sl@0
|
1 |
/* crypto/bn/bn_div.c */
|
sl@0
|
2 |
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
sl@0
|
3 |
* All rights reserved.
|
sl@0
|
4 |
*
|
sl@0
|
5 |
* This package is an SSL implementation written
|
sl@0
|
6 |
* by Eric Young (eay@cryptsoft.com).
|
sl@0
|
7 |
* The implementation was written so as to conform with Netscapes SSL.
|
sl@0
|
8 |
*
|
sl@0
|
9 |
* This library is free for commercial and non-commercial use as long as
|
sl@0
|
10 |
* the following conditions are aheared to. The following conditions
|
sl@0
|
11 |
* apply to all code found in this distribution, be it the RC4, RSA,
|
sl@0
|
12 |
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
sl@0
|
13 |
* included with this distribution is covered by the same copyright terms
|
sl@0
|
14 |
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
sl@0
|
15 |
*
|
sl@0
|
16 |
* Copyright remains Eric Young's, and as such any Copyright notices in
|
sl@0
|
17 |
* the code are not to be removed.
|
sl@0
|
18 |
* If this package is used in a product, Eric Young should be given attribution
|
sl@0
|
19 |
* as the author of the parts of the library used.
|
sl@0
|
20 |
* This can be in the form of a textual message at program startup or
|
sl@0
|
21 |
* in documentation (online or textual) provided with the package.
|
sl@0
|
22 |
*
|
sl@0
|
23 |
* Redistribution and use in source and binary forms, with or without
|
sl@0
|
24 |
* modification, are permitted provided that the following conditions
|
sl@0
|
25 |
* are met:
|
sl@0
|
26 |
* 1. Redistributions of source code must retain the copyright
|
sl@0
|
27 |
* notice, this list of conditions and the following disclaimer.
|
sl@0
|
28 |
* 2. Redistributions in binary form must reproduce the above copyright
|
sl@0
|
29 |
* notice, this list of conditions and the following disclaimer in the
|
sl@0
|
30 |
* documentation and/or other materials provided with the distribution.
|
sl@0
|
31 |
* 3. All advertising materials mentioning features or use of this software
|
sl@0
|
32 |
* must display the following acknowledgement:
|
sl@0
|
33 |
* "This product includes cryptographic software written by
|
sl@0
|
34 |
* Eric Young (eay@cryptsoft.com)"
|
sl@0
|
35 |
* The word 'cryptographic' can be left out if the rouines from the library
|
sl@0
|
36 |
* being used are not cryptographic related :-).
|
sl@0
|
37 |
* 4. If you include any Windows specific code (or a derivative thereof) from
|
sl@0
|
38 |
* the apps directory (application code) you must include an acknowledgement:
|
sl@0
|
39 |
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
sl@0
|
40 |
*
|
sl@0
|
41 |
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
sl@0
|
42 |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
sl@0
|
43 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
sl@0
|
44 |
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
sl@0
|
45 |
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
sl@0
|
46 |
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
sl@0
|
47 |
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
sl@0
|
48 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
sl@0
|
49 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
sl@0
|
50 |
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
sl@0
|
51 |
* SUCH DAMAGE.
|
sl@0
|
52 |
*
|
sl@0
|
53 |
* The licence and distribution terms for any publically available version or
|
sl@0
|
54 |
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
sl@0
|
55 |
* copied and put under another distribution licence
|
sl@0
|
56 |
* [including the GNU Public Licence.]
|
sl@0
|
57 |
*/
|
sl@0
|
58 |
|
sl@0
|
59 |
#include <stdio.h>
|
sl@0
|
60 |
#include <openssl/bn.h>
|
sl@0
|
61 |
#include "cryptlib.h"
|
sl@0
|
62 |
#include "bn_lcl.h"
|
sl@0
|
63 |
|
sl@0
|
64 |
|
sl@0
|
65 |
/* The old slow way */
|
sl@0
|
66 |
#if 0
|
sl@0
|
67 |
EXPORT_C int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
|
sl@0
|
68 |
BN_CTX *ctx)
|
sl@0
|
69 |
{
|
sl@0
|
70 |
int i,nm,nd;
|
sl@0
|
71 |
int ret = 0;
|
sl@0
|
72 |
BIGNUM *D;
|
sl@0
|
73 |
|
sl@0
|
74 |
bn_check_top(m);
|
sl@0
|
75 |
bn_check_top(d);
|
sl@0
|
76 |
if (BN_is_zero(d))
|
sl@0
|
77 |
{
|
sl@0
|
78 |
BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO);
|
sl@0
|
79 |
return(0);
|
sl@0
|
80 |
}
|
sl@0
|
81 |
|
sl@0
|
82 |
if (BN_ucmp(m,d) < 0)
|
sl@0
|
83 |
{
|
sl@0
|
84 |
if (rem != NULL)
|
sl@0
|
85 |
{ if (BN_copy(rem,m) == NULL) return(0); }
|
sl@0
|
86 |
if (dv != NULL) BN_zero(dv);
|
sl@0
|
87 |
return(1);
|
sl@0
|
88 |
}
|
sl@0
|
89 |
|
sl@0
|
90 |
BN_CTX_start(ctx);
|
sl@0
|
91 |
D = BN_CTX_get(ctx);
|
sl@0
|
92 |
if (dv == NULL) dv = BN_CTX_get(ctx);
|
sl@0
|
93 |
if (rem == NULL) rem = BN_CTX_get(ctx);
|
sl@0
|
94 |
if (D == NULL || dv == NULL || rem == NULL)
|
sl@0
|
95 |
goto end;
|
sl@0
|
96 |
|
sl@0
|
97 |
nd=BN_num_bits(d);
|
sl@0
|
98 |
nm=BN_num_bits(m);
|
sl@0
|
99 |
if (BN_copy(D,d) == NULL) goto end;
|
sl@0
|
100 |
if (BN_copy(rem,m) == NULL) goto end;
|
sl@0
|
101 |
|
sl@0
|
102 |
/* The next 2 are needed so we can do a dv->d[0]|=1 later
|
sl@0
|
103 |
* since BN_lshift1 will only work once there is a value :-) */
|
sl@0
|
104 |
BN_zero(dv);
|
sl@0
|
105 |
bn_wexpand(dv,1);
|
sl@0
|
106 |
dv->top=1;
|
sl@0
|
107 |
|
sl@0
|
108 |
if (!BN_lshift(D,D,nm-nd)) goto end;
|
sl@0
|
109 |
for (i=nm-nd; i>=0; i--)
|
sl@0
|
110 |
{
|
sl@0
|
111 |
if (!BN_lshift1(dv,dv)) goto end;
|
sl@0
|
112 |
if (BN_ucmp(rem,D) >= 0)
|
sl@0
|
113 |
{
|
sl@0
|
114 |
dv->d[0]|=1;
|
sl@0
|
115 |
if (!BN_usub(rem,rem,D)) goto end;
|
sl@0
|
116 |
}
|
sl@0
|
117 |
/* CAN IMPROVE (and have now :=) */
|
sl@0
|
118 |
if (!BN_rshift1(D,D)) goto end;
|
sl@0
|
119 |
}
|
sl@0
|
120 |
rem->neg=BN_is_zero(rem)?0:m->neg;
|
sl@0
|
121 |
dv->neg=m->neg^d->neg;
|
sl@0
|
122 |
ret = 1;
|
sl@0
|
123 |
end:
|
sl@0
|
124 |
BN_CTX_end(ctx);
|
sl@0
|
125 |
return(ret);
|
sl@0
|
126 |
}
|
sl@0
|
127 |
|
sl@0
|
128 |
#else
|
sl@0
|
129 |
|
sl@0
|
130 |
#if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \
|
sl@0
|
131 |
&& !defined(PEDANTIC) && !defined(BN_DIV3W)
|
sl@0
|
132 |
# if defined(__GNUC__) && __GNUC__>=2
|
sl@0
|
133 |
# if defined(__i386) || defined (__i386__)
|
sl@0
|
134 |
/*
|
sl@0
|
135 |
* There were two reasons for implementing this template:
|
sl@0
|
136 |
* - GNU C generates a call to a function (__udivdi3 to be exact)
|
sl@0
|
137 |
* in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
|
sl@0
|
138 |
* understand why...);
|
sl@0
|
139 |
* - divl doesn't only calculate quotient, but also leaves
|
sl@0
|
140 |
* remainder in %edx which we can definitely use here:-)
|
sl@0
|
141 |
*
|
sl@0
|
142 |
* <appro@fy.chalmers.se>
|
sl@0
|
143 |
*/
|
sl@0
|
144 |
# define bn_div_words(n0,n1,d0) \
|
sl@0
|
145 |
({ asm volatile ( \
|
sl@0
|
146 |
"divl %4" \
|
sl@0
|
147 |
: "=a"(q), "=d"(rem) \
|
sl@0
|
148 |
: "a"(n1), "d"(n0), "g"(d0) \
|
sl@0
|
149 |
: "cc"); \
|
sl@0
|
150 |
q; \
|
sl@0
|
151 |
})
|
sl@0
|
152 |
# define REMAINDER_IS_ALREADY_CALCULATED
|
sl@0
|
153 |
# elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
|
sl@0
|
154 |
/*
|
sl@0
|
155 |
* Same story here, but it's 128-bit by 64-bit division. Wow!
|
sl@0
|
156 |
* <appro@fy.chalmers.se>
|
sl@0
|
157 |
*/
|
sl@0
|
158 |
# define bn_div_words(n0,n1,d0) \
|
sl@0
|
159 |
({ asm volatile ( \
|
sl@0
|
160 |
"divq %4" \
|
sl@0
|
161 |
: "=a"(q), "=d"(rem) \
|
sl@0
|
162 |
: "a"(n1), "d"(n0), "g"(d0) \
|
sl@0
|
163 |
: "cc"); \
|
sl@0
|
164 |
q; \
|
sl@0
|
165 |
})
|
sl@0
|
166 |
# define REMAINDER_IS_ALREADY_CALCULATED
|
sl@0
|
167 |
# endif /* __<cpu> */
|
sl@0
|
168 |
# endif /* __GNUC__ */
|
sl@0
|
169 |
#endif /* OPENSSL_NO_ASM */
|
sl@0
|
170 |
|
sl@0
|
171 |
|
sl@0
|
172 |
/* BN_div[_no_branch] computes dv := num / divisor, rounding towards
|
sl@0
|
173 |
* zero, and sets up rm such that dv*divisor + rm = num holds.
|
sl@0
|
174 |
* Thus:
|
sl@0
|
175 |
* dv->neg == num->neg ^ divisor->neg (unless the result is zero)
|
sl@0
|
176 |
* rm->neg == num->neg (unless the remainder is zero)
|
sl@0
|
177 |
* If 'dv' or 'rm' is NULL, the respective value is not returned.
|
sl@0
|
178 |
*/
|
sl@0
|
179 |
static int BN_div_no_branch(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
|
sl@0
|
180 |
const BIGNUM *divisor, BN_CTX *ctx);
|
sl@0
|
181 |
EXPORT_C int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
|
sl@0
|
182 |
BN_CTX *ctx)
|
sl@0
|
183 |
{
|
sl@0
|
184 |
int norm_shift,i,loop;
|
sl@0
|
185 |
BIGNUM *tmp,wnum,*snum,*sdiv,*res;
|
sl@0
|
186 |
BN_ULONG *resp,*wnump;
|
sl@0
|
187 |
BN_ULONG d0,d1;
|
sl@0
|
188 |
int num_n,div_n;
|
sl@0
|
189 |
if ((BN_get_flags(num, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0))
|
sl@0
|
190 |
{
|
sl@0
|
191 |
return BN_div_no_branch(dv, rm, num, divisor, ctx);
|
sl@0
|
192 |
}
|
sl@0
|
193 |
|
sl@0
|
194 |
bn_check_top(dv);
|
sl@0
|
195 |
bn_check_top(rm);
|
sl@0
|
196 |
bn_check_top(num);
|
sl@0
|
197 |
bn_check_top(divisor);
|
sl@0
|
198 |
|
sl@0
|
199 |
if (BN_is_zero(divisor))
|
sl@0
|
200 |
{
|
sl@0
|
201 |
BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO);
|
sl@0
|
202 |
return(0);
|
sl@0
|
203 |
}
|
sl@0
|
204 |
|
sl@0
|
205 |
if (BN_ucmp(num,divisor) < 0)
|
sl@0
|
206 |
{
|
sl@0
|
207 |
if (rm != NULL)
|
sl@0
|
208 |
{ if (BN_copy(rm,num) == NULL) return(0); }
|
sl@0
|
209 |
if (dv != NULL) BN_zero(dv);
|
sl@0
|
210 |
return(1);
|
sl@0
|
211 |
}
|
sl@0
|
212 |
|
sl@0
|
213 |
BN_CTX_start(ctx);
|
sl@0
|
214 |
tmp=BN_CTX_get(ctx);
|
sl@0
|
215 |
snum=BN_CTX_get(ctx);
|
sl@0
|
216 |
sdiv=BN_CTX_get(ctx);
|
sl@0
|
217 |
if (dv == NULL)
|
sl@0
|
218 |
res=BN_CTX_get(ctx);
|
sl@0
|
219 |
else res=dv;
|
sl@0
|
220 |
if (sdiv == NULL || res == NULL) goto err;
|
sl@0
|
221 |
|
sl@0
|
222 |
/* First we normalise the numbers */
|
sl@0
|
223 |
norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2);
|
sl@0
|
224 |
if (!(BN_lshift(sdiv,divisor,norm_shift))) goto err;
|
sl@0
|
225 |
sdiv->neg=0;
|
sl@0
|
226 |
norm_shift+=BN_BITS2;
|
sl@0
|
227 |
if (!(BN_lshift(snum,num,norm_shift))) goto err;
|
sl@0
|
228 |
snum->neg=0;
|
sl@0
|
229 |
div_n=sdiv->top;
|
sl@0
|
230 |
num_n=snum->top;
|
sl@0
|
231 |
loop=num_n-div_n;
|
sl@0
|
232 |
/* Lets setup a 'window' into snum
|
sl@0
|
233 |
* This is the part that corresponds to the current
|
sl@0
|
234 |
* 'area' being divided */
|
sl@0
|
235 |
wnum.neg = 0;
|
sl@0
|
236 |
wnum.d = &(snum->d[loop]);
|
sl@0
|
237 |
wnum.top = div_n;
|
sl@0
|
238 |
/* only needed when BN_ucmp messes up the values between top and max */
|
sl@0
|
239 |
wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
|
sl@0
|
240 |
|
sl@0
|
241 |
/* Get the top 2 words of sdiv */
|
sl@0
|
242 |
/* div_n=sdiv->top; */
|
sl@0
|
243 |
d0=sdiv->d[div_n-1];
|
sl@0
|
244 |
d1=(div_n == 1)?0:sdiv->d[div_n-2];
|
sl@0
|
245 |
|
sl@0
|
246 |
/* pointer to the 'top' of snum */
|
sl@0
|
247 |
wnump= &(snum->d[num_n-1]);
|
sl@0
|
248 |
|
sl@0
|
249 |
/* Setup to 'res' */
|
sl@0
|
250 |
res->neg= (num->neg^divisor->neg);
|
sl@0
|
251 |
if (!bn_wexpand(res,(loop+1))) goto err;
|
sl@0
|
252 |
res->top=loop;
|
sl@0
|
253 |
resp= &(res->d[loop-1]);
|
sl@0
|
254 |
|
sl@0
|
255 |
/* space for temp */
|
sl@0
|
256 |
if (!bn_wexpand(tmp,(div_n+1))) goto err;
|
sl@0
|
257 |
|
sl@0
|
258 |
if (BN_ucmp(&wnum,sdiv) >= 0)
|
sl@0
|
259 |
{
|
sl@0
|
260 |
/* If BN_DEBUG_RAND is defined BN_ucmp changes (via
|
sl@0
|
261 |
* bn_pollute) the const bignum arguments =>
|
sl@0
|
262 |
* clean the values between top and max again */
|
sl@0
|
263 |
bn_clear_top2max(&wnum);
|
sl@0
|
264 |
bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
|
sl@0
|
265 |
*resp=1;
|
sl@0
|
266 |
}
|
sl@0
|
267 |
else
|
sl@0
|
268 |
res->top--;
|
sl@0
|
269 |
/* if res->top == 0 then clear the neg value otherwise decrease
|
sl@0
|
270 |
* the resp pointer */
|
sl@0
|
271 |
if (res->top == 0)
|
sl@0
|
272 |
res->neg = 0;
|
sl@0
|
273 |
else
|
sl@0
|
274 |
resp--;
|
sl@0
|
275 |
|
sl@0
|
276 |
for (i=0; i<loop-1; i++, wnump--, resp--)
|
sl@0
|
277 |
{
|
sl@0
|
278 |
BN_ULONG q,l0;
|
sl@0
|
279 |
/* the first part of the loop uses the top two words of
|
sl@0
|
280 |
* snum and sdiv to calculate a BN_ULONG q such that
|
sl@0
|
281 |
* | wnum - sdiv * q | < sdiv */
|
sl@0
|
282 |
#if defined(BN_DIV3W) && !defined(OPENSSL_NO_ASM)
|
sl@0
|
283 |
BN_ULONG bn_div_3_words(BN_ULONG*,BN_ULONG,BN_ULONG);
|
sl@0
|
284 |
q=bn_div_3_words(wnump,d1,d0);
|
sl@0
|
285 |
#else
|
sl@0
|
286 |
BN_ULONG n0,n1,rem=0;
|
sl@0
|
287 |
|
sl@0
|
288 |
n0=wnump[0];
|
sl@0
|
289 |
n1=wnump[-1];
|
sl@0
|
290 |
if (n0 == d0)
|
sl@0
|
291 |
q=BN_MASK2;
|
sl@0
|
292 |
else /* n0 < d0 */
|
sl@0
|
293 |
{
|
sl@0
|
294 |
#ifdef BN_LLONG
|
sl@0
|
295 |
BN_ULLONG t2;
|
sl@0
|
296 |
|
sl@0
|
297 |
#if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words)
|
sl@0
|
298 |
q=(BN_ULONG)(((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0);
|
sl@0
|
299 |
#else
|
sl@0
|
300 |
q=bn_div_words(n0,n1,d0);
|
sl@0
|
301 |
#ifdef BN_DEBUG_LEVITTE
|
sl@0
|
302 |
fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\
|
sl@0
|
303 |
X) -> 0x%08X\n",
|
sl@0
|
304 |
n0, n1, d0, q);
|
sl@0
|
305 |
#endif
|
sl@0
|
306 |
#endif
|
sl@0
|
307 |
|
sl@0
|
308 |
#ifndef REMAINDER_IS_ALREADY_CALCULATED
|
sl@0
|
309 |
/*
|
sl@0
|
310 |
* rem doesn't have to be BN_ULLONG. The least we
|
sl@0
|
311 |
* know it's less that d0, isn't it?
|
sl@0
|
312 |
*/
|
sl@0
|
313 |
rem=(n1-q*d0)&BN_MASK2;
|
sl@0
|
314 |
#endif
|
sl@0
|
315 |
t2=(BN_ULLONG)d1*q;
|
sl@0
|
316 |
|
sl@0
|
317 |
for (;;)
|
sl@0
|
318 |
{
|
sl@0
|
319 |
if (t2 <= ((((BN_ULLONG)rem)<<BN_BITS2)|wnump[-2]))
|
sl@0
|
320 |
break;
|
sl@0
|
321 |
q--;
|
sl@0
|
322 |
rem += d0;
|
sl@0
|
323 |
if (rem < d0) break; /* don't let rem overflow */
|
sl@0
|
324 |
t2 -= d1;
|
sl@0
|
325 |
}
|
sl@0
|
326 |
#else /* !BN_LLONG */
|
sl@0
|
327 |
BN_ULONG t2l,t2h,ql,qh;
|
sl@0
|
328 |
|
sl@0
|
329 |
q=bn_div_words(n0,n1,d0);
|
sl@0
|
330 |
#ifdef BN_DEBUG_LEVITTE
|
sl@0
|
331 |
fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\
|
sl@0
|
332 |
X) -> 0x%08X\n",
|
sl@0
|
333 |
n0, n1, d0, q);
|
sl@0
|
334 |
#endif
|
sl@0
|
335 |
#ifndef REMAINDER_IS_ALREADY_CALCULATED
|
sl@0
|
336 |
rem=(n1-q*d0)&BN_MASK2;
|
sl@0
|
337 |
#endif
|
sl@0
|
338 |
|
sl@0
|
339 |
#if defined(BN_UMULT_LOHI)
|
sl@0
|
340 |
BN_UMULT_LOHI(t2l,t2h,d1,q);
|
sl@0
|
341 |
#elif defined(BN_UMULT_HIGH)
|
sl@0
|
342 |
t2l = d1 * q;
|
sl@0
|
343 |
t2h = BN_UMULT_HIGH(d1,q);
|
sl@0
|
344 |
#else
|
sl@0
|
345 |
t2l=LBITS(d1); t2h=HBITS(d1);
|
sl@0
|
346 |
ql =LBITS(q); qh =HBITS(q);
|
sl@0
|
347 |
mul64(t2l,t2h,ql,qh); /* t2=(BN_ULLONG)d1*q; */
|
sl@0
|
348 |
#endif
|
sl@0
|
349 |
|
sl@0
|
350 |
for (;;)
|
sl@0
|
351 |
{
|
sl@0
|
352 |
if ((t2h < rem) ||
|
sl@0
|
353 |
((t2h == rem) && (t2l <= wnump[-2])))
|
sl@0
|
354 |
break;
|
sl@0
|
355 |
q--;
|
sl@0
|
356 |
rem += d0;
|
sl@0
|
357 |
if (rem < d0) break; /* don't let rem overflow */
|
sl@0
|
358 |
if (t2l < d1) t2h--; t2l -= d1;
|
sl@0
|
359 |
}
|
sl@0
|
360 |
#endif /* !BN_LLONG */
|
sl@0
|
361 |
}
|
sl@0
|
362 |
#endif /* !BN_DIV3W */
|
sl@0
|
363 |
|
sl@0
|
364 |
l0=bn_mul_words(tmp->d,sdiv->d,div_n,q);
|
sl@0
|
365 |
tmp->d[div_n]=l0;
|
sl@0
|
366 |
wnum.d--;
|
sl@0
|
367 |
/* ingore top values of the bignums just sub the two
|
sl@0
|
368 |
* BN_ULONG arrays with bn_sub_words */
|
sl@0
|
369 |
if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n+1))
|
sl@0
|
370 |
{
|
sl@0
|
371 |
/* Note: As we have considered only the leading
|
sl@0
|
372 |
* two BN_ULONGs in the calculation of q, sdiv * q
|
sl@0
|
373 |
* might be greater than wnum (but then (q-1) * sdiv
|
sl@0
|
374 |
* is less or equal than wnum)
|
sl@0
|
375 |
*/
|
sl@0
|
376 |
q--;
|
sl@0
|
377 |
if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n))
|
sl@0
|
378 |
/* we can't have an overflow here (assuming
|
sl@0
|
379 |
* that q != 0, but if q == 0 then tmp is
|
sl@0
|
380 |
* zero anyway) */
|
sl@0
|
381 |
(*wnump)++;
|
sl@0
|
382 |
}
|
sl@0
|
383 |
/* store part of the result */
|
sl@0
|
384 |
*resp = q;
|
sl@0
|
385 |
}
|
sl@0
|
386 |
bn_correct_top(snum);
|
sl@0
|
387 |
if (rm != NULL)
|
sl@0
|
388 |
{
|
sl@0
|
389 |
/* Keep a copy of the neg flag in num because if rm==num
|
sl@0
|
390 |
* BN_rshift() will overwrite it.
|
sl@0
|
391 |
*/
|
sl@0
|
392 |
int neg = num->neg;
|
sl@0
|
393 |
BN_rshift(rm,snum,norm_shift);
|
sl@0
|
394 |
if (!BN_is_zero(rm))
|
sl@0
|
395 |
rm->neg = neg;
|
sl@0
|
396 |
bn_check_top(rm);
|
sl@0
|
397 |
}
|
sl@0
|
398 |
BN_CTX_end(ctx);
|
sl@0
|
399 |
return(1);
|
sl@0
|
400 |
err:
|
sl@0
|
401 |
bn_check_top(rm);
|
sl@0
|
402 |
BN_CTX_end(ctx);
|
sl@0
|
403 |
return(0);
|
sl@0
|
404 |
}
|
sl@0
|
405 |
|
sl@0
|
406 |
/* BN_div_no_branch is a special version of BN_div. It does not contain
|
sl@0
|
407 |
* branches that may leak sensitive information.
|
sl@0
|
408 |
*/
|
sl@0
|
409 |
static int BN_div_no_branch(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
|
sl@0
|
410 |
const BIGNUM *divisor, BN_CTX *ctx)
|
sl@0
|
411 |
{
|
sl@0
|
412 |
int norm_shift,i,loop;
|
sl@0
|
413 |
BIGNUM *tmp,wnum,*snum,*sdiv,*res;
|
sl@0
|
414 |
BN_ULONG *resp,*wnump;
|
sl@0
|
415 |
BN_ULONG d0,d1;
|
sl@0
|
416 |
int num_n,div_n;
|
sl@0
|
417 |
|
sl@0
|
418 |
bn_check_top(dv);
|
sl@0
|
419 |
bn_check_top(rm);
|
sl@0
|
420 |
bn_check_top(num);
|
sl@0
|
421 |
bn_check_top(divisor);
|
sl@0
|
422 |
|
sl@0
|
423 |
if (BN_is_zero(divisor))
|
sl@0
|
424 |
{
|
sl@0
|
425 |
BNerr(BN_F_BN_DIV_NO_BRANCH,BN_R_DIV_BY_ZERO);
|
sl@0
|
426 |
return(0);
|
sl@0
|
427 |
}
|
sl@0
|
428 |
|
sl@0
|
429 |
BN_CTX_start(ctx);
|
sl@0
|
430 |
tmp=BN_CTX_get(ctx);
|
sl@0
|
431 |
snum=BN_CTX_get(ctx);
|
sl@0
|
432 |
sdiv=BN_CTX_get(ctx);
|
sl@0
|
433 |
if (dv == NULL)
|
sl@0
|
434 |
res=BN_CTX_get(ctx);
|
sl@0
|
435 |
else res=dv;
|
sl@0
|
436 |
if (sdiv == NULL || res == NULL) goto err;
|
sl@0
|
437 |
|
sl@0
|
438 |
/* First we normalise the numbers */
|
sl@0
|
439 |
norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2);
|
sl@0
|
440 |
if (!(BN_lshift(sdiv,divisor,norm_shift))) goto err;
|
sl@0
|
441 |
sdiv->neg=0;
|
sl@0
|
442 |
norm_shift+=BN_BITS2;
|
sl@0
|
443 |
if (!(BN_lshift(snum,num,norm_shift))) goto err;
|
sl@0
|
444 |
snum->neg=0;
|
sl@0
|
445 |
|
sl@0
|
446 |
/* Since we don't know whether snum is larger than sdiv,
|
sl@0
|
447 |
* we pad snum with enough zeroes without changing its
|
sl@0
|
448 |
* value.
|
sl@0
|
449 |
*/
|
sl@0
|
450 |
if (snum->top <= sdiv->top+1)
|
sl@0
|
451 |
{
|
sl@0
|
452 |
if (bn_wexpand(snum, sdiv->top + 2) == NULL) goto err;
|
sl@0
|
453 |
for (i = snum->top; i < sdiv->top + 2; i++) snum->d[i] = 0;
|
sl@0
|
454 |
snum->top = sdiv->top + 2;
|
sl@0
|
455 |
}
|
sl@0
|
456 |
else
|
sl@0
|
457 |
{
|
sl@0
|
458 |
if (bn_wexpand(snum, snum->top + 1) == NULL) goto err;
|
sl@0
|
459 |
snum->d[snum->top] = 0;
|
sl@0
|
460 |
snum->top ++;
|
sl@0
|
461 |
}
|
sl@0
|
462 |
|
sl@0
|
463 |
div_n=sdiv->top;
|
sl@0
|
464 |
num_n=snum->top;
|
sl@0
|
465 |
loop=num_n-div_n;
|
sl@0
|
466 |
/* Lets setup a 'window' into snum
|
sl@0
|
467 |
* This is the part that corresponds to the current
|
sl@0
|
468 |
* 'area' being divided */
|
sl@0
|
469 |
wnum.neg = 0;
|
sl@0
|
470 |
wnum.d = &(snum->d[loop]);
|
sl@0
|
471 |
wnum.top = div_n;
|
sl@0
|
472 |
/* only needed when BN_ucmp messes up the values between top and max */
|
sl@0
|
473 |
wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
|
sl@0
|
474 |
|
sl@0
|
475 |
/* Get the top 2 words of sdiv */
|
sl@0
|
476 |
/* div_n=sdiv->top; */
|
sl@0
|
477 |
d0=sdiv->d[div_n-1];
|
sl@0
|
478 |
d1=(div_n == 1)?0:sdiv->d[div_n-2];
|
sl@0
|
479 |
|
sl@0
|
480 |
/* pointer to the 'top' of snum */
|
sl@0
|
481 |
wnump= &(snum->d[num_n-1]);
|
sl@0
|
482 |
|
sl@0
|
483 |
/* Setup to 'res' */
|
sl@0
|
484 |
res->neg= (num->neg^divisor->neg);
|
sl@0
|
485 |
if (!bn_wexpand(res,(loop+1))) goto err;
|
sl@0
|
486 |
res->top=loop-1;
|
sl@0
|
487 |
resp= &(res->d[loop-1]);
|
sl@0
|
488 |
|
sl@0
|
489 |
/* space for temp */
|
sl@0
|
490 |
if (!bn_wexpand(tmp,(div_n+1))) goto err;
|
sl@0
|
491 |
|
sl@0
|
492 |
/* if res->top == 0 then clear the neg value otherwise decrease
|
sl@0
|
493 |
* the resp pointer */
|
sl@0
|
494 |
if (res->top == 0)
|
sl@0
|
495 |
res->neg = 0;
|
sl@0
|
496 |
else
|
sl@0
|
497 |
resp--;
|
sl@0
|
498 |
|
sl@0
|
499 |
for (i=0; i<loop-1; i++, wnump--, resp--)
|
sl@0
|
500 |
{
|
sl@0
|
501 |
BN_ULONG q,l0;
|
sl@0
|
502 |
/* the first part of the loop uses the top two words of
|
sl@0
|
503 |
* snum and sdiv to calculate a BN_ULONG q such that
|
sl@0
|
504 |
* | wnum - sdiv * q | < sdiv */
|
sl@0
|
505 |
#if defined(BN_DIV3W) && !defined(OPENSSL_NO_ASM)
|
sl@0
|
506 |
BN_ULONG bn_div_3_words(BN_ULONG*,BN_ULONG,BN_ULONG);
|
sl@0
|
507 |
q=bn_div_3_words(wnump,d1,d0);
|
sl@0
|
508 |
#else
|
sl@0
|
509 |
BN_ULONG n0,n1,rem=0;
|
sl@0
|
510 |
|
sl@0
|
511 |
n0=wnump[0];
|
sl@0
|
512 |
n1=wnump[-1];
|
sl@0
|
513 |
if (n0 == d0)
|
sl@0
|
514 |
q=BN_MASK2;
|
sl@0
|
515 |
else /* n0 < d0 */
|
sl@0
|
516 |
{
|
sl@0
|
517 |
#ifdef BN_LLONG
|
sl@0
|
518 |
BN_ULLONG t2;
|
sl@0
|
519 |
|
sl@0
|
520 |
#if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words)
|
sl@0
|
521 |
q=(BN_ULONG)(((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0);
|
sl@0
|
522 |
#else
|
sl@0
|
523 |
q=bn_div_words(n0,n1,d0);
|
sl@0
|
524 |
#ifdef BN_DEBUG_LEVITTE
|
sl@0
|
525 |
fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\
|
sl@0
|
526 |
X) -> 0x%08X\n",
|
sl@0
|
527 |
n0, n1, d0, q);
|
sl@0
|
528 |
#endif
|
sl@0
|
529 |
#endif
|
sl@0
|
530 |
|
sl@0
|
531 |
#ifndef REMAINDER_IS_ALREADY_CALCULATED
|
sl@0
|
532 |
/*
|
sl@0
|
533 |
* rem doesn't have to be BN_ULLONG. The least we
|
sl@0
|
534 |
* know it's less that d0, isn't it?
|
sl@0
|
535 |
*/
|
sl@0
|
536 |
rem=(n1-q*d0)&BN_MASK2;
|
sl@0
|
537 |
#endif
|
sl@0
|
538 |
t2=(BN_ULLONG)d1*q;
|
sl@0
|
539 |
|
sl@0
|
540 |
for (;;)
|
sl@0
|
541 |
{
|
sl@0
|
542 |
if (t2 <= ((((BN_ULLONG)rem)<<BN_BITS2)|wnump[-2]))
|
sl@0
|
543 |
break;
|
sl@0
|
544 |
q--;
|
sl@0
|
545 |
rem += d0;
|
sl@0
|
546 |
if (rem < d0) break; /* don't let rem overflow */
|
sl@0
|
547 |
t2 -= d1;
|
sl@0
|
548 |
}
|
sl@0
|
549 |
#else /* !BN_LLONG */
|
sl@0
|
550 |
BN_ULONG t2l,t2h,ql,qh;
|
sl@0
|
551 |
|
sl@0
|
552 |
q=bn_div_words(n0,n1,d0);
|
sl@0
|
553 |
#ifdef BN_DEBUG_LEVITTE
|
sl@0
|
554 |
fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\
|
sl@0
|
555 |
X) -> 0x%08X\n",
|
sl@0
|
556 |
n0, n1, d0, q);
|
sl@0
|
557 |
#endif
|
sl@0
|
558 |
#ifndef REMAINDER_IS_ALREADY_CALCULATED
|
sl@0
|
559 |
rem=(n1-q*d0)&BN_MASK2;
|
sl@0
|
560 |
#endif
|
sl@0
|
561 |
|
sl@0
|
562 |
#if defined(BN_UMULT_LOHI)
|
sl@0
|
563 |
BN_UMULT_LOHI(t2l,t2h,d1,q);
|
sl@0
|
564 |
#elif defined(BN_UMULT_HIGH)
|
sl@0
|
565 |
t2l = d1 * q;
|
sl@0
|
566 |
t2h = BN_UMULT_HIGH(d1,q);
|
sl@0
|
567 |
#else
|
sl@0
|
568 |
t2l=LBITS(d1); t2h=HBITS(d1);
|
sl@0
|
569 |
ql =LBITS(q); qh =HBITS(q);
|
sl@0
|
570 |
mul64(t2l,t2h,ql,qh); /* t2=(BN_ULLONG)d1*q; */
|
sl@0
|
571 |
#endif
|
sl@0
|
572 |
|
sl@0
|
573 |
for (;;)
|
sl@0
|
574 |
{
|
sl@0
|
575 |
if ((t2h < rem) ||
|
sl@0
|
576 |
((t2h == rem) && (t2l <= wnump[-2])))
|
sl@0
|
577 |
break;
|
sl@0
|
578 |
q--;
|
sl@0
|
579 |
rem += d0;
|
sl@0
|
580 |
if (rem < d0) break; /* don't let rem overflow */
|
sl@0
|
581 |
if (t2l < d1) t2h--; t2l -= d1;
|
sl@0
|
582 |
}
|
sl@0
|
583 |
#endif /* !BN_LLONG */
|
sl@0
|
584 |
}
|
sl@0
|
585 |
#endif /* !BN_DIV3W */
|
sl@0
|
586 |
|
sl@0
|
587 |
l0=bn_mul_words(tmp->d,sdiv->d,div_n,q);
|
sl@0
|
588 |
tmp->d[div_n]=l0;
|
sl@0
|
589 |
wnum.d--;
|
sl@0
|
590 |
/* ingore top values of the bignums just sub the two
|
sl@0
|
591 |
* BN_ULONG arrays with bn_sub_words */
|
sl@0
|
592 |
if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n+1))
|
sl@0
|
593 |
{
|
sl@0
|
594 |
/* Note: As we have considered only the leading
|
sl@0
|
595 |
* two BN_ULONGs in the calculation of q, sdiv * q
|
sl@0
|
596 |
* might be greater than wnum (but then (q-1) * sdiv
|
sl@0
|
597 |
* is less or equal than wnum)
|
sl@0
|
598 |
*/
|
sl@0
|
599 |
q--;
|
sl@0
|
600 |
if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n))
|
sl@0
|
601 |
/* we can't have an overflow here (assuming
|
sl@0
|
602 |
* that q != 0, but if q == 0 then tmp is
|
sl@0
|
603 |
* zero anyway) */
|
sl@0
|
604 |
(*wnump)++;
|
sl@0
|
605 |
}
|
sl@0
|
606 |
/* store part of the result */
|
sl@0
|
607 |
*resp = q;
|
sl@0
|
608 |
}
|
sl@0
|
609 |
bn_correct_top(snum);
|
sl@0
|
610 |
if (rm != NULL)
|
sl@0
|
611 |
{
|
sl@0
|
612 |
/* Keep a copy of the neg flag in num because if rm==num
|
sl@0
|
613 |
* BN_rshift() will overwrite it.
|
sl@0
|
614 |
*/
|
sl@0
|
615 |
int neg = num->neg;
|
sl@0
|
616 |
BN_rshift(rm,snum,norm_shift);
|
sl@0
|
617 |
if (!BN_is_zero(rm))
|
sl@0
|
618 |
rm->neg = neg;
|
sl@0
|
619 |
bn_check_top(rm);
|
sl@0
|
620 |
}
|
sl@0
|
621 |
bn_correct_top(res);
|
sl@0
|
622 |
BN_CTX_end(ctx);
|
sl@0
|
623 |
return(1);
|
sl@0
|
624 |
err:
|
sl@0
|
625 |
bn_check_top(rm);
|
sl@0
|
626 |
BN_CTX_end(ctx);
|
sl@0
|
627 |
return(0);
|
sl@0
|
628 |
}
|
sl@0
|
629 |
|
sl@0
|
630 |
#endif
|