os/ossrv/ossrv_pub/boost_apis/boost/python/slice.hpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
#ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP
sl@0
     2
#define BOOST_PYTHON_SLICE_JDB20040105_HPP
sl@0
     3
sl@0
     4
// Copyright (c) 2004 Jonathan Brandmeyer
sl@0
     5
//  Use, modification and distribution are subject to the
sl@0
     6
//  Boost Software License, Version 1.0. (See accompanying file 
sl@0
     7
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
sl@0
     8
sl@0
     9
#include <boost/python/detail/prefix.hpp>
sl@0
    10
#include <boost/config.hpp>
sl@0
    11
#include <boost/python/object.hpp>
sl@0
    12
#include <boost/python/extract.hpp>
sl@0
    13
#include <boost/python/converter/pytype_object_mgr_traits.hpp>
sl@0
    14
sl@0
    15
#include <boost/iterator/iterator_traits.hpp>
sl@0
    16
sl@0
    17
#include <iterator>
sl@0
    18
#include <algorithm>
sl@0
    19
sl@0
    20
namespace boost { namespace python {
sl@0
    21
sl@0
    22
namespace detail
sl@0
    23
{
sl@0
    24
  class BOOST_PYTHON_DECL slice_base : public object
sl@0
    25
  {
sl@0
    26
   public:
sl@0
    27
      // Get the Python objects associated with the slice.  In principle, these 
sl@0
    28
      // may be any arbitrary Python type, but in practice they are usually 
sl@0
    29
      // integers.  If one or more parameter is ommited in the Python expression 
sl@0
    30
      // that created this slice, than that parameter is None here, and compares 
sl@0
    31
      // equal to a default-constructed boost::python::object.
sl@0
    32
      // If a user-defined type wishes to support slicing, then support for the 
sl@0
    33
      // special meaning associated with negative indicies is up to the user.
sl@0
    34
      object start() const;
sl@0
    35
      object stop() const;
sl@0
    36
      object step() const;
sl@0
    37
        
sl@0
    38
   protected:
sl@0
    39
      explicit slice_base(PyObject*, PyObject*, PyObject*);
sl@0
    40
sl@0
    41
      BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object)
sl@0
    42
  };
sl@0
    43
}
sl@0
    44
sl@0
    45
class slice : public detail::slice_base
sl@0
    46
{
sl@0
    47
    typedef detail::slice_base base;
sl@0
    48
 public:
sl@0
    49
    // Equivalent to slice(::)
sl@0
    50
    slice() : base(0,0,0) {}
sl@0
    51
sl@0
    52
    // Each argument must be slice_nil, or implicitly convertable to object.
sl@0
    53
    // They should normally be integers.
sl@0
    54
    template<typename Integer1, typename Integer2>
sl@0
    55
    slice( Integer1 start, Integer2 stop)
sl@0
    56
        : base( object(start).ptr(), object(stop).ptr(), 0 )
sl@0
    57
    {}
sl@0
    58
    
sl@0
    59
    template<typename Integer1, typename Integer2, typename Integer3>
sl@0
    60
    slice( Integer1 start, Integer2 stop, Integer3 stride)
sl@0
    61
        : base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )
sl@0
    62
    {}
sl@0
    63
        
sl@0
    64
    // The following algorithm is intended to automate the process of 
sl@0
    65
    // determining a slice range when you want to fully support negative
sl@0
    66
    // indicies and non-singular step sizes.  Its functionallity is simmilar to 
sl@0
    67
    // PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.
sl@0
    68
    // This template returns a slice::range struct that, when used in the 
sl@0
    69
    // following iterative loop, will traverse a slice of the function's
sl@0
    70
    // arguments.
sl@0
    71
    // while (start != end) { 
sl@0
    72
    //     do_foo(...); 
sl@0
    73
    //     std::advance( start, step); 
sl@0
    74
    // }
sl@0
    75
    // do_foo(...); // repeat exactly once more.
sl@0
    76
    
sl@0
    77
    // Arguments: a [begin, end) pair of STL-conforming random-access iterators.
sl@0
    78
        
sl@0
    79
    // Return: slice::range, where start and stop define a _closed_ interval
sl@0
    80
    // that covers at most [begin, end-1] of the provided arguments, and a step 
sl@0
    81
    // that is non-zero.
sl@0
    82
    
sl@0
    83
    // Throws: error_already_set() if any of the indices are neither None nor 
sl@0
    84
    //   integers, or the slice has a step value of zero.
sl@0
    85
    // std::invalid_argument if the resulting range would be empty.  Normally, 
sl@0
    86
    //   you should catch this exception and return an empty sequence of the
sl@0
    87
    //   appropriate type.
sl@0
    88
    
sl@0
    89
    // Performance: constant time for random-access iterators.
sl@0
    90
    
sl@0
    91
    // Rationale: 
sl@0
    92
    //   closed-interval: If an open interval were used, then for a non-singular
sl@0
    93
    //     value for step, the required state for the end iterator could be 
sl@0
    94
    //     beyond the one-past-the-end postion of the specified range.  While 
sl@0
    95
    //     probably harmless, the behavior of STL-conforming iterators is 
sl@0
    96
    //     undefined in this case.
sl@0
    97
    //   exceptions on zero-length range: It is impossible to define a closed 
sl@0
    98
    //     interval over an empty range, so some other form of error checking 
sl@0
    99
    //     would have to be used by the user to prevent undefined behavior.  In
sl@0
   100
    //     the case where the user fails to catch the exception, it will simply
sl@0
   101
    //     be translated to Python by the default exception handling mechanisms.
sl@0
   102
sl@0
   103
    template<typename RandomAccessIterator>
sl@0
   104
    struct range
sl@0
   105
    {
sl@0
   106
        RandomAccessIterator start;
sl@0
   107
        RandomAccessIterator stop;
sl@0
   108
        typename iterator_difference<RandomAccessIterator>::type step;
sl@0
   109
    };
sl@0
   110
    
sl@0
   111
    template<typename RandomAccessIterator>
sl@0
   112
    slice::range<RandomAccessIterator>
sl@0
   113
    get_indicies( const RandomAccessIterator& begin, 
sl@0
   114
        const RandomAccessIterator& end) const
sl@0
   115
    {
sl@0
   116
        // This is based loosely on PySlice_GetIndicesEx(), but it has been 
sl@0
   117
        // carefully crafted to ensure that these iterators never fall out of
sl@0
   118
        // the range of the container.
sl@0
   119
        slice::range<RandomAccessIterator> ret;
sl@0
   120
        
sl@0
   121
        typedef typename iterator_difference<RandomAccessIterator>::type difference_type;
sl@0
   122
        difference_type max_dist = boost::detail::distance(begin, end);
sl@0
   123
sl@0
   124
        object slice_start = this->start();
sl@0
   125
        object slice_stop = this->stop();
sl@0
   126
        object slice_step = this->step();
sl@0
   127
        
sl@0
   128
        // Extract the step.
sl@0
   129
        if (slice_step == object()) {
sl@0
   130
            ret.step = 1;
sl@0
   131
        }
sl@0
   132
        else {
sl@0
   133
            ret.step = extract<long>( slice_step);
sl@0
   134
            if (ret.step == 0) {
sl@0
   135
                PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");
sl@0
   136
                throw_error_already_set();
sl@0
   137
            }
sl@0
   138
        }
sl@0
   139
        
sl@0
   140
        // Setup the start iterator.
sl@0
   141
        if (slice_start == object()) {
sl@0
   142
            if (ret.step < 0) {
sl@0
   143
                ret.start = end;
sl@0
   144
                --ret.start;
sl@0
   145
            }
sl@0
   146
            else
sl@0
   147
                ret.start = begin;
sl@0
   148
        }
sl@0
   149
        else {
sl@0
   150
            difference_type i = extract<long>( slice_start);
sl@0
   151
            if (i >= max_dist && ret.step > 0)
sl@0
   152
                    throw std::invalid_argument( "Zero-length slice");
sl@0
   153
            if (i >= 0) {
sl@0
   154
                ret.start = begin;
sl@0
   155
                BOOST_USING_STD_MIN();
sl@0
   156
                std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));
sl@0
   157
            }
sl@0
   158
            else {
sl@0
   159
                if (i < -max_dist && ret.step < 0)
sl@0
   160
                    throw std::invalid_argument( "Zero-length slice");
sl@0
   161
                ret.start = end;
sl@0
   162
                // Advance start (towards begin) not farther than begin.
sl@0
   163
                std::advance( ret.start, (-i < max_dist) ? i : -max_dist );
sl@0
   164
            }
sl@0
   165
        }
sl@0
   166
        
sl@0
   167
        // Set up the stop iterator.  This one is a little trickier since slices
sl@0
   168
        // define a [) range, and we are returning a [] range.
sl@0
   169
        if (slice_stop == object()) {
sl@0
   170
            if (ret.step < 0) {
sl@0
   171
                ret.stop = begin;
sl@0
   172
            }
sl@0
   173
            else {
sl@0
   174
                ret.stop = end;
sl@0
   175
                std::advance( ret.stop, -1);
sl@0
   176
            }
sl@0
   177
        }
sl@0
   178
        else {
sl@0
   179
            difference_type i = extract<long>(slice_stop);
sl@0
   180
            // First, branch on which direction we are going with this.
sl@0
   181
            if (ret.step < 0) {
sl@0
   182
                if (i+1 >= max_dist || i == -1)
sl@0
   183
                    throw std::invalid_argument( "Zero-length slice");
sl@0
   184
                
sl@0
   185
                if (i >= 0) {
sl@0
   186
                    ret.stop = begin;
sl@0
   187
                    std::advance( ret.stop, i+1);
sl@0
   188
                }
sl@0
   189
                else { // i is negative, but more negative than -1.
sl@0
   190
                    ret.stop = end;
sl@0
   191
                    std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);
sl@0
   192
                }
sl@0
   193
            }
sl@0
   194
            else { // stepping forward
sl@0
   195
                if (i == 0 || -i >= max_dist)
sl@0
   196
                    throw std::invalid_argument( "Zero-length slice");
sl@0
   197
                
sl@0
   198
                if (i > 0) {
sl@0
   199
                    ret.stop = begin;
sl@0
   200
                    std::advance( ret.stop, (std::min)( i-1, max_dist-1));
sl@0
   201
                }
sl@0
   202
                else { // i is negative, but not more negative than -max_dist
sl@0
   203
                    ret.stop = end;
sl@0
   204
                    std::advance( ret.stop, i-1);
sl@0
   205
                }
sl@0
   206
            }
sl@0
   207
        }
sl@0
   208
        
sl@0
   209
        // Now the fun part, handling the possibilites surrounding step.
sl@0
   210
        // At this point, step has been initialized, ret.stop, and ret.step
sl@0
   211
        // represent the widest possible range that could be traveled
sl@0
   212
        // (inclusive), and final_dist is the maximum distance covered by the
sl@0
   213
        // slice.
sl@0
   214
        typename iterator_difference<RandomAccessIterator>::type final_dist = 
sl@0
   215
            boost::detail::distance( ret.start, ret.stop);
sl@0
   216
        
sl@0
   217
        // First case, if both ret.start and ret.stop are equal, then step
sl@0
   218
        // is irrelevant and we can return here.
sl@0
   219
        if (final_dist == 0)
sl@0
   220
            return ret;
sl@0
   221
        
sl@0
   222
        // Second, if there is a sign mismatch, than the resulting range and 
sl@0
   223
        // step size conflict: std::advance( ret.start, ret.step) goes away from
sl@0
   224
        // ret.stop.
sl@0
   225
        if ((final_dist > 0) != (ret.step > 0))
sl@0
   226
            throw std::invalid_argument( "Zero-length slice.");
sl@0
   227
        
sl@0
   228
        // Finally, if the last step puts us past the end, we move ret.stop
sl@0
   229
        // towards ret.start in the amount of the remainder.
sl@0
   230
        // I don't remember all of the oolies surrounding negative modulii,
sl@0
   231
        // so I am handling each of these cases separately.
sl@0
   232
        if (final_dist < 0) {
sl@0
   233
            difference_type remainder = -final_dist % -ret.step;
sl@0
   234
            std::advance( ret.stop, remainder);
sl@0
   235
        }
sl@0
   236
        else {
sl@0
   237
            difference_type remainder = final_dist % ret.step;
sl@0
   238
            std::advance( ret.stop, -remainder);
sl@0
   239
        }
sl@0
   240
        
sl@0
   241
        return ret;
sl@0
   242
    }
sl@0
   243
        
sl@0
   244
 public:
sl@0
   245
    // This declaration, in conjunction with the specialization of 
sl@0
   246
    // object_manager_traits<> below, allows C++ functions accepting slice 
sl@0
   247
    // arguments to be called from from Python.  These constructors should never
sl@0
   248
    // be used in client code.
sl@0
   249
    BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)
sl@0
   250
};
sl@0
   251
sl@0
   252
sl@0
   253
namespace converter {
sl@0
   254
sl@0
   255
template<>
sl@0
   256
struct object_manager_traits<slice>
sl@0
   257
    : pytype_object_manager_traits<&PySlice_Type, slice>
sl@0
   258
{
sl@0
   259
};
sl@0
   260
    
sl@0
   261
} // !namesapce converter
sl@0
   262
sl@0
   263
} } // !namespace ::boost::python
sl@0
   264
sl@0
   265
sl@0
   266
#endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP