sl@0
|
1 |
// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
// e32test\lffs\t_lfsdrv2.cpp
|
sl@0
|
15 |
// Test the LFFS Flash media driver
|
sl@0
|
16 |
//
|
sl@0
|
17 |
//
|
sl@0
|
18 |
|
sl@0
|
19 |
#include <e32test.h>
|
sl@0
|
20 |
#include <e32svr.h>
|
sl@0
|
21 |
#include <e32hal.h>
|
sl@0
|
22 |
#include <e32uid.h>
|
sl@0
|
23 |
#include <hal.h>
|
sl@0
|
24 |
#include "u32std.h"
|
sl@0
|
25 |
#include "..\misc\prbs.h"
|
sl@0
|
26 |
|
sl@0
|
27 |
_LIT(KTestName,"T_LFSDRV");
|
sl@0
|
28 |
_LIT(KMediaDriverName,"MEDLFS");
|
sl@0
|
29 |
_LIT(KDot,".");
|
sl@0
|
30 |
_LIT(KSemiColon,";");
|
sl@0
|
31 |
|
sl@0
|
32 |
RTest test(KTestName);
|
sl@0
|
33 |
TBusLocalDrive Drive;
|
sl@0
|
34 |
TInt DriveNumber;
|
sl@0
|
35 |
TLocalDriveCapsV7 DriveCaps; // Required for M18 devices
|
sl@0
|
36 |
TBool ChangedFlag;
|
sl@0
|
37 |
TUint32 EbSz;
|
sl@0
|
38 |
TUint32 Size;
|
sl@0
|
39 |
|
sl@0
|
40 |
const TInt KBufferSize=4096;
|
sl@0
|
41 |
const TInt KBigBufferSize=4096*4;
|
sl@0
|
42 |
TUint8 Buffer[KBigBufferSize];
|
sl@0
|
43 |
|
sl@0
|
44 |
#ifdef _DEBUG
|
sl@0
|
45 |
/***************************************************
|
sl@0
|
46 |
* ControlIO command types - for debug builds, only
|
sl@0
|
47 |
***************************************************/
|
sl@0
|
48 |
enum TCtrlIoTypes
|
sl@0
|
49 |
{
|
sl@0
|
50 |
ECtrlIoRww=0,
|
sl@0
|
51 |
ECtrlIoTimeout=1
|
sl@0
|
52 |
};
|
sl@0
|
53 |
// Used only for the ControlIO tests
|
sl@0
|
54 |
#define TYAX_PARTITION_SIZE 0x00200000 // Partition size for TYAX is 1MB; 2 devices in parallel
|
sl@0
|
55 |
#endif
|
sl@0
|
56 |
|
sl@0
|
57 |
|
sl@0
|
58 |
/******************************************************************************
|
sl@0
|
59 |
* Extra thread for background erase
|
sl@0
|
60 |
******************************************************************************/
|
sl@0
|
61 |
struct SEraseInfo
|
sl@0
|
62 |
{
|
sl@0
|
63 |
TInt iFirstBlock;
|
sl@0
|
64 |
TInt iNumBlocks;
|
sl@0
|
65 |
};
|
sl@0
|
66 |
|
sl@0
|
67 |
volatile TInt Block;
|
sl@0
|
68 |
TInt EraseThreadFn(TAny* aPtr)
|
sl@0
|
69 |
{
|
sl@0
|
70 |
SEraseInfo& e=*(SEraseInfo*)aPtr;
|
sl@0
|
71 |
TInt r=KErrNone;
|
sl@0
|
72 |
for (Block=e.iFirstBlock; Block<e.iFirstBlock+e.iNumBlocks; ++Block)
|
sl@0
|
73 |
{
|
sl@0
|
74 |
TInt64 pos64 = MAKE_TINT64(0, Block*EbSz);
|
sl@0
|
75 |
r=Drive.Format(pos64,EbSz);
|
sl@0
|
76 |
if (r!=KErrNone)
|
sl@0
|
77 |
return r;
|
sl@0
|
78 |
}
|
sl@0
|
79 |
return KErrNone;
|
sl@0
|
80 |
}
|
sl@0
|
81 |
|
sl@0
|
82 |
SEraseInfo EraseInfo;
|
sl@0
|
83 |
RThread EraseThread;
|
sl@0
|
84 |
TRequestStatus EraseStatus;
|
sl@0
|
85 |
const TInt KHeapSize=0x4000;
|
sl@0
|
86 |
|
sl@0
|
87 |
_LIT(KEraseThreadName,"Eraser");
|
sl@0
|
88 |
TInt StartAsyncErase(TInt aFirstBlock, TInt aNumBlocks)
|
sl@0
|
89 |
{
|
sl@0
|
90 |
EraseInfo.iFirstBlock=aFirstBlock;
|
sl@0
|
91 |
EraseInfo.iNumBlocks=aNumBlocks;
|
sl@0
|
92 |
TInt r=EraseThread.Create(KEraseThreadName,EraseThreadFn,0x4000,KHeapSize,KHeapSize,&EraseInfo,EOwnerThread);
|
sl@0
|
93 |
if (r!=KErrNone)
|
sl@0
|
94 |
return r;
|
sl@0
|
95 |
EraseThread.Logon(EraseStatus);
|
sl@0
|
96 |
EraseThread.Resume();
|
sl@0
|
97 |
return KErrNone;
|
sl@0
|
98 |
}
|
sl@0
|
99 |
|
sl@0
|
100 |
TInt WaitForAsyncErase()
|
sl@0
|
101 |
{
|
sl@0
|
102 |
User::WaitForRequest(EraseStatus);
|
sl@0
|
103 |
TInt exitType=EraseThread.ExitType();
|
sl@0
|
104 |
TInt exitReason=EraseThread.ExitReason();
|
sl@0
|
105 |
TBuf<16> exitCat=EraseThread.ExitCategory();
|
sl@0
|
106 |
if((exitType!= EExitKill)||(exitReason!=KErrNone))
|
sl@0
|
107 |
{
|
sl@0
|
108 |
test.Printf(_L("Async erase error: %d, block %d\n"),EraseStatus.Int(),Block);
|
sl@0
|
109 |
test.Printf(_L("Thread exit reason: %d,%d,%S\n"),exitType,exitReason,&exitCat);
|
sl@0
|
110 |
test(0);
|
sl@0
|
111 |
}
|
sl@0
|
112 |
EraseThread.Close();
|
sl@0
|
113 |
|
sl@0
|
114 |
TUint32 pos=EraseInfo.iFirstBlock*EbSz;
|
sl@0
|
115 |
TUint32 endpos=pos+EraseInfo.iNumBlocks*EbSz;
|
sl@0
|
116 |
test.Printf(_L("\nAsync erase completed; verifying...\n"));
|
sl@0
|
117 |
for (; pos<endpos; pos+=KBufferSize)
|
sl@0
|
118 |
{
|
sl@0
|
119 |
TInt64 pos64 = MAKE_TINT64(0, pos);
|
sl@0
|
120 |
TPtr8 ptr(Buffer,0,KBufferSize);
|
sl@0
|
121 |
Mem::FillZ(Buffer,KBufferSize);
|
sl@0
|
122 |
TInt r=Drive.Read(pos64,KBufferSize,ptr);
|
sl@0
|
123 |
test(r==KErrNone);
|
sl@0
|
124 |
test(ptr.Length()==KBufferSize);
|
sl@0
|
125 |
const TUint32* pB=(const TUint32*)Buffer;
|
sl@0
|
126 |
const TUint32* pE=(const TUint32*)(Buffer+KBufferSize);
|
sl@0
|
127 |
while (pB<pE && *pB==0xffffffff) ++pB;
|
sl@0
|
128 |
if (pB<pE)
|
sl@0
|
129 |
{
|
sl@0
|
130 |
test.Printf(_L("ERROR: pos %08x data %08x\n"),((TUint32)pB)-((TUint32)Buffer)+pos,*pB);
|
sl@0
|
131 |
test(0);
|
sl@0
|
132 |
}
|
sl@0
|
133 |
test.Printf(KDot);
|
sl@0
|
134 |
}
|
sl@0
|
135 |
test.Printf(_L("\n"));
|
sl@0
|
136 |
return KErrNone;
|
sl@0
|
137 |
}
|
sl@0
|
138 |
|
sl@0
|
139 |
/******************************************************************************
|
sl@0
|
140 |
* Extra thread for background write, for use in the read-while-write tests
|
sl@0
|
141 |
******************************************************************************/
|
sl@0
|
142 |
TUint seed[2];
|
sl@0
|
143 |
|
sl@0
|
144 |
TInt WriteThreadFn(TAny* aPtr)
|
sl@0
|
145 |
{
|
sl@0
|
146 |
// re-use the struct created for the erase thread
|
sl@0
|
147 |
SEraseInfo& e=*(SEraseInfo*)aPtr;
|
sl@0
|
148 |
TInt r=KErrNone;
|
sl@0
|
149 |
|
sl@0
|
150 |
TPtrC8 wptr(Buffer,KBufferSize);
|
sl@0
|
151 |
TUint32* pB=(TUint32*)Buffer;
|
sl@0
|
152 |
TUint32* pE=(TUint32*)(Buffer+KBufferSize);
|
sl@0
|
153 |
while (pB<pE)
|
sl@0
|
154 |
*pB++=Random(seed);
|
sl@0
|
155 |
|
sl@0
|
156 |
for (Block=e.iFirstBlock; Block<e.iFirstBlock+e.iNumBlocks; ++Block)
|
sl@0
|
157 |
{
|
sl@0
|
158 |
TInt64 pos64 = MAKE_TINT64(0, Block*EbSz);
|
sl@0
|
159 |
r=Drive.Write(pos64,wptr);
|
sl@0
|
160 |
if (r!=KErrNone)
|
sl@0
|
161 |
return r;
|
sl@0
|
162 |
}
|
sl@0
|
163 |
return KErrNone;
|
sl@0
|
164 |
}
|
sl@0
|
165 |
|
sl@0
|
166 |
RThread WriteThread;
|
sl@0
|
167 |
TRequestStatus WriteStatus;
|
sl@0
|
168 |
|
sl@0
|
169 |
_LIT(KWriteThreadName,"Writer");
|
sl@0
|
170 |
TInt StartAsyncWrite(TInt aFirstBlock, TInt aNumBlocks)
|
sl@0
|
171 |
{
|
sl@0
|
172 |
// re-use the struct created for the erase thread
|
sl@0
|
173 |
EraseInfo.iFirstBlock=aFirstBlock;
|
sl@0
|
174 |
EraseInfo.iNumBlocks=aNumBlocks;
|
sl@0
|
175 |
TInt r=WriteThread.Create(KWriteThreadName,WriteThreadFn,0x4000,KHeapSize,KHeapSize,&EraseInfo,EOwnerThread);
|
sl@0
|
176 |
if (r!=KErrNone)
|
sl@0
|
177 |
return r;
|
sl@0
|
178 |
WriteThread.Logon(WriteStatus);
|
sl@0
|
179 |
WriteThread.Resume();
|
sl@0
|
180 |
return KErrNone;
|
sl@0
|
181 |
}
|
sl@0
|
182 |
|
sl@0
|
183 |
TInt WaitForAsyncWrite()
|
sl@0
|
184 |
{
|
sl@0
|
185 |
User::WaitForRequest(WriteStatus);
|
sl@0
|
186 |
TInt exitType=WriteThread.ExitType();
|
sl@0
|
187 |
TInt exitReason=WriteThread.ExitReason();
|
sl@0
|
188 |
TBuf<16> exitCat=WriteThread.ExitCategory();
|
sl@0
|
189 |
if((exitType!= EExitKill)||(exitReason!=KErrNone))
|
sl@0
|
190 |
{
|
sl@0
|
191 |
test.Printf(_L("Async Write error: %d, block %d\n"),WriteStatus.Int(),Block);
|
sl@0
|
192 |
test.Printf(_L("Thread exit reason: %d,%d,%S\n"),exitType,exitReason,&exitCat);
|
sl@0
|
193 |
test(0);
|
sl@0
|
194 |
}
|
sl@0
|
195 |
WriteThread.Close();
|
sl@0
|
196 |
// No verification performed
|
sl@0
|
197 |
test.Printf(_L("\n"));
|
sl@0
|
198 |
return KErrNone;
|
sl@0
|
199 |
}
|
sl@0
|
200 |
|
sl@0
|
201 |
/******************************************************************************
|
sl@0
|
202 |
* Control mode and Object mode test functions
|
sl@0
|
203 |
******************************************************************************/
|
sl@0
|
204 |
TInt DoControlModeWriteAndVerify(TUint32 aPattern, TUint32 aStartOffset)
|
sl@0
|
205 |
{
|
sl@0
|
206 |
// Writes 4K bytes of a given pattern to the "A" half of programming regions,
|
sl@0
|
207 |
// starting at the specified offset, then reads the data back to verify it
|
sl@0
|
208 |
|
sl@0
|
209 |
TUint32* pB=(TUint32*)(Buffer);
|
sl@0
|
210 |
TUint32* pE=(TUint32*)(Buffer + KBufferSize);
|
sl@0
|
211 |
TInt r=KErrNone;
|
sl@0
|
212 |
|
sl@0
|
213 |
// Fill the entire buffer with an initial value
|
sl@0
|
214 |
while (pB<pE)
|
sl@0
|
215 |
*pB++= aPattern;
|
sl@0
|
216 |
|
sl@0
|
217 |
// In this mode, half the device is available for writing, the other half is reserved;
|
sl@0
|
218 |
// the available half appears as the first DriveCaps.iControlModeSize bytes, the reserved
|
sl@0
|
219 |
// half as the following DriveCaps.iControlModeSize, and this alternating continues.
|
sl@0
|
220 |
// To perform this discrete-write test, therefore, the data held in Buffer that corresponds
|
sl@0
|
221 |
// to the reserved area is overwritten with 0xFF; 'writing' this value to the reserved area
|
sl@0
|
222 |
// has no detrimental effect.
|
sl@0
|
223 |
TInt i;
|
sl@0
|
224 |
TUint32 b;
|
sl@0
|
225 |
pB=(TUint32*)Buffer;
|
sl@0
|
226 |
for(i=0; i< KBufferSize; i+=(DriveCaps.iControlModeSize*2))
|
sl@0
|
227 |
{
|
sl@0
|
228 |
pB = (TUint32 *)((TUint32)pB + DriveCaps.iControlModeSize);
|
sl@0
|
229 |
for (b=0; b < DriveCaps.iControlModeSize; b+=4)
|
sl@0
|
230 |
{
|
sl@0
|
231 |
*pB = 0xFFFFFFFF;
|
sl@0
|
232 |
pB++;
|
sl@0
|
233 |
}
|
sl@0
|
234 |
}
|
sl@0
|
235 |
// Write the data
|
sl@0
|
236 |
for (i=0; i<KBufferSize; i+=(4*DriveCaps.iControlModeSize))
|
sl@0
|
237 |
{
|
sl@0
|
238 |
TInt64 pos64(i + aStartOffset);
|
sl@0
|
239 |
TPtrC8 ptr(Buffer+i,(4*DriveCaps.iControlModeSize));
|
sl@0
|
240 |
r=Drive.Write(pos64,ptr);
|
sl@0
|
241 |
test(r==KErrNone);
|
sl@0
|
242 |
}
|
sl@0
|
243 |
// Check what has been written
|
sl@0
|
244 |
Mem::FillZ(Buffer,KBigBufferSize);
|
sl@0
|
245 |
TPtr8 buf(Buffer,0,KBufferSize);
|
sl@0
|
246 |
r=Drive.Read(aStartOffset,KBufferSize,buf);
|
sl@0
|
247 |
test(r==KErrNone);
|
sl@0
|
248 |
pB=(TUint32*)Buffer;
|
sl@0
|
249 |
for(i=0; i< KBufferSize; i+=(DriveCaps.iControlModeSize*2))
|
sl@0
|
250 |
{
|
sl@0
|
251 |
for (b=0; b< DriveCaps.iControlModeSize; b+=4)
|
sl@0
|
252 |
{
|
sl@0
|
253 |
if(*pB++ != aPattern)
|
sl@0
|
254 |
{
|
sl@0
|
255 |
test.Printf(_L("ERROR: addr %08x data %08x expected %08x\n"),pB,*pB,aPattern);
|
sl@0
|
256 |
r=KErrCorrupt;
|
sl@0
|
257 |
break;
|
sl@0
|
258 |
}
|
sl@0
|
259 |
}
|
sl@0
|
260 |
for (b=0; b< DriveCaps.iControlModeSize; b+=4)
|
sl@0
|
261 |
{
|
sl@0
|
262 |
if(*pB++ != 0xFFFFFFFF)
|
sl@0
|
263 |
{
|
sl@0
|
264 |
test.Printf(_L("ERROR: addr %08x data %08x expected 0xFFFFFFFF\n"),pB,*pB);
|
sl@0
|
265 |
r=KErrCorrupt;
|
sl@0
|
266 |
break;
|
sl@0
|
267 |
}
|
sl@0
|
268 |
}
|
sl@0
|
269 |
}
|
sl@0
|
270 |
return r;
|
sl@0
|
271 |
}
|
sl@0
|
272 |
|
sl@0
|
273 |
TInt DoObjectModeWriteAndVerify(TUint32 aOffset, TUint32 aSize)
|
sl@0
|
274 |
{
|
sl@0
|
275 |
// Writes 'aSize' bytes of a 'random' pattern to the specified offset
|
sl@0
|
276 |
// then read back and verify
|
sl@0
|
277 |
TInt r=KErrNone;
|
sl@0
|
278 |
|
sl@0
|
279 |
// Check that aSize is valid
|
sl@0
|
280 |
if(aSize>DriveCaps.iObjectModeSize)
|
sl@0
|
281 |
{
|
sl@0
|
282 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - aSize=%x is greater than max (%x)\n"),aSize,DriveCaps.iObjectModeSize);
|
sl@0
|
283 |
return KErrArgument;
|
sl@0
|
284 |
}
|
sl@0
|
285 |
// write the data
|
sl@0
|
286 |
TUint seed[2];
|
sl@0
|
287 |
seed[0]=0xb17217f8;
|
sl@0
|
288 |
seed[1]=0;
|
sl@0
|
289 |
TInt64 pos64 = MAKE_TINT64(0, aOffset);
|
sl@0
|
290 |
TPtrC8 ptr(Buffer,aSize);
|
sl@0
|
291 |
TUint32* pB=(TUint32*)Buffer;
|
sl@0
|
292 |
TUint32* pE=(TUint32*)(Buffer+aSize);
|
sl@0
|
293 |
while (pB<pE)
|
sl@0
|
294 |
*pB++=Random(seed);
|
sl@0
|
295 |
r=Drive.Write(pos64,ptr);
|
sl@0
|
296 |
if(r!=KErrNone)
|
sl@0
|
297 |
{
|
sl@0
|
298 |
return r;
|
sl@0
|
299 |
}
|
sl@0
|
300 |
|
sl@0
|
301 |
// Read the data back
|
sl@0
|
302 |
seed[0]=0xb17217f8;
|
sl@0
|
303 |
seed[1]=0;
|
sl@0
|
304 |
TPtr8 rptr(Buffer,0,aSize);
|
sl@0
|
305 |
Mem::FillZ(Buffer,aSize);
|
sl@0
|
306 |
r=Drive.Read(pos64,aSize,rptr);
|
sl@0
|
307 |
if(r!=KErrNone)
|
sl@0
|
308 |
{
|
sl@0
|
309 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - Read returned %d\n"),r);
|
sl@0
|
310 |
return r;
|
sl@0
|
311 |
}
|
sl@0
|
312 |
test((TUint32)(rptr.Length())==aSize);
|
sl@0
|
313 |
|
sl@0
|
314 |
// Verify the content
|
sl@0
|
315 |
pB=(TUint32*)Buffer;
|
sl@0
|
316 |
pE=(TUint32*)(Buffer+aSize);
|
sl@0
|
317 |
TUint32 ex=0;
|
sl@0
|
318 |
while (pB<pE && (ex=Random(seed),*pB==ex)) ++pB;
|
sl@0
|
319 |
if (pB<pE)
|
sl@0
|
320 |
{
|
sl@0
|
321 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - addr %08x data %08x expected %08x\n"),pB,*pB,ex);
|
sl@0
|
322 |
r=KErrCorrupt;
|
sl@0
|
323 |
}
|
sl@0
|
324 |
return r;
|
sl@0
|
325 |
}
|
sl@0
|
326 |
|
sl@0
|
327 |
|
sl@0
|
328 |
TInt DoControlModeBoundaryWriteAndVerify()
|
sl@0
|
329 |
{
|
sl@0
|
330 |
//
|
sl@0
|
331 |
|
sl@0
|
332 |
TInt r=KErrNone;
|
sl@0
|
333 |
//test.Printf(_L("Entering: DoControlModeBoundaryWriteAndVerify - Start Test\n"));
|
sl@0
|
334 |
|
sl@0
|
335 |
r=Drive.Format(0,DriveCaps.iEraseBlockSize);
|
sl@0
|
336 |
test(r==KErrNone);
|
sl@0
|
337 |
|
sl@0
|
338 |
// Program into the last Control mode region in the programming region.
|
sl@0
|
339 |
TInt64 pos64 = MAKE_TINT64(0, (DriveCaps.iObjectModeSize - (DriveCaps.iControlModeSize*2)));
|
sl@0
|
340 |
TPtrC8 ptr(Buffer,DriveCaps.iControlModeSize);
|
sl@0
|
341 |
TUint32* pB=(TUint32*)Buffer;
|
sl@0
|
342 |
TUint32* pE=(TUint32*)(Buffer+DriveCaps.iControlModeSize);
|
sl@0
|
343 |
while (pB<pE)
|
sl@0
|
344 |
*pB++=0xb4b4a5a5;
|
sl@0
|
345 |
r=Drive.Write(pos64,ptr);
|
sl@0
|
346 |
if(r!=KErrNone)
|
sl@0
|
347 |
{
|
sl@0
|
348 |
test.Printf(_L("ERROR: DoControlModeBoundaryWriteAndVerify - Write 1\n"));
|
sl@0
|
349 |
return r;
|
sl@0
|
350 |
}
|
sl@0
|
351 |
|
sl@0
|
352 |
// Program into the next programming region starting at the first byte up to the size of the Control Mode Size.
|
sl@0
|
353 |
pos64 = MAKE_TINT64(0, DriveCaps.iObjectModeSize);
|
sl@0
|
354 |
r=Drive.Write(pos64,ptr);
|
sl@0
|
355 |
if(r!=KErrNone)
|
sl@0
|
356 |
{
|
sl@0
|
357 |
test.Printf(_L("ERROR: DoControlModeBoundaryWriteAndVerify - Write 2\n"));
|
sl@0
|
358 |
return r;
|
sl@0
|
359 |
}
|
sl@0
|
360 |
|
sl@0
|
361 |
// Read the data back from the first program
|
sl@0
|
362 |
pos64 = MAKE_TINT64(0, (DriveCaps.iObjectModeSize - (DriveCaps.iControlModeSize*2)));
|
sl@0
|
363 |
TPtr8 rptr(Buffer,0,(TInt)DriveCaps.iControlModeSize);
|
sl@0
|
364 |
Mem::FillZ(Buffer,DriveCaps.iControlModeSize);
|
sl@0
|
365 |
r=Drive.Read(pos64,DriveCaps.iControlModeSize,rptr);
|
sl@0
|
366 |
if(r!=KErrNone)
|
sl@0
|
367 |
{
|
sl@0
|
368 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - Read returned %d\n"),r);
|
sl@0
|
369 |
return r;
|
sl@0
|
370 |
}
|
sl@0
|
371 |
test((TUint32)(rptr.Length())==DriveCaps.iControlModeSize);
|
sl@0
|
372 |
|
sl@0
|
373 |
// Verify the content
|
sl@0
|
374 |
pB=(TUint32*)Buffer;
|
sl@0
|
375 |
pE=(TUint32*)(Buffer+DriveCaps.iControlModeSize);
|
sl@0
|
376 |
TUint32 ex=0xb4b4a5a5;
|
sl@0
|
377 |
while (pB<pE && (*pB==ex)) ++pB;
|
sl@0
|
378 |
if (pB<pE)
|
sl@0
|
379 |
{
|
sl@0
|
380 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - addr %08x data %08x expected %08x\n"),pB,*pB,ex);
|
sl@0
|
381 |
r=KErrCorrupt;
|
sl@0
|
382 |
}
|
sl@0
|
383 |
|
sl@0
|
384 |
// Read the data back from the second program
|
sl@0
|
385 |
pos64 = MAKE_TINT64(0, DriveCaps.iObjectModeSize);
|
sl@0
|
386 |
TPtr8 rptr2(Buffer,0,((TInt)DriveCaps.iControlModeSize));
|
sl@0
|
387 |
Mem::FillZ(Buffer,DriveCaps.iControlModeSize);
|
sl@0
|
388 |
r=Drive.Read(pos64,DriveCaps.iControlModeSize,rptr2);
|
sl@0
|
389 |
if(r!=KErrNone)
|
sl@0
|
390 |
{
|
sl@0
|
391 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - Read returned %d\n"),r);
|
sl@0
|
392 |
return r;
|
sl@0
|
393 |
}
|
sl@0
|
394 |
test((TUint32)(rptr2.Length())==DriveCaps.iControlModeSize);
|
sl@0
|
395 |
|
sl@0
|
396 |
// Verify the content
|
sl@0
|
397 |
pB=(TUint32*)Buffer;
|
sl@0
|
398 |
pE=(TUint32*)(Buffer+DriveCaps.iControlModeSize);
|
sl@0
|
399 |
ex=0xb4b4a5a5;
|
sl@0
|
400 |
while (pB<pE && (*pB==ex)) ++pB;
|
sl@0
|
401 |
if (pB<pE)
|
sl@0
|
402 |
{
|
sl@0
|
403 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - addr %08x data %08x expected %08x\n"),pB,*pB,ex);
|
sl@0
|
404 |
r=KErrCorrupt;
|
sl@0
|
405 |
}
|
sl@0
|
406 |
|
sl@0
|
407 |
// Bit Twiddle the last bit of the last Control Mode Region
|
sl@0
|
408 |
// Then bit twiddle the first bit of the first control Mode region.
|
sl@0
|
409 |
|
sl@0
|
410 |
// Program into the last Control mode region in the programming region.
|
sl@0
|
411 |
pos64 = MAKE_TINT64(0, (DriveCaps.iObjectModeSize - DriveCaps.iControlModeSize - 4));
|
sl@0
|
412 |
TPtrC8 ptr2(Buffer,4);
|
sl@0
|
413 |
TUint32* pC=(TUint32*)Buffer;
|
sl@0
|
414 |
*pC = 0xFFFFFFFE;
|
sl@0
|
415 |
r=Drive.Write(pos64,ptr2);
|
sl@0
|
416 |
if(r!=KErrNone)
|
sl@0
|
417 |
{
|
sl@0
|
418 |
test.Printf(_L("ERROR: DoControlModeBoundaryWriteAndVerify - Write 3\n"));
|
sl@0
|
419 |
|
sl@0
|
420 |
return r;
|
sl@0
|
421 |
}
|
sl@0
|
422 |
|
sl@0
|
423 |
// Read the data back from the first program
|
sl@0
|
424 |
pos64 = MAKE_TINT64(0, (DriveCaps.iObjectModeSize - DriveCaps.iControlModeSize - 4));
|
sl@0
|
425 |
TPtr8 rptr3(Buffer,0,4);
|
sl@0
|
426 |
Mem::FillZ(Buffer,4);
|
sl@0
|
427 |
r=Drive.Read(pos64,4,rptr3);
|
sl@0
|
428 |
if(r!=KErrNone)
|
sl@0
|
429 |
{
|
sl@0
|
430 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - Read returned %d\n"),r);
|
sl@0
|
431 |
return r;
|
sl@0
|
432 |
}
|
sl@0
|
433 |
test(rptr3.Length()==4);
|
sl@0
|
434 |
|
sl@0
|
435 |
// Verify the content
|
sl@0
|
436 |
pB=(TUint32*)Buffer;
|
sl@0
|
437 |
if (*pB != 0xb4b4a5a4)
|
sl@0
|
438 |
{
|
sl@0
|
439 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - addr %08x data %08x expected 0xb4b4a5a4\n"),pB,*pB);
|
sl@0
|
440 |
r=KErrCorrupt;
|
sl@0
|
441 |
}
|
sl@0
|
442 |
|
sl@0
|
443 |
// Program into the last Control mode region in the programming region.
|
sl@0
|
444 |
pos64 = MAKE_TINT64(0, DriveCaps.iObjectModeSize);
|
sl@0
|
445 |
TPtrC8 ptr3(Buffer,4);
|
sl@0
|
446 |
pC=(TUint32*)Buffer;
|
sl@0
|
447 |
*pC = 0x7FFFFFFF;
|
sl@0
|
448 |
r=Drive.Write(pos64,ptr3);
|
sl@0
|
449 |
if(r!=KErrNone)
|
sl@0
|
450 |
{
|
sl@0
|
451 |
test.Printf(_L("ERROR: DoControlModeBoundaryWriteAndVerify - Write 4\n"));
|
sl@0
|
452 |
|
sl@0
|
453 |
return r;
|
sl@0
|
454 |
}
|
sl@0
|
455 |
|
sl@0
|
456 |
// Read the data back from the first program
|
sl@0
|
457 |
pos64 = MAKE_TINT64(0, DriveCaps.iObjectModeSize);
|
sl@0
|
458 |
TPtr8 rptr4(Buffer,0,4);
|
sl@0
|
459 |
Mem::FillZ(Buffer,4);
|
sl@0
|
460 |
r=Drive.Read(pos64,4,rptr4);
|
sl@0
|
461 |
if(r!=KErrNone)
|
sl@0
|
462 |
{
|
sl@0
|
463 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - Read returned %d\n"),r);
|
sl@0
|
464 |
return r;
|
sl@0
|
465 |
}
|
sl@0
|
466 |
test(rptr4.Length()==4);
|
sl@0
|
467 |
|
sl@0
|
468 |
// Verify the content
|
sl@0
|
469 |
pB=(TUint32*)Buffer;
|
sl@0
|
470 |
if (*pB != 0x34b4a5a5)
|
sl@0
|
471 |
{
|
sl@0
|
472 |
test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - addr %08x data %08x expected 0x34b4a5a5\n"),pB,*pB);
|
sl@0
|
473 |
r=KErrCorrupt;
|
sl@0
|
474 |
}
|
sl@0
|
475 |
|
sl@0
|
476 |
return r;
|
sl@0
|
477 |
}
|
sl@0
|
478 |
|
sl@0
|
479 |
|
sl@0
|
480 |
|
sl@0
|
481 |
|
sl@0
|
482 |
/******************************************************************************
|
sl@0
|
483 |
* Main test program
|
sl@0
|
484 |
******************************************************************************/
|
sl@0
|
485 |
GLDEF_C TInt E32Main()
|
sl@0
|
486 |
{
|
sl@0
|
487 |
test.Title();
|
sl@0
|
488 |
|
sl@0
|
489 |
/******************************************************************************
|
sl@0
|
490 |
* Initialisation
|
sl@0
|
491 |
******************************************************************************/
|
sl@0
|
492 |
TDriveInfoV1Buf diBuf;
|
sl@0
|
493 |
UserHal::DriveInfo(diBuf);
|
sl@0
|
494 |
TDriveInfoV1 &di=diBuf();
|
sl@0
|
495 |
test.Start(_L("Test the LFFS media driver"));
|
sl@0
|
496 |
test.Printf(_L("DRIVES PRESENT :%d\r\n"),di.iTotalSupportedDrives);
|
sl@0
|
497 |
test.Printf(_L("C:(1ST) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[0]);
|
sl@0
|
498 |
test.Printf(_L("D:(2ND) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[1]);
|
sl@0
|
499 |
test.Printf(_L("E:(3RD) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[2]);
|
sl@0
|
500 |
test.Printf(_L("F:(4TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[3]);
|
sl@0
|
501 |
test.Printf(_L("G:(5TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[4]);
|
sl@0
|
502 |
test.Printf(_L("H:(6TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[5]);
|
sl@0
|
503 |
test.Printf(_L("I:(7TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[6]);
|
sl@0
|
504 |
test.Printf(_L("J:(8TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[7]);
|
sl@0
|
505 |
test.Printf(_L("K:(9TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[8]);
|
sl@0
|
506 |
|
sl@0
|
507 |
test.Printf(_L("\r\nWarning - all data on LFFS drive will be lost.\r\n"));
|
sl@0
|
508 |
test.Printf(_L("<<<Select drive to continue>>>\r\n"));
|
sl@0
|
509 |
FOREVER
|
sl@0
|
510 |
{
|
sl@0
|
511 |
TChar c=(TUint)test.Getch();
|
sl@0
|
512 |
c.UpperCase();
|
sl@0
|
513 |
DriveNumber=((TUint)c)-'C';
|
sl@0
|
514 |
if (DriveNumber>=0&&DriveNumber<='C'+ 8)
|
sl@0
|
515 |
break;
|
sl@0
|
516 |
}
|
sl@0
|
517 |
|
sl@0
|
518 |
test.Next(_L("Load media driver"));
|
sl@0
|
519 |
TInt r=User::LoadPhysicalDevice(KMediaDriverName);
|
sl@0
|
520 |
test(r==KErrNone || r==KErrAlreadyExists);
|
sl@0
|
521 |
|
sl@0
|
522 |
test.Next(_L("Connect to drive"));
|
sl@0
|
523 |
r=Drive.Connect(DriveNumber,ChangedFlag);
|
sl@0
|
524 |
test(r==KErrNone);
|
sl@0
|
525 |
test.Next(_L("Get capabilities"));
|
sl@0
|
526 |
|
sl@0
|
527 |
DriveCaps.iControlModeSize=0; // If test invoked for a chip other than Sibley then this element will not be updated
|
sl@0
|
528 |
DriveCaps.iObjectModeSize=0; // If test invoked for a chip other than Sibley then this element will not be updated
|
sl@0
|
529 |
TPckg<TLocalDriveCapsV7> capsPckg(DriveCaps);
|
sl@0
|
530 |
r=Drive.Caps(capsPckg);
|
sl@0
|
531 |
|
sl@0
|
532 |
test(r==KErrNone);
|
sl@0
|
533 |
test.Printf(_L("Size : %08x\n"),I64LOW(DriveCaps.iSize));
|
sl@0
|
534 |
test.Printf(_L("Type : %d\n"),DriveCaps.iType);
|
sl@0
|
535 |
test.Printf(_L("Connection Bus : %d\n"),DriveCaps.iConnectionBusType);
|
sl@0
|
536 |
test.Printf(_L("DriveAtt : %02x\n"),DriveCaps.iDriveAtt);
|
sl@0
|
537 |
test.Printf(_L("MediaAtt : %02x\n"),DriveCaps.iMediaAtt);
|
sl@0
|
538 |
test.Printf(_L("BaseAddress : %08x\n"),DriveCaps.iBaseAddress);
|
sl@0
|
539 |
test.Printf(_L("FileSysID : %d\n"),DriveCaps.iFileSystemId);
|
sl@0
|
540 |
test.Printf(_L("Hidden sectors : %d\n"),DriveCaps.iHiddenSectors);
|
sl@0
|
541 |
test.Printf(_L("Erase block size: %d\n"),DriveCaps.iEraseBlockSize);
|
sl@0
|
542 |
|
sl@0
|
543 |
test.Printf(_L("Partition size: %d\n"),DriveCaps.iPartitionSize);
|
sl@0
|
544 |
test.Printf(_L("Control Mode size: %d\n"),DriveCaps.iControlModeSize);
|
sl@0
|
545 |
test.Printf(_L("Object Mode size: %d\n"),DriveCaps.iObjectModeSize);
|
sl@0
|
546 |
test.Printf(_L("Press any key...\n\n"));
|
sl@0
|
547 |
test.Getch();
|
sl@0
|
548 |
|
sl@0
|
549 |
test(DriveCaps.iDriveAtt==(KDriveAttLocal|KDriveAttInternal));
|
sl@0
|
550 |
test((DriveCaps.iMediaAtt&KMediaAttFormattable)==(KMediaAttFormattable)); // Apply mask since other flags may be set
|
sl@0
|
551 |
|
sl@0
|
552 |
#if defined(_DEBUG) && defined(_WINS)
|
sl@0
|
553 |
/******************************************************************************
|
sl@0
|
554 |
* Simulate device timeout
|
sl@0
|
555 |
******************************************************************************/
|
sl@0
|
556 |
test.Next(_L("Timeout"));
|
sl@0
|
557 |
EbSz=DriveCaps.iEraseBlockSize;
|
sl@0
|
558 |
r=Drive.Format(0,EbSz);
|
sl@0
|
559 |
test(r==KErrNone);
|
sl@0
|
560 |
r=Drive.ControlIO(ECtrlIoTimeout, NULL, NULL);
|
sl@0
|
561 |
|
sl@0
|
562 |
if(r!=KErrNotSupported)
|
sl@0
|
563 |
{
|
sl@0
|
564 |
if(r==KErrNone)
|
sl@0
|
565 |
{
|
sl@0
|
566 |
// Test timeout behaviour for Write operation
|
sl@0
|
567 |
TPtrC8 ptr(Buffer,1);
|
sl@0
|
568 |
r=Drive.Write(0,ptr);
|
sl@0
|
569 |
test(r==KErrNotReady);
|
sl@0
|
570 |
// Test condition now cleared, ensure normal operation is OK
|
sl@0
|
571 |
r=Drive.Write(0,ptr);
|
sl@0
|
572 |
test(r==KErrNone);
|
sl@0
|
573 |
// Test timeout behaviour for Format operation
|
sl@0
|
574 |
r=Drive.ControlIO(ECtrlIoTimeout, NULL, NULL);
|
sl@0
|
575 |
test(r==KErrNone);
|
sl@0
|
576 |
r=Drive.Format(0,EbSz);
|
sl@0
|
577 |
test(r==KErrNotReady);
|
sl@0
|
578 |
// Cleanup
|
sl@0
|
579 |
r=Drive.Format(0,EbSz);
|
sl@0
|
580 |
test(r==KErrNone);
|
sl@0
|
581 |
}
|
sl@0
|
582 |
else
|
sl@0
|
583 |
{
|
sl@0
|
584 |
test.Printf(_L("Timeout ControlIO failed initialisation\n"));
|
sl@0
|
585 |
test(0); // Cannot proceed with this test
|
sl@0
|
586 |
}
|
sl@0
|
587 |
}
|
sl@0
|
588 |
else
|
sl@0
|
589 |
{
|
sl@0
|
590 |
test.Printf(_L("Timeout ControlIO not supported\n"));
|
sl@0
|
591 |
}
|
sl@0
|
592 |
|
sl@0
|
593 |
test.Printf(_L("Press any key...\n"));
|
sl@0
|
594 |
test.Getch();
|
sl@0
|
595 |
#endif
|
sl@0
|
596 |
|
sl@0
|
597 |
/******************************************************************************
|
sl@0
|
598 |
* Formatting
|
sl@0
|
599 |
******************************************************************************/
|
sl@0
|
600 |
test.Next(_L("Format"));
|
sl@0
|
601 |
TUint32 pos;
|
sl@0
|
602 |
EbSz=DriveCaps.iEraseBlockSize;
|
sl@0
|
603 |
Size=I64LOW(DriveCaps.iSize);
|
sl@0
|
604 |
// Reduce size so test doesn't take forever
|
sl@0
|
605 |
if (Size>8*EbSz)
|
sl@0
|
606 |
Size=8*EbSz;
|
sl@0
|
607 |
|
sl@0
|
608 |
for (pos=0; pos<Size; pos+=EbSz)
|
sl@0
|
609 |
{
|
sl@0
|
610 |
TInt64 pos64 = MAKE_TINT64(0, pos);
|
sl@0
|
611 |
r=Drive.Format(pos64,EbSz);
|
sl@0
|
612 |
test(r==KErrNone);
|
sl@0
|
613 |
test.Printf(KDot);
|
sl@0
|
614 |
}
|
sl@0
|
615 |
test.Next(_L("\nVerify"));
|
sl@0
|
616 |
for (pos=0; pos<Size; pos+=KBufferSize)
|
sl@0
|
617 |
{
|
sl@0
|
618 |
TInt64 pos64 = MAKE_TINT64(0, pos);
|
sl@0
|
619 |
TPtr8 ptr(Buffer,0,KBufferSize);
|
sl@0
|
620 |
Mem::FillZ(Buffer,KBigBufferSize);
|
sl@0
|
621 |
r=Drive.Read(pos64,KBufferSize,ptr);
|
sl@0
|
622 |
test(r==KErrNone);
|
sl@0
|
623 |
test(ptr.Length()==KBufferSize);
|
sl@0
|
624 |
const TUint32* pB=(const TUint32*)Buffer;
|
sl@0
|
625 |
const TUint32* pE=(const TUint32*)(Buffer+KBufferSize);
|
sl@0
|
626 |
while (pB<pE && *pB==0xffffffff) ++pB;
|
sl@0
|
627 |
if (pB<pE)
|
sl@0
|
628 |
{
|
sl@0
|
629 |
test.Printf(_L("ERROR: addr %08x data %08x\n"),pB,*pB);
|
sl@0
|
630 |
test(0);
|
sl@0
|
631 |
}
|
sl@0
|
632 |
test.Printf(KDot);
|
sl@0
|
633 |
}
|
sl@0
|
634 |
test.Printf(_L("\nPress any key...\n\n"));
|
sl@0
|
635 |
test.Getch();
|
sl@0
|
636 |
|
sl@0
|
637 |
/******************************************************************************
|
sl@0
|
638 |
* Large block writes
|
sl@0
|
639 |
******************************************************************************/
|
sl@0
|
640 |
test.Next(_L("Write"));
|
sl@0
|
641 |
TUint seed[2];
|
sl@0
|
642 |
seed[0]=0xb17217f8;
|
sl@0
|
643 |
seed[1]=0;
|
sl@0
|
644 |
for (pos=0; pos<Size; pos+=KBufferSize)
|
sl@0
|
645 |
{
|
sl@0
|
646 |
TInt64 pos64 = MAKE_TINT64(0, pos);
|
sl@0
|
647 |
TPtrC8 ptr(Buffer,KBufferSize);
|
sl@0
|
648 |
TUint32* pB=(TUint32*)Buffer;
|
sl@0
|
649 |
TUint32* pE=(TUint32*)(Buffer+KBufferSize);
|
sl@0
|
650 |
while (pB<pE)
|
sl@0
|
651 |
*pB++=Random(seed);
|
sl@0
|
652 |
r=Drive.Write(pos64,ptr);
|
sl@0
|
653 |
test(r==KErrNone);
|
sl@0
|
654 |
test.Printf(KDot);
|
sl@0
|
655 |
}
|
sl@0
|
656 |
test.Printf(_L("\n"));
|
sl@0
|
657 |
test.Next(_L("Verify"));
|
sl@0
|
658 |
seed[0]=0xb17217f8;
|
sl@0
|
659 |
seed[1]=0;
|
sl@0
|
660 |
for (pos=0; pos<Size; pos+=KBufferSize)
|
sl@0
|
661 |
{
|
sl@0
|
662 |
TInt64 pos64 = MAKE_TINT64(0, pos);
|
sl@0
|
663 |
TPtr8 ptr(Buffer,0,KBufferSize);
|
sl@0
|
664 |
Mem::FillZ(Buffer,KBigBufferSize);
|
sl@0
|
665 |
r=Drive.Read(pos64,KBufferSize,ptr);
|
sl@0
|
666 |
test(r==KErrNone);
|
sl@0
|
667 |
test(ptr.Length()==KBufferSize);
|
sl@0
|
668 |
const TUint32* pB=(const TUint32*)Buffer;
|
sl@0
|
669 |
const TUint32* pE=(const TUint32*)(Buffer+KBufferSize);
|
sl@0
|
670 |
TUint32 ex=0;
|
sl@0
|
671 |
while (pB<pE && (ex=Random(seed),*pB==ex)) ++pB;
|
sl@0
|
672 |
if (pB<pE)
|
sl@0
|
673 |
{
|
sl@0
|
674 |
test.Printf(_L("ERROR: addr %08x data %08x expected %08x\n"),pB,*pB,ex);
|
sl@0
|
675 |
test(0);
|
sl@0
|
676 |
}
|
sl@0
|
677 |
test.Printf(KDot);
|
sl@0
|
678 |
}
|
sl@0
|
679 |
|
sl@0
|
680 |
test.Printf(_L("\nPress any key...\n\n"));
|
sl@0
|
681 |
test.Getch();
|
sl@0
|
682 |
|
sl@0
|
683 |
/******************************************************************************
|
sl@0
|
684 |
* Single byte writes
|
sl@0
|
685 |
******************************************************************************/
|
sl@0
|
686 |
test.Next(_L("Format first block"));
|
sl@0
|
687 |
r=Drive.Format(0,EbSz);
|
sl@0
|
688 |
test(r==KErrNone);
|
sl@0
|
689 |
test.Next(_L("Single byte writes"));
|
sl@0
|
690 |
seed[0]=0x317b106f;
|
sl@0
|
691 |
seed[1]=0;
|
sl@0
|
692 |
TUint32* pB=(TUint32*)Buffer;
|
sl@0
|
693 |
TUint32* pE=(TUint32*)(Buffer+KBufferSize);
|
sl@0
|
694 |
while (pB<pE)
|
sl@0
|
695 |
*pB++= Random(seed);
|
sl@0
|
696 |
|
sl@0
|
697 |
// For M18 devices, this test requires control mode operation.
|
sl@0
|
698 |
// In this mode, half the device is available for writing, the other half is reserved;
|
sl@0
|
699 |
// the available half appears as the first DriveCaps.iControlModeSize bytes, the reserved
|
sl@0
|
700 |
// half as the following DriveCaps.iControlModeSize, and this alternating continues.
|
sl@0
|
701 |
// To perform this discrete-write test, therefore, the data held in Buffer that corresponds
|
sl@0
|
702 |
// to the reserved area is overwritten with 0xFF; 'writing' this value to the reserved area
|
sl@0
|
703 |
// has no detrimental effect.
|
sl@0
|
704 |
TInt i;
|
sl@0
|
705 |
TUint32 b;
|
sl@0
|
706 |
if (DriveCaps.iControlModeSize > 0)
|
sl@0
|
707 |
{
|
sl@0
|
708 |
pB=(TUint32*)Buffer;
|
sl@0
|
709 |
for(i=0; i< KBufferSize; i+=(DriveCaps.iControlModeSize*2))
|
sl@0
|
710 |
{
|
sl@0
|
711 |
pB = (TUint32 *)((TUint32)pB + DriveCaps.iControlModeSize);
|
sl@0
|
712 |
for (b=0; b < DriveCaps.iControlModeSize; b+=4)
|
sl@0
|
713 |
{
|
sl@0
|
714 |
*pB = 0xFFFFFFFF;
|
sl@0
|
715 |
pB++;
|
sl@0
|
716 |
}
|
sl@0
|
717 |
}
|
sl@0
|
718 |
}
|
sl@0
|
719 |
|
sl@0
|
720 |
#if 0
|
sl@0
|
721 |
// Debug - print content of buffer
|
sl@0
|
722 |
test.Printf(_L("Content of buffer after inserting 0xFFFFFFFFs follows\n"));
|
sl@0
|
723 |
i=0;
|
sl@0
|
724 |
TUint32* verifyPtr=(TUint32*)Buffer;
|
sl@0
|
725 |
while(i<KBufferSize)
|
sl@0
|
726 |
{
|
sl@0
|
727 |
test.Printf(_L("%8x %8X %8X\n"),i+=8,*verifyPtr++,*verifyPtr++);
|
sl@0
|
728 |
}
|
sl@0
|
729 |
#endif
|
sl@0
|
730 |
|
sl@0
|
731 |
for (i=0; i<KBufferSize; ++i)
|
sl@0
|
732 |
{
|
sl@0
|
733 |
TInt64 pos64(i);
|
sl@0
|
734 |
TPtrC8 ptr(Buffer+i,1);
|
sl@0
|
735 |
r=Drive.Write(pos64,ptr);
|
sl@0
|
736 |
test(r==KErrNone);
|
sl@0
|
737 |
if (!(i%16))
|
sl@0
|
738 |
test.Printf(KDot);
|
sl@0
|
739 |
}
|
sl@0
|
740 |
test.Printf(_L("\n"));
|
sl@0
|
741 |
test.Next(_L("Verify"));
|
sl@0
|
742 |
Mem::FillZ(Buffer,KBigBufferSize);
|
sl@0
|
743 |
TPtr8 buf(Buffer,0,KBufferSize);
|
sl@0
|
744 |
r=Drive.Read(0,KBufferSize,buf);
|
sl@0
|
745 |
test(r==KErrNone);
|
sl@0
|
746 |
seed[0]=0x317b106f;
|
sl@0
|
747 |
seed[1]=0;
|
sl@0
|
748 |
pB=(TUint32*)Buffer;
|
sl@0
|
749 |
TUint32 ex=0;
|
sl@0
|
750 |
if (DriveCaps.iControlModeSize > 0)
|
sl@0
|
751 |
{
|
sl@0
|
752 |
pB=(TUint32*)Buffer;
|
sl@0
|
753 |
for(i=0; i< KBufferSize; i+=(DriveCaps.iControlModeSize*2))
|
sl@0
|
754 |
{
|
sl@0
|
755 |
for (b=0; b< DriveCaps.iControlModeSize; b+=4)
|
sl@0
|
756 |
{
|
sl@0
|
757 |
ex=Random(seed);
|
sl@0
|
758 |
if(*pB++ != ex)
|
sl@0
|
759 |
{
|
sl@0
|
760 |
test.Printf(_L("ERROR: addr %08x data %08x expected %08x\n"),pB,*pB,ex);
|
sl@0
|
761 |
break;
|
sl@0
|
762 |
}
|
sl@0
|
763 |
}
|
sl@0
|
764 |
for (b=0; b< DriveCaps.iControlModeSize; b+=4)
|
sl@0
|
765 |
{
|
sl@0
|
766 |
ex=Random(seed);
|
sl@0
|
767 |
if(*pB++ != 0xFFFFFFFF)
|
sl@0
|
768 |
{
|
sl@0
|
769 |
test.Printf(_L("ERROR: addr %08x data %08x expected 0xFF\n"),pB,*pB);
|
sl@0
|
770 |
break;
|
sl@0
|
771 |
}
|
sl@0
|
772 |
}
|
sl@0
|
773 |
if (!((i+1)%64))
|
sl@0
|
774 |
test.Printf(KDot);
|
sl@0
|
775 |
|
sl@0
|
776 |
}
|
sl@0
|
777 |
}
|
sl@0
|
778 |
else
|
sl@0
|
779 |
{
|
sl@0
|
780 |
while (pB<pE && (ex=Random(seed),*pB==ex)) ++pB;
|
sl@0
|
781 |
}
|
sl@0
|
782 |
if (pB<pE)
|
sl@0
|
783 |
{
|
sl@0
|
784 |
test.Printf(_L("ERROR: addr %08x data %08x expected %08x\n"),pB,*pB,ex);
|
sl@0
|
785 |
test(0);
|
sl@0
|
786 |
}
|
sl@0
|
787 |
|
sl@0
|
788 |
test.Printf(_L("Single byte writes OK\n"));
|
sl@0
|
789 |
|
sl@0
|
790 |
test.Printf(_L("Press any key...\n\n"));
|
sl@0
|
791 |
test.Getch();
|
sl@0
|
792 |
|
sl@0
|
793 |
/******************************************************************************
|
sl@0
|
794 |
* Random length writes
|
sl@0
|
795 |
******************************************************************************/
|
sl@0
|
796 |
test.Next(_L("Random length writes"));
|
sl@0
|
797 |
// Prepare the device (required if control mode is used for M18 devices)
|
sl@0
|
798 |
// assume that a maximum of 2 blocks is required
|
sl@0
|
799 |
r=Drive.Format(0,EbSz);
|
sl@0
|
800 |
r=Drive.Format(DriveCaps.iEraseBlockSize,EbSz);
|
sl@0
|
801 |
|
sl@0
|
802 |
seed[0]=0xdeadbeef;
|
sl@0
|
803 |
seed[1]=0;
|
sl@0
|
804 |
pB=(TUint32*)Buffer;
|
sl@0
|
805 |
pE=(TUint32*)(Buffer+KBigBufferSize);
|
sl@0
|
806 |
while (pB<pE)
|
sl@0
|
807 |
*pB++=Random(seed);
|
sl@0
|
808 |
TInt remain=KBigBufferSize;
|
sl@0
|
809 |
TInt objectModeOffset=0;
|
sl@0
|
810 |
TUint32 writeCount=0;
|
sl@0
|
811 |
seed[0]=0xdeadbeef;
|
sl@0
|
812 |
seed[1]=0;
|
sl@0
|
813 |
for(writeCount=0; remain && (writeCount<512); writeCount++)
|
sl@0
|
814 |
{
|
sl@0
|
815 |
TInt l=1+(Random(seed)&255); // random length between 1 and 256
|
sl@0
|
816 |
if (l>remain)
|
sl@0
|
817 |
l=remain;
|
sl@0
|
818 |
TInt pos=0;
|
sl@0
|
819 |
if(DriveCaps.iObjectModeSize == 0)
|
sl@0
|
820 |
{
|
sl@0
|
821 |
pos=KBigBufferSize-remain;
|
sl@0
|
822 |
}
|
sl@0
|
823 |
|
sl@0
|
824 |
TPtrC8 ptr(Buffer+(KBigBufferSize-remain),l);
|
sl@0
|
825 |
TInt64 pos64(pos+objectModeOffset); // Start writes in a new programming region if object mode supported
|
sl@0
|
826 |
r=Drive.Write(pos64,ptr);
|
sl@0
|
827 |
test(r==KErrNone);
|
sl@0
|
828 |
objectModeOffset+=DriveCaps.iObjectModeSize;
|
sl@0
|
829 |
remain-=l;
|
sl@0
|
830 |
test.Printf(KDot);
|
sl@0
|
831 |
}
|
sl@0
|
832 |
test.Printf(_L("\n"));
|
sl@0
|
833 |
test.Next(_L("Verify"));
|
sl@0
|
834 |
Mem::FillZ(Buffer,KBigBufferSize);
|
sl@0
|
835 |
new (&buf) TPtr8(Buffer,0,KBigBufferSize);
|
sl@0
|
836 |
if(DriveCaps.iObjectModeSize==0)
|
sl@0
|
837 |
{
|
sl@0
|
838 |
r=Drive.Read(0,KBigBufferSize,buf);
|
sl@0
|
839 |
test(r==KErrNone);
|
sl@0
|
840 |
|
sl@0
|
841 |
}
|
sl@0
|
842 |
else
|
sl@0
|
843 |
{
|
sl@0
|
844 |
remain=KBigBufferSize;
|
sl@0
|
845 |
objectModeOffset=0;
|
sl@0
|
846 |
|
sl@0
|
847 |
while(remain && writeCount)
|
sl@0
|
848 |
{
|
sl@0
|
849 |
TInt totalLength=0;
|
sl@0
|
850 |
TInt l=1+(Random(seed)&255); // random length between 1 and 256
|
sl@0
|
851 |
if (l>remain)
|
sl@0
|
852 |
l=remain;
|
sl@0
|
853 |
TPtr8 ptr(Buffer+(totalLength),l);
|
sl@0
|
854 |
r=Drive.Read(objectModeOffset,l,ptr);
|
sl@0
|
855 |
test(r==KErrNone);
|
sl@0
|
856 |
totalLength +=l;
|
sl@0
|
857 |
remain-=l;
|
sl@0
|
858 |
writeCount--;
|
sl@0
|
859 |
test.Printf(KDot);
|
sl@0
|
860 |
}
|
sl@0
|
861 |
}
|
sl@0
|
862 |
|
sl@0
|
863 |
seed[0]=0xdeadbeef;
|
sl@0
|
864 |
seed[1]=0;
|
sl@0
|
865 |
pB=(TUint32*)Buffer;
|
sl@0
|
866 |
ex=0;
|
sl@0
|
867 |
if(DriveCaps.iObjectModeSize==0)
|
sl@0
|
868 |
{
|
sl@0
|
869 |
while (pB<pE && (ex=Random(seed),*pB==ex)) ++pB;
|
sl@0
|
870 |
if (pB<pE)
|
sl@0
|
871 |
{
|
sl@0
|
872 |
test.Printf(_L("ERROR: addr %08x data %08x expected %08x\n"),pB,*pB,ex);
|
sl@0
|
873 |
// test.Getch();
|
sl@0
|
874 |
test(0);
|
sl@0
|
875 |
}
|
sl@0
|
876 |
}
|
sl@0
|
877 |
|
sl@0
|
878 |
r=Drive.Format(0,EbSz);
|
sl@0
|
879 |
r=Drive.Format(DriveCaps.iEraseBlockSize,EbSz);
|
sl@0
|
880 |
test.Printf(_L("\nPress any key...\n\n"));
|
sl@0
|
881 |
test.Getch();
|
sl@0
|
882 |
|
sl@0
|
883 |
/******************************************************************************
|
sl@0
|
884 |
* Concurrent read/write/erase
|
sl@0
|
885 |
******************************************************************************/
|
sl@0
|
886 |
test.Printf(_L("Foreground R/W\n"));
|
sl@0
|
887 |
r=StartAsyncErase(1,Size/EbSz-1);
|
sl@0
|
888 |
test(r==KErrNone);
|
sl@0
|
889 |
|
sl@0
|
890 |
seed[0]=0xb17217f8;
|
sl@0
|
891 |
seed[1]=0;
|
sl@0
|
892 |
for (pos=KBufferSize+KBigBufferSize; pos<EbSz; pos+=KBufferSize)
|
sl@0
|
893 |
{
|
sl@0
|
894 |
TInt64 pos64 = MAKE_TINT64(0, pos);
|
sl@0
|
895 |
TPtrC8 wptr(Buffer,KBufferSize);
|
sl@0
|
896 |
TUint32* pB=(TUint32*)Buffer;
|
sl@0
|
897 |
TUint32* pE=(TUint32*)(Buffer+KBufferSize);
|
sl@0
|
898 |
while (pB<pE)
|
sl@0
|
899 |
*pB++=Random(seed);
|
sl@0
|
900 |
r=Drive.Write(pos64,wptr);
|
sl@0
|
901 |
test(r==KErrNone);
|
sl@0
|
902 |
test.Printf(KDot);
|
sl@0
|
903 |
Mem::FillZ(Buffer+KBufferSize,KBufferSize);
|
sl@0
|
904 |
TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize);
|
sl@0
|
905 |
r=Drive.Read(pos64,KBufferSize,rptr);
|
sl@0
|
906 |
test(r==KErrNone);
|
sl@0
|
907 |
test(rptr.Length()==KBufferSize);
|
sl@0
|
908 |
//test(Mem::Compare(Buffer,KBufferSize,Buffer+KBufferSize,KBufferSize)==0);
|
sl@0
|
909 |
r = Mem::Compare(Buffer,KBufferSize,Buffer+KBufferSize,KBufferSize);
|
sl@0
|
910 |
#if 0
|
sl@0
|
911 |
if (r!=KErrNone)
|
sl@0
|
912 |
{
|
sl@0
|
913 |
pB=(TUint32*)Buffer;
|
sl@0
|
914 |
pE=(TUint32*)(Buffer+KBufferSize);
|
sl@0
|
915 |
for(TInt i=0; i < (KBufferSize>>2); i++)
|
sl@0
|
916 |
{
|
sl@0
|
917 |
test.Printf(_L("%d Buffer Content %08x %08x Flash Content\n"),i, pB[i], pE[i]);
|
sl@0
|
918 |
}
|
sl@0
|
919 |
}
|
sl@0
|
920 |
#endif
|
sl@0
|
921 |
test (r==KErrNone);
|
sl@0
|
922 |
test.Printf(KSemiColon);
|
sl@0
|
923 |
}
|
sl@0
|
924 |
|
sl@0
|
925 |
r=WaitForAsyncErase();
|
sl@0
|
926 |
test(r==KErrNone);
|
sl@0
|
927 |
|
sl@0
|
928 |
r=Drive.Format(0,EbSz);
|
sl@0
|
929 |
r=Drive.Format(DriveCaps.iEraseBlockSize,EbSz);
|
sl@0
|
930 |
test.Printf(_L("Press any key...\n\n"));
|
sl@0
|
931 |
test.Getch();
|
sl@0
|
932 |
|
sl@0
|
933 |
// Perform the following tests for debug builds, only
|
sl@0
|
934 |
|
sl@0
|
935 |
#ifdef _DEBUG
|
sl@0
|
936 |
|
sl@0
|
937 |
/******************************************************************************
|
sl@0
|
938 |
* Concurrent operations to exercise TYAX Read-While-Write capability
|
sl@0
|
939 |
* First, show read while write denied when attempting to read from a partition
|
sl@0
|
940 |
* that is being written to
|
sl@0
|
941 |
* Second, show read while write proceeding when reading from a partition other
|
sl@0
|
942 |
* than that which is being written to
|
sl@0
|
943 |
******************************************************************************/
|
sl@0
|
944 |
|
sl@0
|
945 |
// Do not perform these tests unless read-while-write is supported
|
sl@0
|
946 |
if(DriveCaps.iMediaAtt&KMediaAttReadWhileWrite)
|
sl@0
|
947 |
{
|
sl@0
|
948 |
test.Next(_L("Denied read while write"));
|
sl@0
|
949 |
r=Drive.ControlIO(ECtrlIoRww, NULL, NULL);
|
sl@0
|
950 |
if(r!=KErrNone)
|
sl@0
|
951 |
{
|
sl@0
|
952 |
test.Printf(_L("ControlIO not ready, returned %d\n"), r);
|
sl@0
|
953 |
test(0); // Cannot proceed with this test
|
sl@0
|
954 |
}
|
sl@0
|
955 |
test.Printf(_L("Press any key...\n"));
|
sl@0
|
956 |
test.Getch();
|
sl@0
|
957 |
|
sl@0
|
958 |
test.Printf(_L("Starting async write for the first RWE/RWW test"));
|
sl@0
|
959 |
r=StartAsyncWrite(1,3); // Write to the first three blocks, only, to limit duration
|
sl@0
|
960 |
test(r==KErrNone);
|
sl@0
|
961 |
|
sl@0
|
962 |
// Allow the write thread to be created and ready to run
|
sl@0
|
963 |
// This will ensure that the driver will have received a write request before the second of the read
|
sl@0
|
964 |
// requests, below. Following the issue of the ControlIO command, above, the driver will not instigate
|
sl@0
|
965 |
// the write request until the next (second) read request is received. This is done so that the high priority
|
sl@0
|
966 |
// driver thread recognises the existence of a read request (from a lower priority test / user thread)
|
sl@0
|
967 |
// before it executes a sequence of writes to the FLASH device. This is necessary because, although
|
sl@0
|
968 |
// each write takes a finite amount of time, the poll timer expires so quickly that the driver thread
|
sl@0
|
969 |
// would not be blocked for a sufficiently long period to allow the read request to be processed. Adopting
|
sl@0
|
970 |
// the contrived, and artificial, approach of using ControlIO to 'stage' the write allows the read-while-write
|
sl@0
|
971 |
// capability of the device to be execrised.
|
sl@0
|
972 |
User::After(1000);
|
sl@0
|
973 |
|
sl@0
|
974 |
test.Printf(_L("Starting concurrent loop for background write\n"));
|
sl@0
|
975 |
{
|
sl@0
|
976 |
// First read - this will be performed before the write thread is run, so does
|
sl@0
|
977 |
// not exercise read while write.
|
sl@0
|
978 |
TInt64 pos64 = MAKE_TINT64(0,0);
|
sl@0
|
979 |
TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize);
|
sl@0
|
980 |
test.Printf(_L("Issuing Drive.Read 1\n"));
|
sl@0
|
981 |
r=Drive.Read(pos64,KBufferSize,rptr);
|
sl@0
|
982 |
test(r==KErrNone);
|
sl@0
|
983 |
test.Printf(KSemiColon);
|
sl@0
|
984 |
}
|
sl@0
|
985 |
{
|
sl@0
|
986 |
// Second read - to same partition (and block) as the active write
|
sl@0
|
987 |
// This read should be deferred by the driver
|
sl@0
|
988 |
TInt64 pos64 = MAKE_TINT64(0, 2*EbSz);
|
sl@0
|
989 |
TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize);
|
sl@0
|
990 |
test.Printf(_L("Issuing Drive.Read 2\n"));
|
sl@0
|
991 |
r=Drive.Read(pos64,KBufferSize,rptr); // Should collide with second write
|
sl@0
|
992 |
test(r==KErrNone);
|
sl@0
|
993 |
test.Printf(KSemiColon);
|
sl@0
|
994 |
}
|
sl@0
|
995 |
{
|
sl@0
|
996 |
// Third read - due to the tight poll timer period, this will not be scheduled
|
sl@0
|
997 |
// until the write request has completed - so does not exercise read while write.
|
sl@0
|
998 |
TInt64 pos64 = MAKE_TINT64(0, DriveCaps.iPartitionSize);
|
sl@0
|
999 |
TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize);
|
sl@0
|
1000 |
test.Printf(_L("Issuing Drive.Read 3\n"));
|
sl@0
|
1001 |
r=Drive.Read(pos64,KBufferSize,rptr);
|
sl@0
|
1002 |
test(r==KErrNone);
|
sl@0
|
1003 |
test.Printf(KSemiColon);
|
sl@0
|
1004 |
}
|
sl@0
|
1005 |
|
sl@0
|
1006 |
r=WaitForAsyncWrite();
|
sl@0
|
1007 |
test(r==KErrNone);
|
sl@0
|
1008 |
|
sl@0
|
1009 |
///////////////////////////////////////////////////////////////////////////////
|
sl@0
|
1010 |
r=Drive.Format(0,EbSz);
|
sl@0
|
1011 |
r=Drive.Format(DriveCaps.iEraseBlockSize,EbSz);
|
sl@0
|
1012 |
r=Drive.Format((DriveCaps.iEraseBlockSize*2),EbSz);
|
sl@0
|
1013 |
r=Drive.Format((DriveCaps.iEraseBlockSize*3),EbSz);
|
sl@0
|
1014 |
test.Printf(_L("Press any key...\n"));
|
sl@0
|
1015 |
test.Getch();
|
sl@0
|
1016 |
test.Next(_L("Supported read while write"));
|
sl@0
|
1017 |
r=Drive.ControlIO(ECtrlIoRww, NULL, NULL);
|
sl@0
|
1018 |
if(r!=KErrNone)
|
sl@0
|
1019 |
{
|
sl@0
|
1020 |
test.Printf(_L("ControlIO not ready\n"));
|
sl@0
|
1021 |
return r;
|
sl@0
|
1022 |
}
|
sl@0
|
1023 |
test.Printf(_L("Press any key...\n"));
|
sl@0
|
1024 |
test.Getch();
|
sl@0
|
1025 |
|
sl@0
|
1026 |
test.Printf(_L("Starting async write for the second RWE/RWW test"));
|
sl@0
|
1027 |
r=StartAsyncWrite(1,3); // Write to the first three blocks, only, to limit duration
|
sl@0
|
1028 |
test(r==KErrNone);
|
sl@0
|
1029 |
|
sl@0
|
1030 |
// Allow the write thread to be created and ready to run
|
sl@0
|
1031 |
User::After(1000);
|
sl@0
|
1032 |
|
sl@0
|
1033 |
test.Printf(_L("Starting concurrent loop for background write\n"));
|
sl@0
|
1034 |
{
|
sl@0
|
1035 |
// First read - this will be performed before the write thread is run, so does
|
sl@0
|
1036 |
// not exercise read while write.
|
sl@0
|
1037 |
TInt64 pos64 = MAKE_TINT64(0, DriveCaps.iPartitionSize);
|
sl@0
|
1038 |
TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize);
|
sl@0
|
1039 |
test.Printf(_L("Issuing Drive.Read 1\n"));
|
sl@0
|
1040 |
r=Drive.Read(pos64,KBufferSize,rptr);
|
sl@0
|
1041 |
test(r==KErrNone);
|
sl@0
|
1042 |
test.Printf(KSemiColon);
|
sl@0
|
1043 |
}
|
sl@0
|
1044 |
{
|
sl@0
|
1045 |
// Second read - to different partition than that targeted by the active write
|
sl@0
|
1046 |
// This read should check the overlap and proceed without being deferred
|
sl@0
|
1047 |
TInt64 pos64 = MAKE_TINT64(0, DriveCaps.iPartitionSize);
|
sl@0
|
1048 |
TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize);
|
sl@0
|
1049 |
test.Printf(_L("Issuing Drive.Read 2\n"));
|
sl@0
|
1050 |
r=Drive.Read(pos64,KBufferSize,rptr); // Should collide with second write
|
sl@0
|
1051 |
test(r==KErrNone);
|
sl@0
|
1052 |
test.Printf(KSemiColon);
|
sl@0
|
1053 |
}
|
sl@0
|
1054 |
{
|
sl@0
|
1055 |
// Third read - due to the tight poll timer period, this will not be scheduled
|
sl@0
|
1056 |
// until the write request has completed - so does not exercise read while write.
|
sl@0
|
1057 |
TInt64 pos64 = MAKE_TINT64(0, DriveCaps.iPartitionSize);
|
sl@0
|
1058 |
TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize);
|
sl@0
|
1059 |
test.Printf(_L("Issuing Drive.Read 3\n"));
|
sl@0
|
1060 |
r=Drive.Read(pos64,KBufferSize,rptr);
|
sl@0
|
1061 |
test(r==KErrNone);
|
sl@0
|
1062 |
test.Printf(KSemiColon);
|
sl@0
|
1063 |
}
|
sl@0
|
1064 |
|
sl@0
|
1065 |
test.Printf(_L("\nForeground Read OK\n"));
|
sl@0
|
1066 |
r=WaitForAsyncWrite();
|
sl@0
|
1067 |
test(r==KErrNone);
|
sl@0
|
1068 |
}
|
sl@0
|
1069 |
#endif
|
sl@0
|
1070 |
|
sl@0
|
1071 |
// Clean up
|
sl@0
|
1072 |
r=Drive.Format(0,EbSz);
|
sl@0
|
1073 |
r=Drive.Format(DriveCaps.iEraseBlockSize,EbSz);
|
sl@0
|
1074 |
r=Drive.Format((DriveCaps.iEraseBlockSize*2),EbSz);
|
sl@0
|
1075 |
r=Drive.Format((DriveCaps.iEraseBlockSize*3),EbSz);
|
sl@0
|
1076 |
|
sl@0
|
1077 |
/*****************************************************************************************************
|
sl@0
|
1078 |
Tests for M18 NOR Flash devices
|
sl@0
|
1079 |
|
sl@0
|
1080 |
These tests assume that object mode and control mode is supported
|
sl@0
|
1081 |
*****************************************************************************************************/
|
sl@0
|
1082 |
if((DriveCaps.iControlModeSize !=0) && (DriveCaps.iObjectModeSize != 0))
|
sl@0
|
1083 |
{
|
sl@0
|
1084 |
// Control mode writes
|
sl@0
|
1085 |
// Prove that control mode writes are supported
|
sl@0
|
1086 |
// This requires that data is formatted such that areas coinciding with the "B" Half of a
|
sl@0
|
1087 |
// programming region are set to all 0xFFs
|
sl@0
|
1088 |
// Write to programming region zero
|
sl@0
|
1089 |
test.Next(_L("\nControl mode writes"));
|
sl@0
|
1090 |
|
sl@0
|
1091 |
r=DoControlModeWriteAndVerify(0xa5a5a5a5, 0);
|
sl@0
|
1092 |
test(r==KErrNone);
|
sl@0
|
1093 |
// Now verify that data written in control mode can be further modified
|
sl@0
|
1094 |
// Do this by ANDing the read-back pattern with a mask that clears particular bits
|
sl@0
|
1095 |
// then write the resulting pattern back to the region
|
sl@0
|
1096 |
r=DoControlModeWriteAndVerify(0x84848484, 0);
|
sl@0
|
1097 |
test(r==KErrNone);
|
sl@0
|
1098 |
// Now verify that data written in control mode can be further modified to all 0x00s
|
sl@0
|
1099 |
// Do this by ANDing the read-back pattern with a mask that clears the remaining bits
|
sl@0
|
1100 |
// then write the resulting pattern back to the region
|
sl@0
|
1101 |
r=DoControlModeWriteAndVerify(0x00000000, 0);
|
sl@0
|
1102 |
test(r==KErrNone);
|
sl@0
|
1103 |
// Erase the block before attempting to re-use the programming region for object mode writing
|
sl@0
|
1104 |
test.Printf(_L("\nErase block 0 before object mode write"));
|
sl@0
|
1105 |
r=Drive.Format(0,EbSz);
|
sl@0
|
1106 |
test(r==KErrNone);
|
sl@0
|
1107 |
|
sl@0
|
1108 |
test.Next(_L("\n(Subsequent) Object mode writes"));
|
sl@0
|
1109 |
|
sl@0
|
1110 |
// Control mode writes
|
sl@0
|
1111 |
// Prove that object mode writes are allowd to an erased block that was previously
|
sl@0
|
1112 |
// used in control mode
|
sl@0
|
1113 |
// Use offset zero and length equal to one-quarter of the allowed object mode size (i.e. one-
|
sl@0
|
1114 |
// quarter of the lengh of the programming region) (The write test, above, wrote an entire region
|
sl@0
|
1115 |
// in object mode)
|
sl@0
|
1116 |
test.Printf(_L("\nObject mode write, object mode size=%d"),DriveCaps.iObjectModeSize);
|
sl@0
|
1117 |
r=DoObjectModeWriteAndVerify(0, (DriveCaps.iObjectModeSize>>2));
|
sl@0
|
1118 |
test(r==KErrNone);
|
sl@0
|
1119 |
// Prove that an attempt to append data to an object mode region fails
|
sl@0
|
1120 |
test.Printf(_L("\nAttempt append to object mode region"));
|
sl@0
|
1121 |
r=DoObjectModeWriteAndVerify((DriveCaps.iObjectModeSize>>2),(DriveCaps.iObjectModeSize>>2));
|
sl@0
|
1122 |
test(r==KErrGeneral);
|
sl@0
|
1123 |
// Erase the block after a failed write and before attempting to re-use for programming
|
sl@0
|
1124 |
test.Printf(_L("\nErase block 0 after failed object mode write"));
|
sl@0
|
1125 |
r=Drive.Format(0,EbSz);
|
sl@0
|
1126 |
test(r==KErrNone);
|
sl@0
|
1127 |
|
sl@0
|
1128 |
test.Next(_L("\n(Subsequent) Object mode writes following an error"));
|
sl@0
|
1129 |
|
sl@0
|
1130 |
// write to a new object mode region after a failed write and before attempting to erase the block
|
sl@0
|
1131 |
// Prove that erase block can be re-written to
|
sl@0
|
1132 |
test.Printf(_L("\nObject mode write following failed write and erase"));
|
sl@0
|
1133 |
r=DoObjectModeWriteAndVerify(0, (DriveCaps.iObjectModeSize>>2));
|
sl@0
|
1134 |
test(r==KErrNone);
|
sl@0
|
1135 |
// Cause a failed object mode write
|
sl@0
|
1136 |
r=DoObjectModeWriteAndVerify(0, (DriveCaps.iObjectModeSize>>2));
|
sl@0
|
1137 |
test(r==KErrGeneral);
|
sl@0
|
1138 |
// the status register has an error. Attempt to write in a new region and ensure that it succeeds
|
sl@0
|
1139 |
r=DoObjectModeWriteAndVerify(DriveCaps.iObjectModeSize, DriveCaps.iObjectModeSize);
|
sl@0
|
1140 |
test(r==KErrNone);
|
sl@0
|
1141 |
|
sl@0
|
1142 |
test.Next(_L("\n(Subsequent) Control mode writes following previous use in object mode"));
|
sl@0
|
1143 |
|
sl@0
|
1144 |
// Re-use a former object mode region for control mode writes
|
sl@0
|
1145 |
// Erase the block after a failed write and before attempting to re-use for programming
|
sl@0
|
1146 |
r=Drive.Format(0,EbSz);
|
sl@0
|
1147 |
test(r==KErrNone);
|
sl@0
|
1148 |
r=DoControlModeWriteAndVerify(0xa5a5a5a5, 0);
|
sl@0
|
1149 |
test(r==KErrNone);
|
sl@0
|
1150 |
// Verify that data written in control mode can be further modified
|
sl@0
|
1151 |
r=DoControlModeWriteAndVerify(0x84848484, 0);
|
sl@0
|
1152 |
test(r==KErrNone);
|
sl@0
|
1153 |
|
sl@0
|
1154 |
test.Next(_L("\n(Subsequent) Control mode writes following an error"));
|
sl@0
|
1155 |
|
sl@0
|
1156 |
// Test that a control mode write can succeed after a previous error
|
sl@0
|
1157 |
// Use a failed object mode write attempt to the "B" half of a control mode region
|
sl@0
|
1158 |
// to cause the error
|
sl@0
|
1159 |
r=DoObjectModeWriteAndVerify(DriveCaps.iControlModeSize,(DriveCaps.iObjectModeSize>>2));
|
sl@0
|
1160 |
test(r==KErrGeneral);
|
sl@0
|
1161 |
r=DoControlModeWriteAndVerify(0x00000000, 0);
|
sl@0
|
1162 |
test(r==KErrNone);
|
sl@0
|
1163 |
|
sl@0
|
1164 |
test.Next(_L("\nControl mode boundary write test"));
|
sl@0
|
1165 |
|
sl@0
|
1166 |
r=DoControlModeBoundaryWriteAndVerify();
|
sl@0
|
1167 |
test(r==KErrNone);
|
sl@0
|
1168 |
|
sl@0
|
1169 |
}
|
sl@0
|
1170 |
|
sl@0
|
1171 |
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
sl@0
|
1172 |
|
sl@0
|
1173 |
test.Printf(_L("Press any key...\n"));
|
sl@0
|
1174 |
test.Getch();
|
sl@0
|
1175 |
test.End();
|
sl@0
|
1176 |
return KErrNone;
|
sl@0
|
1177 |
}
|