sl@0
|
1 |
// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
//
|
sl@0
|
15 |
|
sl@0
|
16 |
#include <mmf/plugin/mmfsbccodecimplementationuids.hrh> // KMmfUidSBCConfigure
|
sl@0
|
17 |
|
sl@0
|
18 |
#include "SBCEncoder.h"
|
sl@0
|
19 |
#include "SBCConst.h"
|
sl@0
|
20 |
#include "SBCFrameParameters.h"
|
sl@0
|
21 |
|
sl@0
|
22 |
/**
|
sl@0
|
23 |
The sbc configuration UID, used to identify configuration type,
|
sl@0
|
24 |
have to use this to configure any sbc codec.
|
sl@0
|
25 |
*/
|
sl@0
|
26 |
const TUid KSBCConfigTypeUid = { KMmfUidSBCConfigure };
|
sl@0
|
27 |
|
sl@0
|
28 |
/**
|
sl@0
|
29 |
SBC CRC shift register initial value for SBC CRC calculation
|
sl@0
|
30 |
*/
|
sl@0
|
31 |
const TUint8 KSbcCRCShiftRegisterInit = 0x0f;
|
sl@0
|
32 |
/**
|
sl@0
|
33 |
SBC CRC XOR mask, derived from polynomial G(X) = X^8 + X^4 + X^3 + X^2 + 1
|
sl@0
|
34 |
*/
|
sl@0
|
35 |
const TUint8 KSbcCRCShiftRegisterXorMask = 0x1d;
|
sl@0
|
36 |
|
sl@0
|
37 |
#ifdef _DEBUG
|
sl@0
|
38 |
|
sl@0
|
39 |
enum
|
sl@0
|
40 |
{
|
sl@0
|
41 |
ESbcBitstreamPosErr,
|
sl@0
|
42 |
ESbcSampleOverflow
|
sl@0
|
43 |
};
|
sl@0
|
44 |
|
sl@0
|
45 |
_LIT(KSBCEncoderPanicCategory, "CSBCEncoder");
|
sl@0
|
46 |
|
sl@0
|
47 |
static inline void Panic(TInt aError)
|
sl@0
|
48 |
{
|
sl@0
|
49 |
User::Panic(KSBCEncoderPanicCategory, aError);
|
sl@0
|
50 |
}
|
sl@0
|
51 |
|
sl@0
|
52 |
#endif
|
sl@0
|
53 |
|
sl@0
|
54 |
/* ========================= class CBitStreamParser ========================= */
|
sl@0
|
55 |
|
sl@0
|
56 |
/**
|
sl@0
|
57 |
class CBitStreamParser constructor
|
sl@0
|
58 |
@internalComponent
|
sl@0
|
59 |
@param aBitStream
|
sl@0
|
60 |
The bit stream buffer to be parsed
|
sl@0
|
61 |
*/
|
sl@0
|
62 |
CBitStreamParser::CBitStreamParser(TDes8& aBitStream) : iBitStream(aBitStream),
|
sl@0
|
63 |
iByteOffset(0), iBitOffset(0)
|
sl@0
|
64 |
{
|
sl@0
|
65 |
iPtr = const_cast<TUint8*>(aBitStream.Ptr() );
|
sl@0
|
66 |
}
|
sl@0
|
67 |
|
sl@0
|
68 |
/**
|
sl@0
|
69 |
class CBitStreamParser destructor
|
sl@0
|
70 |
@internalComponent
|
sl@0
|
71 |
*/
|
sl@0
|
72 |
CBitStreamParser::~CBitStreamParser()
|
sl@0
|
73 |
{
|
sl@0
|
74 |
}
|
sl@0
|
75 |
|
sl@0
|
76 |
/**
|
sl@0
|
77 |
class CBitStreamParser second phase constructor
|
sl@0
|
78 |
@internalComponent
|
sl@0
|
79 |
*/
|
sl@0
|
80 |
void CBitStreamParser::ConstructL()
|
sl@0
|
81 |
{
|
sl@0
|
82 |
}
|
sl@0
|
83 |
|
sl@0
|
84 |
/**
|
sl@0
|
85 |
This function creates a new CBitStreamParser object and push it into CleanupStack.
|
sl@0
|
86 |
@internalComponent
|
sl@0
|
87 |
@param aBitStream
|
sl@0
|
88 |
The bit stream buffer to be parsed
|
sl@0
|
89 |
@return pointer to the new CBitStreamParser object
|
sl@0
|
90 |
@leave if out of memory
|
sl@0
|
91 |
*/
|
sl@0
|
92 |
CBitStreamParser* CBitStreamParser::NewLC(TDes8& aBitStream)
|
sl@0
|
93 |
{
|
sl@0
|
94 |
CBitStreamParser* self = new(ELeave) CBitStreamParser(aBitStream);
|
sl@0
|
95 |
CleanupStack::PushL(self);
|
sl@0
|
96 |
self->ConstructL();
|
sl@0
|
97 |
return self;
|
sl@0
|
98 |
}
|
sl@0
|
99 |
|
sl@0
|
100 |
/**
|
sl@0
|
101 |
This function reset the internal bit position of CBitStreamParser
|
sl@0
|
102 |
@internalComponent
|
sl@0
|
103 |
*/
|
sl@0
|
104 |
void CBitStreamParser::Reset()
|
sl@0
|
105 |
{
|
sl@0
|
106 |
iPtr = const_cast<TUint8*>(iBitStream.Ptr() );
|
sl@0
|
107 |
iByteOffset = 0;
|
sl@0
|
108 |
iBitOffset = 0;
|
sl@0
|
109 |
}
|
sl@0
|
110 |
|
sl@0
|
111 |
/**
|
sl@0
|
112 |
This function reads a number of bits from bit stream buffer at current bit position
|
sl@0
|
113 |
and change the bit position to then end of the last bit read.
|
sl@0
|
114 |
@internalComponent
|
sl@0
|
115 |
@param aBitsToRead
|
sl@0
|
116 |
Number of bits to read, at most 8 bits
|
sl@0
|
117 |
@return the bits value in byte
|
sl@0
|
118 |
@panic if bit position is outside of the stream buffer
|
sl@0
|
119 |
*/
|
sl@0
|
120 |
TUint8 CBitStreamParser::ReadBits(TInt aBitsToRead)
|
sl@0
|
121 |
{
|
sl@0
|
122 |
TUint8 result = 0;
|
sl@0
|
123 |
if (aBitsToRead >= 8 - iBitOffset)
|
sl@0
|
124 |
{
|
sl@0
|
125 |
__ASSERT_DEBUG(iByteOffset < static_cast<TUint>(iBitStream.MaxLength() ), Panic(ESbcBitstreamPosErr) );
|
sl@0
|
126 |
// extra code to handle exception for URel version
|
sl@0
|
127 |
if (iByteOffset >= static_cast<TUint>(iBitStream.MaxLength() ) )
|
sl@0
|
128 |
{
|
sl@0
|
129 |
return 0;
|
sl@0
|
130 |
}
|
sl@0
|
131 |
|
sl@0
|
132 |
aBitsToRead -= (8 - iBitOffset);
|
sl@0
|
133 |
result = static_cast<TUint8>( (*iPtr & (0xff >> iBitOffset) ) << aBitsToRead);
|
sl@0
|
134 |
|
sl@0
|
135 |
iPtr++;
|
sl@0
|
136 |
iByteOffset++;
|
sl@0
|
137 |
iBitOffset = 0;
|
sl@0
|
138 |
}
|
sl@0
|
139 |
if (aBitsToRead > 0)
|
sl@0
|
140 |
{
|
sl@0
|
141 |
__ASSERT_DEBUG(iByteOffset < static_cast<TUint>(iBitStream.MaxLength() ), Panic(ESbcBitstreamPosErr) );
|
sl@0
|
142 |
// extra code to handle exception for URel version
|
sl@0
|
143 |
if (iByteOffset >= static_cast<TUint>(iBitStream.MaxLength() ) )
|
sl@0
|
144 |
{
|
sl@0
|
145 |
return 0;
|
sl@0
|
146 |
}
|
sl@0
|
147 |
|
sl@0
|
148 |
result |= static_cast<TUint8>( (*iPtr & (0xff >> iBitOffset) ) >> (8 - iBitOffset - aBitsToRead) );
|
sl@0
|
149 |
iBitOffset = static_cast<TUint8>(iBitOffset + aBitsToRead);
|
sl@0
|
150 |
}
|
sl@0
|
151 |
return result;
|
sl@0
|
152 |
}
|
sl@0
|
153 |
|
sl@0
|
154 |
/**
|
sl@0
|
155 |
This function writes a number of bits to the bit stream buffer at current bit position
|
sl@0
|
156 |
and change the bit position to then end of the last bit written.
|
sl@0
|
157 |
@internalComponent
|
sl@0
|
158 |
@param aBitsToWrite
|
sl@0
|
159 |
Number of bits to write, at most 8 bits
|
sl@0
|
160 |
@param aBitsValue
|
sl@0
|
161 |
The bits value to write in byte
|
sl@0
|
162 |
@panic if bit position is outside of the stream buffer
|
sl@0
|
163 |
*/
|
sl@0
|
164 |
void CBitStreamParser::WriteBits(TInt aBitsToWrite, TUint8 aBitsValue)
|
sl@0
|
165 |
{
|
sl@0
|
166 |
if (aBitsToWrite >= 8 - iBitOffset)
|
sl@0
|
167 |
{
|
sl@0
|
168 |
__ASSERT_DEBUG(iByteOffset < static_cast<TUint>(iBitStream.MaxLength() ), Panic(ESbcBitstreamPosErr) );
|
sl@0
|
169 |
// extra code to handle exception for URel version
|
sl@0
|
170 |
if (iByteOffset >= static_cast<TUint>(iBitStream.MaxLength() ) )
|
sl@0
|
171 |
{
|
sl@0
|
172 |
return;
|
sl@0
|
173 |
}
|
sl@0
|
174 |
|
sl@0
|
175 |
aBitsToWrite -= (8 - iBitOffset);
|
sl@0
|
176 |
*iPtr &= ~(0xff >> iBitOffset); // clear bits
|
sl@0
|
177 |
*iPtr |= (aBitsValue >> aBitsToWrite) & (0xff >> iBitOffset); // set bits
|
sl@0
|
178 |
|
sl@0
|
179 |
iPtr++;
|
sl@0
|
180 |
iByteOffset++;
|
sl@0
|
181 |
iBitOffset = 0;
|
sl@0
|
182 |
}
|
sl@0
|
183 |
if (aBitsToWrite > 0)
|
sl@0
|
184 |
{
|
sl@0
|
185 |
__ASSERT_DEBUG(iByteOffset < static_cast<TUint>(iBitStream.MaxLength() ), Panic(ESbcBitstreamPosErr) );
|
sl@0
|
186 |
// extra code to handle exception for URel version
|
sl@0
|
187 |
if (iByteOffset >= static_cast<TUint>(iBitStream.MaxLength() ) )
|
sl@0
|
188 |
{
|
sl@0
|
189 |
return;
|
sl@0
|
190 |
}
|
sl@0
|
191 |
|
sl@0
|
192 |
*iPtr &= (0xff << (8 - iBitOffset) ) | (0xff >> (iBitOffset + aBitsToWrite) ); // clear bits
|
sl@0
|
193 |
*iPtr |= (aBitsValue << (8 - iBitOffset - aBitsToWrite) ) & (0xff >> iBitOffset); // set bits
|
sl@0
|
194 |
iBitOffset = static_cast<TUint8>(iBitOffset + aBitsToWrite);
|
sl@0
|
195 |
}
|
sl@0
|
196 |
}
|
sl@0
|
197 |
|
sl@0
|
198 |
/**
|
sl@0
|
199 |
This function reads 8 bits from bit stream buffer at current bit position
|
sl@0
|
200 |
and change the bit position to then end of the last bit read.
|
sl@0
|
201 |
@internalComponent
|
sl@0
|
202 |
@return the bits value in byte
|
sl@0
|
203 |
*/
|
sl@0
|
204 |
TUint8 CBitStreamParser::ReadByte()
|
sl@0
|
205 |
{
|
sl@0
|
206 |
return ReadBits(8);
|
sl@0
|
207 |
}
|
sl@0
|
208 |
|
sl@0
|
209 |
/**
|
sl@0
|
210 |
This function writes 8 bits to the bit stream buffer at current bit position
|
sl@0
|
211 |
and change the bit position to then end of the last bit written.
|
sl@0
|
212 |
@internalComponent
|
sl@0
|
213 |
@param aByteValue
|
sl@0
|
214 |
The byte value to write
|
sl@0
|
215 |
*/
|
sl@0
|
216 |
void CBitStreamParser::WriteByte(TUint8 aByteValue)
|
sl@0
|
217 |
{
|
sl@0
|
218 |
WriteBits(8, aByteValue);
|
sl@0
|
219 |
}
|
sl@0
|
220 |
|
sl@0
|
221 |
/**
|
sl@0
|
222 |
This function sets the bit position to a specific position.
|
sl@0
|
223 |
@internalComponent
|
sl@0
|
224 |
@param aByteOffset
|
sl@0
|
225 |
New byte position to set
|
sl@0
|
226 |
@param aBitOffset
|
sl@0
|
227 |
New bit position to set
|
sl@0
|
228 |
@panic if bit position is outside of the stream buffer
|
sl@0
|
229 |
*/
|
sl@0
|
230 |
void CBitStreamParser::SetPosition(TUint aByteOffset, TUint8 aBitOffset)
|
sl@0
|
231 |
{
|
sl@0
|
232 |
while (aBitOffset >= 8)
|
sl@0
|
233 |
{
|
sl@0
|
234 |
aBitOffset -= 8;
|
sl@0
|
235 |
iByteOffset++;
|
sl@0
|
236 |
}
|
sl@0
|
237 |
|
sl@0
|
238 |
__ASSERT_DEBUG(iByteOffset < static_cast<TUint>(iBitStream.MaxLength() ), Panic(ESbcBitstreamPosErr) );
|
sl@0
|
239 |
// extra code to handle exception for URel version
|
sl@0
|
240 |
if (iByteOffset >= static_cast<TUint>(iBitStream.MaxLength() ) )
|
sl@0
|
241 |
{
|
sl@0
|
242 |
aBitOffset = 0;
|
sl@0
|
243 |
iByteOffset = iBitStream.MaxLength();
|
sl@0
|
244 |
}
|
sl@0
|
245 |
|
sl@0
|
246 |
iPtr = const_cast<TUint8*>(iBitStream.Ptr() ) + aByteOffset;
|
sl@0
|
247 |
iByteOffset = aByteOffset;
|
sl@0
|
248 |
iBitOffset = aBitOffset;
|
sl@0
|
249 |
}
|
sl@0
|
250 |
|
sl@0
|
251 |
/**
|
sl@0
|
252 |
This function gets the bit position.
|
sl@0
|
253 |
@internalComponent
|
sl@0
|
254 |
@param aByteOffset
|
sl@0
|
255 |
Read byte position
|
sl@0
|
256 |
@param aBitOffset
|
sl@0
|
257 |
Read bit position
|
sl@0
|
258 |
*/
|
sl@0
|
259 |
void CBitStreamParser::Position(TUint& aByteOffset, TUint8& aBitOffset) const
|
sl@0
|
260 |
{
|
sl@0
|
261 |
aByteOffset = iByteOffset;
|
sl@0
|
262 |
aBitOffset = iBitOffset;
|
sl@0
|
263 |
}
|
sl@0
|
264 |
|
sl@0
|
265 |
/* ========================= class CSbcCRCCalculator ========================= */
|
sl@0
|
266 |
|
sl@0
|
267 |
/**
|
sl@0
|
268 |
Constructor
|
sl@0
|
269 |
@internalComponent
|
sl@0
|
270 |
*/
|
sl@0
|
271 |
CSbcCRCCalculator::CSbcCRCCalculator() : iShiftRegister(KSbcCRCShiftRegisterInit)
|
sl@0
|
272 |
{
|
sl@0
|
273 |
}
|
sl@0
|
274 |
|
sl@0
|
275 |
/**
|
sl@0
|
276 |
This function resets the shift register value to intial SBC CRC value
|
sl@0
|
277 |
@internalComponent
|
sl@0
|
278 |
*/
|
sl@0
|
279 |
void CSbcCRCCalculator::Reset()
|
sl@0
|
280 |
{
|
sl@0
|
281 |
iShiftRegister = KSbcCRCShiftRegisterInit;
|
sl@0
|
282 |
}
|
sl@0
|
283 |
|
sl@0
|
284 |
/**
|
sl@0
|
285 |
This function inputs one bit into the shift register
|
sl@0
|
286 |
@internalComponent
|
sl@0
|
287 |
@param aBit
|
sl@0
|
288 |
The lowest bit contains the bit to input.
|
sl@0
|
289 |
*/
|
sl@0
|
290 |
void CSbcCRCCalculator::InputBit(TUint8 aBit)
|
sl@0
|
291 |
{
|
sl@0
|
292 |
TUint8 inputBit = static_cast<TUint8>( (iShiftRegister >> 7) ^ (aBit & 0x1) );
|
sl@0
|
293 |
iShiftRegister <<= 1;
|
sl@0
|
294 |
|
sl@0
|
295 |
if (inputBit)
|
sl@0
|
296 |
{
|
sl@0
|
297 |
iShiftRegister ^= KSbcCRCShiftRegisterXorMask;
|
sl@0
|
298 |
}
|
sl@0
|
299 |
}
|
sl@0
|
300 |
|
sl@0
|
301 |
/**
|
sl@0
|
302 |
This function inputs a number of bits into the shift register
|
sl@0
|
303 |
@internalComponent
|
sl@0
|
304 |
@param aBits
|
sl@0
|
305 |
The number of bits to input, at most 8 bits.
|
sl@0
|
306 |
@param aValue
|
sl@0
|
307 |
The input bits value.
|
sl@0
|
308 |
*/
|
sl@0
|
309 |
void CSbcCRCCalculator::InputBits(TUint8 aBits, TUint8 aValue)
|
sl@0
|
310 |
{
|
sl@0
|
311 |
for (TInt bit = aBits - 1; bit >= 0; bit--)
|
sl@0
|
312 |
{
|
sl@0
|
313 |
InputBit(static_cast<TUint8>(aValue >> bit) );
|
sl@0
|
314 |
}
|
sl@0
|
315 |
}
|
sl@0
|
316 |
|
sl@0
|
317 |
/**
|
sl@0
|
318 |
This function inputs 8 bits into the shift register.
|
sl@0
|
319 |
@internalComponent
|
sl@0
|
320 |
@param aValue
|
sl@0
|
321 |
The input byte value.
|
sl@0
|
322 |
*/
|
sl@0
|
323 |
void CSbcCRCCalculator::InputByte(TUint8 aByte)
|
sl@0
|
324 |
{
|
sl@0
|
325 |
InputBit(static_cast<TUint8>(aByte >> 7) );
|
sl@0
|
326 |
InputBit(static_cast<TUint8>(aByte >> 6) );
|
sl@0
|
327 |
InputBit(static_cast<TUint8>(aByte >> 5) );
|
sl@0
|
328 |
InputBit(static_cast<TUint8>(aByte >> 4) );
|
sl@0
|
329 |
InputBit(static_cast<TUint8>(aByte >> 3) );
|
sl@0
|
330 |
InputBit(static_cast<TUint8>(aByte >> 2) );
|
sl@0
|
331 |
InputBit(static_cast<TUint8>(aByte >> 1) );
|
sl@0
|
332 |
InputBit(aByte);
|
sl@0
|
333 |
}
|
sl@0
|
334 |
|
sl@0
|
335 |
/**
|
sl@0
|
336 |
This function gets the shift register value.
|
sl@0
|
337 |
@internalComponent
|
sl@0
|
338 |
@return the shift register value.
|
sl@0
|
339 |
*/
|
sl@0
|
340 |
TUint8 CSbcCRCCalculator::ShiftRegister()
|
sl@0
|
341 |
{
|
sl@0
|
342 |
return iShiftRegister;
|
sl@0
|
343 |
}
|
sl@0
|
344 |
|
sl@0
|
345 |
/* ============================ class CSBCEncoder ============================ */
|
sl@0
|
346 |
|
sl@0
|
347 |
/**
|
sl@0
|
348 |
Constructor.
|
sl@0
|
349 |
@internalComponent
|
sl@0
|
350 |
*/
|
sl@0
|
351 |
CSBCEncoder::CSBCEncoder()
|
sl@0
|
352 |
{
|
sl@0
|
353 |
}
|
sl@0
|
354 |
|
sl@0
|
355 |
/**
|
sl@0
|
356 |
Destructor.
|
sl@0
|
357 |
@internalComponent
|
sl@0
|
358 |
*/
|
sl@0
|
359 |
CSBCEncoder::~CSBCEncoder()
|
sl@0
|
360 |
{
|
sl@0
|
361 |
delete iSbcFrameEncoder;
|
sl@0
|
362 |
delete iPcmSampleCach; // this is used to cache any remaining samples less than on frame
|
sl@0
|
363 |
}
|
sl@0
|
364 |
|
sl@0
|
365 |
/**
|
sl@0
|
366 |
Second phase constructor.
|
sl@0
|
367 |
@internalComponent
|
sl@0
|
368 |
@param aInitParams
|
sl@0
|
369 |
Initial parameters for creating this object, not in use for the moment
|
sl@0
|
370 |
@leave never
|
sl@0
|
371 |
*/
|
sl@0
|
372 |
void CSBCEncoder::ConstructL(TAny* /*aInitParams*/)
|
sl@0
|
373 |
{
|
sl@0
|
374 |
}
|
sl@0
|
375 |
|
sl@0
|
376 |
/**
|
sl@0
|
377 |
This function resets any existing audio samples from the cach.
|
sl@0
|
378 |
@internalComponent
|
sl@0
|
379 |
@leave never
|
sl@0
|
380 |
*/
|
sl@0
|
381 |
void CSBCEncoder::ResetL()
|
sl@0
|
382 |
{
|
sl@0
|
383 |
if (iPcmSampleCach)
|
sl@0
|
384 |
{
|
sl@0
|
385 |
iPcmSampleCach->Des().Zero();
|
sl@0
|
386 |
}
|
sl@0
|
387 |
}
|
sl@0
|
388 |
|
sl@0
|
389 |
/**
|
sl@0
|
390 |
This function creates a new CSBCEncoder object.
|
sl@0
|
391 |
@internalComponent
|
sl@0
|
392 |
@param aInitParams
|
sl@0
|
393 |
Initial parameters for creating this object, not in use for the moment
|
sl@0
|
394 |
@leave if out of memory
|
sl@0
|
395 |
*/
|
sl@0
|
396 |
CMMFCodec* CSBCEncoder::NewL(TAny* aInitParams)
|
sl@0
|
397 |
{
|
sl@0
|
398 |
CSBCEncoder* self = new(ELeave) CSBCEncoder();
|
sl@0
|
399 |
CleanupStack::PushL(self);
|
sl@0
|
400 |
self->ConstructL(aInitParams);
|
sl@0
|
401 |
CleanupStack::Pop();
|
sl@0
|
402 |
return self;
|
sl@0
|
403 |
}
|
sl@0
|
404 |
|
sl@0
|
405 |
/**
|
sl@0
|
406 |
This function is used for configuring the CSBCEncoder object. Should be called before encode
|
sl@0
|
407 |
@internalComponent
|
sl@0
|
408 |
@param aConfigType
|
sl@0
|
409 |
Configuration UID, has to be set to KSBCConfigTypeUid
|
sl@0
|
410 |
@param aConfigData
|
sl@0
|
411 |
A package buffer which contains all the settings
|
sl@0
|
412 |
@leave KErrNotSupported if configuration UID does't match or parameters setting is invalid.
|
sl@0
|
413 |
*/
|
sl@0
|
414 |
void CSBCEncoder::ConfigureL(TUid aConfigType, const TDesC8& aConfigData)
|
sl@0
|
415 |
{
|
sl@0
|
416 |
if (aConfigType != KSBCConfigTypeUid)
|
sl@0
|
417 |
{
|
sl@0
|
418 |
User::Leave(KErrNotSupported);
|
sl@0
|
419 |
}
|
sl@0
|
420 |
|
sl@0
|
421 |
const TSBCFrameParameters& param =
|
sl@0
|
422 |
static_cast<const TPckgBuf<TSBCFrameParameters>&>(aConfigData)();
|
sl@0
|
423 |
|
sl@0
|
424 |
if (param.Validate() != 0)
|
sl@0
|
425 |
{
|
sl@0
|
426 |
User::Leave(KErrArgument);
|
sl@0
|
427 |
}
|
sl@0
|
428 |
|
sl@0
|
429 |
iParameters = param;
|
sl@0
|
430 |
|
sl@0
|
431 |
if (iPcmSampleCach)
|
sl@0
|
432 |
{
|
sl@0
|
433 |
delete iPcmSampleCach;
|
sl@0
|
434 |
iPcmSampleCach = NULL;
|
sl@0
|
435 |
}
|
sl@0
|
436 |
|
sl@0
|
437 |
if (iSbcFrameEncoder)
|
sl@0
|
438 |
{
|
sl@0
|
439 |
// must call this whenever ConfigureL() is called to make sure CSBCFrameEncoder
|
sl@0
|
440 |
// uses the new configuration, as we can change the configuration without creating
|
sl@0
|
441 |
// a new CSBCFrameEncoder object
|
sl@0
|
442 |
iSbcFrameEncoder->Configure(iParameters);
|
sl@0
|
443 |
}
|
sl@0
|
444 |
|
sl@0
|
445 |
iSbcFrameLength = iParameters.CalcFrameLength();
|
sl@0
|
446 |
iPcmFrameSize = sizeof(TInt16) * param.BlockLength() * param.Subbands() * param.Channels();
|
sl@0
|
447 |
}
|
sl@0
|
448 |
|
sl@0
|
449 |
/**
|
sl@0
|
450 |
This function encodes sbc audio stream with PCM16 audio source samples, and write processed
|
sl@0
|
451 |
result to destination buffer. It also caches any less than one frame remaining audio samples.
|
sl@0
|
452 |
@internalComponent
|
sl@0
|
453 |
@param aSrc
|
sl@0
|
454 |
Source buffer contains the PCM16 audio source samples
|
sl@0
|
455 |
@param aDst
|
sl@0
|
456 |
Destination buffer to contain the encoded sbc audio stream
|
sl@0
|
457 |
@return processed result
|
sl@0
|
458 |
@leave
|
sl@0
|
459 |
KErrAbort if configuration is invalid,
|
sl@0
|
460 |
KErrArgument if destination buffer size is smaller than one frame length,
|
sl@0
|
461 |
KErrCorrupt if output bytes is not the same as frame length or
|
sl@0
|
462 |
if we still have enough src and dst but the process stoped,
|
sl@0
|
463 |
Or other errors e.g. out of memory error.
|
sl@0
|
464 |
*/
|
sl@0
|
465 |
TCodecProcessResult CSBCEncoder::ProcessL(const CMMFBuffer& aSrc, CMMFBuffer& aDst)
|
sl@0
|
466 |
{
|
sl@0
|
467 |
// check if ConfigureL gets called already
|
sl@0
|
468 |
if (iParameters.Validate() != 0)
|
sl@0
|
469 |
{
|
sl@0
|
470 |
User::Leave(KErrAbort);
|
sl@0
|
471 |
}
|
sl@0
|
472 |
|
sl@0
|
473 |
// check if dst big enough to hold at least one frame
|
sl@0
|
474 |
CMMFDataBuffer* dst = static_cast<CMMFDataBuffer*>(&aDst);
|
sl@0
|
475 |
const TUint dstMaxLen = dst->Data().MaxLength();
|
sl@0
|
476 |
|
sl@0
|
477 |
if (dstMaxLen < iSbcFrameLength)
|
sl@0
|
478 |
{
|
sl@0
|
479 |
User::Leave(KErrArgument);
|
sl@0
|
480 |
}
|
sl@0
|
481 |
|
sl@0
|
482 |
// process data
|
sl@0
|
483 |
const CMMFDataBuffer* src = static_cast<const CMMFDataBuffer*>(&aSrc);
|
sl@0
|
484 |
const TUint srcLen = src->Data().Length();
|
sl@0
|
485 |
TUint srcPos = src->Position();
|
sl@0
|
486 |
TUint dstPos = dst->Position();
|
sl@0
|
487 |
|
sl@0
|
488 |
const TUint8* srcPtr = src->Data().Ptr();
|
sl@0
|
489 |
TUint8* dstPtr = const_cast<TUint8*>(dst->Data().Ptr() );
|
sl@0
|
490 |
TUint cachedSize = CachedSampleSize();
|
sl@0
|
491 |
|
sl@0
|
492 |
while (cachedSize + srcLen - srcPos >= iPcmFrameSize && dstMaxLen - dstPos >= iSbcFrameLength)
|
sl@0
|
493 |
{
|
sl@0
|
494 |
TPtrC8 srcDes(srcPtr + srcPos, iPcmFrameSize);
|
sl@0
|
495 |
TPtr8 dstDes(dstPtr + dstPos, iSbcFrameLength);
|
sl@0
|
496 |
|
sl@0
|
497 |
srcPos += EncodeFrameL(srcDes, dstDes);
|
sl@0
|
498 |
dstPos += iSbcFrameLength;
|
sl@0
|
499 |
cachedSize = 0;
|
sl@0
|
500 |
}
|
sl@0
|
501 |
|
sl@0
|
502 |
// check result
|
sl@0
|
503 |
TCodecProcessResult result;
|
sl@0
|
504 |
result.iStatus = TCodecProcessResult::EProcessComplete;
|
sl@0
|
505 |
|
sl@0
|
506 |
if (dstMaxLen - dstPos >= iSbcFrameLength) // still enough dst buffer
|
sl@0
|
507 |
{
|
sl@0
|
508 |
result.iStatus = TCodecProcessResult::EDstNotFilled;
|
sl@0
|
509 |
}
|
sl@0
|
510 |
|
sl@0
|
511 |
// cach remaining src
|
sl@0
|
512 |
if (CachedSampleSize() + srcLen - srcPos >= iPcmFrameSize) // still enough src
|
sl@0
|
513 |
{
|
sl@0
|
514 |
if (result.iStatus == TCodecProcessResult::EDstNotFilled)
|
sl@0
|
515 |
{
|
sl@0
|
516 |
User::Leave(KErrCorrupt);
|
sl@0
|
517 |
}
|
sl@0
|
518 |
else
|
sl@0
|
519 |
{
|
sl@0
|
520 |
result.iStatus = TCodecProcessResult::EProcessIncomplete;
|
sl@0
|
521 |
}
|
sl@0
|
522 |
}
|
sl@0
|
523 |
else if (srcLen - srcPos > 1) // remaining src less than one frame, cach it
|
sl@0
|
524 |
{
|
sl@0
|
525 |
srcPos += CachePcmSamplesL(*src, srcPos);
|
sl@0
|
526 |
}
|
sl@0
|
527 |
|
sl@0
|
528 |
// set new position for dst
|
sl@0
|
529 |
dst->Data().SetLength(dstPos);
|
sl@0
|
530 |
|
sl@0
|
531 |
// return result
|
sl@0
|
532 |
result.iSrcBytesProcessed = srcPos - src->Position();
|
sl@0
|
533 |
result.iDstBytesAdded = dstPos - dst->Position();
|
sl@0
|
534 |
return result;
|
sl@0
|
535 |
}
|
sl@0
|
536 |
|
sl@0
|
537 |
/**
|
sl@0
|
538 |
This function encodes one SBC frame with PCM16 audio source samples, and write processed
|
sl@0
|
539 |
result to destination buffer.
|
sl@0
|
540 |
@internalComponent
|
sl@0
|
541 |
@param aSrc
|
sl@0
|
542 |
Source buffer contains the PCM16 audio source samples
|
sl@0
|
543 |
@param aDst
|
sl@0
|
544 |
Destination buffer to contain the encoded sbc audio stream
|
sl@0
|
545 |
@return the number of bytes the source has been processed
|
sl@0
|
546 |
@leave if out of memory.
|
sl@0
|
547 |
*/
|
sl@0
|
548 |
TUint CSBCEncoder::EncodeFrameL(const TDesC8& aSrc, TDes8& aDst)
|
sl@0
|
549 |
{
|
sl@0
|
550 |
if (!iSbcFrameEncoder)
|
sl@0
|
551 |
{
|
sl@0
|
552 |
iSbcFrameEncoder = CSBCFrameEncoder::NewL();
|
sl@0
|
553 |
iSbcFrameEncoder->Configure(iParameters);
|
sl@0
|
554 |
}
|
sl@0
|
555 |
|
sl@0
|
556 |
if (CachedSampleSize() > 0)
|
sl@0
|
557 |
{ // encode one frame with cached samples and src
|
sl@0
|
558 |
TUint appendBytes = iPcmFrameSize - CachedSampleSize();
|
sl@0
|
559 |
// append src to cach to make up one frame
|
sl@0
|
560 |
iPcmSampleCach->Des().Append(aSrc.Ptr(), appendBytes);
|
sl@0
|
561 |
// encode cach
|
sl@0
|
562 |
iSbcFrameEncoder->EncodeFrameL(*iPcmSampleCach, aDst);
|
sl@0
|
563 |
// empty cach
|
sl@0
|
564 |
iPcmSampleCach->Des().Zero();
|
sl@0
|
565 |
// return bytes src processed
|
sl@0
|
566 |
return appendBytes;
|
sl@0
|
567 |
}
|
sl@0
|
568 |
else
|
sl@0
|
569 |
{
|
sl@0
|
570 |
// encode one frame with src only
|
sl@0
|
571 |
iSbcFrameEncoder->EncodeFrameL(aSrc, aDst);
|
sl@0
|
572 |
// return bytes src processed
|
sl@0
|
573 |
return iPcmFrameSize;
|
sl@0
|
574 |
}
|
sl@0
|
575 |
}
|
sl@0
|
576 |
|
sl@0
|
577 |
/**
|
sl@0
|
578 |
This function caches any less than one frame remaining audio samples.
|
sl@0
|
579 |
@internalComponent
|
sl@0
|
580 |
@param aSrc
|
sl@0
|
581 |
Source buffer contains the PCM16 audio source samples.
|
sl@0
|
582 |
@param aSrcPos
|
sl@0
|
583 |
Position from where the samples are cached.
|
sl@0
|
584 |
@return the number of bytes the source has been cached
|
sl@0
|
585 |
@leave if out of memory.
|
sl@0
|
586 |
*/
|
sl@0
|
587 |
TUint CSBCEncoder::CachePcmSamplesL(const CMMFDataBuffer& aSrc, TUint aSrcPos)
|
sl@0
|
588 |
{
|
sl@0
|
589 |
if (!iPcmSampleCach)
|
sl@0
|
590 |
{
|
sl@0
|
591 |
iPcmSampleCach = HBufC8::NewL(iPcmFrameSize);
|
sl@0
|
592 |
}
|
sl@0
|
593 |
|
sl@0
|
594 |
const TUint8* pSrc = aSrc.Data().Ptr() + aSrcPos;
|
sl@0
|
595 |
const TUint cachSize = (aSrc.Data().Length() - aSrcPos) & 0xfffe; // take even number
|
sl@0
|
596 |
|
sl@0
|
597 |
iPcmSampleCach->Des().Append(pSrc, cachSize);
|
sl@0
|
598 |
|
sl@0
|
599 |
return cachSize;
|
sl@0
|
600 |
}
|
sl@0
|
601 |
|
sl@0
|
602 |
/**
|
sl@0
|
603 |
This function gets the size of the cach.
|
sl@0
|
604 |
@internalComponent
|
sl@0
|
605 |
@return the cached samples size
|
sl@0
|
606 |
*/
|
sl@0
|
607 |
TUint CSBCEncoder::CachedSampleSize()
|
sl@0
|
608 |
{
|
sl@0
|
609 |
if (!iPcmSampleCach)
|
sl@0
|
610 |
{
|
sl@0
|
611 |
return 0;
|
sl@0
|
612 |
}
|
sl@0
|
613 |
return iPcmSampleCach->Des().Size();
|
sl@0
|
614 |
}
|
sl@0
|
615 |
|
sl@0
|
616 |
/* ========================== class CSBCFrameEncoder ========================== */
|
sl@0
|
617 |
|
sl@0
|
618 |
/**
|
sl@0
|
619 |
Constructor.
|
sl@0
|
620 |
@internalComponent
|
sl@0
|
621 |
*/
|
sl@0
|
622 |
CSBCFrameEncoder::CSBCFrameEncoder()
|
sl@0
|
623 |
{
|
sl@0
|
624 |
}
|
sl@0
|
625 |
|
sl@0
|
626 |
/**
|
sl@0
|
627 |
Destructor.
|
sl@0
|
628 |
@internalComponent
|
sl@0
|
629 |
*/
|
sl@0
|
630 |
CSBCFrameEncoder::~CSBCFrameEncoder()
|
sl@0
|
631 |
{
|
sl@0
|
632 |
}
|
sl@0
|
633 |
|
sl@0
|
634 |
/**
|
sl@0
|
635 |
Second phase constructor.
|
sl@0
|
636 |
@internalComponent
|
sl@0
|
637 |
*/
|
sl@0
|
638 |
void CSBCFrameEncoder::ConstructL()
|
sl@0
|
639 |
{
|
sl@0
|
640 |
}
|
sl@0
|
641 |
|
sl@0
|
642 |
/**
|
sl@0
|
643 |
This function creates a CSBCFrameEncoder object.
|
sl@0
|
644 |
@internalComponent
|
sl@0
|
645 |
@return pointer of the CSBCFrameEncoder object.
|
sl@0
|
646 |
*/
|
sl@0
|
647 |
CSBCFrameEncoder* CSBCFrameEncoder::NewL()
|
sl@0
|
648 |
{
|
sl@0
|
649 |
CSBCFrameEncoder* self = new(ELeave) CSBCFrameEncoder();
|
sl@0
|
650 |
CleanupStack::PushL(self);
|
sl@0
|
651 |
self->ConstructL();
|
sl@0
|
652 |
CleanupStack::Pop();
|
sl@0
|
653 |
return self;
|
sl@0
|
654 |
}
|
sl@0
|
655 |
|
sl@0
|
656 |
/**
|
sl@0
|
657 |
This function resets the analysis filter bank, this should be called everytime
|
sl@0
|
658 |
when encoding a new sbc audio stream.
|
sl@0
|
659 |
@internalComponent
|
sl@0
|
660 |
*/
|
sl@0
|
661 |
void CSBCFrameEncoder::Reset()
|
sl@0
|
662 |
{
|
sl@0
|
663 |
const TUint8 numChannels = iParameters.Channels();
|
sl@0
|
664 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
665 |
|
sl@0
|
666 |
for (TUint8 channel = 0; channel < numChannels; channel++)
|
sl@0
|
667 |
{
|
sl@0
|
668 |
TInt16* analysisSamples = iAnalysisSamples[channel];
|
sl@0
|
669 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
670 |
{
|
sl@0
|
671 |
*analysisSamples++ = 0;
|
sl@0
|
672 |
}
|
sl@0
|
673 |
}
|
sl@0
|
674 |
}
|
sl@0
|
675 |
|
sl@0
|
676 |
/**
|
sl@0
|
677 |
This function sets the configuration for SBC Frame Encoder and resets the analysis filter bank.
|
sl@0
|
678 |
@internalComponent
|
sl@0
|
679 |
@param aParameters
|
sl@0
|
680 |
This contains all the parameters to set
|
sl@0
|
681 |
*/
|
sl@0
|
682 |
void CSBCFrameEncoder::Configure(const TSBCFrameParameters& aParameters)
|
sl@0
|
683 |
{
|
sl@0
|
684 |
iParameters = aParameters;
|
sl@0
|
685 |
// has to call this whenever the configuration changed, this resets the Analyse Filter Bank
|
sl@0
|
686 |
Reset();
|
sl@0
|
687 |
}
|
sl@0
|
688 |
|
sl@0
|
689 |
/**
|
sl@0
|
690 |
This function encodes one SBC frame with PCM16 source samples and output it to destination buffer.
|
sl@0
|
691 |
@internalComponent
|
sl@0
|
692 |
@param aSrc
|
sl@0
|
693 |
Source buffer contains the source samples
|
sl@0
|
694 |
@param aFrame
|
sl@0
|
695 |
Destination buffer to contain the processed sbc audio stream
|
sl@0
|
696 |
@leave if out of memory
|
sl@0
|
697 |
*/
|
sl@0
|
698 |
void CSBCFrameEncoder::EncodeFrameL(const TDesC8& aSrc, TDes8& aFrame)
|
sl@0
|
699 |
{
|
sl@0
|
700 |
// encode frame
|
sl@0
|
701 |
Analyse(aSrc);
|
sl@0
|
702 |
CalcScaleFactors();
|
sl@0
|
703 |
JoinSubbands();
|
sl@0
|
704 |
CalcBitAllocation();
|
sl@0
|
705 |
Quantize();
|
sl@0
|
706 |
|
sl@0
|
707 |
// output frame
|
sl@0
|
708 |
WriteFrameL(aFrame);
|
sl@0
|
709 |
}
|
sl@0
|
710 |
|
sl@0
|
711 |
/**
|
sl@0
|
712 |
This function does the analysis filtering, the analysed samples are used to encode sbc subbands.
|
sl@0
|
713 |
@internalComponent
|
sl@0
|
714 |
@param aSrc
|
sl@0
|
715 |
Source buffer contains the source samples
|
sl@0
|
716 |
*/
|
sl@0
|
717 |
void CSBCFrameEncoder::Analyse(const TDesC8& aSrc)
|
sl@0
|
718 |
{
|
sl@0
|
719 |
const TUint8 channelMode = iParameters.ChannelMode();
|
sl@0
|
720 |
const TInt16* inputSamples = reinterpret_cast<const TInt16*>(aSrc.Ptr() );
|
sl@0
|
721 |
|
sl@0
|
722 |
if (channelMode == TSBCFrameParameters::EMono)
|
sl@0
|
723 |
{
|
sl@0
|
724 |
AnalyseMono(inputSamples);
|
sl@0
|
725 |
}
|
sl@0
|
726 |
else // two-channel modes
|
sl@0
|
727 |
{
|
sl@0
|
728 |
// two channel samples are interleavedly stored in the following order
|
sl@0
|
729 |
// one left sample, one right sample, ...
|
sl@0
|
730 |
AnalyseOneChannel(inputSamples, 0);
|
sl@0
|
731 |
AnalyseOneChannel(inputSamples + 1, 1);
|
sl@0
|
732 |
}
|
sl@0
|
733 |
}
|
sl@0
|
734 |
|
sl@0
|
735 |
/**
|
sl@0
|
736 |
This function analyses audio samples for Mono and Dual Channel modes.
|
sl@0
|
737 |
@internalComponent
|
sl@0
|
738 |
@param aInputSamples
|
sl@0
|
739 |
Array of source samples
|
sl@0
|
740 |
*/
|
sl@0
|
741 |
void CSBCFrameEncoder::AnalyseMono(const TInt16 aInputSamples[])
|
sl@0
|
742 |
{
|
sl@0
|
743 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
744 |
const TUint8 numBlocks = iParameters.BlockLength();
|
sl@0
|
745 |
|
sl@0
|
746 |
for (TUint8 block = 0; block < numBlocks; block++)
|
sl@0
|
747 |
{
|
sl@0
|
748 |
if (numSubbands == 4)
|
sl@0
|
749 |
{
|
sl@0
|
750 |
Analyse4Subbands(aInputSamples, block, 0);
|
sl@0
|
751 |
}
|
sl@0
|
752 |
else
|
sl@0
|
753 |
{
|
sl@0
|
754 |
Analyse8Subbands(aInputSamples, block, 0);
|
sl@0
|
755 |
}
|
sl@0
|
756 |
aInputSamples += numSubbands;
|
sl@0
|
757 |
}
|
sl@0
|
758 |
}
|
sl@0
|
759 |
|
sl@0
|
760 |
/**
|
sl@0
|
761 |
This function analyses audio samples for Stereo and Joint Stereo modes.
|
sl@0
|
762 |
@internalComponent
|
sl@0
|
763 |
@param aInputSamples
|
sl@0
|
764 |
Array of source samples
|
sl@0
|
765 |
@param aChannel
|
sl@0
|
766 |
The channel number to be analysed
|
sl@0
|
767 |
*/
|
sl@0
|
768 |
void CSBCFrameEncoder::AnalyseOneChannel(const TInt16 aInputSamples[], TUint8 aChannel)
|
sl@0
|
769 |
{
|
sl@0
|
770 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
771 |
const TUint8 numBlocks = iParameters.BlockLength();
|
sl@0
|
772 |
|
sl@0
|
773 |
TInt16 inputSamples[KSbcMaxSubbands];
|
sl@0
|
774 |
for (TUint8 block = 0; block < numBlocks; block++)
|
sl@0
|
775 |
{
|
sl@0
|
776 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
777 |
{
|
sl@0
|
778 |
inputSamples[subband] = *aInputSamples;
|
sl@0
|
779 |
aInputSamples += 2; // 1 left sample, 1 right sample, ...
|
sl@0
|
780 |
}
|
sl@0
|
781 |
|
sl@0
|
782 |
if (numSubbands == 4)
|
sl@0
|
783 |
{
|
sl@0
|
784 |
Analyse4Subbands(inputSamples, block, aChannel);
|
sl@0
|
785 |
}
|
sl@0
|
786 |
else
|
sl@0
|
787 |
{
|
sl@0
|
788 |
Analyse8Subbands(inputSamples, block, aChannel);
|
sl@0
|
789 |
}
|
sl@0
|
790 |
}
|
sl@0
|
791 |
}
|
sl@0
|
792 |
|
sl@0
|
793 |
|
sl@0
|
794 |
/**
|
sl@0
|
795 |
This function analyses 4 subbands for sbc frame with 4 subbands.
|
sl@0
|
796 |
@internalComponent
|
sl@0
|
797 |
@param aInputSamples
|
sl@0
|
798 |
Array of source samples
|
sl@0
|
799 |
@param aBlock
|
sl@0
|
800 |
The block number to be analysed
|
sl@0
|
801 |
@param aChannel
|
sl@0
|
802 |
The channel number to be analysed
|
sl@0
|
803 |
*/
|
sl@0
|
804 |
void CSBCFrameEncoder::Analyse4Subbands(const TInt16 aInputSamples[], TUint8 aBlock, TUint8 aChannel)
|
sl@0
|
805 |
{
|
sl@0
|
806 |
// for easier understanding, this code is a copy from the A2DP spec,
|
sl@0
|
807 |
// all the naming are kept.
|
sl@0
|
808 |
TInt i = 0;
|
sl@0
|
809 |
TInt k = 0;
|
sl@0
|
810 |
TInt16* X = iAnalysisSamples[aChannel]; // 40 analyse samples
|
sl@0
|
811 |
|
sl@0
|
812 |
for (i = 39; i >= 4; i--)
|
sl@0
|
813 |
{
|
sl@0
|
814 |
X[i] = X[i - 4];
|
sl@0
|
815 |
}
|
sl@0
|
816 |
for (i = 3; i >= 0; i--)
|
sl@0
|
817 |
{
|
sl@0
|
818 |
X[i] = *aInputSamples++;
|
sl@0
|
819 |
}
|
sl@0
|
820 |
|
sl@0
|
821 |
TInt64 Y[8]; // partial calculation, see Figure 12.5 in A2DP spec for detail
|
sl@0
|
822 |
for (i = 0; i < 8; i++)
|
sl@0
|
823 |
{
|
sl@0
|
824 |
TInt64 sum = 0;
|
sl@0
|
825 |
for (k = 0; k <= 4; k++)
|
sl@0
|
826 |
{
|
sl@0
|
827 |
// for some strange reason, RVCT is not happy about converting
|
sl@0
|
828 |
// TInt16 to TInt64 in the equation directly.
|
sl@0
|
829 |
const TInt64 sample = X[i + (k << 3)];
|
sl@0
|
830 |
sum += KSBCProto4[i + (k << 3)] * sample;
|
sl@0
|
831 |
}
|
sl@0
|
832 |
Y[i] = sum >> (KSBCProtoBitsShift - 10);
|
sl@0
|
833 |
}
|
sl@0
|
834 |
|
sl@0
|
835 |
TInt32* outputSamples = iOutputSamples[aBlock][aChannel];
|
sl@0
|
836 |
for (i = 0; i < 4; i++)
|
sl@0
|
837 |
{
|
sl@0
|
838 |
const TInt32* M = KSBCAnalysisMatrix4[i];
|
sl@0
|
839 |
TInt64 sum = 0;
|
sl@0
|
840 |
for (k = 0; k < 8; k++)
|
sl@0
|
841 |
{
|
sl@0
|
842 |
sum += M[k] * Y[k];
|
sl@0
|
843 |
}
|
sl@0
|
844 |
sum >>= (KSBCAnalysisMatrixBitsShift + 9);
|
sl@0
|
845 |
sum = (sum >> 1) + (sum & 0x1);
|
sl@0
|
846 |
outputSamples[i] = static_cast<TInt32>(sum);
|
sl@0
|
847 |
}
|
sl@0
|
848 |
}
|
sl@0
|
849 |
|
sl@0
|
850 |
/**
|
sl@0
|
851 |
This function analyses 8 subbands for sbc frame with 8 subbands.
|
sl@0
|
852 |
@internalComponent
|
sl@0
|
853 |
@param aInputSamples
|
sl@0
|
854 |
Array of source samples
|
sl@0
|
855 |
@param aBlock
|
sl@0
|
856 |
The block number to be analysed
|
sl@0
|
857 |
@param aChannel
|
sl@0
|
858 |
The channel number to be analysed
|
sl@0
|
859 |
*/
|
sl@0
|
860 |
void CSBCFrameEncoder::Analyse8Subbands(const TInt16 aInputSamples[], TUint8 aBlock, TUint8 aChannel)
|
sl@0
|
861 |
{
|
sl@0
|
862 |
// for easier understanding, this code is a copy from the A2DP spec,
|
sl@0
|
863 |
// all the naming are kept.
|
sl@0
|
864 |
TInt i = 0;
|
sl@0
|
865 |
TInt k = 0;
|
sl@0
|
866 |
TInt16* X = iAnalysisSamples[aChannel]; // 80 analysis samples
|
sl@0
|
867 |
|
sl@0
|
868 |
for (i = 79; i >= 8; i--)
|
sl@0
|
869 |
{
|
sl@0
|
870 |
X[i] = X[i - 8];
|
sl@0
|
871 |
}
|
sl@0
|
872 |
for (i = 7; i >= 0; i--)
|
sl@0
|
873 |
{
|
sl@0
|
874 |
X[i] = *aInputSamples++;
|
sl@0
|
875 |
}
|
sl@0
|
876 |
|
sl@0
|
877 |
TInt64 Y[16]; // partial calculation, see Figure 12.5 in A2DP spec for detail
|
sl@0
|
878 |
for (i = 0; i < 16; i++)
|
sl@0
|
879 |
{
|
sl@0
|
880 |
TInt64 sum = 0;
|
sl@0
|
881 |
for (k = 0; k <= 4; k++)
|
sl@0
|
882 |
{
|
sl@0
|
883 |
// for some strange reason, RVCT is not happy about converting
|
sl@0
|
884 |
// TInt16 to TInt64 in the equation directly.
|
sl@0
|
885 |
const TInt64 sample = X[i + (k << 4)];
|
sl@0
|
886 |
sum += KSBCProto8[i + (k << 4)] * sample;
|
sl@0
|
887 |
}
|
sl@0
|
888 |
Y[i] = sum >> (KSBCProtoBitsShift - 10);
|
sl@0
|
889 |
}
|
sl@0
|
890 |
|
sl@0
|
891 |
TInt32* outputSamples = iOutputSamples[aBlock][aChannel];
|
sl@0
|
892 |
for (i = 0; i < 8; i++)
|
sl@0
|
893 |
{
|
sl@0
|
894 |
const TInt32* M = KSBCAnalysisMatrix8[i];
|
sl@0
|
895 |
TInt64 sum = 0;
|
sl@0
|
896 |
for (k = 0; k < 16; k++)
|
sl@0
|
897 |
{
|
sl@0
|
898 |
sum += M[k] * Y[k];
|
sl@0
|
899 |
}
|
sl@0
|
900 |
sum >>= (KSBCAnalysisMatrixBitsShift + 9);
|
sl@0
|
901 |
sum = (sum >> 1) + (sum & 0x1);
|
sl@0
|
902 |
outputSamples[i] = static_cast<TInt32>(sum);
|
sl@0
|
903 |
}
|
sl@0
|
904 |
}
|
sl@0
|
905 |
|
sl@0
|
906 |
/**
|
sl@0
|
907 |
This function calculates the scale factor for one sample.
|
sl@0
|
908 |
@internalComponent
|
sl@0
|
909 |
@param aSample
|
sl@0
|
910 |
A sample
|
sl@0
|
911 |
@return scale factor of thie sample
|
sl@0
|
912 |
*/
|
sl@0
|
913 |
static inline TUint8 ScaleFactor(TInt32 aSample)
|
sl@0
|
914 |
{
|
sl@0
|
915 |
if (aSample < 0)
|
sl@0
|
916 |
aSample = -aSample;
|
sl@0
|
917 |
|
sl@0
|
918 |
// top bit of the sample is sign bit, ignore it
|
sl@0
|
919 |
// start from the second high bit
|
sl@0
|
920 |
TUint32 mask = 0x40000000;
|
sl@0
|
921 |
for (TInt8 bit = 30; bit > 0; bit--)
|
sl@0
|
922 |
{
|
sl@0
|
923 |
if (aSample & mask)
|
sl@0
|
924 |
{
|
sl@0
|
925 |
return bit;
|
sl@0
|
926 |
}
|
sl@0
|
927 |
mask >>= 1;
|
sl@0
|
928 |
}
|
sl@0
|
929 |
return 0;
|
sl@0
|
930 |
}
|
sl@0
|
931 |
|
sl@0
|
932 |
/**
|
sl@0
|
933 |
This function calculates the scale factors for all samples in one sbc frame.
|
sl@0
|
934 |
@internalComponent
|
sl@0
|
935 |
*/
|
sl@0
|
936 |
void CSBCFrameEncoder::CalcScaleFactors()
|
sl@0
|
937 |
{
|
sl@0
|
938 |
const TUint8 numBlocks = iParameters.BlockLength();
|
sl@0
|
939 |
const TUint8 numChannels = iParameters.Channels();
|
sl@0
|
940 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
941 |
|
sl@0
|
942 |
TInt32 maxSubbandValues[KSbcMaxChannels][KSbcMaxSubbands];
|
sl@0
|
943 |
|
sl@0
|
944 |
// find all maximum values of each subband
|
sl@0
|
945 |
for (TUint8 block = 0; block < numBlocks; block++)
|
sl@0
|
946 |
{
|
sl@0
|
947 |
for (TUint8 channel = 0; channel < numChannels; channel++)
|
sl@0
|
948 |
{
|
sl@0
|
949 |
const TInt32* samples = iOutputSamples[block][channel];
|
sl@0
|
950 |
TInt32* maxValues = maxSubbandValues[channel];
|
sl@0
|
951 |
|
sl@0
|
952 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
953 |
{
|
sl@0
|
954 |
if (block == 0 || Abs(*samples) > *maxValues)
|
sl@0
|
955 |
{
|
sl@0
|
956 |
*maxValues = Abs(*samples);
|
sl@0
|
957 |
}
|
sl@0
|
958 |
samples++;
|
sl@0
|
959 |
maxValues++;
|
sl@0
|
960 |
}
|
sl@0
|
961 |
}
|
sl@0
|
962 |
}
|
sl@0
|
963 |
|
sl@0
|
964 |
// calculate scale factors for all subband
|
sl@0
|
965 |
for (TUint8 channel = 0; channel < numChannels; channel++)
|
sl@0
|
966 |
{
|
sl@0
|
967 |
const TInt32* maxValues = maxSubbandValues[channel];
|
sl@0
|
968 |
TUint8* scale = iScaleFactors[channel];
|
sl@0
|
969 |
|
sl@0
|
970 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
971 |
{
|
sl@0
|
972 |
*scale++ = ScaleFactor(*maxValues++);
|
sl@0
|
973 |
}
|
sl@0
|
974 |
}
|
sl@0
|
975 |
}
|
sl@0
|
976 |
|
sl@0
|
977 |
/**
|
sl@0
|
978 |
This function joins two subband samples for Joint Stereo mode.
|
sl@0
|
979 |
@internalComponent
|
sl@0
|
980 |
@param aLeftSample
|
sl@0
|
981 |
Left channel subband sample
|
sl@0
|
982 |
@param aRightSample
|
sl@0
|
983 |
Right channel subband sample
|
sl@0
|
984 |
*/
|
sl@0
|
985 |
static inline void JoinTwoSamples(TInt32& aLeftSample, TInt32& aRightSample)
|
sl@0
|
986 |
{
|
sl@0
|
987 |
aLeftSample = (aLeftSample + aRightSample) >> 1; // L1 = (L0 + R0) / 2
|
sl@0
|
988 |
aRightSample = aLeftSample - aRightSample; // R1 = L1 - R0 = (L0 - R0) / 2
|
sl@0
|
989 |
}
|
sl@0
|
990 |
|
sl@0
|
991 |
/**
|
sl@0
|
992 |
This function sets the join flats for all subbands for one frame,
|
sl@0
|
993 |
and joins those subbands if needed for this frame.
|
sl@0
|
994 |
@internalComponent
|
sl@0
|
995 |
*/
|
sl@0
|
996 |
void CSBCFrameEncoder::JoinSubbands()
|
sl@0
|
997 |
{
|
sl@0
|
998 |
if (iParameters.ChannelMode() != TSBCFrameParameters::EJointStereo)
|
sl@0
|
999 |
{
|
sl@0
|
1000 |
return;
|
sl@0
|
1001 |
}
|
sl@0
|
1002 |
|
sl@0
|
1003 |
const TUint8 numBlocks = iParameters.BlockLength();
|
sl@0
|
1004 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1005 |
|
sl@0
|
1006 |
TInt32 maxJoinValues[2][KSbcMaxSubbands - 1]; // 2 channels
|
sl@0
|
1007 |
|
sl@0
|
1008 |
// find maximum join subband values
|
sl@0
|
1009 |
for (TUint8 block = 0; block < numBlocks; block++)
|
sl@0
|
1010 |
{
|
sl@0
|
1011 |
const TInt32* leftSamples = iOutputSamples[block][0];
|
sl@0
|
1012 |
const TInt32* rightSamples = iOutputSamples[block][1];
|
sl@0
|
1013 |
|
sl@0
|
1014 |
TInt32* maxLeftJoin = maxJoinValues[0];
|
sl@0
|
1015 |
TInt32* maxRightJoin = maxJoinValues[1];
|
sl@0
|
1016 |
|
sl@0
|
1017 |
for (TUint8 subband = 0; subband < numSubbands - 1; subband++)
|
sl@0
|
1018 |
{
|
sl@0
|
1019 |
TInt32 leftJoin = *leftSamples++;
|
sl@0
|
1020 |
TInt32 rightJoin = *rightSamples++;
|
sl@0
|
1021 |
|
sl@0
|
1022 |
JoinTwoSamples(leftJoin, rightJoin);
|
sl@0
|
1023 |
|
sl@0
|
1024 |
if (block == 0 || Abs(leftJoin) > *maxLeftJoin)
|
sl@0
|
1025 |
{
|
sl@0
|
1026 |
*maxLeftJoin = Abs(leftJoin);
|
sl@0
|
1027 |
}
|
sl@0
|
1028 |
if (block == 0 || Abs(rightJoin) > *maxRightJoin)
|
sl@0
|
1029 |
{
|
sl@0
|
1030 |
*maxRightJoin = Abs(rightJoin);
|
sl@0
|
1031 |
}
|
sl@0
|
1032 |
maxLeftJoin++;
|
sl@0
|
1033 |
maxRightJoin++;
|
sl@0
|
1034 |
}
|
sl@0
|
1035 |
}
|
sl@0
|
1036 |
|
sl@0
|
1037 |
// calculate scale factors for all join subbands
|
sl@0
|
1038 |
const TInt32* maxLeftJoin = maxJoinValues[0];
|
sl@0
|
1039 |
const TInt32* maxRightJoin = maxJoinValues[1];
|
sl@0
|
1040 |
|
sl@0
|
1041 |
TUint8* leftScale = iScaleFactors[0];
|
sl@0
|
1042 |
TUint8* rightScale = iScaleFactors[1];
|
sl@0
|
1043 |
|
sl@0
|
1044 |
for (TUint8 subband = 0; subband < numSubbands - 1; subband++)
|
sl@0
|
1045 |
{
|
sl@0
|
1046 |
const TUint8 leftJoinScale = ScaleFactor(*maxLeftJoin++);
|
sl@0
|
1047 |
const TUint8 rightJoinScale = ScaleFactor(*maxRightJoin++);
|
sl@0
|
1048 |
|
sl@0
|
1049 |
iJoin[subband] = 0;
|
sl@0
|
1050 |
if (leftJoinScale + rightJoinScale < *leftScale + *rightScale)
|
sl@0
|
1051 |
{
|
sl@0
|
1052 |
iJoin[subband] = 1;
|
sl@0
|
1053 |
*leftScale = leftJoinScale;
|
sl@0
|
1054 |
*rightScale = rightJoinScale;
|
sl@0
|
1055 |
}
|
sl@0
|
1056 |
leftScale++;
|
sl@0
|
1057 |
rightScale++;
|
sl@0
|
1058 |
}
|
sl@0
|
1059 |
iJoin[numSubbands - 1] = 0; // join[subband - 1] is always 0
|
sl@0
|
1060 |
|
sl@0
|
1061 |
// now do the joining job
|
sl@0
|
1062 |
DoJoinSubbands();
|
sl@0
|
1063 |
}
|
sl@0
|
1064 |
|
sl@0
|
1065 |
/**
|
sl@0
|
1066 |
This function joins all subbands if needed for this frame.
|
sl@0
|
1067 |
@internalComponent
|
sl@0
|
1068 |
*/
|
sl@0
|
1069 |
void CSBCFrameEncoder::DoJoinSubbands()
|
sl@0
|
1070 |
{
|
sl@0
|
1071 |
const TUint8 numBlocks = iParameters.BlockLength();
|
sl@0
|
1072 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1073 |
|
sl@0
|
1074 |
for (TUint8 block = 0; block < numBlocks; block++)
|
sl@0
|
1075 |
{
|
sl@0
|
1076 |
TInt32* leftSamples = iOutputSamples[block][0];
|
sl@0
|
1077 |
TInt32* rightSamples = iOutputSamples[block][1];
|
sl@0
|
1078 |
|
sl@0
|
1079 |
for (TUint8 subband = 0; subband < numSubbands - 1; subband++)
|
sl@0
|
1080 |
{
|
sl@0
|
1081 |
if (iJoin[subband])
|
sl@0
|
1082 |
{
|
sl@0
|
1083 |
JoinTwoSamples(*leftSamples, *rightSamples);
|
sl@0
|
1084 |
}
|
sl@0
|
1085 |
leftSamples++;
|
sl@0
|
1086 |
rightSamples++;
|
sl@0
|
1087 |
}
|
sl@0
|
1088 |
}
|
sl@0
|
1089 |
}
|
sl@0
|
1090 |
|
sl@0
|
1091 |
/**
|
sl@0
|
1092 |
This function quantizes one sample according to:
|
sl@0
|
1093 |
sample = (sample / scale + 1.0) * level / 2.0
|
sl@0
|
1094 |
scale = 2 ^ (scale_factor + 1)
|
sl@0
|
1095 |
level = (2 ^ bits) - 1
|
sl@0
|
1096 |
@internalComponent
|
sl@0
|
1097 |
@param aSample
|
sl@0
|
1098 |
A sample to be quantized.
|
sl@0
|
1099 |
@param aScaleFactor
|
sl@0
|
1100 |
The scale factor value.
|
sl@0
|
1101 |
@param aBits
|
sl@0
|
1102 |
The number of bits for this sample
|
sl@0
|
1103 |
@panic if quantized sample overflow
|
sl@0
|
1104 |
*/
|
sl@0
|
1105 |
static void QuantizeOneSample(TInt32& aSample, TUint8 aScaleFactor, TUint8 aBits)
|
sl@0
|
1106 |
{
|
sl@0
|
1107 |
// output = sample + scale
|
sl@0
|
1108 |
TInt64 temp = (TInt)aSample + (0x1 << (aScaleFactor + 1) );
|
sl@0
|
1109 |
// output = (sample + scale) * level / scale
|
sl@0
|
1110 |
temp = ( (temp << aBits) - temp) >> (aScaleFactor + 2);
|
sl@0
|
1111 |
|
sl@0
|
1112 |
aSample = static_cast<TInt32>(temp);
|
sl@0
|
1113 |
|
sl@0
|
1114 |
// check bounce
|
sl@0
|
1115 |
__ASSERT_DEBUG(aSample >= 0 && aSample <= (TInt32)0xffff, Panic(ESbcSampleOverflow) );
|
sl@0
|
1116 |
// extra code to handle exception for URel version
|
sl@0
|
1117 |
if (aSample < 0)
|
sl@0
|
1118 |
{
|
sl@0
|
1119 |
aSample = 0;
|
sl@0
|
1120 |
}
|
sl@0
|
1121 |
if (aSample > (TInt32)0xffff)
|
sl@0
|
1122 |
{
|
sl@0
|
1123 |
aSample = (TInt32)0xffff;
|
sl@0
|
1124 |
}
|
sl@0
|
1125 |
}
|
sl@0
|
1126 |
|
sl@0
|
1127 |
/**
|
sl@0
|
1128 |
This function quantizes all samples in one sbc frame.
|
sl@0
|
1129 |
@internalComponent
|
sl@0
|
1130 |
*/
|
sl@0
|
1131 |
void CSBCFrameEncoder::Quantize()
|
sl@0
|
1132 |
{
|
sl@0
|
1133 |
const TUint8 numBlocks = iParameters.BlockLength();
|
sl@0
|
1134 |
const TUint8 numChannels = iParameters.Channels();
|
sl@0
|
1135 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1136 |
|
sl@0
|
1137 |
for (TUint8 block = 0; block < numBlocks; block++)
|
sl@0
|
1138 |
{
|
sl@0
|
1139 |
for (TUint8 channel = 0; channel < numChannels; channel++)
|
sl@0
|
1140 |
{
|
sl@0
|
1141 |
const TUint8* bits = iBits[channel];
|
sl@0
|
1142 |
const TUint8* scale = iScaleFactors[channel];
|
sl@0
|
1143 |
TInt32* samples = iOutputSamples[block][channel];
|
sl@0
|
1144 |
|
sl@0
|
1145 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1146 |
{
|
sl@0
|
1147 |
QuantizeOneSample(*samples++, *scale++, *bits++);
|
sl@0
|
1148 |
}
|
sl@0
|
1149 |
}
|
sl@0
|
1150 |
}
|
sl@0
|
1151 |
}
|
sl@0
|
1152 |
|
sl@0
|
1153 |
/**
|
sl@0
|
1154 |
This function calculates bit allocation for all samples in one sbc frame using scale factors.
|
sl@0
|
1155 |
@internalComponent
|
sl@0
|
1156 |
*/
|
sl@0
|
1157 |
void CSBCFrameEncoder::CalcBitAllocation()
|
sl@0
|
1158 |
{
|
sl@0
|
1159 |
switch (iParameters.ChannelMode())
|
sl@0
|
1160 |
{
|
sl@0
|
1161 |
case TSBCFrameParameters::EMono:
|
sl@0
|
1162 |
case TSBCFrameParameters::EDualChannel:
|
sl@0
|
1163 |
CalcBitAllocIndependent();
|
sl@0
|
1164 |
break;
|
sl@0
|
1165 |
|
sl@0
|
1166 |
case TSBCFrameParameters::EStereo:
|
sl@0
|
1167 |
case TSBCFrameParameters::EJointStereo:
|
sl@0
|
1168 |
CalcBitAllocCombined();
|
sl@0
|
1169 |
break;
|
sl@0
|
1170 |
}
|
sl@0
|
1171 |
}
|
sl@0
|
1172 |
|
sl@0
|
1173 |
/**
|
sl@0
|
1174 |
This function calculates bit allocation for one channel for Mono and Dual Channel.
|
sl@0
|
1175 |
@internalComponent
|
sl@0
|
1176 |
*/
|
sl@0
|
1177 |
void CSBCFrameEncoder::CalcBitAllocIndependent()
|
sl@0
|
1178 |
{
|
sl@0
|
1179 |
const TUint8 numChannels = iParameters.Channels();
|
sl@0
|
1180 |
for (TUint8 channel = 0; channel < numChannels; channel++)
|
sl@0
|
1181 |
{
|
sl@0
|
1182 |
TInt8 bitneed[KSbcMaxSubbands];
|
sl@0
|
1183 |
CalcBitneedIndependent(bitneed, iScaleFactors[channel]);
|
sl@0
|
1184 |
DistributeBitsIndependent(bitneed, iBits[channel]);
|
sl@0
|
1185 |
}
|
sl@0
|
1186 |
}
|
sl@0
|
1187 |
|
sl@0
|
1188 |
/**
|
sl@0
|
1189 |
This function calculates bitneed for one channel for Mono and Dual Channel.
|
sl@0
|
1190 |
@internalComponent
|
sl@0
|
1191 |
@param aBitneed
|
sl@0
|
1192 |
Array of bitneed to hold the result
|
sl@0
|
1193 |
@param aScaleFactors
|
sl@0
|
1194 |
The scale factors used for this calculation
|
sl@0
|
1195 |
*/
|
sl@0
|
1196 |
void CSBCFrameEncoder::CalcBitneedIndependent(TInt8 aBitneed[], const TUint8 aScaleFactors[])
|
sl@0
|
1197 |
{
|
sl@0
|
1198 |
// see A2DP spec for reference
|
sl@0
|
1199 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1200 |
|
sl@0
|
1201 |
if (iParameters.AllocationMethod() == TSBCFrameParameters::ESNR)
|
sl@0
|
1202 |
{
|
sl@0
|
1203 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1204 |
{
|
sl@0
|
1205 |
*aBitneed++ = *aScaleFactors++;
|
sl@0
|
1206 |
}
|
sl@0
|
1207 |
}
|
sl@0
|
1208 |
else // Loudness
|
sl@0
|
1209 |
{
|
sl@0
|
1210 |
const TInt8* offset = NULL;
|
sl@0
|
1211 |
if (numSubbands == 4)
|
sl@0
|
1212 |
{
|
sl@0
|
1213 |
offset = KSBCOffset4[iParameters.SamplingFrequencyEnum()];
|
sl@0
|
1214 |
}
|
sl@0
|
1215 |
else
|
sl@0
|
1216 |
{
|
sl@0
|
1217 |
offset = KSBCOffset8[iParameters.SamplingFrequencyEnum()];
|
sl@0
|
1218 |
}
|
sl@0
|
1219 |
|
sl@0
|
1220 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1221 |
{
|
sl@0
|
1222 |
if (*aScaleFactors == 0)
|
sl@0
|
1223 |
{
|
sl@0
|
1224 |
*aBitneed = -5;
|
sl@0
|
1225 |
}
|
sl@0
|
1226 |
else if ( (*aBitneed = static_cast<TUint8>(*aScaleFactors - *offset) ) > 0)
|
sl@0
|
1227 |
{
|
sl@0
|
1228 |
(*aBitneed) >>= 1;
|
sl@0
|
1229 |
}
|
sl@0
|
1230 |
aScaleFactors++;
|
sl@0
|
1231 |
aBitneed++;
|
sl@0
|
1232 |
offset++;
|
sl@0
|
1233 |
}
|
sl@0
|
1234 |
}
|
sl@0
|
1235 |
}
|
sl@0
|
1236 |
|
sl@0
|
1237 |
/**
|
sl@0
|
1238 |
This function gets the maximum bitneed in one channel for Mono and Dual Channel.
|
sl@0
|
1239 |
@internalComponent
|
sl@0
|
1240 |
@param aBitneed
|
sl@0
|
1241 |
Array of bitneed.
|
sl@0
|
1242 |
*/
|
sl@0
|
1243 |
TInt8 CSBCFrameEncoder::MaxBitneedIndependent(const TInt8 aBitneed[])
|
sl@0
|
1244 |
{
|
sl@0
|
1245 |
// see A2DP spec for reference
|
sl@0
|
1246 |
TInt8 maxBitneed = 0;
|
sl@0
|
1247 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1248 |
|
sl@0
|
1249 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1250 |
{
|
sl@0
|
1251 |
if (*aBitneed > maxBitneed)
|
sl@0
|
1252 |
{
|
sl@0
|
1253 |
maxBitneed = *aBitneed;
|
sl@0
|
1254 |
}
|
sl@0
|
1255 |
aBitneed++;
|
sl@0
|
1256 |
}
|
sl@0
|
1257 |
|
sl@0
|
1258 |
return maxBitneed;
|
sl@0
|
1259 |
}
|
sl@0
|
1260 |
|
sl@0
|
1261 |
/**
|
sl@0
|
1262 |
This function calculates how many bitslices fit into the bitpool for one channel
|
sl@0
|
1263 |
for Mono and Dual Channel.
|
sl@0
|
1264 |
@internalComponent
|
sl@0
|
1265 |
@param aBitneed
|
sl@0
|
1266 |
Array of bitneed.
|
sl@0
|
1267 |
@param aBitCount
|
sl@0
|
1268 |
The bit count, counts how many bits used
|
sl@0
|
1269 |
@return the number of bitslices
|
sl@0
|
1270 |
*/
|
sl@0
|
1271 |
TInt8 CSBCFrameEncoder::CalcBitSlicesIndependent(const TInt8 aBitneed[], TInt& aBitCount)
|
sl@0
|
1272 |
{
|
sl@0
|
1273 |
// see A2DP spec for reference
|
sl@0
|
1274 |
aBitCount = 0;
|
sl@0
|
1275 |
TInt8 sliceCount = 0;
|
sl@0
|
1276 |
TInt8 bitSlices = static_cast<TInt8>(MaxBitneedIndependent(aBitneed) + 1);
|
sl@0
|
1277 |
|
sl@0
|
1278 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1279 |
const TUint8 bitpool = iParameters.Bitpool();
|
sl@0
|
1280 |
|
sl@0
|
1281 |
do {
|
sl@0
|
1282 |
bitSlices--;
|
sl@0
|
1283 |
aBitCount += sliceCount;
|
sl@0
|
1284 |
sliceCount = 0;
|
sl@0
|
1285 |
|
sl@0
|
1286 |
const TInt8* bitneed = aBitneed;
|
sl@0
|
1287 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1288 |
{
|
sl@0
|
1289 |
if (*bitneed > bitSlices + 1 && *bitneed < bitSlices + 16)
|
sl@0
|
1290 |
{
|
sl@0
|
1291 |
sliceCount++;
|
sl@0
|
1292 |
}
|
sl@0
|
1293 |
else if (*bitneed == bitSlices + 1)
|
sl@0
|
1294 |
{
|
sl@0
|
1295 |
sliceCount += 2;
|
sl@0
|
1296 |
}
|
sl@0
|
1297 |
bitneed++;
|
sl@0
|
1298 |
}
|
sl@0
|
1299 |
} while (aBitCount + sliceCount < bitpool);
|
sl@0
|
1300 |
|
sl@0
|
1301 |
if (aBitCount + sliceCount == bitpool)
|
sl@0
|
1302 |
{
|
sl@0
|
1303 |
aBitCount += sliceCount;
|
sl@0
|
1304 |
bitSlices--;
|
sl@0
|
1305 |
}
|
sl@0
|
1306 |
|
sl@0
|
1307 |
return bitSlices;
|
sl@0
|
1308 |
}
|
sl@0
|
1309 |
|
sl@0
|
1310 |
/**
|
sl@0
|
1311 |
This function distributes number of bits to each subband for all samples
|
sl@0
|
1312 |
for Mono and Dual Channel.
|
sl@0
|
1313 |
@internalComponent
|
sl@0
|
1314 |
@param aBitneed
|
sl@0
|
1315 |
Array of bitneed.
|
sl@0
|
1316 |
@param aBits
|
sl@0
|
1317 |
Bits allocated for each subbands
|
sl@0
|
1318 |
*/
|
sl@0
|
1319 |
void CSBCFrameEncoder::DistributeBitsIndependent(const TInt8 aBitneed[], TUint8 aBits[])
|
sl@0
|
1320 |
{
|
sl@0
|
1321 |
// see A2DP spec for reference
|
sl@0
|
1322 |
TInt bitCount = 0;
|
sl@0
|
1323 |
TInt8 bitSlices = CalcBitSlicesIndependent(aBitneed, bitCount);
|
sl@0
|
1324 |
|
sl@0
|
1325 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1326 |
|
sl@0
|
1327 |
// distribute bits until the last bitslice is reached
|
sl@0
|
1328 |
TUint8 subband = 0;
|
sl@0
|
1329 |
for (; subband < numSubbands; subband++)
|
sl@0
|
1330 |
{
|
sl@0
|
1331 |
if (aBitneed[subband] < bitSlices + 2)
|
sl@0
|
1332 |
{
|
sl@0
|
1333 |
aBits[subband] = 0;
|
sl@0
|
1334 |
}
|
sl@0
|
1335 |
else
|
sl@0
|
1336 |
{
|
sl@0
|
1337 |
aBits[subband] = static_cast<TUint8>(Min(aBitneed[subband] - bitSlices, 16) );
|
sl@0
|
1338 |
}
|
sl@0
|
1339 |
}
|
sl@0
|
1340 |
|
sl@0
|
1341 |
// distribute the remaining bits
|
sl@0
|
1342 |
const TUint8 bitpool = iParameters.Bitpool();
|
sl@0
|
1343 |
|
sl@0
|
1344 |
subband = 0;
|
sl@0
|
1345 |
while (bitCount < bitpool && subband < numSubbands)
|
sl@0
|
1346 |
{
|
sl@0
|
1347 |
if (aBits[subband] >= 2 && aBits[subband] < 16)
|
sl@0
|
1348 |
{
|
sl@0
|
1349 |
aBits[subband]++;
|
sl@0
|
1350 |
bitCount++;
|
sl@0
|
1351 |
}
|
sl@0
|
1352 |
else if (aBitneed[subband] == bitSlices + 1 && bitpool > bitCount + 1)
|
sl@0
|
1353 |
{
|
sl@0
|
1354 |
aBits[subband] += 2; // ? bits[ch][sb] = 2 in A2DP spec, a bug in the spec?
|
sl@0
|
1355 |
bitCount += 2;
|
sl@0
|
1356 |
}
|
sl@0
|
1357 |
subband++;
|
sl@0
|
1358 |
}
|
sl@0
|
1359 |
|
sl@0
|
1360 |
subband = 0;
|
sl@0
|
1361 |
while (bitCount < bitpool && subband < numSubbands)
|
sl@0
|
1362 |
{
|
sl@0
|
1363 |
if (aBits[subband] < 16)
|
sl@0
|
1364 |
{
|
sl@0
|
1365 |
aBits[subband]++;
|
sl@0
|
1366 |
bitCount++;
|
sl@0
|
1367 |
}
|
sl@0
|
1368 |
subband++;
|
sl@0
|
1369 |
}
|
sl@0
|
1370 |
}
|
sl@0
|
1371 |
|
sl@0
|
1372 |
/**
|
sl@0
|
1373 |
This function calculates bit allocation for both channels for Stereo and Joint Stereo.
|
sl@0
|
1374 |
@internalComponent
|
sl@0
|
1375 |
*/
|
sl@0
|
1376 |
void CSBCFrameEncoder::CalcBitAllocCombined()
|
sl@0
|
1377 |
{
|
sl@0
|
1378 |
TInt8 bitneed[2][KSbcMaxSubbands];
|
sl@0
|
1379 |
|
sl@0
|
1380 |
CalcBitneedCombined(bitneed);
|
sl@0
|
1381 |
DistributeBitsCombined(bitneed);
|
sl@0
|
1382 |
}
|
sl@0
|
1383 |
|
sl@0
|
1384 |
/**
|
sl@0
|
1385 |
This function calculates bitneed for both channels for Stereo and Joint Stereo.
|
sl@0
|
1386 |
@internalComponent
|
sl@0
|
1387 |
@param aBitneed
|
sl@0
|
1388 |
Array of bitneed to hold the result
|
sl@0
|
1389 |
*/
|
sl@0
|
1390 |
void CSBCFrameEncoder::CalcBitneedCombined(TInt8 aBitneed[][KSbcMaxSubbands])
|
sl@0
|
1391 |
{
|
sl@0
|
1392 |
// see A2DP spec for reference
|
sl@0
|
1393 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1394 |
|
sl@0
|
1395 |
if (iParameters.AllocationMethod() == TSBCFrameParameters::ESNR)
|
sl@0
|
1396 |
{
|
sl@0
|
1397 |
for (TInt8 channel = 0; channel < 2; channel++)
|
sl@0
|
1398 |
{
|
sl@0
|
1399 |
const TUint8* scaleFactor = iScaleFactors[channel];
|
sl@0
|
1400 |
TInt8* bitneed = aBitneed[channel];
|
sl@0
|
1401 |
for (TInt8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1402 |
{
|
sl@0
|
1403 |
*bitneed++ = *scaleFactor++;
|
sl@0
|
1404 |
}
|
sl@0
|
1405 |
}
|
sl@0
|
1406 |
}
|
sl@0
|
1407 |
else // Loudness
|
sl@0
|
1408 |
{
|
sl@0
|
1409 |
const TInt8* offset = NULL;
|
sl@0
|
1410 |
if (numSubbands == 4)
|
sl@0
|
1411 |
{
|
sl@0
|
1412 |
offset = KSBCOffset4[iParameters.SamplingFrequencyEnum()];
|
sl@0
|
1413 |
}
|
sl@0
|
1414 |
else
|
sl@0
|
1415 |
{
|
sl@0
|
1416 |
offset = KSBCOffset8[iParameters.SamplingFrequencyEnum()];
|
sl@0
|
1417 |
}
|
sl@0
|
1418 |
|
sl@0
|
1419 |
for (TInt8 channel = 0; channel < 2; channel++)
|
sl@0
|
1420 |
{
|
sl@0
|
1421 |
const TUint8* scaleFactor = iScaleFactors[channel];
|
sl@0
|
1422 |
TInt8* bitneed = aBitneed[channel];
|
sl@0
|
1423 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1424 |
{
|
sl@0
|
1425 |
if (*scaleFactor == 0)
|
sl@0
|
1426 |
{
|
sl@0
|
1427 |
*bitneed = -5;
|
sl@0
|
1428 |
}
|
sl@0
|
1429 |
else if ( (*bitneed = static_cast<TUint8>(*scaleFactor - offset[subband]) ) > 0)
|
sl@0
|
1430 |
{
|
sl@0
|
1431 |
(*bitneed) >>= 1;
|
sl@0
|
1432 |
}
|
sl@0
|
1433 |
scaleFactor++;
|
sl@0
|
1434 |
bitneed++;
|
sl@0
|
1435 |
} // for subband
|
sl@0
|
1436 |
} // for channel
|
sl@0
|
1437 |
}
|
sl@0
|
1438 |
}
|
sl@0
|
1439 |
|
sl@0
|
1440 |
/**
|
sl@0
|
1441 |
This function gets the maximum bitneed of both channels subbands for Stereo and Joint Stereo.
|
sl@0
|
1442 |
@internalComponent
|
sl@0
|
1443 |
@param aBitneed
|
sl@0
|
1444 |
Array of bitneed.
|
sl@0
|
1445 |
*/
|
sl@0
|
1446 |
TInt8 CSBCFrameEncoder::MaxBitneedCombined(const TInt8 aBitneed[][KSbcMaxSubbands])
|
sl@0
|
1447 |
{
|
sl@0
|
1448 |
// see A2DP spec for reference
|
sl@0
|
1449 |
TInt8 maxBitneed = 0;
|
sl@0
|
1450 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1451 |
|
sl@0
|
1452 |
for (TInt8 channel = 0; channel < 2; channel++)
|
sl@0
|
1453 |
{
|
sl@0
|
1454 |
const TInt8* bitneed = aBitneed[channel];
|
sl@0
|
1455 |
for (TInt8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1456 |
{
|
sl@0
|
1457 |
if (*bitneed > maxBitneed)
|
sl@0
|
1458 |
{
|
sl@0
|
1459 |
maxBitneed = *bitneed;
|
sl@0
|
1460 |
}
|
sl@0
|
1461 |
bitneed++;
|
sl@0
|
1462 |
}
|
sl@0
|
1463 |
}
|
sl@0
|
1464 |
return maxBitneed;
|
sl@0
|
1465 |
}
|
sl@0
|
1466 |
|
sl@0
|
1467 |
/**
|
sl@0
|
1468 |
This function calculates how many bitslices fit into the bitpool for both channels
|
sl@0
|
1469 |
for Stereo and Joint Stereo.
|
sl@0
|
1470 |
@internalComponent
|
sl@0
|
1471 |
@param aBitneed
|
sl@0
|
1472 |
Array of bitneed.
|
sl@0
|
1473 |
@param aBitCount
|
sl@0
|
1474 |
The bit count, counts how many bits used
|
sl@0
|
1475 |
@return the number of bitslices
|
sl@0
|
1476 |
*/
|
sl@0
|
1477 |
TInt8 CSBCFrameEncoder::CalcBitSlicesCombined(const TInt8 aBitneed[][KSbcMaxSubbands], TInt& aBitCount)
|
sl@0
|
1478 |
{
|
sl@0
|
1479 |
// see A2DP spec for reference
|
sl@0
|
1480 |
aBitCount = 0;
|
sl@0
|
1481 |
TInt8 sliceCount = 0;
|
sl@0
|
1482 |
TInt8 bitSlices = static_cast<TUint8>(MaxBitneedCombined(aBitneed) + 1);
|
sl@0
|
1483 |
|
sl@0
|
1484 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1485 |
const TUint8 bitpool = iParameters.Bitpool();
|
sl@0
|
1486 |
|
sl@0
|
1487 |
do {
|
sl@0
|
1488 |
bitSlices--;
|
sl@0
|
1489 |
aBitCount += sliceCount;
|
sl@0
|
1490 |
sliceCount = 0;
|
sl@0
|
1491 |
|
sl@0
|
1492 |
for (TInt8 channel = 0; channel < 2; channel++)
|
sl@0
|
1493 |
{
|
sl@0
|
1494 |
const TInt8* bitneed = aBitneed[channel];
|
sl@0
|
1495 |
for (TInt8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1496 |
{
|
sl@0
|
1497 |
if (*bitneed > bitSlices + 1 && *bitneed < bitSlices + 16)
|
sl@0
|
1498 |
{
|
sl@0
|
1499 |
sliceCount++;
|
sl@0
|
1500 |
}
|
sl@0
|
1501 |
else if (*bitneed == bitSlices + 1)
|
sl@0
|
1502 |
{
|
sl@0
|
1503 |
sliceCount += 2;
|
sl@0
|
1504 |
}
|
sl@0
|
1505 |
bitneed++;
|
sl@0
|
1506 |
}
|
sl@0
|
1507 |
}
|
sl@0
|
1508 |
} while (aBitCount + sliceCount < bitpool);
|
sl@0
|
1509 |
|
sl@0
|
1510 |
if (aBitCount + sliceCount == bitpool)
|
sl@0
|
1511 |
{
|
sl@0
|
1512 |
aBitCount += sliceCount;
|
sl@0
|
1513 |
bitSlices--;
|
sl@0
|
1514 |
}
|
sl@0
|
1515 |
|
sl@0
|
1516 |
return bitSlices;
|
sl@0
|
1517 |
}
|
sl@0
|
1518 |
|
sl@0
|
1519 |
/**
|
sl@0
|
1520 |
This function distributes number of bits to each subband for all samples
|
sl@0
|
1521 |
for Stereo and Joint Stereo.
|
sl@0
|
1522 |
@internalComponent
|
sl@0
|
1523 |
@param aBitneed
|
sl@0
|
1524 |
Array of bitneed.
|
sl@0
|
1525 |
*/
|
sl@0
|
1526 |
void CSBCFrameEncoder::DistributeBitsCombined(const TInt8 aBitneed[][KSbcMaxSubbands])
|
sl@0
|
1527 |
{
|
sl@0
|
1528 |
// see A2DP spec for reference
|
sl@0
|
1529 |
TInt bitCount = 0;
|
sl@0
|
1530 |
TInt bitSlices = CalcBitSlicesCombined(aBitneed, bitCount);
|
sl@0
|
1531 |
|
sl@0
|
1532 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1533 |
const TUint8 bitpool = iParameters.Bitpool();
|
sl@0
|
1534 |
|
sl@0
|
1535 |
// distribute bits until the last bitslice is reached
|
sl@0
|
1536 |
TInt8 channel = 0;
|
sl@0
|
1537 |
TInt8 subband = 0;
|
sl@0
|
1538 |
for (; channel < 2; channel++)
|
sl@0
|
1539 |
{
|
sl@0
|
1540 |
const TInt8* bitneed = aBitneed[channel];
|
sl@0
|
1541 |
TUint8* bits = iBits[channel];
|
sl@0
|
1542 |
for (subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1543 |
{
|
sl@0
|
1544 |
if (*bitneed < bitSlices + 2)
|
sl@0
|
1545 |
{
|
sl@0
|
1546 |
*bits = 0;
|
sl@0
|
1547 |
}
|
sl@0
|
1548 |
else
|
sl@0
|
1549 |
{
|
sl@0
|
1550 |
*bits = static_cast<TUint8>(Min(*bitneed - bitSlices, 16) );
|
sl@0
|
1551 |
}
|
sl@0
|
1552 |
bitneed++;
|
sl@0
|
1553 |
bits++;
|
sl@0
|
1554 |
}
|
sl@0
|
1555 |
}
|
sl@0
|
1556 |
|
sl@0
|
1557 |
// distribute the remaining bits
|
sl@0
|
1558 |
channel = 0;
|
sl@0
|
1559 |
subband = 0;
|
sl@0
|
1560 |
while (bitCount < bitpool && subband < numSubbands)
|
sl@0
|
1561 |
{
|
sl@0
|
1562 |
TUint8& bits = iBits[channel][subband];
|
sl@0
|
1563 |
if (bits >= 2 && bits < 16)
|
sl@0
|
1564 |
{
|
sl@0
|
1565 |
bits++;
|
sl@0
|
1566 |
bitCount++;
|
sl@0
|
1567 |
}
|
sl@0
|
1568 |
else if (aBitneed[channel][subband] == bitSlices + 1 && bitpool > bitCount + 1)
|
sl@0
|
1569 |
{
|
sl@0
|
1570 |
bits += 2; // ? bits[ch][sb] = 2 in A2DP spec, a bug in the spec?
|
sl@0
|
1571 |
bitCount += 2;
|
sl@0
|
1572 |
}
|
sl@0
|
1573 |
|
sl@0
|
1574 |
if (channel == 1)
|
sl@0
|
1575 |
{
|
sl@0
|
1576 |
channel = 0;
|
sl@0
|
1577 |
subband++;
|
sl@0
|
1578 |
}
|
sl@0
|
1579 |
else
|
sl@0
|
1580 |
{
|
sl@0
|
1581 |
channel = 1;
|
sl@0
|
1582 |
}
|
sl@0
|
1583 |
}
|
sl@0
|
1584 |
|
sl@0
|
1585 |
channel = 0;
|
sl@0
|
1586 |
subband = 0;
|
sl@0
|
1587 |
while (bitCount < bitpool && subband < numSubbands)
|
sl@0
|
1588 |
{
|
sl@0
|
1589 |
TUint8& bits = iBits[channel][subband];
|
sl@0
|
1590 |
if (bits < 16)
|
sl@0
|
1591 |
{
|
sl@0
|
1592 |
bits++;
|
sl@0
|
1593 |
bitCount++;
|
sl@0
|
1594 |
}
|
sl@0
|
1595 |
|
sl@0
|
1596 |
if (channel == 1)
|
sl@0
|
1597 |
{
|
sl@0
|
1598 |
channel = 0 ;
|
sl@0
|
1599 |
subband++;
|
sl@0
|
1600 |
}
|
sl@0
|
1601 |
else
|
sl@0
|
1602 |
{
|
sl@0
|
1603 |
channel = 1;
|
sl@0
|
1604 |
}
|
sl@0
|
1605 |
}
|
sl@0
|
1606 |
}
|
sl@0
|
1607 |
|
sl@0
|
1608 |
/**
|
sl@0
|
1609 |
This function calculates the CRC code for sbc frame.
|
sl@0
|
1610 |
@internalComponent
|
sl@0
|
1611 |
@return sbc CRC value
|
sl@0
|
1612 |
*/
|
sl@0
|
1613 |
TUint8 CSBCFrameEncoder::CalcCRC()
|
sl@0
|
1614 |
{
|
sl@0
|
1615 |
CSbcCRCCalculator crc;
|
sl@0
|
1616 |
|
sl@0
|
1617 |
crc.InputByte(iParameters.Parameters() ); // 5 parameters
|
sl@0
|
1618 |
crc.InputByte(iParameters.Bitpool() ); // bitpool
|
sl@0
|
1619 |
|
sl@0
|
1620 |
// join[] & RFA bits
|
sl@0
|
1621 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1622 |
if (iParameters.ChannelMode() == TSBCFrameParameters::EJointStereo)
|
sl@0
|
1623 |
{
|
sl@0
|
1624 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1625 |
{
|
sl@0
|
1626 |
crc.InputBit(iJoin[subband]);
|
sl@0
|
1627 |
}
|
sl@0
|
1628 |
}
|
sl@0
|
1629 |
|
sl@0
|
1630 |
// scale factors
|
sl@0
|
1631 |
const TUint8 numChannels = iParameters.Channels();
|
sl@0
|
1632 |
for (TUint8 channel = 0; channel < numChannels; channel++)
|
sl@0
|
1633 |
{
|
sl@0
|
1634 |
const TUint8* scaleFactors = iScaleFactors[channel];
|
sl@0
|
1635 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1636 |
{
|
sl@0
|
1637 |
crc.InputBits(4, *scaleFactors++);
|
sl@0
|
1638 |
}
|
sl@0
|
1639 |
}
|
sl@0
|
1640 |
|
sl@0
|
1641 |
return crc.ShiftRegister();
|
sl@0
|
1642 |
}
|
sl@0
|
1643 |
|
sl@0
|
1644 |
/**
|
sl@0
|
1645 |
This function outputs the encoded sbc frame into the destination buffer.
|
sl@0
|
1646 |
@internalComponent
|
sl@0
|
1647 |
@param aFrame
|
sl@0
|
1648 |
The destination buffer
|
sl@0
|
1649 |
@leave if out of memory
|
sl@0
|
1650 |
*/
|
sl@0
|
1651 |
void CSBCFrameEncoder::WriteFrameL(TDes8& aFrame)
|
sl@0
|
1652 |
{
|
sl@0
|
1653 |
CBitStreamParser* parser = CBitStreamParser::NewLC(aFrame);
|
sl@0
|
1654 |
|
sl@0
|
1655 |
WriteHeader(*parser);
|
sl@0
|
1656 |
WriteScaleFactors(*parser);
|
sl@0
|
1657 |
WriteData(*parser);
|
sl@0
|
1658 |
WritePaddingL(*parser);
|
sl@0
|
1659 |
|
sl@0
|
1660 |
CleanupStack::PopAndDestroy(parser);
|
sl@0
|
1661 |
}
|
sl@0
|
1662 |
|
sl@0
|
1663 |
/**
|
sl@0
|
1664 |
This function writes the sbc frame header into the destination buffer.
|
sl@0
|
1665 |
@internalComponent
|
sl@0
|
1666 |
@param aParser
|
sl@0
|
1667 |
The bit stream parser which manipulates the destination buffer bit stream
|
sl@0
|
1668 |
*/
|
sl@0
|
1669 |
void CSBCFrameEncoder::WriteHeader(CBitStreamParser& aParser)
|
sl@0
|
1670 |
{
|
sl@0
|
1671 |
// syncword
|
sl@0
|
1672 |
aParser.WriteByte(KSBCFrameSyncWord);
|
sl@0
|
1673 |
// sampling frequency, blocklength, channel mode, allocatin method, subbands
|
sl@0
|
1674 |
aParser.WriteByte(iParameters.Parameters() );
|
sl@0
|
1675 |
// bitpool
|
sl@0
|
1676 |
aParser.WriteByte(iParameters.Bitpool() );
|
sl@0
|
1677 |
// crc check
|
sl@0
|
1678 |
aParser.WriteByte(CalcCRC() );
|
sl@0
|
1679 |
|
sl@0
|
1680 |
if (iParameters.ChannelMode() == TSBCFrameParameters::EJointStereo)
|
sl@0
|
1681 |
{
|
sl@0
|
1682 |
// join[] & RFA
|
sl@0
|
1683 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1684 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1685 |
{
|
sl@0
|
1686 |
aParser.WriteBits(1, iJoin[subband]);
|
sl@0
|
1687 |
}
|
sl@0
|
1688 |
}
|
sl@0
|
1689 |
}
|
sl@0
|
1690 |
|
sl@0
|
1691 |
/**
|
sl@0
|
1692 |
This function writes the sbc frame scale factors into the destination buffer.
|
sl@0
|
1693 |
@internalComponent
|
sl@0
|
1694 |
@param aParser
|
sl@0
|
1695 |
The bit stream parser which manipulates the destination buffer bit stream
|
sl@0
|
1696 |
*/
|
sl@0
|
1697 |
void CSBCFrameEncoder::WriteScaleFactors(CBitStreamParser& aParser)
|
sl@0
|
1698 |
{
|
sl@0
|
1699 |
const TUint8 numChannels = iParameters.Channels();
|
sl@0
|
1700 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1701 |
|
sl@0
|
1702 |
for (TUint8 channel = 0; channel < numChannels; channel++)
|
sl@0
|
1703 |
{
|
sl@0
|
1704 |
const TUint8* scaleFactors = iScaleFactors[channel];
|
sl@0
|
1705 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1706 |
{
|
sl@0
|
1707 |
aParser.WriteBits(4, *scaleFactors++);
|
sl@0
|
1708 |
}
|
sl@0
|
1709 |
}
|
sl@0
|
1710 |
}
|
sl@0
|
1711 |
|
sl@0
|
1712 |
/**
|
sl@0
|
1713 |
This function writes one sbc subband sample into the destination buffer.
|
sl@0
|
1714 |
@internalComponent
|
sl@0
|
1715 |
@param aParser
|
sl@0
|
1716 |
The bit stream parser which manipulates the destination buffer bit stream
|
sl@0
|
1717 |
@param aBits
|
sl@0
|
1718 |
The number of bits to write
|
sl@0
|
1719 |
@param aSample
|
sl@0
|
1720 |
The sample value to write
|
sl@0
|
1721 |
*/
|
sl@0
|
1722 |
static void WriteOneSample(CBitStreamParser& aParser, TUint8 aBits, TInt32 aSample)
|
sl@0
|
1723 |
{
|
sl@0
|
1724 |
if (aBits >= 8)
|
sl@0
|
1725 |
{
|
sl@0
|
1726 |
aBits -= 8;
|
sl@0
|
1727 |
aParser.WriteByte(static_cast<TUint8>( (aSample >> aBits) & 0xff) );
|
sl@0
|
1728 |
}
|
sl@0
|
1729 |
if (aBits > 0)
|
sl@0
|
1730 |
{
|
sl@0
|
1731 |
aParser.WriteBits(aBits, static_cast<TUint8>(aSample & 0xff) );
|
sl@0
|
1732 |
}
|
sl@0
|
1733 |
}
|
sl@0
|
1734 |
|
sl@0
|
1735 |
/**
|
sl@0
|
1736 |
This function writes the sbc frame data into the destination buffer.
|
sl@0
|
1737 |
@internalComponent
|
sl@0
|
1738 |
@param aParser
|
sl@0
|
1739 |
The bit stream parser which manipulates the destination buffer bit stream
|
sl@0
|
1740 |
*/
|
sl@0
|
1741 |
void CSBCFrameEncoder::WriteData(CBitStreamParser& aParser)
|
sl@0
|
1742 |
{
|
sl@0
|
1743 |
const TUint8 numBlocks = iParameters.BlockLength();
|
sl@0
|
1744 |
const TUint8 numChannels = iParameters.Channels();
|
sl@0
|
1745 |
const TUint8 numSubbands = iParameters.Subbands();
|
sl@0
|
1746 |
|
sl@0
|
1747 |
for (TUint8 block = 0; block < numBlocks; block++)
|
sl@0
|
1748 |
{
|
sl@0
|
1749 |
for (TUint8 channel = 0; channel < numChannels; channel++)
|
sl@0
|
1750 |
{
|
sl@0
|
1751 |
const TUint8* bits = iBits[channel];
|
sl@0
|
1752 |
const TInt32* samples = iOutputSamples[block][channel];
|
sl@0
|
1753 |
|
sl@0
|
1754 |
for (TUint8 subband = 0; subband < numSubbands; subband++)
|
sl@0
|
1755 |
{
|
sl@0
|
1756 |
if (*bits > 0)
|
sl@0
|
1757 |
{
|
sl@0
|
1758 |
WriteOneSample(aParser, *bits, *samples);
|
sl@0
|
1759 |
}
|
sl@0
|
1760 |
bits++;
|
sl@0
|
1761 |
samples++;
|
sl@0
|
1762 |
}
|
sl@0
|
1763 |
}
|
sl@0
|
1764 |
}
|
sl@0
|
1765 |
}
|
sl@0
|
1766 |
|
sl@0
|
1767 |
/**
|
sl@0
|
1768 |
This function writes the sbc frame padding bits into the destination buffer.
|
sl@0
|
1769 |
@internalComponent
|
sl@0
|
1770 |
@param aParser
|
sl@0
|
1771 |
The bit stream parser which manipulates the destination buffer bit stream
|
sl@0
|
1772 |
@panic if output frame length is not the same as expected
|
sl@0
|
1773 |
*/
|
sl@0
|
1774 |
void CSBCFrameEncoder::WritePaddingL(CBitStreamParser& aParser)
|
sl@0
|
1775 |
{
|
sl@0
|
1776 |
TUint byteOffset;
|
sl@0
|
1777 |
TUint8 bitOffset;
|
sl@0
|
1778 |
|
sl@0
|
1779 |
aParser.Position(byteOffset, bitOffset);
|
sl@0
|
1780 |
|
sl@0
|
1781 |
if (bitOffset != 0)
|
sl@0
|
1782 |
{
|
sl@0
|
1783 |
aParser.WriteBits(8 - bitOffset, 0);
|
sl@0
|
1784 |
byteOffset++;
|
sl@0
|
1785 |
}
|
sl@0
|
1786 |
|
sl@0
|
1787 |
if (byteOffset != iParameters.CalcFrameLength() )
|
sl@0
|
1788 |
{
|
sl@0
|
1789 |
User::Leave(KErrCorrupt);
|
sl@0
|
1790 |
}
|
sl@0
|
1791 |
}
|