os/ossrv/ossrv_pub/boost_apis/boost/graph/leda_graph.hpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
//=======================================================================
sl@0
     2
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
sl@0
     3
// Copyright 2004 The Trustees of Indiana University.
sl@0
     4
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor
sl@0
     5
//
sl@0
     6
// Distributed under the Boost Software License, Version 1.0. (See
sl@0
     7
// accompanying file LICENSE_1_0.txt or copy at
sl@0
     8
// http://www.boost.org/LICENSE_1_0.txt)
sl@0
     9
//=======================================================================
sl@0
    10
#ifndef BOOST_GRAPH_LEDA_HPP
sl@0
    11
#define BOOST_GRAPH_LEDA_HPP
sl@0
    12
sl@0
    13
#include <boost/config.hpp>
sl@0
    14
#include <boost/iterator/iterator_facade.hpp>
sl@0
    15
#include <boost/graph/graph_traits.hpp>
sl@0
    16
#include <boost/graph/properties.hpp>
sl@0
    17
sl@0
    18
#include <LEDA/graph.h>
sl@0
    19
#include <LEDA/node_array.h>
sl@0
    20
#include <LEDA/node_map.h>
sl@0
    21
sl@0
    22
// The functions and classes in this file allows the user to
sl@0
    23
// treat a LEDA GRAPH object as a boost graph "as is". No
sl@0
    24
// wrapper is needed for the GRAPH object.
sl@0
    25
sl@0
    26
// Remember to define LEDA_PREFIX so that LEDA types such as
sl@0
    27
// leda_edge show up as "leda_edge" and not just "edge".
sl@0
    28
sl@0
    29
// Warning: this implementation relies on partial specialization
sl@0
    30
// for the graph_traits class (so it won't compile with Visual C++)
sl@0
    31
sl@0
    32
// Warning: this implementation is in alpha and has not been tested
sl@0
    33
sl@0
    34
#if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
sl@0
    35
namespace boost {
sl@0
    36
sl@0
    37
  struct leda_graph_traversal_category : 
sl@0
    38
    public virtual bidirectional_graph_tag,
sl@0
    39
    public virtual adjacency_graph_tag,
sl@0
    40
    public virtual vertex_list_graph_tag { };
sl@0
    41
sl@0
    42
  template <class vtype, class etype>
sl@0
    43
  struct graph_traits< leda::GRAPH<vtype,etype> > {
sl@0
    44
    typedef leda_node vertex_descriptor;
sl@0
    45
    typedef leda_edge edge_descriptor;
sl@0
    46
sl@0
    47
    class adjacency_iterator 
sl@0
    48
      : public iterator_facade<adjacency_iterator,
sl@0
    49
                               leda_node,
sl@0
    50
                               bidirectional_traversal_tag,
sl@0
    51
                               leda_node,
sl@0
    52
                               const leda_node*>
sl@0
    53
    {
sl@0
    54
    public:
sl@0
    55
      explicit adjacency_iterator(leda_edge edge = 0) : base(edge) {}
sl@0
    56
sl@0
    57
    private:
sl@0
    58
      leda_node dereference() const { return leda::target(base); }
sl@0
    59
sl@0
    60
      bool equal(const adjacency_iterator& other) const
sl@0
    61
      { return base == other.base; }
sl@0
    62
sl@0
    63
      void increment() { base = Succ_Adj_Edge(base, 0); }
sl@0
    64
      void decrement() { base = Pred_Adj_Edge(base, 0); }
sl@0
    65
sl@0
    66
      leda_edge base;
sl@0
    67
sl@0
    68
      friend class iterator_core_access;
sl@0
    69
    };
sl@0
    70
      
sl@0
    71
    class out_edge_iterator 
sl@0
    72
      : public iterator_facade<out_edge_iterator,
sl@0
    73
                               leda_edge,
sl@0
    74
                               bidirectional_traversal_tag,
sl@0
    75
                               const leda_edge&,
sl@0
    76
                               const leda_edge*>
sl@0
    77
    {
sl@0
    78
    public:
sl@0
    79
      explicit out_edge_iterator(leda_edge edge = 0) : base(edge) {}
sl@0
    80
sl@0
    81
    private:
sl@0
    82
      const leda_edge& dereference() const { return base; }
sl@0
    83
sl@0
    84
      bool equal(const out_edge_iterator& other) const
sl@0
    85
      { return base == other.base; }
sl@0
    86
sl@0
    87
      void increment() { base = Succ_Adj_Edge(base, 0); }
sl@0
    88
      void decrement() { base = Pred_Adj_Edge(base, 0); }
sl@0
    89
sl@0
    90
      leda_edge base;
sl@0
    91
sl@0
    92
      friend class iterator_core_access;
sl@0
    93
    };
sl@0
    94
      
sl@0
    95
    class in_edge_iterator 
sl@0
    96
      : public iterator_facade<in_edge_iterator,
sl@0
    97
                               leda_edge,
sl@0
    98
                               bidirectional_traversal_tag,
sl@0
    99
                               const leda_edge&,
sl@0
   100
                               const leda_edge*>
sl@0
   101
    {
sl@0
   102
    public:
sl@0
   103
      explicit in_edge_iterator(leda_edge edge = 0) : base(edge) {}
sl@0
   104
sl@0
   105
    private:
sl@0
   106
      const leda_edge& dereference() const { return base; }
sl@0
   107
sl@0
   108
      bool equal(const in_edge_iterator& other) const
sl@0
   109
      { return base == other.base; }
sl@0
   110
sl@0
   111
      void increment() { base = Succ_Adj_Edge(base, 1); }
sl@0
   112
      void decrement() { base = Pred_Adj_Edge(base, 1); }
sl@0
   113
sl@0
   114
      leda_edge base;
sl@0
   115
sl@0
   116
      friend class iterator_core_access;
sl@0
   117
    };
sl@0
   118
sl@0
   119
    class vertex_iterator 
sl@0
   120
      : public iterator_facade<vertex_iterator,
sl@0
   121
                               leda_node,
sl@0
   122
                               bidirectional_traversal_tag,
sl@0
   123
                               const leda_node&,
sl@0
   124
                               const leda_node*>
sl@0
   125
    {
sl@0
   126
    public:
sl@0
   127
      vertex_iterator(leda_node node = 0, 
sl@0
   128
                      const leda::GRAPH<vtype, etype>* g = 0)
sl@0
   129
        : base(node), g(g) {}
sl@0
   130
sl@0
   131
    private:
sl@0
   132
      const leda_node& dereference() const { return base; }
sl@0
   133
sl@0
   134
      bool equal(const vertex_iterator& other) const
sl@0
   135
      { return base == other.base; }
sl@0
   136
sl@0
   137
      void increment() { base = g->succ_node(base); }
sl@0
   138
      void decrement() { base = g->pred_node(base); }
sl@0
   139
sl@0
   140
      leda_node base;
sl@0
   141
      const leda::GRAPH<vtype, etype>* g;
sl@0
   142
sl@0
   143
      friend class iterator_core_access;
sl@0
   144
    };
sl@0
   145
sl@0
   146
    typedef directed_tag directed_category;
sl@0
   147
    typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
sl@0
   148
    typedef leda_graph_traversal_category traversal_category;
sl@0
   149
    typedef int vertices_size_type;
sl@0
   150
    typedef int edges_size_type;
sl@0
   151
    typedef int degree_size_type;
sl@0
   152
  };
sl@0
   153
sl@0
   154
  template <class vtype, class etype>
sl@0
   155
  struct vertex_property< leda::GRAPH<vtype,etype> > {
sl@0
   156
    typedef vtype type;
sl@0
   157
  };
sl@0
   158
sl@0
   159
  template <class vtype, class etype>
sl@0
   160
  struct edge_property< leda::GRAPH<vtype,etype> > {
sl@0
   161
    typedef etype type;
sl@0
   162
  };
sl@0
   163
sl@0
   164
} // namespace boost
sl@0
   165
#endif
sl@0
   166
sl@0
   167
namespace boost {
sl@0
   168
sl@0
   169
  template <class vtype, class etype>
sl@0
   170
  typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
sl@0
   171
  source(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
sl@0
   172
         const leda::GRAPH<vtype,etype>& g)
sl@0
   173
  {
sl@0
   174
    return source(e);
sl@0
   175
  }
sl@0
   176
sl@0
   177
  template <class vtype, class etype>
sl@0
   178
  typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
sl@0
   179
  target(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
sl@0
   180
         const leda::GRAPH<vtype,etype>& g)
sl@0
   181
  {
sl@0
   182
    return target(e);
sl@0
   183
  }
sl@0
   184
sl@0
   185
  template <class vtype, class etype>
sl@0
   186
  inline std::pair<
sl@0
   187
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator,
sl@0
   188
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator >  
sl@0
   189
  vertices(const leda::GRAPH<vtype,etype>& g)
sl@0
   190
  {
sl@0
   191
    typedef typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator
sl@0
   192
      Iter;
sl@0
   193
    return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) );
sl@0
   194
  }
sl@0
   195
sl@0
   196
  // no edges(g) function
sl@0
   197
sl@0
   198
  template <class vtype, class etype>
sl@0
   199
  inline std::pair<
sl@0
   200
    typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator,
sl@0
   201
    typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator >  
sl@0
   202
  out_edges(
sl@0
   203
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
sl@0
   204
    const leda::GRAPH<vtype,etype>& g)
sl@0
   205
  {
sl@0
   206
    typedef typename graph_traits< leda::GRAPH<vtype,etype> >
sl@0
   207
      ::out_edge_iterator Iter;
sl@0
   208
    return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) );
sl@0
   209
  }
sl@0
   210
sl@0
   211
  template <class vtype, class etype>
sl@0
   212
  inline std::pair<
sl@0
   213
    typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator,
sl@0
   214
    typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator >  
sl@0
   215
  in_edges(
sl@0
   216
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
sl@0
   217
    const leda::GRAPH<vtype,etype>& g)
sl@0
   218
  {
sl@0
   219
    typedef typename graph_traits< leda::GRAPH<vtype,etype> >
sl@0
   220
      ::in_edge_iterator Iter;
sl@0
   221
    return std::make_pair( Iter(First_Adj_Edge(u,1)), Iter(0) );
sl@0
   222
  }
sl@0
   223
sl@0
   224
  template <class vtype, class etype>
sl@0
   225
  inline std::pair<
sl@0
   226
    typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator,
sl@0
   227
    typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator >  
sl@0
   228
  adjacent_vertices(
sl@0
   229
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
sl@0
   230
    const leda::GRAPH<vtype,etype>& g)
sl@0
   231
  {
sl@0
   232
    typedef typename graph_traits< leda::GRAPH<vtype,etype> >
sl@0
   233
      ::adjacency_iterator Iter;
sl@0
   234
    return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) );
sl@0
   235
  }
sl@0
   236
sl@0
   237
  template <class vtype, class etype>
sl@0
   238
  typename graph_traits< leda::GRAPH<vtype,etype> >::vertices_size_type
sl@0
   239
  num_vertices(const leda::GRAPH<vtype,etype>& g)
sl@0
   240
  {
sl@0
   241
    return g.number_of_nodes();
sl@0
   242
  }  
sl@0
   243
sl@0
   244
  template <class vtype, class etype>
sl@0
   245
  typename graph_traits< leda::GRAPH<vtype,etype> >::edges_size_type
sl@0
   246
  num_edges(const leda::GRAPH<vtype,etype>& g)
sl@0
   247
  {
sl@0
   248
    return g.number_of_edges();
sl@0
   249
  }  
sl@0
   250
sl@0
   251
  template <class vtype, class etype>
sl@0
   252
  typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
sl@0
   253
  out_degree(
sl@0
   254
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
sl@0
   255
    const leda::GRAPH<vtype,etype>&)
sl@0
   256
  {
sl@0
   257
    return outdeg(u);
sl@0
   258
  }
sl@0
   259
sl@0
   260
  template <class vtype, class etype>
sl@0
   261
  typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
sl@0
   262
  in_degree(
sl@0
   263
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
sl@0
   264
    const leda::GRAPH<vtype,etype>&)
sl@0
   265
  {
sl@0
   266
    return indeg(u);
sl@0
   267
  }
sl@0
   268
sl@0
   269
  template <class vtype, class etype>
sl@0
   270
  typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
sl@0
   271
  degree(
sl@0
   272
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, 
sl@0
   273
    const leda::GRAPH<vtype,etype>&)
sl@0
   274
  {
sl@0
   275
    return outdeg(u) + indeg(u);
sl@0
   276
  }
sl@0
   277
  
sl@0
   278
  template <class vtype, class etype>
sl@0
   279
  typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
sl@0
   280
  add_vertex(leda::GRAPH<vtype,etype>& g)
sl@0
   281
  {
sl@0
   282
    return g.new_node();
sl@0
   283
  }
sl@0
   284
sl@0
   285
  template <class vtype, class etype>
sl@0
   286
  typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
sl@0
   287
  add_vertex(const vtype& vp, leda::GRAPH<vtype,etype>& g)
sl@0
   288
  {
sl@0
   289
    return g.new_node(vp);
sl@0
   290
  }
sl@0
   291
sl@0
   292
  // Hmm, LEDA doesn't have the equivalent of clear_vertex() -JGS
sl@0
   293
  // need to write an implementation
sl@0
   294
  template <class vtype, class etype>
sl@0
   295
  void clear_vertex(
sl@0
   296
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
sl@0
   297
    leda::GRAPH<vtype,etype>& g)
sl@0
   298
  {
sl@0
   299
    g.del_node(u);
sl@0
   300
  }
sl@0
   301
sl@0
   302
  template <class vtype, class etype>
sl@0
   303
  void remove_vertex(
sl@0
   304
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
sl@0
   305
    leda::GRAPH<vtype,etype>& g)
sl@0
   306
  {
sl@0
   307
    g.del_node(u);
sl@0
   308
  }
sl@0
   309
sl@0
   310
  template <class vtype, class etype>
sl@0
   311
  std::pair<
sl@0
   312
    typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor,
sl@0
   313
    bool>
sl@0
   314
  add_edge(
sl@0
   315
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
sl@0
   316
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v,
sl@0
   317
    leda::GRAPH<vtype,etype>& g)
sl@0
   318
  {
sl@0
   319
    return std::make_pair(g.new_edge(u, v), true);
sl@0
   320
  }
sl@0
   321
sl@0
   322
  template <class vtype, class etype>
sl@0
   323
  std::pair<
sl@0
   324
    typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor,
sl@0
   325
    bool>
sl@0
   326
  add_edge(
sl@0
   327
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
sl@0
   328
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v,
sl@0
   329
    const etype& et, 
sl@0
   330
    leda::GRAPH<vtype,etype>& g)
sl@0
   331
  {
sl@0
   332
    return std::make_pair(g.new_edge(u, v, et), true);
sl@0
   333
  }
sl@0
   334
sl@0
   335
  template <class vtype, class etype>
sl@0
   336
  void
sl@0
   337
  remove_edge(
sl@0
   338
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
sl@0
   339
    typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v,
sl@0
   340
    leda::GRAPH<vtype,etype>& g)
sl@0
   341
  {
sl@0
   342
    typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator 
sl@0
   343
      i,iend;
sl@0
   344
    for (boost::tie(i,iend) = out_edges(u,g); i != iend; ++i)
sl@0
   345
      if (target(*i,g) == v)
sl@0
   346
        g.del_edge(*i);
sl@0
   347
  }
sl@0
   348
sl@0
   349
  template <class vtype, class etype>
sl@0
   350
  void
sl@0
   351
  remove_edge(
sl@0
   352
    typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
sl@0
   353
    leda::GRAPH<vtype,etype>& g)
sl@0
   354
  {
sl@0
   355
    g.del_edge(e);
sl@0
   356
  }
sl@0
   357
sl@0
   358
  //===========================================================================
sl@0
   359
  // property maps
sl@0
   360
  
sl@0
   361
  class leda_graph_id_map
sl@0
   362
    : public put_get_helper<int, leda_graph_id_map>
sl@0
   363
  {
sl@0
   364
  public:
sl@0
   365
    typedef readable_property_map_tag category;
sl@0
   366
    typedef int value_type;
sl@0
   367
    typedef int reference;
sl@0
   368
    typedef leda_node key_type;
sl@0
   369
    leda_graph_id_map() { }
sl@0
   370
    template <class T>
sl@0
   371
    long operator[](T x) const { return x->id(); }
sl@0
   372
  };
sl@0
   373
  template <class vtype, class etype>
sl@0
   374
  inline leda_graph_id_map
sl@0
   375
  get(vertex_index_t, const leda::GRAPH<vtype, etype>& g) {
sl@0
   376
    return leda_graph_id_map();
sl@0
   377
  }
sl@0
   378
  template <class vtype, class etype>
sl@0
   379
  inline leda_graph_id_map
sl@0
   380
  get(edge_index_t, const leda::GRAPH<vtype, etype>& g) {
sl@0
   381
    return leda_graph_id_map();
sl@0
   382
  }
sl@0
   383
sl@0
   384
  template <class Tag>
sl@0
   385
  struct leda_property_map { };
sl@0
   386
sl@0
   387
  template <>
sl@0
   388
  struct leda_property_map<vertex_index_t> {
sl@0
   389
    template <class vtype, class etype>
sl@0
   390
    struct bind_ {
sl@0
   391
      typedef leda_graph_id_map type;
sl@0
   392
      typedef leda_graph_id_map const_type;
sl@0
   393
    };
sl@0
   394
  };
sl@0
   395
  template <>
sl@0
   396
  struct leda_property_map<edge_index_t> {
sl@0
   397
    template <class vtype, class etype>
sl@0
   398
    struct bind_ {
sl@0
   399
      typedef leda_graph_id_map type;
sl@0
   400
      typedef leda_graph_id_map const_type;
sl@0
   401
    };
sl@0
   402
  };
sl@0
   403
sl@0
   404
sl@0
   405
  template <class Data, class DataRef, class GraphPtr>
sl@0
   406
  class leda_graph_data_map
sl@0
   407
    : public put_get_helper<DataRef, 
sl@0
   408
                            leda_graph_data_map<Data,DataRef,GraphPtr> >
sl@0
   409
  {
sl@0
   410
  public:
sl@0
   411
    typedef Data value_type;
sl@0
   412
    typedef DataRef reference;
sl@0
   413
    typedef void key_type;
sl@0
   414
    typedef lvalue_property_map_tag category;
sl@0
   415
    leda_graph_data_map(GraphPtr g) : m_g(g) { }
sl@0
   416
    template <class NodeOrEdge>
sl@0
   417
    DataRef operator[](NodeOrEdge x) const { return (*m_g)[x]; }
sl@0
   418
  protected:
sl@0
   419
    GraphPtr m_g;
sl@0
   420
  };
sl@0
   421
sl@0
   422
  template <>
sl@0
   423
  struct leda_property_map<vertex_all_t> {
sl@0
   424
    template <class vtype, class etype>
sl@0
   425
    struct bind_ {
sl@0
   426
      typedef leda_graph_data_map<vtype, vtype&, leda::GRAPH<vtype, etype>*> type;
sl@0
   427
      typedef leda_graph_data_map<vtype, const vtype&, 
sl@0
   428
        const leda::GRAPH<vtype, etype>*> const_type;
sl@0
   429
    };
sl@0
   430
  };  
sl@0
   431
  template <class vtype, class etype >
sl@0
   432
  inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type
sl@0
   433
  get(vertex_all_t, leda::GRAPH<vtype, etype>& g) {
sl@0
   434
    typedef typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type 
sl@0
   435
      pmap_type;
sl@0
   436
    return pmap_type(&g);
sl@0
   437
  }
sl@0
   438
  template <class vtype, class etype >
sl@0
   439
  inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::const_type
sl@0
   440
  get(vertex_all_t, const leda::GRAPH<vtype, etype>& g) {
sl@0
   441
    typedef typename property_map< leda::GRAPH<vtype, etype>, 
sl@0
   442
      vertex_all_t>::const_type pmap_type;
sl@0
   443
    return pmap_type(&g);
sl@0
   444
  }
sl@0
   445
sl@0
   446
  template <>
sl@0
   447
  struct leda_property_map<edge_all_t> {
sl@0
   448
    template <class vtype, class etype>
sl@0
   449
    struct bind_ {
sl@0
   450
      typedef leda_graph_data_map<etype, etype&, leda::GRAPH<vtype, etype>*> type;
sl@0
   451
      typedef leda_graph_data_map<etype, const etype&, 
sl@0
   452
        const leda::GRAPH<vtype, etype>*> const_type;
sl@0
   453
    };
sl@0
   454
  };
sl@0
   455
  template <class vtype, class etype >
sl@0
   456
  inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type
sl@0
   457
  get(edge_all_t, leda::GRAPH<vtype, etype>& g) {
sl@0
   458
    typedef typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type 
sl@0
   459
      pmap_type;
sl@0
   460
    return pmap_type(&g);
sl@0
   461
  }
sl@0
   462
  template <class vtype, class etype >
sl@0
   463
  inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::const_type
sl@0
   464
  get(edge_all_t, const leda::GRAPH<vtype, etype>& g) {
sl@0
   465
    typedef typename property_map< leda::GRAPH<vtype, etype>, 
sl@0
   466
      edge_all_t>::const_type pmap_type;
sl@0
   467
    return pmap_type(&g);
sl@0
   468
  }
sl@0
   469
sl@0
   470
  // property map interface to the LEDA node_array class
sl@0
   471
sl@0
   472
  template <class E, class ERef, class NodeMapPtr>
sl@0
   473
  class leda_node_property_map
sl@0
   474
    : public put_get_helper<ERef, leda_node_property_map<E, ERef, NodeMapPtr> >
sl@0
   475
  {
sl@0
   476
  public:
sl@0
   477
    typedef E value_type;
sl@0
   478
    typedef ERef reference;
sl@0
   479
    typedef leda_node key_type;
sl@0
   480
    typedef lvalue_property_map_tag category;
sl@0
   481
    leda_node_property_map(NodeMapPtr a) : m_array(a) { }
sl@0
   482
    ERef operator[](leda_node n) const { return (*m_array)[n]; }
sl@0
   483
  protected:
sl@0
   484
    NodeMapPtr m_array;
sl@0
   485
  };
sl@0
   486
  template <class E>
sl@0
   487
  leda_node_property_map<E, const E&, const leda_node_array<E>*>
sl@0
   488
  make_leda_node_property_map(const leda_node_array<E>& a)
sl@0
   489
  {
sl@0
   490
    typedef leda_node_property_map<E, const E&, const leda_node_array<E>*>
sl@0
   491
      pmap_type;
sl@0
   492
    return pmap_type(&a);
sl@0
   493
  }
sl@0
   494
  template <class E>
sl@0
   495
  leda_node_property_map<E, E&, leda_node_array<E>*>
sl@0
   496
  make_leda_node_property_map(leda_node_array<E>& a)
sl@0
   497
  {
sl@0
   498
    typedef leda_node_property_map<E, E&, leda_node_array<E>*> pmap_type;
sl@0
   499
    return pmap_type(&a);
sl@0
   500
  }
sl@0
   501
sl@0
   502
  template <class E>
sl@0
   503
  leda_node_property_map<E, const E&, const leda_node_map<E>*>
sl@0
   504
  make_leda_node_property_map(const leda_node_map<E>& a)
sl@0
   505
  {
sl@0
   506
    typedef leda_node_property_map<E,const E&,const leda_node_map<E>*> 
sl@0
   507
      pmap_type;
sl@0
   508
    return pmap_type(&a);
sl@0
   509
  }
sl@0
   510
  template <class E>
sl@0
   511
  leda_node_property_map<E, E&, leda_node_map<E>*>
sl@0
   512
  make_leda_node_property_map(leda_node_map<E>& a)
sl@0
   513
  {
sl@0
   514
    typedef leda_node_property_map<E, E&, leda_node_map<E>*> pmap_type;
sl@0
   515
    return pmap_type(&a);
sl@0
   516
  }
sl@0
   517
sl@0
   518
  // g++ 'enumeral_type' in template unification not implemented workaround
sl@0
   519
  template <class vtype, class etype, class Tag>
sl@0
   520
  struct property_map<leda::GRAPH<vtype, etype>, Tag> {
sl@0
   521
    typedef typename 
sl@0
   522
      leda_property_map<Tag>::template bind_<vtype, etype> map_gen;
sl@0
   523
    typedef typename map_gen::type type;
sl@0
   524
    typedef typename map_gen::const_type const_type;
sl@0
   525
  };
sl@0
   526
sl@0
   527
  template <class vtype, class etype, class PropertyTag, class Key>
sl@0
   528
  inline
sl@0
   529
  typename boost::property_traits<
sl@0
   530
    typename boost::property_map<leda::GRAPH<vtype, etype>,PropertyTag>::const_type
sl@0
   531
  >::value_type
sl@0
   532
  get(PropertyTag p, const leda::GRAPH<vtype, etype>& g, const Key& key) {
sl@0
   533
    return get(get(p, g), key);
sl@0
   534
  }
sl@0
   535
  
sl@0
   536
  template <class vtype, class etype, class PropertyTag, class Key,class Value>
sl@0
   537
  inline void
sl@0
   538
  put(PropertyTag p, leda::GRAPH<vtype, etype>& g, 
sl@0
   539
      const Key& key, const Value& value)
sl@0
   540
  {
sl@0
   541
    typedef typename property_map<leda::GRAPH<vtype, etype>, PropertyTag>::type Map;
sl@0
   542
    Map pmap = get(p, g);
sl@0
   543
    put(pmap, key, value);
sl@0
   544
  }
sl@0
   545
sl@0
   546
} // namespace boost
sl@0
   547
sl@0
   548
sl@0
   549
#endif // BOOST_GRAPH_LEDA_HPP