > p[1] > ... > p[k] = 0.
|
sl@0
|
319 |
*/
|
sl@0
|
320 |
|
sl@0
|
321 |
|
sl@0
|
322 |
/* Performs modular reduction of a and store result in r. r could be a. */
|
sl@0
|
323 |
EXPORT_C int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
|
sl@0
|
324 |
{
|
sl@0
|
325 |
int j, k;
|
sl@0
|
326 |
int n, dN, d0, d1;
|
sl@0
|
327 |
BN_ULONG zz, *z;
|
sl@0
|
328 |
|
sl@0
|
329 |
bn_check_top(a);
|
sl@0
|
330 |
|
sl@0
|
331 |
if (!p[0])
|
sl@0
|
332 |
{
|
sl@0
|
333 |
/* reduction mod 1 => return 0 */
|
sl@0
|
334 |
BN_zero(r);
|
sl@0
|
335 |
return 1;
|
sl@0
|
336 |
}
|
sl@0
|
337 |
|
sl@0
|
338 |
/* Since the algorithm does reduction in the r value, if a != r, copy
|
sl@0
|
339 |
* the contents of a into r so we can do reduction in r.
|
sl@0
|
340 |
*/
|
sl@0
|
341 |
if (a != r)
|
sl@0
|
342 |
{
|
sl@0
|
343 |
if (!bn_wexpand(r, a->top)) return 0;
|
sl@0
|
344 |
for (j = 0; j < a->top; j++)
|
sl@0
|
345 |
{
|
sl@0
|
346 |
r->d[j] = a->d[j];
|
sl@0
|
347 |
}
|
sl@0
|
348 |
r->top = a->top;
|
sl@0
|
349 |
}
|
sl@0
|
350 |
z = r->d;
|
sl@0
|
351 |
|
sl@0
|
352 |
/* start reduction */
|
sl@0
|
353 |
dN = p[0] / BN_BITS2;
|
sl@0
|
354 |
for (j = r->top - 1; j > dN;)
|
sl@0
|
355 |
{
|
sl@0
|
356 |
zz = z[j];
|
sl@0
|
357 |
if (z[j] == 0) { j--; continue; }
|
sl@0
|
358 |
z[j] = 0;
|
sl@0
|
359 |
|
sl@0
|
360 |
for (k = 1; p[k] != 0; k++)
|
sl@0
|
361 |
{
|
sl@0
|
362 |
/* reducing component t^p[k] */
|
sl@0
|
363 |
n = p[0] - p[k];
|
sl@0
|
364 |
d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
|
sl@0
|
365 |
n /= BN_BITS2;
|
sl@0
|
366 |
z[j-n] ^= (zz>>d0);
|
sl@0
|
367 |
if (d0) z[j-n-1] ^= (zz<<d1);
|
sl@0
|
368 |
}
|
sl@0
|
369 |
|
sl@0
|
370 |
/* reducing component t^0 */
|
sl@0
|
371 |
n = dN;
|
sl@0
|
372 |
d0 = p[0] % BN_BITS2;
|
sl@0
|
373 |
d1 = BN_BITS2 - d0;
|
sl@0
|
374 |
z[j-n] ^= (zz >> d0);
|
sl@0
|
375 |
if (d0) z[j-n-1] ^= (zz << d1);
|
sl@0
|
376 |
}
|
sl@0
|
377 |
|
sl@0
|
378 |
/* final round of reduction */
|
sl@0
|
379 |
while (j == dN)
|
sl@0
|
380 |
{
|
sl@0
|
381 |
|
sl@0
|
382 |
d0 = p[0] % BN_BITS2;
|
sl@0
|
383 |
zz = z[dN] >> d0;
|
sl@0
|
384 |
if (zz == 0) break;
|
sl@0
|
385 |
d1 = BN_BITS2 - d0;
|
sl@0
|
386 |
|
sl@0
|
387 |
if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */
|
sl@0
|
388 |
z[0] ^= zz; /* reduction t^0 component */
|
sl@0
|
389 |
|
sl@0
|
390 |
for (k = 1; p[k] != 0; k++)
|
sl@0
|
391 |
{
|
sl@0
|
392 |
BN_ULONG tmp_ulong;
|
sl@0
|
393 |
|
sl@0
|
394 |
/* reducing component t^p[k]*/
|
sl@0
|
395 |
n = p[k] / BN_BITS2;
|
sl@0
|
396 |
d0 = p[k] % BN_BITS2;
|
sl@0
|
397 |
d1 = BN_BITS2 - d0;
|
sl@0
|
398 |
z[n] ^= (zz << d0);
|
sl@0
|
399 |
tmp_ulong = zz >> d1;
|
sl@0
|
400 |
if (d0 && tmp_ulong)
|
sl@0
|
401 |
z[n+1] ^= tmp_ulong;
|
sl@0
|
402 |
}
|
sl@0
|
403 |
|
sl@0
|
404 |
|
sl@0
|
405 |
}
|
sl@0
|
406 |
|
sl@0
|
407 |
bn_correct_top(r);
|
sl@0
|
408 |
return 1;
|
sl@0
|
409 |
}
|
sl@0
|
410 |
|
sl@0
|
411 |
/* Performs modular reduction of a by p and store result in r. r could be a.
|
sl@0
|
412 |
*
|
sl@0
|
413 |
* This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
|
sl@0
|
414 |
* function is only provided for convenience; for best performance, use the
|
sl@0
|
415 |
* BN_GF2m_mod_arr function.
|
sl@0
|
416 |
*/
|
sl@0
|
417 |
EXPORT_C int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
|
sl@0
|
418 |
{
|
sl@0
|
419 |
int ret = 0;
|
sl@0
|
420 |
const int max = BN_num_bits(p);
|
sl@0
|
421 |
unsigned int *arr=NULL;
|
sl@0
|
422 |
bn_check_top(a);
|
sl@0
|
423 |
bn_check_top(p);
|
sl@0
|
424 |
if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
|
sl@0
|
425 |
ret = BN_GF2m_poly2arr(p, arr, max);
|
sl@0
|
426 |
if (!ret || ret > max)
|
sl@0
|
427 |
{
|
sl@0
|
428 |
BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
|
sl@0
|
429 |
goto err;
|
sl@0
|
430 |
}
|
sl@0
|
431 |
ret = BN_GF2m_mod_arr(r, a, arr);
|
sl@0
|
432 |
bn_check_top(r);
|
sl@0
|
433 |
err:
|
sl@0
|
434 |
if (arr) OPENSSL_free(arr);
|
sl@0
|
435 |
return ret;
|
sl@0
|
436 |
}
|
sl@0
|
437 |
|
sl@0
|
438 |
|
sl@0
|
439 |
/* Compute the product of two polynomials a and b, reduce modulo p, and store
|
sl@0
|
440 |
* the result in r. r could be a or b; a could be b.
|
sl@0
|
441 |
*/
|
sl@0
|
442 |
EXPORT_C int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
|
sl@0
|
443 |
{
|
sl@0
|
444 |
int zlen, i, j, k, ret = 0;
|
sl@0
|
445 |
BIGNUM *s;
|
sl@0
|
446 |
BN_ULONG x1, x0, y1, y0, zz[4];
|
sl@0
|
447 |
|
sl@0
|
448 |
bn_check_top(a);
|
sl@0
|
449 |
bn_check_top(b);
|
sl@0
|
450 |
|
sl@0
|
451 |
if (a == b)
|
sl@0
|
452 |
{
|
sl@0
|
453 |
return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
|
sl@0
|
454 |
}
|
sl@0
|
455 |
|
sl@0
|
456 |
BN_CTX_start(ctx);
|
sl@0
|
457 |
if ((s = BN_CTX_get(ctx)) == NULL) goto err;
|
sl@0
|
458 |
|
sl@0
|
459 |
zlen = a->top + b->top + 4;
|
sl@0
|
460 |
if (!bn_wexpand(s, zlen)) goto err;
|
sl@0
|
461 |
s->top = zlen;
|
sl@0
|
462 |
|
sl@0
|
463 |
for (i = 0; i < zlen; i++) s->d[i] = 0;
|
sl@0
|
464 |
|
sl@0
|
465 |
for (j = 0; j < b->top; j += 2)
|
sl@0
|
466 |
{
|
sl@0
|
467 |
y0 = b->d[j];
|
sl@0
|
468 |
y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
|
sl@0
|
469 |
for (i = 0; i < a->top; i += 2)
|
sl@0
|
470 |
{
|
sl@0
|
471 |
x0 = a->d[i];
|
sl@0
|
472 |
x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
|
sl@0
|
473 |
bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
|
sl@0
|
474 |
for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
|
sl@0
|
475 |
}
|
sl@0
|
476 |
}
|
sl@0
|
477 |
|
sl@0
|
478 |
bn_correct_top(s);
|
sl@0
|
479 |
if (BN_GF2m_mod_arr(r, s, p))
|
sl@0
|
480 |
ret = 1;
|
sl@0
|
481 |
bn_check_top(r);
|
sl@0
|
482 |
|
sl@0
|
483 |
err:
|
sl@0
|
484 |
BN_CTX_end(ctx);
|
sl@0
|
485 |
return ret;
|
sl@0
|
486 |
}
|
sl@0
|
487 |
|
sl@0
|
488 |
/* Compute the product of two polynomials a and b, reduce modulo p, and store
|
sl@0
|
489 |
* the result in r. r could be a or b; a could equal b.
|
sl@0
|
490 |
*
|
sl@0
|
491 |
* This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
|
sl@0
|
492 |
* function is only provided for convenience; for best performance, use the
|
sl@0
|
493 |
* BN_GF2m_mod_mul_arr function.
|
sl@0
|
494 |
*/
|
sl@0
|
495 |
EXPORT_C int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
|
sl@0
|
496 |
{
|
sl@0
|
497 |
int ret = 0;
|
sl@0
|
498 |
const int max = BN_num_bits(p);
|
sl@0
|
499 |
unsigned int *arr=NULL;
|
sl@0
|
500 |
bn_check_top(a);
|
sl@0
|
501 |
bn_check_top(b);
|
sl@0
|
502 |
bn_check_top(p);
|
sl@0
|
503 |
if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
|
sl@0
|
504 |
ret = BN_GF2m_poly2arr(p, arr, max);
|
sl@0
|
505 |
if (!ret || ret > max)
|
sl@0
|
506 |
{
|
sl@0
|
507 |
BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
|
sl@0
|
508 |
goto err;
|
sl@0
|
509 |
}
|
sl@0
|
510 |
ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
|
sl@0
|
511 |
bn_check_top(r);
|
sl@0
|
512 |
err:
|
sl@0
|
513 |
if (arr) OPENSSL_free(arr);
|
sl@0
|
514 |
return ret;
|
sl@0
|
515 |
}
|
sl@0
|
516 |
|
sl@0
|
517 |
|
sl@0
|
518 |
/* Square a, reduce the result mod p, and store it in a. r could be a. */
|
sl@0
|
519 |
EXPORT_C int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
|
sl@0
|
520 |
{
|
sl@0
|
521 |
int i, ret = 0;
|
sl@0
|
522 |
BIGNUM *s;
|
sl@0
|
523 |
|
sl@0
|
524 |
bn_check_top(a);
|
sl@0
|
525 |
BN_CTX_start(ctx);
|
sl@0
|
526 |
if ((s = BN_CTX_get(ctx)) == NULL) return 0;
|
sl@0
|
527 |
if (!bn_wexpand(s, 2 * a->top)) goto err;
|
sl@0
|
528 |
|
sl@0
|
529 |
for (i = a->top - 1; i >= 0; i--)
|
sl@0
|
530 |
{
|
sl@0
|
531 |
s->d[2*i+1] = SQR1(a->d[i]);
|
sl@0
|
532 |
s->d[2*i ] = SQR0(a->d[i]);
|
sl@0
|
533 |
}
|
sl@0
|
534 |
|
sl@0
|
535 |
s->top = 2 * a->top;
|
sl@0
|
536 |
bn_correct_top(s);
|
sl@0
|
537 |
if (!BN_GF2m_mod_arr(r, s, p)) goto err;
|
sl@0
|
538 |
bn_check_top(r);
|
sl@0
|
539 |
ret = 1;
|
sl@0
|
540 |
err:
|
sl@0
|
541 |
BN_CTX_end(ctx);
|
sl@0
|
542 |
return ret;
|
sl@0
|
543 |
}
|
sl@0
|
544 |
|
sl@0
|
545 |
/* Square a, reduce the result mod p, and store it in a. r could be a.
|
sl@0
|
546 |
*
|
sl@0
|
547 |
* This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
|
sl@0
|
548 |
* function is only provided for convenience; for best performance, use the
|
sl@0
|
549 |
* BN_GF2m_mod_sqr_arr function.
|
sl@0
|
550 |
*/
|
sl@0
|
551 |
EXPORT_C int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
sl@0
|
552 |
{
|
sl@0
|
553 |
int ret = 0;
|
sl@0
|
554 |
const int max = BN_num_bits(p);
|
sl@0
|
555 |
unsigned int *arr=NULL;
|
sl@0
|
556 |
|
sl@0
|
557 |
bn_check_top(a);
|
sl@0
|
558 |
bn_check_top(p);
|
sl@0
|
559 |
if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
|
sl@0
|
560 |
ret = BN_GF2m_poly2arr(p, arr, max);
|
sl@0
|
561 |
if (!ret || ret > max)
|
sl@0
|
562 |
{
|
sl@0
|
563 |
BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
|
sl@0
|
564 |
goto err;
|
sl@0
|
565 |
}
|
sl@0
|
566 |
ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
|
sl@0
|
567 |
bn_check_top(r);
|
sl@0
|
568 |
err:
|
sl@0
|
569 |
if (arr) OPENSSL_free(arr);
|
sl@0
|
570 |
return ret;
|
sl@0
|
571 |
}
|
sl@0
|
572 |
|
sl@0
|
573 |
|
sl@0
|
574 |
/* Invert a, reduce modulo p, and store the result in r. r could be a.
|
sl@0
|
575 |
* Uses Modified Almost Inverse Algorithm (Algorithm 10) from
|
sl@0
|
576 |
* Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
|
sl@0
|
577 |
* of Elliptic Curve Cryptography Over Binary Fields".
|
sl@0
|
578 |
*/
|
sl@0
|
579 |
EXPORT_C int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
sl@0
|
580 |
{
|
sl@0
|
581 |
BIGNUM *b, *c, *u, *v, *tmp;
|
sl@0
|
582 |
int ret = 0;
|
sl@0
|
583 |
|
sl@0
|
584 |
bn_check_top(a);
|
sl@0
|
585 |
bn_check_top(p);
|
sl@0
|
586 |
|
sl@0
|
587 |
BN_CTX_start(ctx);
|
sl@0
|
588 |
|
sl@0
|
589 |
b = BN_CTX_get(ctx);
|
sl@0
|
590 |
c = BN_CTX_get(ctx);
|
sl@0
|
591 |
u = BN_CTX_get(ctx);
|
sl@0
|
592 |
v = BN_CTX_get(ctx);
|
sl@0
|
593 |
if (v == NULL) goto err;
|
sl@0
|
594 |
|
sl@0
|
595 |
if (!BN_one(b)) goto err;
|
sl@0
|
596 |
if (!BN_GF2m_mod(u, a, p)) goto err;
|
sl@0
|
597 |
if (!BN_copy(v, p)) goto err;
|
sl@0
|
598 |
|
sl@0
|
599 |
if (BN_is_zero(u)) goto err;
|
sl@0
|
600 |
|
sl@0
|
601 |
while (1)
|
sl@0
|
602 |
{
|
sl@0
|
603 |
while (!BN_is_odd(u))
|
sl@0
|
604 |
{
|
sl@0
|
605 |
if (!BN_rshift1(u, u)) goto err;
|
sl@0
|
606 |
if (BN_is_odd(b))
|
sl@0
|
607 |
{
|
sl@0
|
608 |
if (!BN_GF2m_add(b, b, p)) goto err;
|
sl@0
|
609 |
}
|
sl@0
|
610 |
if (!BN_rshift1(b, b)) goto err;
|
sl@0
|
611 |
}
|
sl@0
|
612 |
|
sl@0
|
613 |
if (BN_abs_is_word(u, 1)) break;
|
sl@0
|
614 |
|
sl@0
|
615 |
if (BN_num_bits(u) < BN_num_bits(v))
|
sl@0
|
616 |
{
|
sl@0
|
617 |
tmp = u; u = v; v = tmp;
|
sl@0
|
618 |
tmp = b; b = c; c = tmp;
|
sl@0
|
619 |
}
|
sl@0
|
620 |
|
sl@0
|
621 |
if (!BN_GF2m_add(u, u, v)) goto err;
|
sl@0
|
622 |
if (!BN_GF2m_add(b, b, c)) goto err;
|
sl@0
|
623 |
}
|
sl@0
|
624 |
|
sl@0
|
625 |
|
sl@0
|
626 |
if (!BN_copy(r, b)) goto err;
|
sl@0
|
627 |
bn_check_top(r);
|
sl@0
|
628 |
ret = 1;
|
sl@0
|
629 |
|
sl@0
|
630 |
err:
|
sl@0
|
631 |
BN_CTX_end(ctx);
|
sl@0
|
632 |
return ret;
|
sl@0
|
633 |
}
|
sl@0
|
634 |
|
sl@0
|
635 |
/* Invert xx, reduce modulo p, and store the result in r. r could be xx.
|
sl@0
|
636 |
*
|
sl@0
|
637 |
* This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
|
sl@0
|
638 |
* function is only provided for convenience; for best performance, use the
|
sl@0
|
639 |
* BN_GF2m_mod_inv function.
|
sl@0
|
640 |
*/
|
sl@0
|
641 |
EXPORT_C int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
|
sl@0
|
642 |
{
|
sl@0
|
643 |
BIGNUM *field;
|
sl@0
|
644 |
int ret = 0;
|
sl@0
|
645 |
|
sl@0
|
646 |
bn_check_top(xx);
|
sl@0
|
647 |
BN_CTX_start(ctx);
|
sl@0
|
648 |
if ((field = BN_CTX_get(ctx)) == NULL) goto err;
|
sl@0
|
649 |
if (!BN_GF2m_arr2poly(p, field)) goto err;
|
sl@0
|
650 |
|
sl@0
|
651 |
ret = BN_GF2m_mod_inv(r, xx, field, ctx);
|
sl@0
|
652 |
bn_check_top(r);
|
sl@0
|
653 |
|
sl@0
|
654 |
err:
|
sl@0
|
655 |
BN_CTX_end(ctx);
|
sl@0
|
656 |
return ret;
|
sl@0
|
657 |
}
|
sl@0
|
658 |
|
sl@0
|
659 |
|
sl@0
|
660 |
#ifndef OPENSSL_SUN_GF2M_DIV
|
sl@0
|
661 |
/* Divide y by x, reduce modulo p, and store the result in r. r could be x
|
sl@0
|
662 |
* or y, x could equal y.
|
sl@0
|
663 |
*/
|
sl@0
|
664 |
EXPORT_C int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
|
sl@0
|
665 |
{
|
sl@0
|
666 |
BIGNUM *xinv = NULL;
|
sl@0
|
667 |
int ret = 0;
|
sl@0
|
668 |
|
sl@0
|
669 |
bn_check_top(y);
|
sl@0
|
670 |
bn_check_top(x);
|
sl@0
|
671 |
bn_check_top(p);
|
sl@0
|
672 |
|
sl@0
|
673 |
BN_CTX_start(ctx);
|
sl@0
|
674 |
xinv = BN_CTX_get(ctx);
|
sl@0
|
675 |
if (xinv == NULL) goto err;
|
sl@0
|
676 |
|
sl@0
|
677 |
if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
|
sl@0
|
678 |
if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
|
sl@0
|
679 |
bn_check_top(r);
|
sl@0
|
680 |
ret = 1;
|
sl@0
|
681 |
|
sl@0
|
682 |
err:
|
sl@0
|
683 |
BN_CTX_end(ctx);
|
sl@0
|
684 |
return ret;
|
sl@0
|
685 |
}
|
sl@0
|
686 |
#else
|
sl@0
|
687 |
/* Divide y by x, reduce modulo p, and store the result in r. r could be x
|
sl@0
|
688 |
* or y, x could equal y.
|
sl@0
|
689 |
* Uses algorithm Modular_Division_GF(2^m) from
|
sl@0
|
690 |
* Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
|
sl@0
|
691 |
* the Great Divide".
|
sl@0
|
692 |
*/
|
sl@0
|
693 |
EXPORT_C int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
|
sl@0
|
694 |
{
|
sl@0
|
695 |
BIGNUM *a, *b, *u, *v;
|
sl@0
|
696 |
int ret = 0;
|
sl@0
|
697 |
|
sl@0
|
698 |
bn_check_top(y);
|
sl@0
|
699 |
bn_check_top(x);
|
sl@0
|
700 |
bn_check_top(p);
|
sl@0
|
701 |
|
sl@0
|
702 |
BN_CTX_start(ctx);
|
sl@0
|
703 |
|
sl@0
|
704 |
a = BN_CTX_get(ctx);
|
sl@0
|
705 |
b = BN_CTX_get(ctx);
|
sl@0
|
706 |
u = BN_CTX_get(ctx);
|
sl@0
|
707 |
v = BN_CTX_get(ctx);
|
sl@0
|
708 |
if (v == NULL) goto err;
|
sl@0
|
709 |
|
sl@0
|
710 |
/* reduce x and y mod p */
|
sl@0
|
711 |
if (!BN_GF2m_mod(u, y, p)) goto err;
|
sl@0
|
712 |
if (!BN_GF2m_mod(a, x, p)) goto err;
|
sl@0
|
713 |
if (!BN_copy(b, p)) goto err;
|
sl@0
|
714 |
|
sl@0
|
715 |
while (!BN_is_odd(a))
|
sl@0
|
716 |
{
|
sl@0
|
717 |
if (!BN_rshift1(a, a)) goto err;
|
sl@0
|
718 |
if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
|
sl@0
|
719 |
if (!BN_rshift1(u, u)) goto err;
|
sl@0
|
720 |
}
|
sl@0
|
721 |
|
sl@0
|
722 |
do
|
sl@0
|
723 |
{
|
sl@0
|
724 |
if (BN_GF2m_cmp(b, a) > 0)
|
sl@0
|
725 |
{
|
sl@0
|
726 |
if (!BN_GF2m_add(b, b, a)) goto err;
|
sl@0
|
727 |
if (!BN_GF2m_add(v, v, u)) goto err;
|
sl@0
|
728 |
do
|
sl@0
|
729 |
{
|
sl@0
|
730 |
if (!BN_rshift1(b, b)) goto err;
|
sl@0
|
731 |
if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
|
sl@0
|
732 |
if (!BN_rshift1(v, v)) goto err;
|
sl@0
|
733 |
} while (!BN_is_odd(b));
|
sl@0
|
734 |
}
|
sl@0
|
735 |
else if (BN_abs_is_word(a, 1))
|
sl@0
|
736 |
break;
|
sl@0
|
737 |
else
|
sl@0
|
738 |
{
|
sl@0
|
739 |
if (!BN_GF2m_add(a, a, b)) goto err;
|
sl@0
|
740 |
if (!BN_GF2m_add(u, u, v)) goto err;
|
sl@0
|
741 |
do
|
sl@0
|
742 |
{
|
sl@0
|
743 |
if (!BN_rshift1(a, a)) goto err;
|
sl@0
|
744 |
if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
|
sl@0
|
745 |
if (!BN_rshift1(u, u)) goto err;
|
sl@0
|
746 |
} while (!BN_is_odd(a));
|
sl@0
|
747 |
}
|
sl@0
|
748 |
} while (1);
|
sl@0
|
749 |
|
sl@0
|
750 |
if (!BN_copy(r, u)) goto err;
|
sl@0
|
751 |
bn_check_top(r);
|
sl@0
|
752 |
ret = 1;
|
sl@0
|
753 |
|
sl@0
|
754 |
err:
|
sl@0
|
755 |
BN_CTX_end(ctx);
|
sl@0
|
756 |
return ret;
|
sl@0
|
757 |
}
|
sl@0
|
758 |
#endif
|
sl@0
|
759 |
|
sl@0
|
760 |
/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
|
sl@0
|
761 |
* or yy, xx could equal yy.
|
sl@0
|
762 |
*
|
sl@0
|
763 |
* This function calls down to the BN_GF2m_mod_div implementation; this wrapper
|
sl@0
|
764 |
* function is only provided for convenience; for best performance, use the
|
sl@0
|
765 |
* BN_GF2m_mod_div function.
|
sl@0
|
766 |
*/
|
sl@0
|
767 |
EXPORT_C int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
|
sl@0
|
768 |
{
|
sl@0
|
769 |
BIGNUM *field;
|
sl@0
|
770 |
int ret = 0;
|
sl@0
|
771 |
|
sl@0
|
772 |
bn_check_top(yy);
|
sl@0
|
773 |
bn_check_top(xx);
|
sl@0
|
774 |
|
sl@0
|
775 |
BN_CTX_start(ctx);
|
sl@0
|
776 |
if ((field = BN_CTX_get(ctx)) == NULL) goto err;
|
sl@0
|
777 |
if (!BN_GF2m_arr2poly(p, field)) goto err;
|
sl@0
|
778 |
|
sl@0
|
779 |
ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
|
sl@0
|
780 |
bn_check_top(r);
|
sl@0
|
781 |
|
sl@0
|
782 |
err:
|
sl@0
|
783 |
BN_CTX_end(ctx);
|
sl@0
|
784 |
return ret;
|
sl@0
|
785 |
}
|
sl@0
|
786 |
|
sl@0
|
787 |
|
sl@0
|
788 |
/* Compute the bth power of a, reduce modulo p, and store
|
sl@0
|
789 |
* the result in r. r could be a.
|
sl@0
|
790 |
* Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
|
sl@0
|
791 |
*/
|
sl@0
|
792 |
EXPORT_C int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
|
sl@0
|
793 |
{
|
sl@0
|
794 |
int ret = 0, i, n;
|
sl@0
|
795 |
BIGNUM *u;
|
sl@0
|
796 |
|
sl@0
|
797 |
bn_check_top(a);
|
sl@0
|
798 |
bn_check_top(b);
|
sl@0
|
799 |
|
sl@0
|
800 |
if (BN_is_zero(b))
|
sl@0
|
801 |
return(BN_one(r));
|
sl@0
|
802 |
|
sl@0
|
803 |
if (BN_abs_is_word(b, 1))
|
sl@0
|
804 |
return (BN_copy(r, a) != NULL);
|
sl@0
|
805 |
|
sl@0
|
806 |
BN_CTX_start(ctx);
|
sl@0
|
807 |
if ((u = BN_CTX_get(ctx)) == NULL) goto err;
|
sl@0
|
808 |
|
sl@0
|
809 |
if (!BN_GF2m_mod_arr(u, a, p)) goto err;
|
sl@0
|
810 |
|
sl@0
|
811 |
n = BN_num_bits(b) - 1;
|
sl@0
|
812 |
for (i = n - 1; i >= 0; i--)
|
sl@0
|
813 |
{
|
sl@0
|
814 |
if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
|
sl@0
|
815 |
if (BN_is_bit_set(b, i))
|
sl@0
|
816 |
{
|
sl@0
|
817 |
if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
|
sl@0
|
818 |
}
|
sl@0
|
819 |
}
|
sl@0
|
820 |
if (!BN_copy(r, u)) goto err;
|
sl@0
|
821 |
bn_check_top(r);
|
sl@0
|
822 |
ret = 1;
|
sl@0
|
823 |
err:
|
sl@0
|
824 |
BN_CTX_end(ctx);
|
sl@0
|
825 |
return ret;
|
sl@0
|
826 |
}
|
sl@0
|
827 |
|
sl@0
|
828 |
/* Compute the bth power of a, reduce modulo p, and store
|
sl@0
|
829 |
* the result in r. r could be a.
|
sl@0
|
830 |
*
|
sl@0
|
831 |
* This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
|
sl@0
|
832 |
* function is only provided for convenience; for best performance, use the
|
sl@0
|
833 |
* BN_GF2m_mod_exp_arr function.
|
sl@0
|
834 |
*/
|
sl@0
|
835 |
EXPORT_C int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
|
sl@0
|
836 |
{
|
sl@0
|
837 |
int ret = 0;
|
sl@0
|
838 |
const int max = BN_num_bits(p);
|
sl@0
|
839 |
unsigned int *arr=NULL;
|
sl@0
|
840 |
bn_check_top(a);
|
sl@0
|
841 |
bn_check_top(b);
|
sl@0
|
842 |
bn_check_top(p);
|
sl@0
|
843 |
if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
|
sl@0
|
844 |
ret = BN_GF2m_poly2arr(p, arr, max);
|
sl@0
|
845 |
if (!ret || ret > max)
|
sl@0
|
846 |
{
|
sl@0
|
847 |
BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
|
sl@0
|
848 |
goto err;
|
sl@0
|
849 |
}
|
sl@0
|
850 |
ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
|
sl@0
|
851 |
bn_check_top(r);
|
sl@0
|
852 |
err:
|
sl@0
|
853 |
if (arr) OPENSSL_free(arr);
|
sl@0
|
854 |
return ret;
|
sl@0
|
855 |
}
|
sl@0
|
856 |
|
sl@0
|
857 |
/* Compute the square root of a, reduce modulo p, and store
|
sl@0
|
858 |
* the result in r. r could be a.
|
sl@0
|
859 |
* Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
|
sl@0
|
860 |
*/
|
sl@0
|
861 |
EXPORT_C int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
|
sl@0
|
862 |
{
|
sl@0
|
863 |
int ret = 0;
|
sl@0
|
864 |
BIGNUM *u;
|
sl@0
|
865 |
|
sl@0
|
866 |
bn_check_top(a);
|
sl@0
|
867 |
|
sl@0
|
868 |
if (!p[0])
|
sl@0
|
869 |
{
|
sl@0
|
870 |
/* reduction mod 1 => return 0 */
|
sl@0
|
871 |
BN_zero(r);
|
sl@0
|
872 |
return 1;
|
sl@0
|
873 |
}
|
sl@0
|
874 |
|
sl@0
|
875 |
BN_CTX_start(ctx);
|
sl@0
|
876 |
if ((u = BN_CTX_get(ctx)) == NULL) goto err;
|
sl@0
|
877 |
|
sl@0
|
878 |
if (!BN_set_bit(u, p[0] - 1)) goto err;
|
sl@0
|
879 |
ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
|
sl@0
|
880 |
bn_check_top(r);
|
sl@0
|
881 |
|
sl@0
|
882 |
err:
|
sl@0
|
883 |
BN_CTX_end(ctx);
|
sl@0
|
884 |
return ret;
|
sl@0
|
885 |
}
|
sl@0
|
886 |
|
sl@0
|
887 |
/* Compute the square root of a, reduce modulo p, and store
|
sl@0
|
888 |
* the result in r. r could be a.
|
sl@0
|
889 |
*
|
sl@0
|
890 |
* This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
|
sl@0
|
891 |
* function is only provided for convenience; for best performance, use the
|
sl@0
|
892 |
* BN_GF2m_mod_sqrt_arr function.
|
sl@0
|
893 |
*/
|
sl@0
|
894 |
EXPORT_C int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
sl@0
|
895 |
{
|
sl@0
|
896 |
int ret = 0;
|
sl@0
|
897 |
const int max = BN_num_bits(p);
|
sl@0
|
898 |
unsigned int *arr=NULL;
|
sl@0
|
899 |
bn_check_top(a);
|
sl@0
|
900 |
bn_check_top(p);
|
sl@0
|
901 |
if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
|
sl@0
|
902 |
ret = BN_GF2m_poly2arr(p, arr, max);
|
sl@0
|
903 |
if (!ret || ret > max)
|
sl@0
|
904 |
{
|
sl@0
|
905 |
BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
|
sl@0
|
906 |
goto err;
|
sl@0
|
907 |
}
|
sl@0
|
908 |
ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
|
sl@0
|
909 |
bn_check_top(r);
|
sl@0
|
910 |
err:
|
sl@0
|
911 |
if (arr) OPENSSL_free(arr);
|
sl@0
|
912 |
return ret;
|
sl@0
|
913 |
}
|
sl@0
|
914 |
|
sl@0
|
915 |
/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
|
sl@0
|
916 |
* Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
|
sl@0
|
917 |
*/
|
sl@0
|
918 |
EXPORT_C int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
|
sl@0
|
919 |
{
|
sl@0
|
920 |
int ret = 0, count = 0;
|
sl@0
|
921 |
unsigned int j;
|
sl@0
|
922 |
BIGNUM *a, *z, *rho, *w, *w2, *tmp;
|
sl@0
|
923 |
|
sl@0
|
924 |
bn_check_top(a_);
|
sl@0
|
925 |
|
sl@0
|
926 |
if (!p[0])
|
sl@0
|
927 |
{
|
sl@0
|
928 |
/* reduction mod 1 => return 0 */
|
sl@0
|
929 |
BN_zero(r);
|
sl@0
|
930 |
return 1;
|
sl@0
|
931 |
}
|
sl@0
|
932 |
|
sl@0
|
933 |
BN_CTX_start(ctx);
|
sl@0
|
934 |
a = BN_CTX_get(ctx);
|
sl@0
|
935 |
z = BN_CTX_get(ctx);
|
sl@0
|
936 |
w = BN_CTX_get(ctx);
|
sl@0
|
937 |
if (w == NULL) goto err;
|
sl@0
|
938 |
|
sl@0
|
939 |
if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
|
sl@0
|
940 |
|
sl@0
|
941 |
if (BN_is_zero(a))
|
sl@0
|
942 |
{
|
sl@0
|
943 |
BN_zero(r);
|
sl@0
|
944 |
ret = 1;
|
sl@0
|
945 |
goto err;
|
sl@0
|
946 |
}
|
sl@0
|
947 |
|
sl@0
|
948 |
if (p[0] & 0x1) /* m is odd */
|
sl@0
|
949 |
{
|
sl@0
|
950 |
/* compute half-trace of a */
|
sl@0
|
951 |
if (!BN_copy(z, a)) goto err;
|
sl@0
|
952 |
for (j = 1; j <= (p[0] - 1) / 2; j++)
|
sl@0
|
953 |
{
|
sl@0
|
954 |
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
|
sl@0
|
955 |
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
|
sl@0
|
956 |
if (!BN_GF2m_add(z, z, a)) goto err;
|
sl@0
|
957 |
}
|
sl@0
|
958 |
|
sl@0
|
959 |
}
|
sl@0
|
960 |
else /* m is even */
|
sl@0
|
961 |
{
|
sl@0
|
962 |
rho = BN_CTX_get(ctx);
|
sl@0
|
963 |
w2 = BN_CTX_get(ctx);
|
sl@0
|
964 |
tmp = BN_CTX_get(ctx);
|
sl@0
|
965 |
if (tmp == NULL) goto err;
|
sl@0
|
966 |
do
|
sl@0
|
967 |
{
|
sl@0
|
968 |
if (!BN_rand(rho, p[0], 0, 0)) goto err;
|
sl@0
|
969 |
if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
|
sl@0
|
970 |
BN_zero(z);
|
sl@0
|
971 |
if (!BN_copy(w, rho)) goto err;
|
sl@0
|
972 |
for (j = 1; j <= p[0] - 1; j++)
|
sl@0
|
973 |
{
|
sl@0
|
974 |
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
|
sl@0
|
975 |
if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
|
sl@0
|
976 |
if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
|
sl@0
|
977 |
if (!BN_GF2m_add(z, z, tmp)) goto err;
|
sl@0
|
978 |
if (!BN_GF2m_add(w, w2, rho)) goto err;
|
sl@0
|
979 |
}
|
sl@0
|
980 |
count++;
|
sl@0
|
981 |
} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
|
sl@0
|
982 |
if (BN_is_zero(w))
|
sl@0
|
983 |
{
|
sl@0
|
984 |
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
|
sl@0
|
985 |
goto err;
|
sl@0
|
986 |
}
|
sl@0
|
987 |
}
|
sl@0
|
988 |
|
sl@0
|
989 |
if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
|
sl@0
|
990 |
if (!BN_GF2m_add(w, z, w)) goto err;
|
sl@0
|
991 |
if (BN_GF2m_cmp(w, a))
|
sl@0
|
992 |
{
|
sl@0
|
993 |
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
|
sl@0
|
994 |
goto err;
|
sl@0
|
995 |
}
|
sl@0
|
996 |
|
sl@0
|
997 |
if (!BN_copy(r, z)) goto err;
|
sl@0
|
998 |
bn_check_top(r);
|
sl@0
|
999 |
|
sl@0
|
1000 |
ret = 1;
|
sl@0
|
1001 |
|
sl@0
|
1002 |
err:
|
sl@0
|
1003 |
BN_CTX_end(ctx);
|
sl@0
|
1004 |
return ret;
|
sl@0
|
1005 |
}
|
sl@0
|
1006 |
|
sl@0
|
1007 |
/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
|
sl@0
|
1008 |
*
|
sl@0
|
1009 |
* This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
|
sl@0
|
1010 |
* function is only provided for convenience; for best performance, use the
|
sl@0
|
1011 |
* BN_GF2m_mod_solve_quad_arr function.
|
sl@0
|
1012 |
*/
|
sl@0
|
1013 |
EXPORT_C int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
sl@0
|
1014 |
{
|
sl@0
|
1015 |
int ret = 0;
|
sl@0
|
1016 |
const int max = BN_num_bits(p);
|
sl@0
|
1017 |
unsigned int *arr=NULL;
|
sl@0
|
1018 |
bn_check_top(a);
|
sl@0
|
1019 |
bn_check_top(p);
|
sl@0
|
1020 |
if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) *
|
sl@0
|
1021 |
max)) == NULL) goto err;
|
sl@0
|
1022 |
ret = BN_GF2m_poly2arr(p, arr, max);
|
sl@0
|
1023 |
if (!ret || ret > max)
|
sl@0
|
1024 |
{
|
sl@0
|
1025 |
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
|
sl@0
|
1026 |
goto err;
|
sl@0
|
1027 |
}
|
sl@0
|
1028 |
ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
|
sl@0
|
1029 |
bn_check_top(r);
|
sl@0
|
1030 |
err:
|
sl@0
|
1031 |
if (arr) OPENSSL_free(arr);
|
sl@0
|
1032 |
return ret;
|
sl@0
|
1033 |
}
|
sl@0
|
1034 |
|
sl@0
|
1035 |
/* Convert the bit-string representation of a polynomial
|
sl@0
|
1036 |
* ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
|
sl@0
|
1037 |
* of integers corresponding to the bits with non-zero coefficient.
|
sl@0
|
1038 |
* Up to max elements of the array will be filled. Return value is total
|
sl@0
|
1039 |
* number of coefficients that would be extracted if array was large enough.
|
sl@0
|
1040 |
*/
|
sl@0
|
1041 |
EXPORT_C int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
|
sl@0
|
1042 |
{
|
sl@0
|
1043 |
int i, j, k = 0;
|
sl@0
|
1044 |
BN_ULONG mask;
|
sl@0
|
1045 |
|
sl@0
|
1046 |
if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
|
sl@0
|
1047 |
/* a_0 == 0 => return error (the unsigned int array
|
sl@0
|
1048 |
* must be terminated by 0)
|
sl@0
|
1049 |
*/
|
sl@0
|
1050 |
return 0;
|
sl@0
|
1051 |
|
sl@0
|
1052 |
for (i = a->top - 1; i >= 0; i--)
|
sl@0
|
1053 |
{
|
sl@0
|
1054 |
if (!a->d[i])
|
sl@0
|
1055 |
/* skip word if a->d[i] == 0 */
|
sl@0
|
1056 |
continue;
|
sl@0
|
1057 |
mask = BN_TBIT;
|
sl@0
|
1058 |
for (j = BN_BITS2 - 1; j >= 0; j--)
|
sl@0
|
1059 |
{
|
sl@0
|
1060 |
if (a->d[i] & mask)
|
sl@0
|
1061 |
{
|
sl@0
|
1062 |
if (k < max) p[k] = BN_BITS2 * i + j;
|
sl@0
|
1063 |
k++;
|
sl@0
|
1064 |
}
|
sl@0
|
1065 |
mask >>= 1;
|
sl@0
|
1066 |
}
|
sl@0
|
1067 |
}
|
sl@0
|
1068 |
|
sl@0
|
1069 |
return k;
|
sl@0
|
1070 |
}
|
sl@0
|
1071 |
|
sl@0
|
1072 |
/* Convert the coefficient array representation of a polynomial to a
|
sl@0
|
1073 |
* bit-string. The array must be terminated by 0.
|
sl@0
|
1074 |
*/
|
sl@0
|
1075 |
EXPORT_C int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
|
sl@0
|
1076 |
{
|
sl@0
|
1077 |
int i;
|
sl@0
|
1078 |
|
sl@0
|
1079 |
bn_check_top(a);
|
sl@0
|
1080 |
BN_zero(a);
|
sl@0
|
1081 |
for (i = 0; p[i] != 0; i++)
|
sl@0
|
1082 |
{
|
sl@0
|
1083 |
if (BN_set_bit(a, p[i]) == 0)
|
sl@0
|
1084 |
return 0;
|
sl@0
|
1085 |
|
sl@0
|
1086 |
}
|
sl@0
|
1087 |
BN_set_bit(a, 0);
|
sl@0
|
1088 |
bn_check_top(a);
|
sl@0
|
1089 |
|
sl@0
|
1090 |
return 1;
|
sl@0
|
1091 |
}
|
sl@0
|
1092 |
|