os/ossrv/ssl/libcrypto/src/crypto/bn/bn_gcd.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/* crypto/bn/bn_gcd.c */
sl@0
     2
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
sl@0
     3
 * All rights reserved.
sl@0
     4
 *
sl@0
     5
 * This package is an SSL implementation written
sl@0
     6
 * by Eric Young (eay@cryptsoft.com).
sl@0
     7
 * The implementation was written so as to conform with Netscapes SSL.
sl@0
     8
 * 
sl@0
     9
 * This library is free for commercial and non-commercial use as long as
sl@0
    10
 * the following conditions are aheared to.  The following conditions
sl@0
    11
 * apply to all code found in this distribution, be it the RC4, RSA,
sl@0
    12
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
sl@0
    13
 * included with this distribution is covered by the same copyright terms
sl@0
    14
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
sl@0
    15
 * 
sl@0
    16
 * Copyright remains Eric Young's, and as such any Copyright notices in
sl@0
    17
 * the code are not to be removed.
sl@0
    18
 * If this package is used in a product, Eric Young should be given attribution
sl@0
    19
 * as the author of the parts of the library used.
sl@0
    20
 * This can be in the form of a textual message at program startup or
sl@0
    21
 * in documentation (online or textual) provided with the package.
sl@0
    22
 * 
sl@0
    23
 * Redistribution and use in source and binary forms, with or without
sl@0
    24
 * modification, are permitted provided that the following conditions
sl@0
    25
 * are met:
sl@0
    26
 * 1. Redistributions of source code must retain the copyright
sl@0
    27
 *    notice, this list of conditions and the following disclaimer.
sl@0
    28
 * 2. Redistributions in binary form must reproduce the above copyright
sl@0
    29
 *    notice, this list of conditions and the following disclaimer in the
sl@0
    30
 *    documentation and/or other materials provided with the distribution.
sl@0
    31
 * 3. All advertising materials mentioning features or use of this software
sl@0
    32
 *    must display the following acknowledgement:
sl@0
    33
 *    "This product includes cryptographic software written by
sl@0
    34
 *     Eric Young (eay@cryptsoft.com)"
sl@0
    35
 *    The word 'cryptographic' can be left out if the rouines from the library
sl@0
    36
 *    being used are not cryptographic related :-).
sl@0
    37
 * 4. If you include any Windows specific code (or a derivative thereof) from 
sl@0
    38
 *    the apps directory (application code) you must include an acknowledgement:
sl@0
    39
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
sl@0
    40
 * 
sl@0
    41
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
sl@0
    42
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
sl@0
    43
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
sl@0
    44
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
sl@0
    45
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
sl@0
    46
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
sl@0
    47
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
sl@0
    48
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
sl@0
    49
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
sl@0
    50
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
sl@0
    51
 * SUCH DAMAGE.
sl@0
    52
 * 
sl@0
    53
 * The licence and distribution terms for any publically available version or
sl@0
    54
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
sl@0
    55
 * copied and put under another distribution licence
sl@0
    56
 * [including the GNU Public Licence.]
sl@0
    57
 */
sl@0
    58
/* ====================================================================
sl@0
    59
 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
sl@0
    60
 *
sl@0
    61
 * Redistribution and use in source and binary forms, with or without
sl@0
    62
 * modification, are permitted provided that the following conditions
sl@0
    63
 * are met:
sl@0
    64
 *
sl@0
    65
 * 1. Redistributions of source code must retain the above copyright
sl@0
    66
 *    notice, this list of conditions and the following disclaimer. 
sl@0
    67
 *
sl@0
    68
 * 2. Redistributions in binary form must reproduce the above copyright
sl@0
    69
 *    notice, this list of conditions and the following disclaimer in
sl@0
    70
 *    the documentation and/or other materials provided with the
sl@0
    71
 *    distribution.
sl@0
    72
 *
sl@0
    73
 * 3. All advertising materials mentioning features or use of this
sl@0
    74
 *    software must display the following acknowledgment:
sl@0
    75
 *    "This product includes software developed by the OpenSSL Project
sl@0
    76
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
sl@0
    77
 *
sl@0
    78
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
sl@0
    79
 *    endorse or promote products derived from this software without
sl@0
    80
 *    prior written permission. For written permission, please contact
sl@0
    81
 *    openssl-core@openssl.org.
sl@0
    82
 *
sl@0
    83
 * 5. Products derived from this software may not be called "OpenSSL"
sl@0
    84
 *    nor may "OpenSSL" appear in their names without prior written
sl@0
    85
 *    permission of the OpenSSL Project.
sl@0
    86
 *
sl@0
    87
 * 6. Redistributions of any form whatsoever must retain the following
sl@0
    88
 *    acknowledgment:
sl@0
    89
 *    "This product includes software developed by the OpenSSL Project
sl@0
    90
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
sl@0
    91
 *
sl@0
    92
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
sl@0
    93
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
sl@0
    94
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
sl@0
    95
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
sl@0
    96
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
sl@0
    97
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
sl@0
    98
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
sl@0
    99
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
sl@0
   100
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
sl@0
   101
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
sl@0
   102
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
sl@0
   103
 * OF THE POSSIBILITY OF SUCH DAMAGE.
sl@0
   104
 * ====================================================================
sl@0
   105
 *
sl@0
   106
 * This product includes cryptographic software written by Eric Young
sl@0
   107
 * (eay@cryptsoft.com).  This product includes software written by Tim
sl@0
   108
 * Hudson (tjh@cryptsoft.com).
sl@0
   109
 *
sl@0
   110
 */
sl@0
   111
sl@0
   112
#include "cryptlib.h"
sl@0
   113
#include "bn_lcl.h"
sl@0
   114
sl@0
   115
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
sl@0
   116
sl@0
   117
EXPORT_C int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
sl@0
   118
	{
sl@0
   119
	BIGNUM *a,*b,*t;
sl@0
   120
	int ret=0;
sl@0
   121
sl@0
   122
	bn_check_top(in_a);
sl@0
   123
	bn_check_top(in_b);
sl@0
   124
sl@0
   125
	BN_CTX_start(ctx);
sl@0
   126
	a = BN_CTX_get(ctx);
sl@0
   127
	b = BN_CTX_get(ctx);
sl@0
   128
	if (a == NULL || b == NULL) goto err;
sl@0
   129
sl@0
   130
	if (BN_copy(a,in_a) == NULL) goto err;
sl@0
   131
	if (BN_copy(b,in_b) == NULL) goto err;
sl@0
   132
	a->neg = 0;
sl@0
   133
	b->neg = 0;
sl@0
   134
sl@0
   135
	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
sl@0
   136
	t=euclid(a,b);
sl@0
   137
	if (t == NULL) goto err;
sl@0
   138
sl@0
   139
	if (BN_copy(r,t) == NULL) goto err;
sl@0
   140
	ret=1;
sl@0
   141
err:
sl@0
   142
	BN_CTX_end(ctx);
sl@0
   143
	bn_check_top(r);
sl@0
   144
	return(ret);
sl@0
   145
	}
sl@0
   146
sl@0
   147
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
sl@0
   148
	{
sl@0
   149
	BIGNUM *t;
sl@0
   150
	int shifts=0;
sl@0
   151
sl@0
   152
	bn_check_top(a);
sl@0
   153
	bn_check_top(b);
sl@0
   154
sl@0
   155
	/* 0 <= b <= a */
sl@0
   156
	while (!BN_is_zero(b))
sl@0
   157
		{
sl@0
   158
		/* 0 < b <= a */
sl@0
   159
sl@0
   160
		if (BN_is_odd(a))
sl@0
   161
			{
sl@0
   162
			if (BN_is_odd(b))
sl@0
   163
				{
sl@0
   164
				if (!BN_sub(a,a,b)) goto err;
sl@0
   165
				if (!BN_rshift1(a,a)) goto err;
sl@0
   166
				if (BN_cmp(a,b) < 0)
sl@0
   167
					{ t=a; a=b; b=t; }
sl@0
   168
				}
sl@0
   169
			else		/* a odd - b even */
sl@0
   170
				{
sl@0
   171
				if (!BN_rshift1(b,b)) goto err;
sl@0
   172
				if (BN_cmp(a,b) < 0)
sl@0
   173
					{ t=a; a=b; b=t; }
sl@0
   174
				}
sl@0
   175
			}
sl@0
   176
		else			/* a is even */
sl@0
   177
			{
sl@0
   178
			if (BN_is_odd(b))
sl@0
   179
				{
sl@0
   180
				if (!BN_rshift1(a,a)) goto err;
sl@0
   181
				if (BN_cmp(a,b) < 0)
sl@0
   182
					{ t=a; a=b; b=t; }
sl@0
   183
				}
sl@0
   184
			else		/* a even - b even */
sl@0
   185
				{
sl@0
   186
				if (!BN_rshift1(a,a)) goto err;
sl@0
   187
				if (!BN_rshift1(b,b)) goto err;
sl@0
   188
				shifts++;
sl@0
   189
				}
sl@0
   190
			}
sl@0
   191
		/* 0 <= b <= a */
sl@0
   192
		}
sl@0
   193
sl@0
   194
	if (shifts)
sl@0
   195
		{
sl@0
   196
		if (!BN_lshift(a,a,shifts)) goto err;
sl@0
   197
		}
sl@0
   198
	bn_check_top(a);
sl@0
   199
	return(a);
sl@0
   200
err:
sl@0
   201
	return(NULL);
sl@0
   202
	}
sl@0
   203
sl@0
   204
sl@0
   205
/* solves ax == 1 (mod n) */
sl@0
   206
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
sl@0
   207
        const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
sl@0
   208
EXPORT_C BIGNUM *BN_mod_inverse(BIGNUM *in,
sl@0
   209
	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
sl@0
   210
	{
sl@0
   211
	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
sl@0
   212
	BIGNUM *ret=NULL;
sl@0
   213
	int sign;
sl@0
   214
	if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0))
sl@0
   215
		{
sl@0
   216
		return BN_mod_inverse_no_branch(in, a, n, ctx);
sl@0
   217
		}
sl@0
   218
sl@0
   219
	bn_check_top(a);
sl@0
   220
	bn_check_top(n);
sl@0
   221
sl@0
   222
	BN_CTX_start(ctx);
sl@0
   223
	A = BN_CTX_get(ctx);
sl@0
   224
	B = BN_CTX_get(ctx);
sl@0
   225
	X = BN_CTX_get(ctx);
sl@0
   226
	D = BN_CTX_get(ctx);
sl@0
   227
	M = BN_CTX_get(ctx);
sl@0
   228
	Y = BN_CTX_get(ctx);
sl@0
   229
	T = BN_CTX_get(ctx);
sl@0
   230
	if (T == NULL) goto err;
sl@0
   231
sl@0
   232
	if (in == NULL)
sl@0
   233
		R=BN_new();
sl@0
   234
	else
sl@0
   235
		R=in;
sl@0
   236
	if (R == NULL) goto err;
sl@0
   237
sl@0
   238
	BN_one(X);
sl@0
   239
	BN_zero(Y);
sl@0
   240
	if (BN_copy(B,a) == NULL) goto err;
sl@0
   241
	if (BN_copy(A,n) == NULL) goto err;
sl@0
   242
	A->neg = 0;
sl@0
   243
	if (B->neg || (BN_ucmp(B, A) >= 0))
sl@0
   244
		{
sl@0
   245
		if (!BN_nnmod(B, B, A, ctx)) goto err;
sl@0
   246
		}
sl@0
   247
	sign = -1;
sl@0
   248
	/* From  B = a mod |n|,  A = |n|  it follows that
sl@0
   249
	 *
sl@0
   250
	 *      0 <= B < A,
sl@0
   251
	 *     -sign*X*a  ==  B   (mod |n|),
sl@0
   252
	 *      sign*Y*a  ==  A   (mod |n|).
sl@0
   253
	 */
sl@0
   254
sl@0
   255
	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
sl@0
   256
		{
sl@0
   257
		/* Binary inversion algorithm; requires odd modulus.
sl@0
   258
		 * This is faster than the general algorithm if the modulus
sl@0
   259
		 * is sufficiently small (about 400 .. 500 bits on 32-bit
sl@0
   260
		 * sytems, but much more on 64-bit systems) */
sl@0
   261
		int shift;
sl@0
   262
		
sl@0
   263
		while (!BN_is_zero(B))
sl@0
   264
			{
sl@0
   265
			/*
sl@0
   266
			 *      0 < B < |n|,
sl@0
   267
			 *      0 < A <= |n|,
sl@0
   268
			 * (1) -sign*X*a  ==  B   (mod |n|),
sl@0
   269
			 * (2)  sign*Y*a  ==  A   (mod |n|)
sl@0
   270
			 */
sl@0
   271
sl@0
   272
			/* Now divide  B  by the maximum possible power of two in the integers,
sl@0
   273
			 * and divide  X  by the same value mod |n|.
sl@0
   274
			 * When we're done, (1) still holds. */
sl@0
   275
			shift = 0;
sl@0
   276
			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
sl@0
   277
				{
sl@0
   278
				shift++;
sl@0
   279
				
sl@0
   280
				if (BN_is_odd(X))
sl@0
   281
					{
sl@0
   282
					if (!BN_uadd(X, X, n)) goto err;
sl@0
   283
					}
sl@0
   284
				/* now X is even, so we can easily divide it by two */
sl@0
   285
				if (!BN_rshift1(X, X)) goto err;
sl@0
   286
				}
sl@0
   287
			if (shift > 0)
sl@0
   288
				{
sl@0
   289
				if (!BN_rshift(B, B, shift)) goto err;
sl@0
   290
				}
sl@0
   291
sl@0
   292
sl@0
   293
			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
sl@0
   294
			shift = 0;
sl@0
   295
			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
sl@0
   296
				{
sl@0
   297
				shift++;
sl@0
   298
				
sl@0
   299
				if (BN_is_odd(Y))
sl@0
   300
					{
sl@0
   301
					if (!BN_uadd(Y, Y, n)) goto err;
sl@0
   302
					}
sl@0
   303
				/* now Y is even */
sl@0
   304
				if (!BN_rshift1(Y, Y)) goto err;
sl@0
   305
				}
sl@0
   306
			if (shift > 0)
sl@0
   307
				{
sl@0
   308
				if (!BN_rshift(A, A, shift)) goto err;
sl@0
   309
				}
sl@0
   310
sl@0
   311
			
sl@0
   312
			/* We still have (1) and (2).
sl@0
   313
			 * Both  A  and  B  are odd.
sl@0
   314
			 * The following computations ensure that
sl@0
   315
			 *
sl@0
   316
			 *     0 <= B < |n|,
sl@0
   317
			 *      0 < A < |n|,
sl@0
   318
			 * (1) -sign*X*a  ==  B   (mod |n|),
sl@0
   319
			 * (2)  sign*Y*a  ==  A   (mod |n|),
sl@0
   320
			 *
sl@0
   321
			 * and that either  A  or  B  is even in the next iteration.
sl@0
   322
			 */
sl@0
   323
			if (BN_ucmp(B, A) >= 0)
sl@0
   324
				{
sl@0
   325
				/* -sign*(X + Y)*a == B - A  (mod |n|) */
sl@0
   326
				if (!BN_uadd(X, X, Y)) goto err;
sl@0
   327
				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
sl@0
   328
				 * actually makes the algorithm slower */
sl@0
   329
				if (!BN_usub(B, B, A)) goto err;
sl@0
   330
				}
sl@0
   331
			else
sl@0
   332
				{
sl@0
   333
				/*  sign*(X + Y)*a == A - B  (mod |n|) */
sl@0
   334
				if (!BN_uadd(Y, Y, X)) goto err;
sl@0
   335
				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
sl@0
   336
				if (!BN_usub(A, A, B)) goto err;
sl@0
   337
				}
sl@0
   338
			}
sl@0
   339
		}
sl@0
   340
	else
sl@0
   341
		{
sl@0
   342
		/* general inversion algorithm */
sl@0
   343
sl@0
   344
		while (!BN_is_zero(B))
sl@0
   345
			{
sl@0
   346
			BIGNUM *tmp;
sl@0
   347
			
sl@0
   348
			/*
sl@0
   349
			 *      0 < B < A,
sl@0
   350
			 * (*) -sign*X*a  ==  B   (mod |n|),
sl@0
   351
			 *      sign*Y*a  ==  A   (mod |n|)
sl@0
   352
			 */
sl@0
   353
			
sl@0
   354
			/* (D, M) := (A/B, A%B) ... */
sl@0
   355
			if (BN_num_bits(A) == BN_num_bits(B))
sl@0
   356
				{
sl@0
   357
				if (!BN_one(D)) goto err;
sl@0
   358
				if (!BN_sub(M,A,B)) goto err;
sl@0
   359
				}
sl@0
   360
			else if (BN_num_bits(A) == BN_num_bits(B) + 1)
sl@0
   361
				{
sl@0
   362
				/* A/B is 1, 2, or 3 */
sl@0
   363
				if (!BN_lshift1(T,B)) goto err;
sl@0
   364
				if (BN_ucmp(A,T) < 0)
sl@0
   365
					{
sl@0
   366
					/* A < 2*B, so D=1 */
sl@0
   367
					if (!BN_one(D)) goto err;
sl@0
   368
					if (!BN_sub(M,A,B)) goto err;
sl@0
   369
					}
sl@0
   370
				else
sl@0
   371
					{
sl@0
   372
					/* A >= 2*B, so D=2 or D=3 */
sl@0
   373
					if (!BN_sub(M,A,T)) goto err;
sl@0
   374
					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
sl@0
   375
					if (BN_ucmp(A,D) < 0)
sl@0
   376
						{
sl@0
   377
						/* A < 3*B, so D=2 */
sl@0
   378
						if (!BN_set_word(D,2)) goto err;
sl@0
   379
						/* M (= A - 2*B) already has the correct value */
sl@0
   380
						}
sl@0
   381
					else
sl@0
   382
						{
sl@0
   383
						/* only D=3 remains */
sl@0
   384
						if (!BN_set_word(D,3)) goto err;
sl@0
   385
						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
sl@0
   386
						if (!BN_sub(M,M,B)) goto err;
sl@0
   387
						}
sl@0
   388
					}
sl@0
   389
				}
sl@0
   390
			else
sl@0
   391
				{
sl@0
   392
				if (!BN_div(D,M,A,B,ctx)) goto err;
sl@0
   393
				}
sl@0
   394
			
sl@0
   395
			/* Now
sl@0
   396
			 *      A = D*B + M;
sl@0
   397
			 * thus we have
sl@0
   398
			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
sl@0
   399
			 */
sl@0
   400
			
sl@0
   401
			tmp=A; /* keep the BIGNUM object, the value does not matter */
sl@0
   402
			
sl@0
   403
			/* (A, B) := (B, A mod B) ... */
sl@0
   404
			A=B;
sl@0
   405
			B=M;
sl@0
   406
			/* ... so we have  0 <= B < A  again */
sl@0
   407
			
sl@0
   408
			/* Since the former  M  is now  B  and the former  B  is now  A,
sl@0
   409
			 * (**) translates into
sl@0
   410
			 *       sign*Y*a  ==  D*A + B    (mod |n|),
sl@0
   411
			 * i.e.
sl@0
   412
			 *       sign*Y*a - D*A  ==  B    (mod |n|).
sl@0
   413
			 * Similarly, (*) translates into
sl@0
   414
			 *      -sign*X*a  ==  A          (mod |n|).
sl@0
   415
			 *
sl@0
   416
			 * Thus,
sl@0
   417
			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
sl@0
   418
			 * i.e.
sl@0
   419
			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
sl@0
   420
			 *
sl@0
   421
			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
sl@0
   422
			 *      -sign*X*a  ==  B   (mod |n|),
sl@0
   423
			 *       sign*Y*a  ==  A   (mod |n|).
sl@0
   424
			 * Note that  X  and  Y  stay non-negative all the time.
sl@0
   425
			 */
sl@0
   426
			
sl@0
   427
			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
sl@0
   428
			if (BN_is_one(D))
sl@0
   429
				{
sl@0
   430
				if (!BN_add(tmp,X,Y)) goto err;
sl@0
   431
				}
sl@0
   432
			else
sl@0
   433
				{
sl@0
   434
				if (BN_is_word(D,2))
sl@0
   435
					{
sl@0
   436
					if (!BN_lshift1(tmp,X)) goto err;
sl@0
   437
					}
sl@0
   438
				else if (BN_is_word(D,4))
sl@0
   439
					{
sl@0
   440
					if (!BN_lshift(tmp,X,2)) goto err;
sl@0
   441
					}
sl@0
   442
				else if (D->top == 1)
sl@0
   443
					{
sl@0
   444
					if (!BN_copy(tmp,X)) goto err;
sl@0
   445
					if (!BN_mul_word(tmp,D->d[0])) goto err;
sl@0
   446
					}
sl@0
   447
				else
sl@0
   448
					{
sl@0
   449
					if (!BN_mul(tmp,D,X,ctx)) goto err;
sl@0
   450
					}
sl@0
   451
				if (!BN_add(tmp,tmp,Y)) goto err;
sl@0
   452
				}
sl@0
   453
			
sl@0
   454
			M=Y; /* keep the BIGNUM object, the value does not matter */
sl@0
   455
			Y=X;
sl@0
   456
			X=tmp;
sl@0
   457
			sign = -sign;
sl@0
   458
			}
sl@0
   459
		}
sl@0
   460
		
sl@0
   461
	/*
sl@0
   462
	 * The while loop (Euclid's algorithm) ends when
sl@0
   463
	 *      A == gcd(a,n);
sl@0
   464
	 * we have
sl@0
   465
	 *       sign*Y*a  ==  A  (mod |n|),
sl@0
   466
	 * where  Y  is non-negative.
sl@0
   467
	 */
sl@0
   468
sl@0
   469
	if (sign < 0)
sl@0
   470
		{
sl@0
   471
		if (!BN_sub(Y,n,Y)) goto err;
sl@0
   472
		}
sl@0
   473
	/* Now  Y*a  ==  A  (mod |n|).  */
sl@0
   474
	
sl@0
   475
sl@0
   476
	if (BN_is_one(A))
sl@0
   477
		{
sl@0
   478
		/* Y*a == 1  (mod |n|) */
sl@0
   479
		if (!Y->neg && BN_ucmp(Y,n) < 0)
sl@0
   480
			{
sl@0
   481
			if (!BN_copy(R,Y)) goto err;
sl@0
   482
			}
sl@0
   483
		else
sl@0
   484
			{
sl@0
   485
			if (!BN_nnmod(R,Y,n,ctx)) goto err;
sl@0
   486
			}
sl@0
   487
		}
sl@0
   488
	else
sl@0
   489
		{
sl@0
   490
		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
sl@0
   491
		goto err;
sl@0
   492
		}
sl@0
   493
	ret=R;
sl@0
   494
err:
sl@0
   495
	if ((ret == NULL) && (in == NULL)) BN_free(R);
sl@0
   496
	BN_CTX_end(ctx);
sl@0
   497
	bn_check_top(ret);
sl@0
   498
	return(ret);
sl@0
   499
	}
sl@0
   500
sl@0
   501
sl@0
   502
/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. 
sl@0
   503
 * It does not contain branches that may leak sensitive information.
sl@0
   504
 */
sl@0
   505
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
sl@0
   506
	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
sl@0
   507
	{
sl@0
   508
	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
sl@0
   509
	BIGNUM local_A, local_B;
sl@0
   510
	BIGNUM *pA, *pB;
sl@0
   511
	BIGNUM *ret=NULL;
sl@0
   512
	int sign;
sl@0
   513
sl@0
   514
	bn_check_top(a);
sl@0
   515
	bn_check_top(n);
sl@0
   516
sl@0
   517
	BN_CTX_start(ctx);
sl@0
   518
	A = BN_CTX_get(ctx);
sl@0
   519
	B = BN_CTX_get(ctx);
sl@0
   520
	X = BN_CTX_get(ctx);
sl@0
   521
	D = BN_CTX_get(ctx);
sl@0
   522
	M = BN_CTX_get(ctx);
sl@0
   523
	Y = BN_CTX_get(ctx);
sl@0
   524
	T = BN_CTX_get(ctx);
sl@0
   525
	if (T == NULL) goto err;
sl@0
   526
sl@0
   527
	if (in == NULL)
sl@0
   528
		R=BN_new();
sl@0
   529
	else
sl@0
   530
		R=in;
sl@0
   531
	if (R == NULL) goto err;
sl@0
   532
sl@0
   533
	BN_one(X);
sl@0
   534
	BN_zero(Y);
sl@0
   535
	if (BN_copy(B,a) == NULL) goto err;
sl@0
   536
	if (BN_copy(A,n) == NULL) goto err;
sl@0
   537
	A->neg = 0;
sl@0
   538
sl@0
   539
	if (B->neg || (BN_ucmp(B, A) >= 0))
sl@0
   540
		{
sl@0
   541
		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
sl@0
   542
	 	 * BN_div_no_branch will be called eventually.
sl@0
   543
	 	 */
sl@0
   544
		pB = &local_B;
sl@0
   545
		BN_with_flags(pB, B, BN_FLG_CONSTTIME);	
sl@0
   546
		if (!BN_nnmod(B, pB, A, ctx)) goto err;
sl@0
   547
		}
sl@0
   548
	sign = -1;
sl@0
   549
	/* From  B = a mod |n|,  A = |n|  it follows that
sl@0
   550
	 *
sl@0
   551
	 *      0 <= B < A,
sl@0
   552
	 *     -sign*X*a  ==  B   (mod |n|),
sl@0
   553
	 *      sign*Y*a  ==  A   (mod |n|).
sl@0
   554
	 */
sl@0
   555
sl@0
   556
	while (!BN_is_zero(B))
sl@0
   557
		{
sl@0
   558
		BIGNUM *tmp;
sl@0
   559
		
sl@0
   560
		/*
sl@0
   561
		 *      0 < B < A,
sl@0
   562
		 * (*) -sign*X*a  ==  B   (mod |n|),
sl@0
   563
		 *      sign*Y*a  ==  A   (mod |n|)
sl@0
   564
		 */
sl@0
   565
sl@0
   566
		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
sl@0
   567
	 	 * BN_div_no_branch will be called eventually.
sl@0
   568
	 	 */
sl@0
   569
		pA = &local_A;
sl@0
   570
		BN_with_flags(pA, A, BN_FLG_CONSTTIME);	
sl@0
   571
		
sl@0
   572
		/* (D, M) := (A/B, A%B) ... */		
sl@0
   573
		if (!BN_div(D,M,pA,B,ctx)) goto err;
sl@0
   574
		
sl@0
   575
		/* Now
sl@0
   576
		 *      A = D*B + M;
sl@0
   577
		 * thus we have
sl@0
   578
		 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
sl@0
   579
		 */
sl@0
   580
		
sl@0
   581
		tmp=A; /* keep the BIGNUM object, the value does not matter */
sl@0
   582
		
sl@0
   583
		/* (A, B) := (B, A mod B) ... */
sl@0
   584
		A=B;
sl@0
   585
		B=M;
sl@0
   586
		/* ... so we have  0 <= B < A  again */
sl@0
   587
		
sl@0
   588
		/* Since the former  M  is now  B  and the former  B  is now  A,
sl@0
   589
		 * (**) translates into
sl@0
   590
		 *       sign*Y*a  ==  D*A + B    (mod |n|),
sl@0
   591
		 * i.e.
sl@0
   592
		 *       sign*Y*a - D*A  ==  B    (mod |n|).
sl@0
   593
		 * Similarly, (*) translates into
sl@0
   594
		 *      -sign*X*a  ==  A          (mod |n|).
sl@0
   595
		 *
sl@0
   596
		 * Thus,
sl@0
   597
		 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
sl@0
   598
		 * i.e.
sl@0
   599
		 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
sl@0
   600
		 *
sl@0
   601
		 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
sl@0
   602
		 *      -sign*X*a  ==  B   (mod |n|),
sl@0
   603
		 *       sign*Y*a  ==  A   (mod |n|).
sl@0
   604
		 * Note that  X  and  Y  stay non-negative all the time.
sl@0
   605
		 */
sl@0
   606
			
sl@0
   607
		if (!BN_mul(tmp,D,X,ctx)) goto err;
sl@0
   608
		if (!BN_add(tmp,tmp,Y)) goto err;
sl@0
   609
sl@0
   610
		M=Y; /* keep the BIGNUM object, the value does not matter */
sl@0
   611
		Y=X;
sl@0
   612
		X=tmp;
sl@0
   613
		sign = -sign;
sl@0
   614
		}
sl@0
   615
		
sl@0
   616
	/*
sl@0
   617
	 * The while loop (Euclid's algorithm) ends when
sl@0
   618
	 *      A == gcd(a,n);
sl@0
   619
	 * we have
sl@0
   620
	 *       sign*Y*a  ==  A  (mod |n|),
sl@0
   621
	 * where  Y  is non-negative.
sl@0
   622
	 */
sl@0
   623
sl@0
   624
	if (sign < 0)
sl@0
   625
		{
sl@0
   626
		if (!BN_sub(Y,n,Y)) goto err;
sl@0
   627
		}
sl@0
   628
	/* Now  Y*a  ==  A  (mod |n|).  */
sl@0
   629
sl@0
   630
	if (BN_is_one(A))
sl@0
   631
		{
sl@0
   632
		/* Y*a == 1  (mod |n|) */
sl@0
   633
		if (!Y->neg && BN_ucmp(Y,n) < 0)
sl@0
   634
			{
sl@0
   635
			if (!BN_copy(R,Y)) goto err;
sl@0
   636
			}
sl@0
   637
		else
sl@0
   638
			{
sl@0
   639
			if (!BN_nnmod(R,Y,n,ctx)) goto err;
sl@0
   640
			}
sl@0
   641
		}
sl@0
   642
	else
sl@0
   643
		{
sl@0
   644
		BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE);
sl@0
   645
		goto err;
sl@0
   646
		}
sl@0
   647
	ret=R;
sl@0
   648
err:
sl@0
   649
	if ((ret == NULL) && (in == NULL)) BN_free(R);
sl@0
   650
	BN_CTX_end(ctx);
sl@0
   651
	bn_check_top(ret);
sl@0
   652
	return(ret);
sl@0
   653
	}