os/ossrv/compressionlibs/ziplib/test/oldezlib/EZLib/infblock.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/* infblock.c -- interpret and process block types to last block
sl@0
     2
 * Copyright (C) 1995-2002 Mark Adler
sl@0
     3
 * For conditions of distribution and use, see copyright notice in zlib.h 
sl@0
     4
 */
sl@0
     5
sl@0
     6
#include "zutil.h"
sl@0
     7
#include "infblock.h"
sl@0
     8
#include "inftrees.h"
sl@0
     9
#include "infcodes.h"
sl@0
    10
#include "infutil.h"
sl@0
    11
sl@0
    12
struct inflate_codes_state {int dummy;}; /* for buggy compilers */
sl@0
    13
sl@0
    14
/* simplify the use of the inflate_huft type with some defines */
sl@0
    15
#define exop word.what.Exop
sl@0
    16
#define bits word.what.Bits
sl@0
    17
sl@0
    18
/* Table for deflate from PKZIP's appnote.txt. */
sl@0
    19
local const uInt border[] = { /* Order of the bit length code lengths */
sl@0
    20
        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
sl@0
    21
sl@0
    22
/*
sl@0
    23
   Notes beyond the 1.93a appnote.txt:
sl@0
    24
sl@0
    25
   1. Distance pointers never point before the beginning of the output
sl@0
    26
      stream.
sl@0
    27
   2. Distance pointers can point back across blocks, up to 32k away.
sl@0
    28
   3. There is an implied maximum of 7 bits for the bit length table and
sl@0
    29
      15 bits for the actual data.
sl@0
    30
   4. If only one code exists, then it is encoded using one bit.  (Zero
sl@0
    31
      would be more efficient, but perhaps a little confusing.)  If two
sl@0
    32
      codes exist, they are coded using one bit each (0 and 1).
sl@0
    33
   5. There is no way of sending zero distance codes--a dummy must be
sl@0
    34
      sent if there are none.  (History: a pre 2.0 version of PKZIP would
sl@0
    35
      store blocks with no distance codes, but this was discovered to be
sl@0
    36
      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
sl@0
    37
      zero distance codes, which is sent as one code of zero bits in
sl@0
    38
      length.
sl@0
    39
   6. There are up to 286 literal/length codes.  Code 256 represents the
sl@0
    40
      end-of-block.  Note however that the static length tree defines
sl@0
    41
      288 codes just to fill out the Huffman codes.  Codes 286 and 287
sl@0
    42
      cannot be used though, since there is no length base or extra bits
sl@0
    43
      defined for them.  Similarily, there are up to 30 distance codes.
sl@0
    44
      However, static trees define 32 codes (all 5 bits) to fill out the
sl@0
    45
      Huffman codes, but the last two had better not show up in the data.
sl@0
    46
   7. Unzip can check dynamic Huffman blocks for complete code sets.
sl@0
    47
      The exception is that a single code would not be complete (see #4).
sl@0
    48
   8. The five bits following the block type is really the number of
sl@0
    49
      literal codes sent minus 257.
sl@0
    50
   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
sl@0
    51
      (1+6+6).  Therefore, to output three times the length, you output
sl@0
    52
      three codes (1+1+1), whereas to output four times the same length,
sl@0
    53
      you only need two codes (1+3).  Hmm.
sl@0
    54
  10. In the tree reconstruction algorithm, Code = Code + Increment
sl@0
    55
      only if BitLength(i) is not zero.  (Pretty obvious.)
sl@0
    56
  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
sl@0
    57
  12. Note: length code 284 can represent 227-258, but length code 285
sl@0
    58
      really is 258.  The last length deserves its own, short code
sl@0
    59
      since it gets used a lot in very redundant files.  The length
sl@0
    60
      258 is special since 258 - 3 (the min match length) is 255.
sl@0
    61
  13. The literal/length and distance code bit lengths are read as a
sl@0
    62
      single stream of lengths.  It is possible (and advantageous) for
sl@0
    63
      a repeat code (16, 17, or 18) to go across the boundary between
sl@0
    64
      the two sets of lengths.
sl@0
    65
 */
sl@0
    66
sl@0
    67
sl@0
    68
void inflate_blocks_reset(
sl@0
    69
inflate_blocks_statef *s,
sl@0
    70
z_streamp z,
sl@0
    71
uLongf *c)
sl@0
    72
{
sl@0
    73
  if (c != Z_NULL)
sl@0
    74
    *c = s->check;
sl@0
    75
  if (s->mode == BTREE || s->mode == DTREE)
sl@0
    76
    ZFREE(z, s->sub.trees.blens);
sl@0
    77
  if (s->mode == CODES)
sl@0
    78
    inflate_codes_free(s->sub.decode.codes, z);
sl@0
    79
  s->mode = TYPE;
sl@0
    80
  s->bitk = 0;
sl@0
    81
  s->bitb = 0;
sl@0
    82
  s->read = s->write = s->window;
sl@0
    83
  if (s->checkfn != Z_NULL)
sl@0
    84
    z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
sl@0
    85
  Tracev((stderr, "inflate:   blocks reset\n"));
sl@0
    86
}
sl@0
    87
sl@0
    88
sl@0
    89
inflate_blocks_statef *inflate_blocks_new(
sl@0
    90
z_streamp z,
sl@0
    91
check_func c,
sl@0
    92
uInt w)
sl@0
    93
{
sl@0
    94
  inflate_blocks_statef *s;
sl@0
    95
sl@0
    96
  if ((s = (inflate_blocks_statef *)ZALLOC
sl@0
    97
       (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
sl@0
    98
    return s;
sl@0
    99
  if ((s->hufts =
sl@0
   100
       (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
sl@0
   101
  {
sl@0
   102
    ZFREE(z, s);
sl@0
   103
    return Z_NULL;
sl@0
   104
  }
sl@0
   105
  if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
sl@0
   106
  {
sl@0
   107
    ZFREE(z, s->hufts);
sl@0
   108
    ZFREE(z, s);
sl@0
   109
    return Z_NULL;
sl@0
   110
  }
sl@0
   111
  s->end = s->window + w;
sl@0
   112
  s->checkfn = c;
sl@0
   113
  s->mode = TYPE;
sl@0
   114
  Tracev((stderr, "inflate:   blocks allocated\n"));
sl@0
   115
  inflate_blocks_reset(s, z, Z_NULL);
sl@0
   116
  return s;
sl@0
   117
}
sl@0
   118
sl@0
   119
sl@0
   120
int inflate_blocks(
sl@0
   121
inflate_blocks_statef *s,
sl@0
   122
z_streamp z,
sl@0
   123
int r)
sl@0
   124
{
sl@0
   125
  uInt t;               /* temporary storage */
sl@0
   126
  uLong b;              /* bit buffer */
sl@0
   127
  uInt k;               /* bits in bit buffer */
sl@0
   128
  Bytef *p;             /* input data pointer */
sl@0
   129
  uInt n;               /* bytes available there */
sl@0
   130
  Bytef *q;             /* output window write pointer */
sl@0
   131
  uInt m;               /* bytes to end of window or read pointer */
sl@0
   132
sl@0
   133
  /* copy input/output information to locals (UPDATE macro restores) */
sl@0
   134
  LOAD
sl@0
   135
sl@0
   136
  /* process input based on current state */
sl@0
   137
  for (;;) switch (s->mode)
sl@0
   138
  {
sl@0
   139
    case TYPE:
sl@0
   140
      NEEDBITS(3)
sl@0
   141
      t = (uInt)b & 7;
sl@0
   142
      s->last = t & 1;
sl@0
   143
      switch (t >> 1)
sl@0
   144
      {
sl@0
   145
        case 0:                         /* stored */
sl@0
   146
          Tracev((stderr, "inflate:     stored block%s\n",
sl@0
   147
                 s->last ? " (last)" : ""));
sl@0
   148
          DUMPBITS(3)
sl@0
   149
          t = k & 7;                    /* go to byte boundary */
sl@0
   150
          DUMPBITS(t)
sl@0
   151
          s->mode = LENS;               /* get length of stored block */
sl@0
   152
          break;
sl@0
   153
        case 1:                         /* fixed */
sl@0
   154
          Tracev((stderr, "inflate:     fixed codes block%s\n",
sl@0
   155
                 s->last ? " (last)" : ""));
sl@0
   156
          {
sl@0
   157
            uInt bl, bd;
sl@0
   158
            const inflate_huft *tl, *td;
sl@0
   159
sl@0
   160
            inflate_trees_fixed(&bl, &bd, &tl, &td, z);
sl@0
   161
            s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
sl@0
   162
            if (s->sub.decode.codes == Z_NULL)
sl@0
   163
            {
sl@0
   164
              r = Z_MEM_ERROR;
sl@0
   165
              LEAVE
sl@0
   166
            }
sl@0
   167
          }
sl@0
   168
          DUMPBITS(3)
sl@0
   169
          s->mode = CODES;
sl@0
   170
          break;
sl@0
   171
        case 2:                         /* dynamic */
sl@0
   172
          Tracev((stderr, "inflate:     dynamic codes block%s\n",
sl@0
   173
                 s->last ? " (last)" : ""));
sl@0
   174
          DUMPBITS(3)
sl@0
   175
          s->mode = TABLE;
sl@0
   176
          break;
sl@0
   177
        case 3:                         /* illegal */
sl@0
   178
          DUMPBITS(3)
sl@0
   179
          s->mode = BAD;
sl@0
   180
          z->msg = (char*)"invalid block type";
sl@0
   181
          r = Z_DATA_ERROR;
sl@0
   182
          LEAVE
sl@0
   183
      }
sl@0
   184
      break;
sl@0
   185
    case LENS:
sl@0
   186
      NEEDBITS(32)
sl@0
   187
      if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
sl@0
   188
      {
sl@0
   189
        s->mode = BAD;
sl@0
   190
        z->msg = (char*)"invalid stored block lengths";
sl@0
   191
        r = Z_DATA_ERROR;
sl@0
   192
        LEAVE
sl@0
   193
      }
sl@0
   194
      s->sub.left = (uInt)b & 0xffff;
sl@0
   195
      b = k = 0;                      /* dump bits */
sl@0
   196
      Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
sl@0
   197
      s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
sl@0
   198
      break;
sl@0
   199
    case STORED:
sl@0
   200
      if (n == 0)
sl@0
   201
        LEAVE
sl@0
   202
      NEEDOUT
sl@0
   203
      t = s->sub.left;
sl@0
   204
      if (t > n) t = n;
sl@0
   205
      if (t > m) t = m;
sl@0
   206
      zmemcpy(q, p, t);
sl@0
   207
      p += t;  n -= t;
sl@0
   208
      q += t;  m -= t;
sl@0
   209
      if ((s->sub.left -= t) != 0)
sl@0
   210
        break;
sl@0
   211
      Tracev((stderr, "inflate:       stored end, %lu total out\n",
sl@0
   212
              z->total_out + (q >= s->read ? q - s->read :
sl@0
   213
              (s->end - s->read) + (q - s->window))));
sl@0
   214
      s->mode = s->last ? DRY : TYPE;
sl@0
   215
      break;
sl@0
   216
    case TABLE:
sl@0
   217
      NEEDBITS(14)
sl@0
   218
      s->sub.trees.table = t = (uInt)b & 0x3fff;
sl@0
   219
#ifndef PKZIP_BUG_WORKAROUND
sl@0
   220
      if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
sl@0
   221
      {
sl@0
   222
        s->mode = BAD;
sl@0
   223
        z->msg = (char*)"too many length or distance symbols";
sl@0
   224
        r = Z_DATA_ERROR;
sl@0
   225
        LEAVE
sl@0
   226
      }
sl@0
   227
#endif
sl@0
   228
      t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
sl@0
   229
      if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
sl@0
   230
      {
sl@0
   231
        r = Z_MEM_ERROR;
sl@0
   232
        LEAVE
sl@0
   233
      }
sl@0
   234
      DUMPBITS(14)
sl@0
   235
      s->sub.trees.index = 0;
sl@0
   236
      Tracev((stderr, "inflate:       table sizes ok\n"));
sl@0
   237
      s->mode = BTREE;
sl@0
   238
    case BTREE:
sl@0
   239
      while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
sl@0
   240
      {
sl@0
   241
        NEEDBITS(3)
sl@0
   242
        s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
sl@0
   243
        DUMPBITS(3)
sl@0
   244
      }
sl@0
   245
      while (s->sub.trees.index < 19)
sl@0
   246
        s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
sl@0
   247
      s->sub.trees.bb = 7;
sl@0
   248
      t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
sl@0
   249
                             &s->sub.trees.tb, s->hufts, z);
sl@0
   250
      if (t != Z_OK)
sl@0
   251
      {
sl@0
   252
        r = t;
sl@0
   253
        if (r == Z_DATA_ERROR)
sl@0
   254
        {
sl@0
   255
          ZFREE(z, s->sub.trees.blens);
sl@0
   256
          s->mode = BAD;
sl@0
   257
        }
sl@0
   258
        LEAVE
sl@0
   259
      }
sl@0
   260
      s->sub.trees.index = 0;
sl@0
   261
      Tracev((stderr, "inflate:       bits tree ok\n"));
sl@0
   262
      s->mode = DTREE;
sl@0
   263
    case DTREE:
sl@0
   264
      while (t = s->sub.trees.table,
sl@0
   265
             s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
sl@0
   266
      {
sl@0
   267
        inflate_huft *h;
sl@0
   268
        uInt i, j, c;
sl@0
   269
sl@0
   270
        t = s->sub.trees.bb;
sl@0
   271
        NEEDBITS(t)
sl@0
   272
        h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
sl@0
   273
        t = h->bits;
sl@0
   274
        c = h->base;
sl@0
   275
        if (c < 16)
sl@0
   276
        {
sl@0
   277
          DUMPBITS(t)
sl@0
   278
          s->sub.trees.blens[s->sub.trees.index++] = c;
sl@0
   279
        }
sl@0
   280
        else /* c == 16..18 */
sl@0
   281
        {
sl@0
   282
          i = c == 18 ? 7 : c - 14;
sl@0
   283
          j = c == 18 ? 11 : 3;
sl@0
   284
          NEEDBITS(t + i)
sl@0
   285
          DUMPBITS(t)
sl@0
   286
          j += (uInt)b & inflate_mask[i];
sl@0
   287
          DUMPBITS(i)
sl@0
   288
          i = s->sub.trees.index;
sl@0
   289
          t = s->sub.trees.table;
sl@0
   290
          if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
sl@0
   291
              (c == 16 && i < 1))
sl@0
   292
          {
sl@0
   293
            ZFREE(z, s->sub.trees.blens);
sl@0
   294
            s->mode = BAD;
sl@0
   295
            z->msg = (char*)"invalid bit length repeat";
sl@0
   296
            r = Z_DATA_ERROR;
sl@0
   297
            LEAVE
sl@0
   298
          }
sl@0
   299
          c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
sl@0
   300
          do {
sl@0
   301
            s->sub.trees.blens[i++] = c;
sl@0
   302
          } while (--j);
sl@0
   303
          s->sub.trees.index = i;
sl@0
   304
        }
sl@0
   305
      }
sl@0
   306
      s->sub.trees.tb = Z_NULL;
sl@0
   307
      {
sl@0
   308
        uInt bl, bd;
sl@0
   309
        inflate_huft *tl, *td;
sl@0
   310
        inflate_codes_statef *c;
sl@0
   311
sl@0
   312
        bl = 9;         /* must be <= 9 for lookahead assumptions */
sl@0
   313
        bd = 6;         /* must be <= 9 for lookahead assumptions */
sl@0
   314
        t = s->sub.trees.table;
sl@0
   315
        t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
sl@0
   316
                                  s->sub.trees.blens, &bl, &bd, &tl, &td,
sl@0
   317
                                  s->hufts, z);
sl@0
   318
        
sl@0
   319
        if (t != Z_OK)
sl@0
   320
        {
sl@0
   321
          if (t == (uInt)Z_DATA_ERROR)
sl@0
   322
			{
sl@0
   323
			ZFREE(z, s->sub.trees.blens);
sl@0
   324
            s->mode = BAD;
sl@0
   325
			}
sl@0
   326
          r = t;
sl@0
   327
          LEAVE
sl@0
   328
        }
sl@0
   329
        Tracev((stderr, "inflate:       trees ok\n"));
sl@0
   330
        if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
sl@0
   331
        {
sl@0
   332
          r = Z_MEM_ERROR;
sl@0
   333
          LEAVE
sl@0
   334
        }
sl@0
   335
        s->sub.decode.codes = c;
sl@0
   336
      }
sl@0
   337
	  ZFREE(z, s->sub.trees.blens);
sl@0
   338
      s->mode = CODES;
sl@0
   339
    case CODES:
sl@0
   340
      UPDATE
sl@0
   341
      if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
sl@0
   342
        return inflate_flush(s, z, r);
sl@0
   343
      r = Z_OK;
sl@0
   344
      inflate_codes_free(s->sub.decode.codes, z);
sl@0
   345
      LOAD
sl@0
   346
      Tracev((stderr, "inflate:       codes end, %lu total out\n",
sl@0
   347
              z->total_out + (q >= s->read ? q - s->read :
sl@0
   348
              (s->end - s->read) + (q - s->window))));
sl@0
   349
      if (!s->last)
sl@0
   350
      {
sl@0
   351
        s->mode = TYPE;
sl@0
   352
        break;
sl@0
   353
      }
sl@0
   354
      s->mode = DRY;
sl@0
   355
    case DRY:
sl@0
   356
      FLUSH
sl@0
   357
      if (s->read != s->write)
sl@0
   358
        LEAVE
sl@0
   359
      s->mode = DONE;
sl@0
   360
    case DONE:
sl@0
   361
      r = Z_STREAM_END;
sl@0
   362
      LEAVE
sl@0
   363
    case BAD:
sl@0
   364
      r = Z_DATA_ERROR;
sl@0
   365
      LEAVE
sl@0
   366
    default:
sl@0
   367
      r = Z_STREAM_ERROR;
sl@0
   368
      LEAVE
sl@0
   369
  }
sl@0
   370
}
sl@0
   371
sl@0
   372
sl@0
   373
int inflate_blocks_free(
sl@0
   374
inflate_blocks_statef *s,
sl@0
   375
z_streamp z)
sl@0
   376
{
sl@0
   377
  inflate_blocks_reset(s, z, Z_NULL);
sl@0
   378
  ZFREE(z, s->window);
sl@0
   379
  ZFREE(z, s->hufts);
sl@0
   380
  ZFREE(z, s);
sl@0
   381
  Tracev((stderr, "inflate:   blocks freed\n"));
sl@0
   382
  return Z_OK;
sl@0
   383
}
sl@0
   384
sl@0
   385
sl@0
   386
void inflate_set_dictionary(
sl@0
   387
inflate_blocks_statef *s,
sl@0
   388
const Bytef *d,
sl@0
   389
uInt  n)
sl@0
   390
{
sl@0
   391
  zmemcpy(s->window, d, n);
sl@0
   392
  s->read = s->write = s->window + n;
sl@0
   393
}
sl@0
   394
sl@0
   395
sl@0
   396
/* Returns true if inflate is currently at the end of a block generated
sl@0
   397
 * by Z_SYNC_FLUSH or Z_FULL_FLUSH. 
sl@0
   398
 * IN assertion: s != Z_NULL
sl@0
   399
 */
sl@0
   400
int inflate_blocks_sync_point(
sl@0
   401
inflate_blocks_statef *s)
sl@0
   402
{
sl@0
   403
  return s->mode == LENS;
sl@0
   404
}