os/kernelhwsrv/kerneltest/e32test/mmu/t_imb.cia
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// e32test\mmu\t_imb.cia
sl@0
    15
// 
sl@0
    16
//
sl@0
    17
sl@0
    18
#include <e32test.h>
sl@0
    19
#include <u32std.h>
sl@0
    20
#include <e32math.h>
sl@0
    21
sl@0
    22
#ifdef __CPU_ARM
sl@0
    23
__NAKED__ TInt Sqrt(TReal& /*aDest*/, const TReal& /*aSrc*/)
sl@0
    24
	{
sl@0
    25
	// r0=address of aDest, r1=address of aSrc
sl@0
    26
	asm("stmfd sp!, {r4-r10,lr} ");
sl@0
    27
#ifdef __DOUBLE_WORDS_SWAPPED__
sl@0
    28
	asm("ldmia r1, {r3,r4} ");			// low mant into r4, sign:exp:high mant into r3
sl@0
    29
#else
sl@0
    30
	asm("ldr r3, [r1, #4] ");
sl@0
    31
	asm("ldr r4, [r1, #0] ");
sl@0
    32
#endif
sl@0
    33
	asm("bic r5, r3, #0xFF000000 ");
sl@0
    34
	asm("bic r5, r5, #0x00F00000 ");	// high word of mantissa into r5
sl@0
    35
	asm("mov r2, r3, lsr #20 ");
sl@0
    36
	asm("bics r2, r2, #0x800 ");		// exponent now in r2
sl@0
    37
	asm("beq fastsqrt1 ");				// branch if exponent zero (zero or denormal)
sl@0
    38
	asm("mov r6, #0xFF ");
sl@0
    39
	asm("orr r6, r6, #0x700 ");
sl@0
    40
	asm("cmp r2, r6 ");					// check for infinity or NaN
sl@0
    41
	asm("beq fastsqrt2 ");				// branch if infinity or NaN
sl@0
    42
	asm("movs r3, r3 ");				// test sign
sl@0
    43
	asm("bmi fastsqrtn ");				// branch if negative
sl@0
    44
	asm("sub r2, r2, #0xFF ");			// unbias the exponent
sl@0
    45
	asm("sub r2, r2, #0x300 ");			//
sl@0
    46
	asm("fastsqrtd1: ");
sl@0
    47
	asm("mov r1, #0x40000000 ");		// value for comparison
sl@0
    48
	asm("mov r3, #27 ");				// loop counter (number of bits/2)
sl@0
    49
	asm("movs r2, r2, asr #1 ");		// divide exponent by 2, LSB into CF
sl@0
    50
	asm("movcs r7, r5, lsl #11 ");		// mantissa into r6,r7 with MSB in MSB of r7
sl@0
    51
	asm("orrcs r7, r7, r4, lsr #21 ");
sl@0
    52
	asm("movcs r6, r4, lsl #11 ");
sl@0
    53
	asm("movcs r4, #0 ");				// r4, r5 will hold result mantissa
sl@0
    54
	asm("orrcs r7, r7, #0x80000000 ");	// if exponent odd, restore MSB of mantissa
sl@0
    55
	asm("movcc r7, r5, lsl #12 ");		// mantissa into r6,r7 with MSB in MSB of r7
sl@0
    56
	asm("orrcc r7, r7, r4, lsr #20 ");	// if exponent even, shift mantissa left an extra
sl@0
    57
	asm("movcc r6, r4, lsl #12 ");		// place, lose top bit, and
sl@0
    58
	asm("movcc r4, #1 ");				// set MSB of result, and
sl@0
    59
	asm("mov r5, #0 ");					// r4, r5 will hold result mantissa
sl@0
    60
	asm("mov r8, #0 ");					// r8, r9 will be comparison accumulator
sl@0
    61
	asm("mov r9, #0 ");
sl@0
    62
	asm("bcc fastsqrt4 ");				// if exponent even, calculate one less bit
sl@0
    63
										// as result MSB already known
sl@0
    64
sl@0
    65
	// Main mantissa square-root loop
sl@0
    66
	asm("fastsqrt3: ");					// START OF MAIN LOOP
sl@0
    67
	asm("subs r10, r7, r1 ");			// subtract result:01 from acc:mant
sl@0
    68
	asm("sbcs r12, r8, r4 ");			// result into r14:r12:r10
sl@0
    69
	asm("sbcs r14, r9, r5 ");
sl@0
    70
	asm("movcs r7, r10 ");				// if no borrow replace accumulator with result
sl@0
    71
	asm("movcs r8, r12 ");
sl@0
    72
	asm("movcs r9, r14 ");
sl@0
    73
	asm("adcs r4, r4, r4 ");			// shift result left one, putting in next bit
sl@0
    74
	asm("adcs r5, r5, r5 ");
sl@0
    75
	asm("mov r9, r9, lsl #2 ");			// shift acc:mant left by 2 bits
sl@0
    76
	asm("orr r9, r9, r8, lsr #30 ");
sl@0
    77
	asm("mov r8, r8, lsl #2 ");
sl@0
    78
	asm("orr r8, r8, r7, lsr #30 ");
sl@0
    79
	asm("mov r7, r7, lsl #2 ");
sl@0
    80
	asm("orr r7, r7, r6, lsr #30 ");
sl@0
    81
	asm("mov r6, r6, lsl #2 ");
sl@0
    82
	asm("fastsqrt4: ");					// Come in here if we need to do one less iteration
sl@0
    83
	asm("subs r10, r7, r1 ");			// subtract result:01 from acc:mant
sl@0
    84
	asm("sbcs r12, r8, r4 ");			// result into r14:r12:r10
sl@0
    85
	asm("sbcs r14, r9, r5 ");
sl@0
    86
	asm("movcs r7, r10 ");				// if no borrow replace accumulator with result
sl@0
    87
	asm("movcs r8, r12 ");
sl@0
    88
	asm("movcs r9, r14 ");
sl@0
    89
	asm("adcs r4, r4, r4 ");			// shift result left one, putting in next bit
sl@0
    90
	asm("adcs r5, r5, r5 ");
sl@0
    91
	asm("mov r9, r9, lsl #2 ");			// shift acc:mant left by 2 bits
sl@0
    92
	asm("orr r9, r9, r8, lsr #30 ");
sl@0
    93
	asm("mov r8, r8, lsl #2 ");
sl@0
    94
	asm("orr r8, r8, r7, lsr #30 ");
sl@0
    95
	asm("mov r7, r7, lsl #2 ");
sl@0
    96
	asm("orr r7, r7, r6, lsr #30 ");
sl@0
    97
	asm("mov r6, r6, lsl #2 ");
sl@0
    98
	asm("subs r3, r3, #1 ");			// decrement loop counter
sl@0
    99
	asm("bne fastsqrt3 ");				// do necessary number of iterations
sl@0
   100
sl@0
   101
	asm("movs r4, r4, lsr #1 ");		// shift result mantissa right 1 place
sl@0
   102
	asm("orr r4, r4, r5, lsl #31 ");	// LSB (=rounding bit) into carry
sl@0
   103
	asm("mov r5, r5, lsr #1 ");
sl@0
   104
	asm("adcs r4, r4, #0 ");			// round the mantissa to 53 bits
sl@0
   105
	asm("adcs r5, r5, #0 ");
sl@0
   106
	asm("cmp r5, #0x00200000 ");		// check for mantissa overflow
sl@0
   107
	asm("addeq r2, r2, #1 ");			// if so, increment exponent - can never overflow
sl@0
   108
	asm("bic r5, r5, #0x00300000 ");	// remove top bit of mantissa - it is implicit
sl@0
   109
	asm("add r2, r2, #0xFF ");			// re-bias the exponent
sl@0
   110
	asm("add r3, r2, #0x300 ");			// and move into r3
sl@0
   111
	asm("orr r3, r5, r3, lsl #20 ");	// r3 now contains exponent + top of mantissa
sl@0
   112
	asm("fastsqrt_ok: ");
sl@0
   113
#ifdef __DOUBLE_WORDS_SWAPPED__
sl@0
   114
	asm("stmia r0, {r3,r4} ");			// store the result
sl@0
   115
#else
sl@0
   116
	asm("str r3, [r0, #4] ");
sl@0
   117
	asm("str r4, [r0, #0] ");
sl@0
   118
#endif
sl@0
   119
	asm("mov r0, #0 ");					// error code KErrNone
sl@0
   120
	__POPRET("r4-r10,");
sl@0
   121
sl@0
   122
	asm("fastsqrt1: ");
sl@0
   123
	asm("orrs r6, r5, r4 ");			// exponent zero - test mantissa
sl@0
   124
	asm("beq fastsqrt_ok ");			// if zero, return 0
sl@0
   125
sl@0
   126
	asm("movs r3, r3 ");				// denormal - test sign
sl@0
   127
	asm("bmi fastsqrtn ");				// branch out if negative
sl@0
   128
	asm("sub r2, r2, #0xFE ");			// unbias the exponent
sl@0
   129
	asm("sub r2, r2, #0x300 ");			//
sl@0
   130
	asm("fastsqrtd: ");
sl@0
   131
	asm("adds r4, r4, r4 ");			// shift mantissa left
sl@0
   132
	asm("adcs r5, r5, r5 ");
sl@0
   133
	asm("sub r2, r2, #1 ");				// and decrement exponent
sl@0
   134
	asm("tst r5, #0x00100000 ");		// test if normalised
sl@0
   135
	asm("beq fastsqrtd ");				// loop until normalised
sl@0
   136
	asm("b fastsqrtd1 ");				// now treat as a normalised number
sl@0
   137
	asm("fastsqrt2: ");					// get here if infinity or NaN
sl@0
   138
	asm("orrs r6, r5, r4 ");			// if mantissa zero, infinity
sl@0
   139
	asm("bne fastsqrtnan ");			// branch if not - must be NaN
sl@0
   140
	asm("movs r3, r3 ");				// test sign of infinity
sl@0
   141
	asm("bmi fastsqrtn ");				// branch if -ve
sl@0
   142
#ifdef __DOUBLE_WORDS_SWAPPED__
sl@0
   143
	asm("stmia r0, {r3,r4} ");			// store the result
sl@0
   144
#else
sl@0
   145
	asm("str r3, [r0, #4] ");
sl@0
   146
	asm("str r4, [r0, #0] ");
sl@0
   147
#endif
sl@0
   148
	asm("mov r0, #-9 ");				// return KErrOverflow
sl@0
   149
	asm("b fastsqrt_end ");
sl@0
   150
sl@0
   151
	asm("fastsqrtn: ");					// get here if negative or QNaN operand
sl@0
   152
	asm("mov r3, #0xFF000000 ");		// generate "real indefinite" QNaN
sl@0
   153
	asm("orr r3, r3, #0x00F80000 ");	// sign=1, exp=7FF, mantissa = 1000...0
sl@0
   154
	asm("mov r4, #0 ");
sl@0
   155
	asm("fastsqrtxa: ");
sl@0
   156
#ifdef __DOUBLE_WORDS_SWAPPED__
sl@0
   157
	asm("stmia r0, {r3,r4} ");			// store the result
sl@0
   158
#else
sl@0
   159
	asm("str r3, [r0, #4] ");
sl@0
   160
	asm("str r4, [r0, #0] ");
sl@0
   161
#endif
sl@0
   162
	asm("mov r0, #-6 ");				// return KErrArgument
sl@0
   163
	asm("fastsqrt_end: ");
sl@0
   164
	__POPRET("r4-r10,");
sl@0
   165
sl@0
   166
	asm("fastsqrtnan: ");				// operand is a NaN
sl@0
   167
	asm("tst r5, #0x00080000 ");		// test MSB of mantissa
sl@0
   168
	asm("bne fastsqrtn ");				// if set it is a QNaN - so return "real indefinite"
sl@0
   169
	asm("bic r3, r3, #0x00080000 ");	// else convert SNaN to QNaN
sl@0
   170
	asm("b fastsqrtxa ");				// and return KErrArgument
sl@0
   171
sl@0
   172
	asm("Sqrt__FRdRCd_end: ");
sl@0
   173
sl@0
   174
	}
sl@0
   175
sl@0
   176
__NAKED__ TUint Sqrt_Length()
sl@0
   177
	{
sl@0
   178
	asm("adr r0, Sqrt__FRdRCd_end ");
sl@0
   179
	asm("adr r1, Sqrt__FRdRCd ");
sl@0
   180
	asm("sub r0, r0, r1 ");
sl@0
   181
	__JUMP(,lr);
sl@0
   182
	}
sl@0
   183
sl@0
   184
__NAKED__ TInt Divide(TRealX& /*aDividend*/, const TRealX& /*aDivisor*/)
sl@0
   185
	{
sl@0
   186
	asm("stmfd sp!, {r0,r4-r9,lr} ");
sl@0
   187
	asm("ldmia r1, {r4,r5,r6} ");
sl@0
   188
	asm("ldmia r0, {r1,r2,r3} ");
sl@0
   189
	asm("bl TRealXDivide ");
sl@0
   190
	asm("ldmfd sp!, {r0,r4-r9,lr} ");
sl@0
   191
	asm("stmia r0, {r1,r2,r3} ");
sl@0
   192
	asm("mov r0, r12 ");
sl@0
   193
	__JUMP(,lr);
sl@0
   194
sl@0
   195
	// TRealX division r1,r2,r3 / r4,r5,r6 result in r1,r2,r3
sl@0
   196
	// Error code returned in r12
sl@0
   197
	// Registers r0-r9,r12 modified
sl@0
   198
	// NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE.
sl@0
   199
	asm("TRealXDivide: ");
sl@0
   200
	asm("mov r12, #0 ");					// initialise return value to KErrNone
sl@0
   201
	asm("bic r3, r3, #0x300 ");				// clear rounding flags
sl@0
   202
	asm("tst r6, #1 ");
sl@0
   203
	asm("eorne r3, r3, #1 ");				// Exclusive-OR signs
sl@0
   204
	asm("cmn r3, #0x10000 ");				// check if dividend is NaN or infinity
sl@0
   205
	asm("bcs TRealXDivide1 ");				// branch if it is
sl@0
   206
	asm("cmn r6, #0x10000 ");				// check if divisor is NaN or infinity
sl@0
   207
	asm("bcs TRealXDivide2 ");				// branch if it is
sl@0
   208
	asm("cmp r6, #0x10000 ");				// check if divisor zero
sl@0
   209
	asm("bcc TRealXDivide3 ");				// branch if it is
sl@0
   210
	asm("cmp r3, #0x10000 ");				// check if dividend zero
sl@0
   211
	__JUMP(cc,lr);					// if zero, exit
sl@0
   212
	asm("tst r3, #1 ");
sl@0
   213
	asm("orrne lr, lr, #1 ");				// save sign in bottom bit of lr
sl@0
   214
sl@0
   215
	// calculate result exponent
sl@0
   216
	asm("mov r0, r3, lsr #16 ");			// r0=dividend exponent
sl@0
   217
	asm("sub r0, r0, r6, lsr #16 ");		// r0=dividend exponent - divisor exponent
sl@0
   218
	asm("add r0, r0, #0x7F00 ");
sl@0
   219
	asm("add r0, r0, #0x00FF ");			// r0 now contains result exponent
sl@0
   220
	asm("mov r6, r1 ");						// move dividend into r6,r7,r8
sl@0
   221
	asm("mov r7, r2 ");
sl@0
   222
	asm("mov r8, #0 ");						// use r8 to hold extra bit shifted up
sl@0
   223
											// r2:r1 will hold result mantissa
sl@0
   224
	asm("mov r2, #1 ");						// we will make sure first bit is 1
sl@0
   225
	asm("cmp r7, r5 ");						// compare dividend mantissa to divisor mantissa
sl@0
   226
	asm("cmpeq r6, r4 ");
sl@0
   227
	asm("bcs TRealXDivide4 ");				// branch if dividend >= divisor
sl@0
   228
	asm("adds r6, r6, r6 ");				// else shift dividend left one
sl@0
   229
	asm("adcs r7, r7, r7 ");				// ignore carry here
sl@0
   230
	asm("sub r0, r0, #1 ");					// decrement result exponent by one
sl@0
   231
	asm("TRealXDivide4: ");
sl@0
   232
	asm("subs r6, r6, r4 ");				// subtract divisor from dividend
sl@0
   233
	asm("sbcs r7, r7, r5 ");
sl@0
   234
sl@0
   235
	// Main mantissa division code
sl@0
   236
	// First calculate the top 32 bits of the result
sl@0
   237
	// Top bit is 1, do 10 lots of 3 bits the one more bit
sl@0
   238
	asm("mov r12, #10 ");
sl@0
   239
	asm("TRealXDivide5: ");
sl@0
   240
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
sl@0
   241
	asm("adcs r7, r7, r7 ");
sl@0
   242
	asm("adcs r8, r8, r8 ");
sl@0
   243
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
sl@0
   244
	asm("sbcs r3, r7, r5 ");
sl@0
   245
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
sl@0
   246
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
sl@0
   247
	asm("movcs r7, r3 ");
sl@0
   248
	asm("adcs r2, r2, r2 ");				// shift in new result bit
sl@0
   249
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
sl@0
   250
	asm("adcs r7, r7, r7 ");
sl@0
   251
	asm("adcs r8, r8, r8 ");
sl@0
   252
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
sl@0
   253
	asm("sbcs r3, r7, r5 ");
sl@0
   254
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
sl@0
   255
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
sl@0
   256
	asm("movcs r7, r3 ");
sl@0
   257
	asm("adcs r2, r2, r2 ");				// shift in new result bit
sl@0
   258
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
sl@0
   259
	asm("adcs r7, r7, r7 ");
sl@0
   260
	asm("adcs r8, r8, r8 ");
sl@0
   261
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
sl@0
   262
	asm("sbcs r3, r7, r5 ");
sl@0
   263
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
sl@0
   264
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
sl@0
   265
	asm("movcs r7, r3 ");
sl@0
   266
	asm("adcs r2, r2, r2 ");				// shift in new result bit
sl@0
   267
	asm("subs r12, r12, #1 ");
sl@0
   268
	asm("bne TRealXDivide5 ");				// iterate the loop
sl@0
   269
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
sl@0
   270
	asm("adcs r7, r7, r7 ");
sl@0
   271
	asm("adcs r8, r8, r8 ");
sl@0
   272
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
sl@0
   273
	asm("sbcs r3, r7, r5 ");
sl@0
   274
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
sl@0
   275
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
sl@0
   276
	asm("movcs r7, r3 ");
sl@0
   277
	asm("adcs r2, r2, r2 ");				// shift in new result bit - now have 32 bits
sl@0
   278
sl@0
   279
	// Now calculate the bottom 32 bits of the result
sl@0
   280
	// Do 8 lots of 4 bits
sl@0
   281
	asm("mov r12, #8 ");
sl@0
   282
	asm("TRealXDivide5a: ");
sl@0
   283
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
sl@0
   284
	asm("adcs r7, r7, r7 ");
sl@0
   285
	asm("adcs r8, r8, r8 ");
sl@0
   286
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
sl@0
   287
	asm("sbcs r3, r7, r5 ");
sl@0
   288
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
sl@0
   289
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
sl@0
   290
	asm("movcs r7, r3 ");
sl@0
   291
	asm("adcs r1, r1, r1 ");				// shift in new result bit
sl@0
   292
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
sl@0
   293
	asm("adcs r7, r7, r7 ");
sl@0
   294
	asm("adcs r8, r8, r8 ");
sl@0
   295
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
sl@0
   296
	asm("sbcs r3, r7, r5 ");
sl@0
   297
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
sl@0
   298
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
sl@0
   299
	asm("movcs r7, r3 ");
sl@0
   300
	asm("adcs r1, r1, r1 ");				// shift in new result bit
sl@0
   301
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
sl@0
   302
	asm("adcs r7, r7, r7 ");
sl@0
   303
	asm("adcs r8, r8, r8 ");
sl@0
   304
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
sl@0
   305
	asm("sbcs r3, r7, r5 ");
sl@0
   306
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
sl@0
   307
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
sl@0
   308
	asm("movcs r7, r3 ");
sl@0
   309
	asm("adcs r1, r1, r1 ");				// shift in new result bit
sl@0
   310
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
sl@0
   311
	asm("adcs r7, r7, r7 ");
sl@0
   312
	asm("adcs r8, r8, r8 ");
sl@0
   313
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
sl@0
   314
	asm("sbcs r3, r7, r5 ");
sl@0
   315
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
sl@0
   316
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
sl@0
   317
	asm("movcs r7, r3 ");
sl@0
   318
	asm("adcs r1, r1, r1 ");				// shift in new result bit
sl@0
   319
	asm("subs r12, r12, #1 ");
sl@0
   320
	asm("bne TRealXDivide5a ");				// iterate the loop
sl@0
   321
sl@0
   322
	// r2:r1 now contains a 64-bit normalised mantissa
sl@0
   323
	// need to do rounding now
sl@0
   324
	asm("and r3, lr, #1 ");					// result sign back into r3
sl@0
   325
	asm("orrs r9, r6, r7 ");				// check if accumulator zero
sl@0
   326
	asm("beq TRealXDivide6 ");				// if it is, result is exact, else generate next bit
sl@0
   327
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
sl@0
   328
	asm("adcs r7, r7, r7 ");
sl@0
   329
	asm("adcs r8, r8, r8 ");
sl@0
   330
	asm("subs r6, r6, r4 ");				// subtract divisor from accumulator
sl@0
   331
	asm("sbcs r7, r7, r5 ");
sl@0
   332
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
sl@0
   333
	asm("orrcc r3, r3, #0x100 ");			// if borrow, round down and set round-down flag
sl@0
   334
	asm("bcc TRealXDivide6 ");
sl@0
   335
	asm("orrs r9, r6, r7 ");				// if no borrow, check if exactly half-way
sl@0
   336
	asm("moveqs r9, r1, lsr #1 ");			// if exactly half-way, round to even
sl@0
   337
	asm("orrcc r3, r3, #0x100 ");			// if C=0, round result down and set round-down flag
sl@0
   338
	asm("bcc TRealXDivide6 ");
sl@0
   339
	asm("orr r3, r3, #0x200 ");				// else set round-up flag
sl@0
   340
	asm("adds r1, r1, #1 ");				// and round mantissa up
sl@0
   341
	asm("adcs r2, r2, #0 ");
sl@0
   342
	asm("movcs r2, #0x80000000 ");			// if carry, mantissa = 80000000 00000000
sl@0
   343
	asm("addcs r0, r0, #1 ");				// and increment exponent
sl@0
   344
sl@0
   345
	// check for overflow or underflow and assemble final result
sl@0
   346
	asm("TRealXDivide6: ");
sl@0
   347
	asm("add r4, r0, #1 ");					// need to add 1 to get usable threshold
sl@0
   348
	asm("cmp r4, #0x10000 ");				// check if exponent >= 0xFFFF
sl@0
   349
	asm("bge TRealXMultiply6 ");			// if so, overflow
sl@0
   350
	asm("cmp r0, #0 ");						// check for underflow
sl@0
   351
	asm("orrgt r3, r3, r0, lsl #16 ");		// if no underflow, result exponent into r3, ...
sl@0
   352
	asm("movgt r12, #0 ");					// ... return KErrNone ...
sl@0
   353
	__JUMP(gt,lr);
sl@0
   354
sl@0
   355
	// underflow
sl@0
   356
	asm("and r3, r3, #1 ");					// set exponent=0, keep sign
sl@0
   357
	asm("mvn r12, #9 ");					// return KErrUnderflow
sl@0
   358
	__JUMP(,lr);
sl@0
   359
sl@0
   360
	// come here if divisor is zero, dividend finite
sl@0
   361
	asm("TRealXDivide3: ");
sl@0
   362
	asm("cmp r3, #0x10000 ");				// check if dividend also zero
sl@0
   363
	asm("bcc TRealXRealIndefinite ");		// if so, return 'real indefinite'
sl@0
   364
	asm("orr r3, r3, #0xFF000000 ");		// else return infinity with xor sign
sl@0
   365
	asm("orr r3, r3, #0x00FF0000 ");
sl@0
   366
	asm("mov r2, #0x80000000 ");
sl@0
   367
	asm("mov r1, #0 ");
sl@0
   368
	asm("mvn r12, #40 ");					// return KErrDivideByZero
sl@0
   369
	__JUMP(,lr);
sl@0
   370
sl@0
   371
	// Dividend is NaN or infinity
sl@0
   372
	asm("TRealXDivide1: ");
sl@0
   373
	asm("cmp r2, #0x80000000 ");			// check for infinity
sl@0
   374
	asm("cmpeq r1, #0 ");
sl@0
   375
	asm("bne TRealXBinOpNan ");				// branch if NaN
sl@0
   376
	asm("cmn r6, #0x10000 ");				// check 2nd operand for NaN/infinity
sl@0
   377
	asm("mvncc r12, #8 ");					// if not, return KErrOverflow
sl@0
   378
	__JUMP(cc,lr);
sl@0
   379
sl@0
   380
	// Dividend=infinity, divisor=NaN or infinity
sl@0
   381
	asm("cmp r5, #0x80000000 ");			// check 2nd operand for infinity
sl@0
   382
	asm("cmpeq r4, #0 ");
sl@0
   383
	asm("bne TRealXBinOpNan ");				// branch if NaN
sl@0
   384
	asm("b TRealXRealIndefinite ");			// else return 'real indefinite'
sl@0
   385
sl@0
   386
	// Divisor is NaN or infinity, dividend finite
sl@0
   387
	asm("TRealXDivide2: ");
sl@0
   388
	asm("cmp r5, #0x80000000 ");			// check for infinity
sl@0
   389
	asm("cmpeq r4, #0 ");
sl@0
   390
	asm("bne TRealXBinOpNan ");				// branch if NaN
sl@0
   391
	asm("and r3, r3, #1 ");					// else return zero with xor sign
sl@0
   392
	__JUMP(,lr);
sl@0
   393
sl@0
   394
	asm("TRealXBinOpNan: ");				// generic routine to process NaNs in binary
sl@0
   395
											// operations
sl@0
   396
	asm("cmn r3, #0x10000 ");				// check if first operand is NaN
sl@0
   397
	asm("movcc r0, r1 ");					// if not, swap the operands
sl@0
   398
	asm("movcc r1, r4 ");
sl@0
   399
	asm("movcc r4, r0 ");
sl@0
   400
	asm("movcc r0, r2 ");
sl@0
   401
	asm("movcc r2, r5 ");
sl@0
   402
	asm("movcc r5, r0 ");
sl@0
   403
	asm("movcc r0, r3 ");
sl@0
   404
	asm("movcc r3, r6 ");
sl@0
   405
	asm("movcc r6, r0 ");
sl@0
   406
	asm("cmn r6, #0x10000 ");				// both operands NaNs?
sl@0
   407
	asm("bcc TRealXBinOpNan1 ");			// skip if not
sl@0
   408
	asm("cmp r2, r5 ");						// if so, compare the significands
sl@0
   409
	asm("cmpeq r1, r4 ");
sl@0
   410
	asm("movcc r1, r4 ");					// r1,r2,r3 will get NaN with larger significand
sl@0
   411
	asm("movcc r2, r5 ");
sl@0
   412
	asm("movcc r3, r6 ");
sl@0
   413
	asm("TRealXBinOpNan1: ");
sl@0
   414
	asm("orr r2, r2, #0x40000000 ");		// convert an SNaN to a QNaN
sl@0
   415
	asm("mvn r12, #5 ");					// return KErrArgument
sl@0
   416
	__JUMP(,lr);
sl@0
   417
sl@0
   418
	// Return 'real indefinite'
sl@0
   419
	asm("TRealXRealIndefinite: ");
sl@0
   420
	asm("ldr r3, __RealIndefiniteExponent ");
sl@0
   421
	asm("mov r2, #0xC0000000 ");
sl@0
   422
	asm("mov r1, #0 ");
sl@0
   423
	asm("mvn r12, #5 ");					// return KErrArgument
sl@0
   424
	__JUMP(,lr);
sl@0
   425
sl@0
   426
	// overflow
sl@0
   427
	asm("TRealXMultiply6: ");
sl@0
   428
	asm("bic r3, r3, #0x0000FF00 ");		// clear rounding flags
sl@0
   429
	asm("orr r3, r3, #0xFF000000 ");		// make exponent FFFF for infinity
sl@0
   430
	asm("orr r3, r3, #0x00FF0000 ");
sl@0
   431
	asm("mov r2, #0x80000000 ");			// mantissa = 80000000 00000000
sl@0
   432
	asm("mov r1, #0 ");
sl@0
   433
	asm("mvn r12, #8 ");					// return KErrOverflow
sl@0
   434
	__JUMP(,lr);
sl@0
   435
sl@0
   436
	asm("__RealIndefiniteExponent: ");
sl@0
   437
	asm(".word 0xFFFF0001 ");
sl@0
   438
sl@0
   439
	asm("Divide__FR6TRealXRC6TRealX_end: ");
sl@0
   440
	}
sl@0
   441
sl@0
   442
__NAKED__ TUint Divide_Length()
sl@0
   443
	{
sl@0
   444
	asm("adr r0, Divide__FR6TRealXRC6TRealX_end ");
sl@0
   445
	asm("adr r1, Divide__FR6TRealXRC6TRealX ");
sl@0
   446
	asm("sub r0, r0, r1 ");
sl@0
   447
	__JUMP(,lr);
sl@0
   448
	}
sl@0
   449
sl@0
   450
__NAKED__ TInt SDummy(TInt)
sl@0
   451
	{
sl@0
   452
	__JUMP(,lr);
sl@0
   453
	asm("SDummy__Fi_end: ");
sl@0
   454
	}
sl@0
   455
sl@0
   456
__NAKED__ TUint SDummy_Length()
sl@0
   457
	{
sl@0
   458
	asm("adr r0, SDummy__Fi_end ");
sl@0
   459
	asm("adr r1, SDummy__Fi ");
sl@0
   460
	asm("sub r0, r0, r1 ");
sl@0
   461
	__JUMP(,lr);
sl@0
   462
	}
sl@0
   463
sl@0
   464
__NAKED__ TInt Increment(TInt)
sl@0
   465
	{
sl@0
   466
	asm("add r0, r0, #1 ");
sl@0
   467
	__JUMP(,lr);
sl@0
   468
	asm("Increment__Fi_end: ");
sl@0
   469
	}
sl@0
   470
sl@0
   471
__NAKED__ TUint Increment_Length()
sl@0
   472
	{
sl@0
   473
	asm("adr r0, Increment__Fi_end ");
sl@0
   474
	asm("adr r1, Increment__Fi ");
sl@0
   475
	asm("sub r0, r0, r1 ");
sl@0
   476
	__JUMP(,lr);
sl@0
   477
	}
sl@0
   478
sl@0
   479
#endif