sl@0
|
1 |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
// e32test\heap\t_heap.cpp
|
sl@0
|
15 |
// Overview:
|
sl@0
|
16 |
// Tests RHeap class.
|
sl@0
|
17 |
// API Information:
|
sl@0
|
18 |
// RHeap
|
sl@0
|
19 |
// Details:
|
sl@0
|
20 |
// - Test that the expected methods are in the DLL by calling each one.
|
sl@0
|
21 |
// - Test heap auto expansion and compression by calling Alloc and Compress
|
sl@0
|
22 |
// and verifying the results are as expected.
|
sl@0
|
23 |
// - Verify the heap dump Base, Size, MinLength, Top and len values.
|
sl@0
|
24 |
// - Test the RHeap AllocSize, Alloc, AllocLen, Count and Free methods. Verify
|
sl@0
|
25 |
// results are as expected. Check heap object and confirm Invariant status.
|
sl@0
|
26 |
// - For an RHeap object, test and verify the results of: allocate some cells,
|
sl@0
|
27 |
// free them with Reset, allocate some cells again, free them with Free,
|
sl@0
|
28 |
// allocate some cells again, free them backwards, allocate again, free the
|
sl@0
|
29 |
// odd cells then the even cells, allocate again, free one half then the other.
|
sl@0
|
30 |
// Check heap object and confirm Invariant status.
|
sl@0
|
31 |
// - For an RHeap object, test and verify the results of: attempt to resize a
|
sl@0
|
32 |
// block above the space available, resize the block to 0, resize positively,
|
sl@0
|
33 |
// allocate a block, fill with data, allocate another block or two then resize
|
sl@0
|
34 |
// the original block such that it has to be moved in memory, then check the
|
sl@0
|
35 |
// blocks' contents, test data was copied on reallocation, resize blocks and
|
sl@0
|
36 |
// verify data integrity, expand and shrink, verify data.
|
sl@0
|
37 |
// Check heap object and confirm Invariant status.
|
sl@0
|
38 |
// - For an RHeap object, test and verify the results of: Alloc some cells,
|
sl@0
|
39 |
// verify the Count, Check the object, Free some cells, verify the Count,
|
sl@0
|
40 |
// Check and Reset the object, corrupt the heap data and reset the object.
|
sl@0
|
41 |
// - Test the leaving methods: AllocL and ReAllocL. Verify the results are as
|
sl@0
|
42 |
// expected.
|
sl@0
|
43 |
// - Test the RHeap methods: Alloc, Count, Size, Free and Close. Verify results
|
sl@0
|
44 |
// are as expected.
|
sl@0
|
45 |
// - Test sharing a chunk heap between two separate threads. Each thread
|
sl@0
|
46 |
// accesses the shared heap in a timed loop, to ensure that some true
|
sl@0
|
47 |
// concurrency.
|
sl@0
|
48 |
// - Test sharing a chunk heap between two separate threads. Run each thread in
|
sl@0
|
49 |
// a timed loop, to ensure that some true concurrency. Each thread accesses
|
sl@0
|
50 |
// the shared heap and results are verified. The heap size is used to verify
|
sl@0
|
51 |
// no leaks and that the largest available space is still available. The heap
|
sl@0
|
52 |
// is checked to verify that no cells remain allocated after the tests are
|
sl@0
|
53 |
// complete.
|
sl@0
|
54 |
// - Test sharing a heap between two threads. The thread whose heap it was is
|
sl@0
|
55 |
// killed first. Each thread accesses the shared heap and results are
|
sl@0
|
56 |
// verified.
|
sl@0
|
57 |
// Platforms/Drives/Compatibility:
|
sl@0
|
58 |
// All
|
sl@0
|
59 |
// Assumptions/Requirement/Pre-requisites:
|
sl@0
|
60 |
// Failures and causes:
|
sl@0
|
61 |
// Base Port information:
|
sl@0
|
62 |
//
|
sl@0
|
63 |
//
|
sl@0
|
64 |
|
sl@0
|
65 |
#include <e32test.h>
|
sl@0
|
66 |
#include <e32hal.h>
|
sl@0
|
67 |
#include <e32def.h>
|
sl@0
|
68 |
#include <e32def_private.h>
|
sl@0
|
69 |
|
sl@0
|
70 |
// Sets data for Test6
|
sl@0
|
71 |
#define SetData(size) pHeap->Reset();\
|
sl@0
|
72 |
Cell1=pHeap->Alloc(size);\
|
sl@0
|
73 |
Cell2=pHeap->Alloc(size);\
|
sl@0
|
74 |
Cell3=pHeap->Alloc(size);\
|
sl@0
|
75 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+pHeap->AllocLen(Cell1); *pC++='x');\
|
sl@0
|
76 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+pHeap->AllocLen(Cell2); *pC++='y');\
|
sl@0
|
77 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); *pC++='z');\
|
sl@0
|
78 |
OrigLen=pHeap->AllocLen(Cell2);
|
sl@0
|
79 |
|
sl@0
|
80 |
// Tests cell contents for Test6
|
sl@0
|
81 |
#define TestCells(Cell2Len) for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+pHeap->AllocLen(Cell1); test(*pC++=='x'));\
|
sl@0
|
82 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+Cell2Len; test(*pC++=='y'));\
|
sl@0
|
83 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); test(*pC++=='z'));\
|
sl@0
|
84 |
pHeap->Check();
|
sl@0
|
85 |
|
sl@0
|
86 |
#ifdef __EABI__
|
sl@0
|
87 |
IMPORT_D extern const TInt KHeapMinCellSize;
|
sl@0
|
88 |
#else
|
sl@0
|
89 |
const TInt KHeapMinCellSize = 0;
|
sl@0
|
90 |
#endif
|
sl@0
|
91 |
|
sl@0
|
92 |
const TInt KHeadSize = (TInt)RHeap::EAllocCellSize;
|
sl@0
|
93 |
const TInt KAlign = _FOFF(RHeap::_s_align, d);
|
sl@0
|
94 |
const TInt KMinCellLength = _ALIGN_UP((KHeapMinCellSize + Max(TInt(RHeap::EFreeCellSize),TInt(RHeap::EAllocCellSize))),KAlign) - RHeap::EAllocCellSize;
|
sl@0
|
95 |
const TInt KMinFreeSize = _ALIGN_UP((KHeapMinCellSize + Max(TInt(RHeap::EFreeCellSize),TInt(RHeap::EAllocCellSize))),KAlign);
|
sl@0
|
96 |
|
sl@0
|
97 |
TInt PageSize;
|
sl@0
|
98 |
|
sl@0
|
99 |
class RTestHeap : public RHeap
|
sl@0
|
100 |
{
|
sl@0
|
101 |
public:
|
sl@0
|
102 |
void __DbgTest(void* pRHeapDump) const;
|
sl@0
|
103 |
};
|
sl@0
|
104 |
|
sl@0
|
105 |
struct RHeapDump
|
sl@0
|
106 |
{
|
sl@0
|
107 |
TUint iMinLength;
|
sl@0
|
108 |
RChunk iChunk;
|
sl@0
|
109 |
TUint8 *iBase;
|
sl@0
|
110 |
TUint8 *iTop;
|
sl@0
|
111 |
RHeap::SCell iFree;
|
sl@0
|
112 |
};
|
sl@0
|
113 |
|
sl@0
|
114 |
#pragma warning ( disable :4705 ) // statement has no effect
|
sl@0
|
115 |
RHeapDump OrigDump;
|
sl@0
|
116 |
#pragma warning ( default :4705 )
|
sl@0
|
117 |
|
sl@0
|
118 |
#if defined(_DEBUG)
|
sl@0
|
119 |
void RTestHeap::__DbgTest(void* aPtr) const
|
sl@0
|
120 |
{
|
sl@0
|
121 |
RHeapDump& d = *(RHeapDump*)aPtr;
|
sl@0
|
122 |
d.iMinLength=iMinLength;
|
sl@0
|
123 |
d.iChunk.SetHandle(iChunkHandle);
|
sl@0
|
124 |
d.iBase=iBase;
|
sl@0
|
125 |
d.iTop=iTop;
|
sl@0
|
126 |
d.iFree=iFree;
|
sl@0
|
127 |
}
|
sl@0
|
128 |
#endif
|
sl@0
|
129 |
|
sl@0
|
130 |
|
sl@0
|
131 |
#if defined(_DEBUG)
|
sl@0
|
132 |
TBool Invariant(RHeap* aHeap)
|
sl@0
|
133 |
{
|
sl@0
|
134 |
RHeapDump dump;
|
sl@0
|
135 |
((RTestHeap*)aHeap)->__DbgTest(&dump);
|
sl@0
|
136 |
if(dump.iMinLength!=OrigDump.iMinLength) return(EFalse);
|
sl@0
|
137 |
// Note: iChunk is a class
|
sl@0
|
138 |
if(dump.iBase!=OrigDump.iBase) return(EFalse);
|
sl@0
|
139 |
if(*dump.iBase!=*OrigDump.iBase) return(EFalse);
|
sl@0
|
140 |
if(dump.iTop!=OrigDump.iTop) return(EFalse);
|
sl@0
|
141 |
if(dump.iTop[-1]!=OrigDump.iTop[-1]) return(EFalse);
|
sl@0
|
142 |
if(dump.iFree.len!=OrigDump.iFree.len) return(EFalse);
|
sl@0
|
143 |
// iFree.Next changes during allocation/freeing etc.
|
sl@0
|
144 |
return(ETrue);
|
sl@0
|
145 |
}
|
sl@0
|
146 |
#define INV(x) x;
|
sl@0
|
147 |
#else
|
sl@0
|
148 |
#define INV(x)
|
sl@0
|
149 |
#endif
|
sl@0
|
150 |
|
sl@0
|
151 |
LOCAL_D RTest test(_L("T_HEAP"));
|
sl@0
|
152 |
LOCAL_D TInt heapCount=1;
|
sl@0
|
153 |
LOCAL_D RHeap *gHeapPtr;
|
sl@0
|
154 |
LOCAL_D RHeap *gHeapPtr2;
|
sl@0
|
155 |
|
sl@0
|
156 |
class TestRHeap
|
sl@0
|
157 |
{
|
sl@0
|
158 |
public:
|
sl@0
|
159 |
void Test1(void);
|
sl@0
|
160 |
void Test2(void);
|
sl@0
|
161 |
void Test3(void);
|
sl@0
|
162 |
void Test4(void);
|
sl@0
|
163 |
void Test5(void);
|
sl@0
|
164 |
void Test7(void);
|
sl@0
|
165 |
void Test8(void);
|
sl@0
|
166 |
void TestCompressAll(void);
|
sl@0
|
167 |
void TestOffset(void);
|
sl@0
|
168 |
private:
|
sl@0
|
169 |
TInt RHeapCalcReduce(TInt aCellSize, TInt aGrowBy);
|
sl@0
|
170 |
};
|
sl@0
|
171 |
|
sl@0
|
172 |
LOCAL_C RHeap* allocHeap(TInt aSize)
|
sl@0
|
173 |
//
|
sl@0
|
174 |
// Allocate a chunk heap with max size aSize
|
sl@0
|
175 |
//
|
sl@0
|
176 |
{
|
sl@0
|
177 |
|
sl@0
|
178 |
TName n;
|
sl@0
|
179 |
n.Format(_L("TESTHEAP%d"),heapCount++);
|
sl@0
|
180 |
return(User::ChunkHeap(&n,aSize,aSize));
|
sl@0
|
181 |
}
|
sl@0
|
182 |
|
sl@0
|
183 |
////////////////////////////////////////////////////////////////////////////////////////
|
sl@0
|
184 |
// Test that methods are in the DLL
|
sl@0
|
185 |
////////////////////////////////////////////////////////////////////////////////////////
|
sl@0
|
186 |
void TestRHeap::Test1(void)
|
sl@0
|
187 |
{
|
sl@0
|
188 |
TAny* aCell;
|
sl@0
|
189 |
TInt aVar;
|
sl@0
|
190 |
RHeap* pHeap=allocHeap(3000); // tests first constructor indirectly
|
sl@0
|
191 |
// constructor with Chunk not tested
|
sl@0
|
192 |
pHeap->Base();
|
sl@0
|
193 |
pHeap->Size();
|
sl@0
|
194 |
pHeap->Available(aVar);
|
sl@0
|
195 |
pHeap->Check();
|
sl@0
|
196 |
pHeap->Count();
|
sl@0
|
197 |
pHeap->Count(aVar);
|
sl@0
|
198 |
aCell=pHeap->Alloc(50);
|
sl@0
|
199 |
pHeap->Free(aCell);
|
sl@0
|
200 |
aCell=pHeap->AllocL(50);
|
sl@0
|
201 |
pHeap->AllocLen(aCell);
|
sl@0
|
202 |
pHeap->ReAlloc(aCell, 100);
|
sl@0
|
203 |
pHeap->ReAllocL(aCell, 150);
|
sl@0
|
204 |
pHeap->Reset();
|
sl@0
|
205 |
pHeap->Close();
|
sl@0
|
206 |
}
|
sl@0
|
207 |
|
sl@0
|
208 |
///////////////////////////////////////////////////////////////////////////////
|
sl@0
|
209 |
// Test Assorted Methods 1
|
sl@0
|
210 |
//////////////////////////////////////////////////////////////////////////////
|
sl@0
|
211 |
void TestRHeap::Test2(void)
|
sl@0
|
212 |
{
|
sl@0
|
213 |
#if defined(_DEBUG)
|
sl@0
|
214 |
RHeapDump dump;
|
sl@0
|
215 |
RHeap* pHeap=allocHeap(3000);
|
sl@0
|
216 |
|
sl@0
|
217 |
((RTestHeap*)pHeap)->__DbgTest(&OrigDump);
|
sl@0
|
218 |
((RTestHeap*)pHeap)->__DbgTest(&dump);
|
sl@0
|
219 |
test(dump.iBase==pHeap->Base());
|
sl@0
|
220 |
test((dump.iTop-dump.iBase)==pHeap->Size());
|
sl@0
|
221 |
pHeap->Check();
|
sl@0
|
222 |
test(Invariant(pHeap));
|
sl@0
|
223 |
pHeap->Close();
|
sl@0
|
224 |
#endif
|
sl@0
|
225 |
}
|
sl@0
|
226 |
|
sl@0
|
227 |
///////////////////////////////////////////////////////////////////////////////
|
sl@0
|
228 |
// Test Assorted Methods 2
|
sl@0
|
229 |
//////////////////////////////////////////////////////////////////////////////
|
sl@0
|
230 |
void TestRHeap::Test3(void)
|
sl@0
|
231 |
{
|
sl@0
|
232 |
TInt CellLen;
|
sl@0
|
233 |
TInt OrigBiggestBlock, BiggestBlock;
|
sl@0
|
234 |
TAny* aCell;
|
sl@0
|
235 |
TInt FreeCount, AllocCount, AllocSize;
|
sl@0
|
236 |
RHeap* pHeap=allocHeap(5000);
|
sl@0
|
237 |
|
sl@0
|
238 |
#if defined(_DEBUG)
|
sl@0
|
239 |
((RTestHeap*)pHeap)->__DbgTest(&OrigDump);
|
sl@0
|
240 |
#endif
|
sl@0
|
241 |
|
sl@0
|
242 |
// test AllocSize
|
sl@0
|
243 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
244 |
test(pHeap->AllocSize(AllocSize)==pHeap->Count());
|
sl@0
|
245 |
test(AllocSize==0);
|
sl@0
|
246 |
test(AllocCount==pHeap->Count());
|
sl@0
|
247 |
test(AllocCount==0);
|
sl@0
|
248 |
test(FreeCount==1);
|
sl@0
|
249 |
|
sl@0
|
250 |
TAny* p1=pHeap->Alloc(1);
|
sl@0
|
251 |
test(pHeap->AllocSize(AllocSize)==1);
|
sl@0
|
252 |
test(AllocSize==pHeap->AllocLen(p1));
|
sl@0
|
253 |
|
sl@0
|
254 |
TAny* p2=pHeap->Alloc(8);
|
sl@0
|
255 |
test(pHeap->AllocSize(AllocSize)==2);
|
sl@0
|
256 |
test(AllocSize==pHeap->AllocLen(p1)+pHeap->AllocLen(p2));
|
sl@0
|
257 |
|
sl@0
|
258 |
TAny* p3=pHeap->Alloc(127);
|
sl@0
|
259 |
test(pHeap->AllocSize(AllocSize)==3);
|
sl@0
|
260 |
test(AllocSize==pHeap->AllocLen(p1)+pHeap->AllocLen(p2)+pHeap->AllocLen(p3));
|
sl@0
|
261 |
|
sl@0
|
262 |
pHeap->Free(p2);
|
sl@0
|
263 |
test(pHeap->AllocSize(AllocSize)==2);
|
sl@0
|
264 |
test(AllocSize==pHeap->AllocLen(p1)+pHeap->AllocLen(p3));
|
sl@0
|
265 |
|
sl@0
|
266 |
pHeap->Free(p1);
|
sl@0
|
267 |
test(pHeap->AllocSize(AllocSize)==1);
|
sl@0
|
268 |
test(AllocSize==pHeap->AllocLen(p3));
|
sl@0
|
269 |
|
sl@0
|
270 |
pHeap->Free(p3);
|
sl@0
|
271 |
test(pHeap->AllocSize(AllocSize)==0);
|
sl@0
|
272 |
test(AllocSize==0);
|
sl@0
|
273 |
|
sl@0
|
274 |
pHeap->Available(OrigBiggestBlock);
|
sl@0
|
275 |
|
sl@0
|
276 |
// Request too large a block
|
sl@0
|
277 |
test((aCell=pHeap->Alloc(OrigBiggestBlock+1))==NULL);
|
sl@0
|
278 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
279 |
test(AllocCount==0);
|
sl@0
|
280 |
test(FreeCount==1);
|
sl@0
|
281 |
|
sl@0
|
282 |
|
sl@0
|
283 |
// Request block same size as that available
|
sl@0
|
284 |
test((aCell=pHeap->Alloc(OrigBiggestBlock))!=NULL);
|
sl@0
|
285 |
test(pHeap->Available(BiggestBlock)==0);
|
sl@0
|
286 |
test(BiggestBlock==0);
|
sl@0
|
287 |
test(pHeap->AllocLen(aCell)==OrigBiggestBlock);
|
sl@0
|
288 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
289 |
test(AllocCount==pHeap->Count());
|
sl@0
|
290 |
test(AllocCount==1);
|
sl@0
|
291 |
test(FreeCount==0);
|
sl@0
|
292 |
pHeap->Check();
|
sl@0
|
293 |
// Free the block
|
sl@0
|
294 |
pHeap->FreeZ(aCell);
|
sl@0
|
295 |
test(aCell==NULL);
|
sl@0
|
296 |
pHeap->Available(BiggestBlock);
|
sl@0
|
297 |
test(BiggestBlock==OrigBiggestBlock);
|
sl@0
|
298 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
299 |
test(AllocCount==0);
|
sl@0
|
300 |
test(FreeCount==1);
|
sl@0
|
301 |
|
sl@0
|
302 |
|
sl@0
|
303 |
// Request a block much smaller than that available
|
sl@0
|
304 |
test((aCell=pHeap->Alloc(1))!=NULL);
|
sl@0
|
305 |
CellLen=pHeap->AllocLen(aCell);
|
sl@0
|
306 |
pHeap->Available(BiggestBlock);
|
sl@0
|
307 |
test(pHeap->Available(BiggestBlock)==BiggestBlock);
|
sl@0
|
308 |
test((BiggestBlock+CellLen+KHeadSize)==OrigBiggestBlock);
|
sl@0
|
309 |
// NOTE: if a block of 1000 was initially available, getting a cell of length 100 DOES NOT
|
sl@0
|
310 |
// leave 900 available as some of the 1000(KHeadSize) is used up storing the length of the
|
sl@0
|
311 |
// allocated block
|
sl@0
|
312 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
313 |
test(AllocCount==1);
|
sl@0
|
314 |
test(FreeCount==1);
|
sl@0
|
315 |
pHeap->Check();
|
sl@0
|
316 |
// Free the block
|
sl@0
|
317 |
pHeap->Free(aCell);
|
sl@0
|
318 |
test(aCell!=NULL);
|
sl@0
|
319 |
pHeap->Available(BiggestBlock);
|
sl@0
|
320 |
test(BiggestBlock==OrigBiggestBlock);
|
sl@0
|
321 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
322 |
test(AllocCount==0);
|
sl@0
|
323 |
test(FreeCount==1);
|
sl@0
|
324 |
|
sl@0
|
325 |
|
sl@0
|
326 |
// Request a block only just smaller than that available
|
sl@0
|
327 |
test((aCell=pHeap->Alloc(OrigBiggestBlock-1))!=NULL);
|
sl@0
|
328 |
CellLen=pHeap->AllocLen(aCell);
|
sl@0
|
329 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
330 |
test(AllocCount==1);
|
sl@0
|
331 |
test(FreeCount==0);
|
sl@0
|
332 |
pHeap->Check();
|
sl@0
|
333 |
// Free the block
|
sl@0
|
334 |
pHeap->Free(aCell);
|
sl@0
|
335 |
pHeap->Available(BiggestBlock);
|
sl@0
|
336 |
test(BiggestBlock==OrigBiggestBlock);
|
sl@0
|
337 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
338 |
test(AllocCount==0);
|
sl@0
|
339 |
test(FreeCount==1);
|
sl@0
|
340 |
|
sl@0
|
341 |
|
sl@0
|
342 |
//Request a block of 0 size Note: 0 may not necessarily be allocated (probably will be 4)
|
sl@0
|
343 |
test((aCell=pHeap->Alloc(0))!=NULL);
|
sl@0
|
344 |
pHeap->Available(BiggestBlock);
|
sl@0
|
345 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
346 |
test(AllocCount==1);
|
sl@0
|
347 |
test(FreeCount==1);
|
sl@0
|
348 |
pHeap->Check();
|
sl@0
|
349 |
//Free the block
|
sl@0
|
350 |
pHeap->Free(aCell);
|
sl@0
|
351 |
pHeap->Available(BiggestBlock);
|
sl@0
|
352 |
test(BiggestBlock==OrigBiggestBlock);
|
sl@0
|
353 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
354 |
test(AllocCount==0);
|
sl@0
|
355 |
test(FreeCount==1);
|
sl@0
|
356 |
pHeap->Check();
|
sl@0
|
357 |
INV(test(Invariant(pHeap)));
|
sl@0
|
358 |
|
sl@0
|
359 |
// close heap so we don't exceed chunk limit
|
sl@0
|
360 |
pHeap->Close();
|
sl@0
|
361 |
}
|
sl@0
|
362 |
|
sl@0
|
363 |
///////////////////////////////////////////////////////////////////////////////
|
sl@0
|
364 |
// Test Assorted Methods 3 - Here we go loopy loo, here we go loopy li
|
sl@0
|
365 |
//////////////////////////////////////////////////////////////////////////////
|
sl@0
|
366 |
void TestRHeap::Test4(void)
|
sl@0
|
367 |
{
|
sl@0
|
368 |
TInt OrigBiggestBlock, BiggestBlock, FreeCount, AllocCount;
|
sl@0
|
369 |
RHeap* pHeap=allocHeap(5000);
|
sl@0
|
370 |
|
sl@0
|
371 |
pHeap->Available(OrigBiggestBlock);
|
sl@0
|
372 |
#if defined(_DEBUG)
|
sl@0
|
373 |
((RTestHeap*)pHeap)->__DbgTest(&OrigDump);
|
sl@0
|
374 |
#endif
|
sl@0
|
375 |
|
sl@0
|
376 |
for(TInt ArraySize=1; ArraySize<=100; ArraySize++)
|
sl@0
|
377 |
{
|
sl@0
|
378 |
TAny** ArrayOfCells;
|
sl@0
|
379 |
ArrayOfCells= new TAny*[ArraySize];
|
sl@0
|
380 |
TInt ArrayIndex;
|
sl@0
|
381 |
|
sl@0
|
382 |
// Allocate some cells
|
sl@0
|
383 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
sl@0
|
384 |
ArrayOfCells[ArrayIndex]=pHeap->Alloc(OrigBiggestBlock/(ArraySize*3));
|
sl@0
|
385 |
pHeap->Available(BiggestBlock);
|
sl@0
|
386 |
test(BiggestBlock!=OrigBiggestBlock);
|
sl@0
|
387 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
388 |
test((TInt)AllocCount==ArraySize);
|
sl@0
|
389 |
test(FreeCount==1);
|
sl@0
|
390 |
pHeap->Check();
|
sl@0
|
391 |
// Now free them with Reset
|
sl@0
|
392 |
pHeap->Reset();
|
sl@0
|
393 |
pHeap->Available(BiggestBlock);
|
sl@0
|
394 |
test(BiggestBlock==OrigBiggestBlock);
|
sl@0
|
395 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
396 |
test(AllocCount==0);
|
sl@0
|
397 |
test(FreeCount==1);
|
sl@0
|
398 |
|
sl@0
|
399 |
|
sl@0
|
400 |
// Allocate some cells again
|
sl@0
|
401 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
sl@0
|
402 |
ArrayOfCells[ArrayIndex]=pHeap->Alloc(OrigBiggestBlock/(ArraySize*3));
|
sl@0
|
403 |
pHeap->Available(BiggestBlock);
|
sl@0
|
404 |
test(BiggestBlock!=OrigBiggestBlock);
|
sl@0
|
405 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
406 |
test((TInt)AllocCount==ArraySize);
|
sl@0
|
407 |
test(FreeCount==1);
|
sl@0
|
408 |
pHeap->Check();
|
sl@0
|
409 |
// Free them with Free
|
sl@0
|
410 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
sl@0
|
411 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
sl@0
|
412 |
pHeap->Available(BiggestBlock);
|
sl@0
|
413 |
test(BiggestBlock==OrigBiggestBlock);
|
sl@0
|
414 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
415 |
test(AllocCount==0);
|
sl@0
|
416 |
test(FreeCount==1);
|
sl@0
|
417 |
|
sl@0
|
418 |
|
sl@0
|
419 |
// Allocate some cells again
|
sl@0
|
420 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
sl@0
|
421 |
ArrayOfCells[ArrayIndex]=pHeap->Alloc(OrigBiggestBlock/(ArraySize*3));
|
sl@0
|
422 |
pHeap->Available(BiggestBlock);
|
sl@0
|
423 |
test(BiggestBlock!=OrigBiggestBlock);
|
sl@0
|
424 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
425 |
test((TInt)AllocCount==ArraySize);
|
sl@0
|
426 |
test(FreeCount==1);
|
sl@0
|
427 |
pHeap->Check();
|
sl@0
|
428 |
// Free them backwards
|
sl@0
|
429 |
for(ArrayIndex=ArraySize-1; ArrayIndex>=0; ArrayIndex--)
|
sl@0
|
430 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
sl@0
|
431 |
pHeap->Available(BiggestBlock);
|
sl@0
|
432 |
test(BiggestBlock==OrigBiggestBlock);
|
sl@0
|
433 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
434 |
test(AllocCount==0);
|
sl@0
|
435 |
test(FreeCount==1);
|
sl@0
|
436 |
|
sl@0
|
437 |
|
sl@0
|
438 |
// Allocate some cells again
|
sl@0
|
439 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
sl@0
|
440 |
ArrayOfCells[ArrayIndex]=pHeap->Alloc(OrigBiggestBlock/(ArraySize*3));
|
sl@0
|
441 |
pHeap->Available(BiggestBlock);
|
sl@0
|
442 |
test(BiggestBlock!=OrigBiggestBlock);
|
sl@0
|
443 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
444 |
test((TInt)AllocCount==ArraySize);
|
sl@0
|
445 |
test(FreeCount==1);
|
sl@0
|
446 |
pHeap->Check();
|
sl@0
|
447 |
// Free the odd cells then the even cells
|
sl@0
|
448 |
for(ArrayIndex=0; ArrayIndex<ArraySize; ArrayIndex+=2)
|
sl@0
|
449 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
sl@0
|
450 |
pHeap->Check();
|
sl@0
|
451 |
for(ArrayIndex=1; ArrayIndex<ArraySize; ArrayIndex+=2)
|
sl@0
|
452 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
sl@0
|
453 |
pHeap->Check();
|
sl@0
|
454 |
pHeap->Available(BiggestBlock);
|
sl@0
|
455 |
test(BiggestBlock==OrigBiggestBlock);
|
sl@0
|
456 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
457 |
test(AllocCount==0);
|
sl@0
|
458 |
test(FreeCount==1);
|
sl@0
|
459 |
|
sl@0
|
460 |
|
sl@0
|
461 |
// Allocate some cells again
|
sl@0
|
462 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
sl@0
|
463 |
ArrayOfCells[ArrayIndex]=pHeap->Alloc(OrigBiggestBlock/(ArraySize*3));
|
sl@0
|
464 |
pHeap->Available(BiggestBlock);
|
sl@0
|
465 |
test(BiggestBlock!=OrigBiggestBlock);
|
sl@0
|
466 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
467 |
test((TInt)AllocCount==ArraySize);
|
sl@0
|
468 |
test(FreeCount==1);
|
sl@0
|
469 |
pHeap->Check();
|
sl@0
|
470 |
// Free one half then the other
|
sl@0
|
471 |
for(ArrayIndex=ArraySize-1; ArrayIndex>=ArraySize/2; ArrayIndex--)
|
sl@0
|
472 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
sl@0
|
473 |
for(ArrayIndex=0; ArrayIndex<ArraySize/2; ArrayIndex++)
|
sl@0
|
474 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
sl@0
|
475 |
AllocCount=pHeap->Count(FreeCount);
|
sl@0
|
476 |
test(AllocCount==0);
|
sl@0
|
477 |
test(FreeCount==1);
|
sl@0
|
478 |
|
sl@0
|
479 |
delete [] ArrayOfCells;
|
sl@0
|
480 |
pHeap->Check();
|
sl@0
|
481 |
INV(test(Invariant(pHeap)))
|
sl@0
|
482 |
}
|
sl@0
|
483 |
|
sl@0
|
484 |
// close heap so we don't exceed chunk limit
|
sl@0
|
485 |
pHeap->Close();
|
sl@0
|
486 |
}
|
sl@0
|
487 |
|
sl@0
|
488 |
|
sl@0
|
489 |
///////////////////////////////////////////////////////////////////////////////
|
sl@0
|
490 |
// Test ReAlloc
|
sl@0
|
491 |
//////////////////////////////////////////////////////////////////////////////
|
sl@0
|
492 |
void TestRHeap::Test5(void)
|
sl@0
|
493 |
{
|
sl@0
|
494 |
TInt BiggestBlock, CellSize;
|
sl@0
|
495 |
|
sl@0
|
496 |
RHeap* pHeap=allocHeap(5000);
|
sl@0
|
497 |
#if defined(_DEBUG)
|
sl@0
|
498 |
((RTestHeap*)pHeap)->__DbgTest(&OrigDump);
|
sl@0
|
499 |
#endif
|
sl@0
|
500 |
pHeap->Available(BiggestBlock);
|
sl@0
|
501 |
TAny* aCell=pHeap->Alloc(BiggestBlock);
|
sl@0
|
502 |
|
sl@0
|
503 |
// Attempt to resize the block above the space available
|
sl@0
|
504 |
test(pHeap->ReAlloc(aCell, BiggestBlock*2)==NULL);
|
sl@0
|
505 |
|
sl@0
|
506 |
// Resize the block to 0
|
sl@0
|
507 |
aCell=pHeap->ReAlloc(aCell, 0);
|
sl@0
|
508 |
CellSize=pHeap->AllocLen(aCell); // test?
|
sl@0
|
509 |
|
sl@0
|
510 |
// Resize positively
|
sl@0
|
511 |
for(TInt aSize=0; aSize<=BiggestBlock; aSize++, pHeap->Available(BiggestBlock))
|
sl@0
|
512 |
{
|
sl@0
|
513 |
test(pHeap->ReAlloc(aCell, aSize)!=NULL);
|
sl@0
|
514 |
CellSize=pHeap->AllocLen(aCell);
|
sl@0
|
515 |
test(CellSize>=aSize);
|
sl@0
|
516 |
if (aSize<KMinCellLength)
|
sl@0
|
517 |
test(CellSize==KMinCellLength);
|
sl@0
|
518 |
else
|
sl@0
|
519 |
test(CellSize<aSize+KAlign);
|
sl@0
|
520 |
}
|
sl@0
|
521 |
|
sl@0
|
522 |
// Note: when increasing a cell size the size is rounded up to the nearest 4 but when
|
sl@0
|
523 |
// decreasing a cell the size is rounded down to the nearest 8 - this is due to the fact
|
sl@0
|
524 |
// that when memory is released its size must be big enough to hold a free cell header which
|
sl@0
|
525 |
// is greater(8) than an allocated header(4)
|
sl@0
|
526 |
// i.e. size = 16, resize to 17 => result is 20. But resize to 15 stays as 16, resize to 9
|
sl@0
|
527 |
// stays as 16 but resize as 8 will resize to 8
|
sl@0
|
528 |
|
sl@0
|
529 |
for(TInt aSize2=(TInt)pHeap->AllocLen(aCell); aSize2>=0; aSize2--)
|
sl@0
|
530 |
{
|
sl@0
|
531 |
test(pHeap->ReAlloc(aCell, aSize2)!=NULL);
|
sl@0
|
532 |
test(((TInt)pHeap->AllocLen(aCell)>=aSize2)&&((TInt)pHeap->AllocLen(aCell)<=aSize2+KMinFreeSize));
|
sl@0
|
533 |
}
|
sl@0
|
534 |
|
sl@0
|
535 |
pHeap->Check();
|
sl@0
|
536 |
pHeap->Reset();
|
sl@0
|
537 |
// Allocate a block, fill with data, allocate another block or two then resize the original
|
sl@0
|
538 |
// block such that it has to be moved in memory, then check the blocks' contents
|
sl@0
|
539 |
TAny* Cell1=pHeap->Alloc(16);
|
sl@0
|
540 |
TText8* pC;
|
sl@0
|
541 |
TInt Cell1Size=pHeap->AllocLen(Cell1);
|
sl@0
|
542 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; *pC++='x')
|
sl@0
|
543 |
;
|
sl@0
|
544 |
TAny* Cell2=pHeap->Alloc(16);
|
sl@0
|
545 |
TInt Cell2Size=pHeap->AllocLen(Cell2);
|
sl@0
|
546 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+pHeap->AllocLen(Cell2); *pC++='y')
|
sl@0
|
547 |
;
|
sl@0
|
548 |
Cell1=pHeap->ReAlloc(Cell1, 128);
|
sl@0
|
549 |
// Test data was copied on reallocation
|
sl@0
|
550 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; test(*pC++=='x'))
|
sl@0
|
551 |
;
|
sl@0
|
552 |
// Test other data wasn't corrupted
|
sl@0
|
553 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+pHeap->AllocLen(Cell2); test(*pC++=='y'))
|
sl@0
|
554 |
;
|
sl@0
|
555 |
|
sl@0
|
556 |
// Allocate another block
|
sl@0
|
557 |
TAny* Cell3=pHeap->Alloc(8);
|
sl@0
|
558 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); *pC++='z')
|
sl@0
|
559 |
;
|
sl@0
|
560 |
// test existing blocks to be safe
|
sl@0
|
561 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; test(*pC++=='x'))
|
sl@0
|
562 |
;
|
sl@0
|
563 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+Cell2Size; test(*pC++=='y'))
|
sl@0
|
564 |
;
|
sl@0
|
565 |
// Resize previous blocks
|
sl@0
|
566 |
Cell1=pHeap->ReAlloc(Cell1, 16); // Shrink previously expanded block
|
sl@0
|
567 |
Cell2=pHeap->ReAlloc(Cell2, 64);
|
sl@0
|
568 |
// Now test data
|
sl@0
|
569 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; test(*pC++=='x'))
|
sl@0
|
570 |
;
|
sl@0
|
571 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+Cell2Size; test(*pC++=='y'))
|
sl@0
|
572 |
;
|
sl@0
|
573 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); test(*pC++=='z'))
|
sl@0
|
574 |
;
|
sl@0
|
575 |
|
sl@0
|
576 |
// Re-expand Cell1
|
sl@0
|
577 |
Cell1=pHeap->ReAlloc(Cell1, 1028);
|
sl@0
|
578 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; test(*pC++=='x'))
|
sl@0
|
579 |
;
|
sl@0
|
580 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+Cell2Size; test(*pC++=='y'))
|
sl@0
|
581 |
;
|
sl@0
|
582 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); test(*pC++=='z'))
|
sl@0
|
583 |
;
|
sl@0
|
584 |
|
sl@0
|
585 |
// Shrink cells back to original size
|
sl@0
|
586 |
Cell1=pHeap->ReAlloc(Cell1, Cell1Size);
|
sl@0
|
587 |
Cell2=pHeap->ReAlloc(Cell2, Cell2Size);
|
sl@0
|
588 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; test(*pC++=='x'))
|
sl@0
|
589 |
;
|
sl@0
|
590 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+Cell2Size; test(*pC++=='y'))
|
sl@0
|
591 |
;
|
sl@0
|
592 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); test(*pC++=='z'))
|
sl@0
|
593 |
;
|
sl@0
|
594 |
|
sl@0
|
595 |
pHeap->Check();
|
sl@0
|
596 |
INV(test(Invariant(pHeap)));
|
sl@0
|
597 |
|
sl@0
|
598 |
// close heap so we don't exceed chunk limit
|
sl@0
|
599 |
pHeap->Close();
|
sl@0
|
600 |
}
|
sl@0
|
601 |
|
sl@0
|
602 |
|
sl@0
|
603 |
///////////////////////////////////////////////////////////////////////////////
|
sl@0
|
604 |
// Test walking methods (more thoroughly than previously)
|
sl@0
|
605 |
//////////////////////////////////////////////////////////////////////////////
|
sl@0
|
606 |
void TestRHeap::Test7(void)
|
sl@0
|
607 |
{
|
sl@0
|
608 |
TInt NumAllocated=0, NumFree=1, i;
|
sl@0
|
609 |
RHeap* pHeap=allocHeap(5000);
|
sl@0
|
610 |
|
sl@0
|
611 |
TAny** ArrayOfCells;
|
sl@0
|
612 |
ArrayOfCells= new TAny*[100];
|
sl@0
|
613 |
|
sl@0
|
614 |
for(i=0; i<100; i++)
|
sl@0
|
615 |
{
|
sl@0
|
616 |
ArrayOfCells[i]=pHeap->Alloc(8);
|
sl@0
|
617 |
NumAllocated++;
|
sl@0
|
618 |
test(NumAllocated==pHeap->Count(NumFree));
|
sl@0
|
619 |
test(NumFree==1);
|
sl@0
|
620 |
}
|
sl@0
|
621 |
pHeap->Check();
|
sl@0
|
622 |
|
sl@0
|
623 |
for(i=0; i<100; i+=2)
|
sl@0
|
624 |
{
|
sl@0
|
625 |
TInt temp;
|
sl@0
|
626 |
pHeap->Free(ArrayOfCells[i]);
|
sl@0
|
627 |
NumAllocated--;
|
sl@0
|
628 |
NumFree++;
|
sl@0
|
629 |
test(NumAllocated==pHeap->Count(temp));
|
sl@0
|
630 |
test(NumFree==temp);
|
sl@0
|
631 |
}
|
sl@0
|
632 |
pHeap->Check();
|
sl@0
|
633 |
pHeap->Reset();
|
sl@0
|
634 |
|
sl@0
|
635 |
|
sl@0
|
636 |
///////////////////////////////////////////
|
sl@0
|
637 |
// Corrupt data and see what happens
|
sl@0
|
638 |
///////////////////////////////////////////
|
sl@0
|
639 |
// Corrupt allocated cell header
|
sl@0
|
640 |
ArrayOfCells[0]=pHeap->Alloc(32);
|
sl@0
|
641 |
TUint32* pC=(TUint32*)ArrayOfCells[0]-KHeadSize;
|
sl@0
|
642 |
*pC=0xa5a5a5a5u;
|
sl@0
|
643 |
// pHeap->Check();
|
sl@0
|
644 |
|
sl@0
|
645 |
// Corrupt free cell header
|
sl@0
|
646 |
pHeap->Reset();
|
sl@0
|
647 |
ArrayOfCells[0]=pHeap->Alloc(32);
|
sl@0
|
648 |
pC=(TUint32*)ArrayOfCells[0]+(pHeap->AllocLen(ArrayOfCells[0])>>2);
|
sl@0
|
649 |
*pC=0xa1a1a1a1u;
|
sl@0
|
650 |
//pHeap->Check(); // Check doesn't pick it up but an access violation is generated
|
sl@0
|
651 |
|
sl@0
|
652 |
// Write past end of heap
|
sl@0
|
653 |
pHeap->Reset();
|
sl@0
|
654 |
TInt Avail;
|
sl@0
|
655 |
ArrayOfCells[0]=pHeap->Alloc(pHeap->Available(Avail));
|
sl@0
|
656 |
pC=(TUint32*)ArrayOfCells[0]+(pHeap->AllocLen(ArrayOfCells[0])>>2);
|
sl@0
|
657 |
//*pC=0xa1a1a1a1u; // This line isn't picked up by Check (wouldn't expect it to) but the call
|
sl@0
|
658 |
//pHeap->Check(); // to delete below consequently crashes
|
sl@0
|
659 |
|
sl@0
|
660 |
delete [] ArrayOfCells;
|
sl@0
|
661 |
|
sl@0
|
662 |
// close heap so we don't exceed chunk limit
|
sl@0
|
663 |
pHeap->Close();
|
sl@0
|
664 |
}
|
sl@0
|
665 |
|
sl@0
|
666 |
//////////////////////////////////////
|
sl@0
|
667 |
// Test the leave methods
|
sl@0
|
668 |
//////////////////////////////////////
|
sl@0
|
669 |
void TestRHeap::Test8(void)
|
sl@0
|
670 |
{
|
sl@0
|
671 |
|
sl@0
|
672 |
TAny* aCell=NULL;
|
sl@0
|
673 |
RHeap* pHeap=allocHeap(1000);
|
sl@0
|
674 |
TRAPD(ret,aCell=pHeap->AllocL(100))
|
sl@0
|
675 |
test(ret==KErrNone);
|
sl@0
|
676 |
TRAP(ret,aCell=pHeap->AllocL(PageSize))
|
sl@0
|
677 |
test(ret==KErrNoMemory);
|
sl@0
|
678 |
TRAP(ret,aCell=pHeap->ReAllocL(aCell,32))
|
sl@0
|
679 |
test(ret==KErrNone);
|
sl@0
|
680 |
TRAP(ret,aCell=pHeap->ReAllocL(NULL,10000))
|
sl@0
|
681 |
test(ret==KErrNoMemory);
|
sl@0
|
682 |
|
sl@0
|
683 |
// close heap so we don't exceed chunk limit
|
sl@0
|
684 |
pHeap->Close();
|
sl@0
|
685 |
}
|
sl@0
|
686 |
|
sl@0
|
687 |
class RMyHeap : public RHeap
|
sl@0
|
688 |
{
|
sl@0
|
689 |
public:
|
sl@0
|
690 |
void MyCompressAll(){}
|
sl@0
|
691 |
private:
|
sl@0
|
692 |
RMyHeap();
|
sl@0
|
693 |
};
|
sl@0
|
694 |
|
sl@0
|
695 |
#include "TestRHeapShrink.h"
|
sl@0
|
696 |
|
sl@0
|
697 |
/**
|
sl@0
|
698 |
Calculates whether or not the heap with iGrowBy=aGrowBy will be reduced if a
|
sl@0
|
699 |
cell of size aCellSize bytes is the top free cell.
|
sl@0
|
700 |
It must be calculated as both the page size and min cell size could vary
|
sl@0
|
701 |
between different platforms/builds. Also, KHeapMinCellSize is 'patchdata' and can be
|
sl@0
|
702 |
different for particular ROM builds
|
sl@0
|
703 |
ASSUMPTIONS:-
|
sl@0
|
704 |
1 - The cell of aCellSize starts past the RHeap's iMinLength (i.e. all of it can be
|
sl@0
|
705 |
removed without the RHeap becoming smaller than iMinLength
|
sl@0
|
706 |
2 - The default value of aAlign was passed to RHeap contructor
|
sl@0
|
707 |
These should be safe as this is onl used by t_heap TestRHeap::CompressAll()
|
sl@0
|
708 |
@return The number of bytes the heap will be reduced by
|
sl@0
|
709 |
*/
|
sl@0
|
710 |
TInt TestRHeap::RHeapCalcReduce(TInt aCellSize, TInt aGrowBy)
|
sl@0
|
711 |
{
|
sl@0
|
712 |
TInt ret = 0;
|
sl@0
|
713 |
TInt pageSize = 0;
|
sl@0
|
714 |
test(UserHal::PageSizeInBytes(pageSize)==KErrNone);
|
sl@0
|
715 |
|
sl@0
|
716 |
// adjust aGrowBy to match what RHeap would have aligned its iGrowBy to
|
sl@0
|
717 |
// see RHeap::RHeap()
|
sl@0
|
718 |
aGrowBy = _ALIGN_UP(aGrowBy, pageSize);
|
sl@0
|
719 |
if (aCellSize >= KHeapShrinkHysRatio*(aGrowBy>>8))
|
sl@0
|
720 |
{
|
sl@0
|
721 |
//calc for amount to reduce heap from RHeap::Reduce()
|
sl@0
|
722 |
// assumes that cell of aCellSize starts past the RHeap's iMinLength
|
sl@0
|
723 |
ret=_ALIGN_DOWN(aCellSize, pageSize);
|
sl@0
|
724 |
}
|
sl@0
|
725 |
return ret;
|
sl@0
|
726 |
}
|
sl@0
|
727 |
|
sl@0
|
728 |
void TestRHeap::TestCompressAll()
|
sl@0
|
729 |
{
|
sl@0
|
730 |
|
sl@0
|
731 |
TPtrC myHeapName=_L("MyHeap");
|
sl@0
|
732 |
// myHeap will have default GrowBy of KMinHeapGrowBy
|
sl@0
|
733 |
RMyHeap* myHeap=(RMyHeap*)User::ChunkHeap(&myHeapName,0x100,0x2000);
|
sl@0
|
734 |
const TInt KnormHeapGrowBy = 0x2000;
|
sl@0
|
735 |
RHeap* normHeap=User::ChunkHeap(NULL,0x100,0x20000,KnormHeapGrowBy);
|
sl@0
|
736 |
|
sl@0
|
737 |
TAny* ptrMy1=myHeap->Alloc(0x102);
|
sl@0
|
738 |
test(ptrMy1!=NULL);
|
sl@0
|
739 |
TAny* ptrMy2=myHeap->Alloc(0x1001);
|
sl@0
|
740 |
test(ptrMy2!=NULL);
|
sl@0
|
741 |
TInt r=myHeap->Count();
|
sl@0
|
742 |
test(r==2);
|
sl@0
|
743 |
|
sl@0
|
744 |
TAny* ptrNorm1=normHeap->Alloc(0x8002);
|
sl@0
|
745 |
test(ptrNorm1!=NULL);
|
sl@0
|
746 |
TAny* ptrNorm2=normHeap->Alloc(0x12fff);
|
sl@0
|
747 |
test(ptrNorm2!=NULL);
|
sl@0
|
748 |
TAny* ptrNorm3=normHeap->Alloc(0x334f);
|
sl@0
|
749 |
test(ptrNorm3!=NULL);
|
sl@0
|
750 |
r=normHeap->Count();
|
sl@0
|
751 |
test(r==3);
|
sl@0
|
752 |
|
sl@0
|
753 |
TInt oldMyHeapSize=myHeap->Size();
|
sl@0
|
754 |
TInt oldNormHeapSize=normHeap->Size();
|
sl@0
|
755 |
|
sl@0
|
756 |
myHeap->MyCompressAll();
|
sl@0
|
757 |
|
sl@0
|
758 |
r=myHeap->Count();
|
sl@0
|
759 |
test(r==2);
|
sl@0
|
760 |
r=myHeap->Size();
|
sl@0
|
761 |
test(r==oldMyHeapSize);
|
sl@0
|
762 |
r=normHeap->Count();
|
sl@0
|
763 |
test(r==3);
|
sl@0
|
764 |
r=normHeap->Size();
|
sl@0
|
765 |
test(r==oldNormHeapSize);
|
sl@0
|
766 |
|
sl@0
|
767 |
// Remove the cell on the top of the normHeap
|
sl@0
|
768 |
normHeap->Free(ptrNorm3);
|
sl@0
|
769 |
// check myHeap unaffected
|
sl@0
|
770 |
r=myHeap->Count();
|
sl@0
|
771 |
test(r==2);
|
sl@0
|
772 |
r=myHeap->Size();
|
sl@0
|
773 |
test(r==oldMyHeapSize);
|
sl@0
|
774 |
//check normHeap updated after free of top cell
|
sl@0
|
775 |
r=normHeap->Count();
|
sl@0
|
776 |
test(r==2);
|
sl@0
|
777 |
r=normHeap->Size();
|
sl@0
|
778 |
|
sl@0
|
779 |
// Calc the amount, if any, the overall size of normHeap will have been shrunk by
|
sl@0
|
780 |
// will depend on value of KHeapShrinkHysRatio.
|
sl@0
|
781 |
// 1st calc current total size of the allocated cells
|
sl@0
|
782 |
TInt normAllocdSize = normHeap->AllocLen(ptrNorm1)+RHeap::EAllocCellSize +
|
sl@0
|
783 |
normHeap->AllocLen(ptrNorm2)+RHeap::EAllocCellSize;
|
sl@0
|
784 |
TInt normReduce = RHeapCalcReduce(oldNormHeapSize-normAllocdSize,KnormHeapGrowBy);
|
sl@0
|
785 |
oldNormHeapSize -= normReduce;
|
sl@0
|
786 |
test(r==oldNormHeapSize);
|
sl@0
|
787 |
|
sl@0
|
788 |
normHeap->Free(ptrNorm2);
|
sl@0
|
789 |
myHeap->Free(ptrMy2);
|
sl@0
|
790 |
r=myHeap->Count();
|
sl@0
|
791 |
test(r==1);
|
sl@0
|
792 |
r=myHeap->Size();
|
sl@0
|
793 |
|
sl@0
|
794 |
// Calc the current total size of the allocated cells
|
sl@0
|
795 |
TInt myAllocdSize = myHeap->AllocLen(ptrMy1)+RHeap::EAllocCellSize;
|
sl@0
|
796 |
TInt myReduce=RHeapCalcReduce(oldMyHeapSize-myAllocdSize,1);
|
sl@0
|
797 |
oldMyHeapSize -= myReduce;
|
sl@0
|
798 |
test(r==oldMyHeapSize);
|
sl@0
|
799 |
|
sl@0
|
800 |
r=normHeap->Count();
|
sl@0
|
801 |
test(r==1);
|
sl@0
|
802 |
r=normHeap->Size();
|
sl@0
|
803 |
|
sl@0
|
804 |
// cell represented by ptrNorm3 may have already caused the heap
|
sl@0
|
805 |
// size to be reduced so ensure normReduce is factored into calcs
|
sl@0
|
806 |
test(r==oldNormHeapSize-(0x16000-normReduce));
|
sl@0
|
807 |
|
sl@0
|
808 |
myHeap->Close();
|
sl@0
|
809 |
normHeap->Close();
|
sl@0
|
810 |
}
|
sl@0
|
811 |
|
sl@0
|
812 |
|
sl@0
|
813 |
void TestRHeap::TestOffset()
|
sl@0
|
814 |
{
|
sl@0
|
815 |
TInt size = 0x100000;
|
sl@0
|
816 |
const TInt offset = 0x8;
|
sl@0
|
817 |
const TUint8 magic = 0x74; // arbitrary magic value
|
sl@0
|
818 |
RChunk chunk;
|
sl@0
|
819 |
RHeap* heap;
|
sl@0
|
820 |
|
sl@0
|
821 |
chunk.CreateLocal(0, size);
|
sl@0
|
822 |
size = chunk.MaxSize(); // X86 has 4MB chunk size
|
sl@0
|
823 |
|
sl@0
|
824 |
// try and create a heap with a large offset - no room to make RHeap, should fail
|
sl@0
|
825 |
heap = UserHeap::OffsetChunkHeap(chunk, 0, size);
|
sl@0
|
826 |
test(heap==NULL);
|
sl@0
|
827 |
|
sl@0
|
828 |
// write some magic numbers into the offset-reserved area
|
sl@0
|
829 |
chunk.Adjust(offset);
|
sl@0
|
830 |
TUint8* reserved = chunk.Base();
|
sl@0
|
831 |
TUint8* limit = reserved + offset;
|
sl@0
|
832 |
for (; reserved<limit; reserved++)
|
sl@0
|
833 |
*reserved = magic;
|
sl@0
|
834 |
|
sl@0
|
835 |
// make a heap with an offset
|
sl@0
|
836 |
heap = UserHeap::OffsetChunkHeap(chunk, 0, offset);
|
sl@0
|
837 |
test(heap!=NULL);
|
sl@0
|
838 |
test(chunk.Base() + offset == (TUint8*)heap);
|
sl@0
|
839 |
TInt origsize = heap->Size();
|
sl@0
|
840 |
|
sl@0
|
841 |
// force the heap to grow to the maximum size by allocating 1kb blocks
|
sl@0
|
842 |
// and then allocating whatever is left. Check this really is the end
|
sl@0
|
843 |
// of the chunk.
|
sl@0
|
844 |
TUint8* temp = NULL;
|
sl@0
|
845 |
TUint8* last = NULL;
|
sl@0
|
846 |
do
|
sl@0
|
847 |
{
|
sl@0
|
848 |
last = temp;
|
sl@0
|
849 |
temp = (TUint8*)heap->Alloc(1024);
|
sl@0
|
850 |
}
|
sl@0
|
851 |
while (temp != NULL);
|
sl@0
|
852 |
TInt biggestblock, space;
|
sl@0
|
853 |
space = heap->Available(biggestblock);
|
sl@0
|
854 |
if (space>0)
|
sl@0
|
855 |
{
|
sl@0
|
856 |
last = (TUint8*)heap->Alloc(space);
|
sl@0
|
857 |
test(last!=NULL);
|
sl@0
|
858 |
// Check that the last allocation doesn't pass the end of the chunk
|
sl@0
|
859 |
test(last+space <= chunk.Base()+size);
|
sl@0
|
860 |
// but that it is within the alignment requirement, as less than this
|
sl@0
|
861 |
// would be short of the end
|
sl@0
|
862 |
test(last+space > chunk.Base()+size-RHeap::ECellAlignment);
|
sl@0
|
863 |
}
|
sl@0
|
864 |
else
|
sl@0
|
865 |
{
|
sl@0
|
866 |
test(last+1024 == chunk.Base()+size);
|
sl@0
|
867 |
}
|
sl@0
|
868 |
|
sl@0
|
869 |
// try writing at the top end of it to make sure it's backed
|
sl@0
|
870 |
*(chunk.Base()+size-1) = 1;
|
sl@0
|
871 |
|
sl@0
|
872 |
// test resetting the heap
|
sl@0
|
873 |
heap->Reset();
|
sl@0
|
874 |
test(origsize == heap->Size());
|
sl@0
|
875 |
|
sl@0
|
876 |
// check reducing the heap works
|
sl@0
|
877 |
last = (TUint8*)heap->Alloc(size>>2);
|
sl@0
|
878 |
TInt midsize = heap->Size();
|
sl@0
|
879 |
temp = (TUint8*)heap->Alloc(size>>2);
|
sl@0
|
880 |
heap->Free(temp);
|
sl@0
|
881 |
heap->Compress();
|
sl@0
|
882 |
test(midsize == heap->Size());
|
sl@0
|
883 |
heap->Free(last);
|
sl@0
|
884 |
heap->Compress();
|
sl@0
|
885 |
test(origsize == heap->Size());
|
sl@0
|
886 |
|
sl@0
|
887 |
// check the magic numbers are still there
|
sl@0
|
888 |
for (reserved = chunk.Base(); reserved<limit; reserved++)
|
sl@0
|
889 |
test(*reserved==magic);
|
sl@0
|
890 |
|
sl@0
|
891 |
heap->Close();
|
sl@0
|
892 |
}
|
sl@0
|
893 |
|
sl@0
|
894 |
|
sl@0
|
895 |
RSemaphore sem;
|
sl@0
|
896 |
LOCAL_C void syncThreads(TAny* anArg)
|
sl@0
|
897 |
//
|
sl@0
|
898 |
// get the threads both running at the same time
|
sl@0
|
899 |
//
|
sl@0
|
900 |
{
|
sl@0
|
901 |
if ((TInt)anArg==1)
|
sl@0
|
902 |
sem.Wait();
|
sl@0
|
903 |
else
|
sl@0
|
904 |
sem.Signal();
|
sl@0
|
905 |
}
|
sl@0
|
906 |
|
sl@0
|
907 |
TInt comeInNumber=0;
|
sl@0
|
908 |
LOCAL_C TInt sharedHeapTest1(TAny* anArg)
|
sl@0
|
909 |
//
|
sl@0
|
910 |
// Shared heap test thread.
|
sl@0
|
911 |
//
|
sl@0
|
912 |
{
|
sl@0
|
913 |
|
sl@0
|
914 |
RHeap* pH = (RHeap*)&User::Allocator();
|
sl@0
|
915 |
if (gHeapPtr && pH!=gHeapPtr)
|
sl@0
|
916 |
return(KErrGeneral);
|
sl@0
|
917 |
gHeapPtr2 = pH;
|
sl@0
|
918 |
|
sl@0
|
919 |
syncThreads(anArg);
|
sl@0
|
920 |
|
sl@0
|
921 |
TAny* a[0x100];
|
sl@0
|
922 |
TInt mod=((TInt)anArg)*3;
|
sl@0
|
923 |
|
sl@0
|
924 |
// Run in a timed loop, to ensure that we get some true concurrency
|
sl@0
|
925 |
RTimer timer;
|
sl@0
|
926 |
TTime now;
|
sl@0
|
927 |
TRequestStatus done;
|
sl@0
|
928 |
test(timer.CreateLocal()==KErrNone);
|
sl@0
|
929 |
now.HomeTime();
|
sl@0
|
930 |
timer.At(done,now+TTimeIntervalSeconds(20));
|
sl@0
|
931 |
|
sl@0
|
932 |
while (done==KRequestPending && comeInNumber!=(TInt)anArg)
|
sl@0
|
933 |
{
|
sl@0
|
934 |
TInt i=0;
|
sl@0
|
935 |
for (;i<0x100;i++)
|
sl@0
|
936 |
{
|
sl@0
|
937 |
a[i]=User::Alloc(0x10);
|
sl@0
|
938 |
test(a[i]!=NULL);
|
sl@0
|
939 |
Mem::Fill(a[i],0x10,(((TInt)anArg)<<4)|(i&0x0F)); // marker
|
sl@0
|
940 |
if ((i%mod)==0)
|
sl@0
|
941 |
pH->Check();
|
sl@0
|
942 |
}
|
sl@0
|
943 |
for (i=0;i<0x100;i++)
|
sl@0
|
944 |
{
|
sl@0
|
945 |
User::Free(a[i]);
|
sl@0
|
946 |
if ((i%mod)==0)
|
sl@0
|
947 |
pH->Check();
|
sl@0
|
948 |
}
|
sl@0
|
949 |
}
|
sl@0
|
950 |
timer.Cancel();
|
sl@0
|
951 |
return((TInt)anArg);
|
sl@0
|
952 |
}
|
sl@0
|
953 |
|
sl@0
|
954 |
LOCAL_C void bumpKernelGranularity()
|
sl@0
|
955 |
//
|
sl@0
|
956 |
// Push up the kernels granularities
|
sl@0
|
957 |
//
|
sl@0
|
958 |
{
|
sl@0
|
959 |
|
sl@0
|
960 |
RThread t[4];
|
sl@0
|
961 |
TInt r;
|
sl@0
|
962 |
TUint i=0;
|
sl@0
|
963 |
for (;i<4;i++)
|
sl@0
|
964 |
{
|
sl@0
|
965 |
TName n;
|
sl@0
|
966 |
n.Format(_L("Temp%d"),i);
|
sl@0
|
967 |
r=t[i].Create(n,sharedHeapTest1,KDefaultStackSize,NULL,NULL);
|
sl@0
|
968 |
test(r==KErrNone);
|
sl@0
|
969 |
}
|
sl@0
|
970 |
for (i=0;i<4;i++)
|
sl@0
|
971 |
{
|
sl@0
|
972 |
t[i].Kill(KErrNone);
|
sl@0
|
973 |
t[i].Close();
|
sl@0
|
974 |
}
|
sl@0
|
975 |
}
|
sl@0
|
976 |
|
sl@0
|
977 |
LOCAL_C void createTestThreads(TThreadFunction aFunction,RHeap* aHeap)
|
sl@0
|
978 |
//
|
sl@0
|
979 |
// Create two test threads using the supplied entry point and heap
|
sl@0
|
980 |
//
|
sl@0
|
981 |
{
|
sl@0
|
982 |
|
sl@0
|
983 |
|
sl@0
|
984 |
test.Next(_L("Create t1"));
|
sl@0
|
985 |
RThread t1;
|
sl@0
|
986 |
TInt r=t1.Create(_L("Shared1"),aFunction,KDefaultStackSize,aHeap,(TAny*)1);
|
sl@0
|
987 |
test(r==KErrNone);
|
sl@0
|
988 |
TRequestStatus tStat1;
|
sl@0
|
989 |
t1.Logon(tStat1);
|
sl@0
|
990 |
test(tStat1==KRequestPending);
|
sl@0
|
991 |
|
sl@0
|
992 |
test.Next(_L("Create t2"));
|
sl@0
|
993 |
RThread t2;
|
sl@0
|
994 |
r=t2.Create(_L("Shared2"),aFunction,KDefaultStackSize,aHeap,(TAny*)2);
|
sl@0
|
995 |
test(r==KErrNone);
|
sl@0
|
996 |
TRequestStatus tStat2;
|
sl@0
|
997 |
t2.Logon(tStat2);
|
sl@0
|
998 |
test(tStat2==KRequestPending);
|
sl@0
|
999 |
|
sl@0
|
1000 |
test.Next(_L("Wait for t1 or t2 - approx 20 seconds"));
|
sl@0
|
1001 |
t1.Resume();
|
sl@0
|
1002 |
t2.Resume();
|
sl@0
|
1003 |
User::WaitForRequest(tStat1,tStat2);
|
sl@0
|
1004 |
User::WaitForRequest(tStat1==KRequestPending ? tStat1 : tStat2);
|
sl@0
|
1005 |
test(tStat1==1);
|
sl@0
|
1006 |
test(tStat2==2);
|
sl@0
|
1007 |
CLOSE_AND_WAIT(t1);
|
sl@0
|
1008 |
CLOSE_AND_WAIT(t2);
|
sl@0
|
1009 |
}
|
sl@0
|
1010 |
|
sl@0
|
1011 |
LOCAL_C void SharedHeapTest1()
|
sl@0
|
1012 |
//
|
sl@0
|
1013 |
// Shared heap test using normal chunk heap
|
sl@0
|
1014 |
//
|
sl@0
|
1015 |
{
|
sl@0
|
1016 |
|
sl@0
|
1017 |
sem.CreateLocal(0); // create synchronisation semaphore
|
sl@0
|
1018 |
test.Start(_L("Create chunk to share"));
|
sl@0
|
1019 |
TPtrC sharedHeap=_L("SharedHeap");
|
sl@0
|
1020 |
TInt minsize = ((RHeap&)User::Allocator()).Size();
|
sl@0
|
1021 |
gHeapPtr=User::ChunkHeap(&sharedHeap,minsize/*0x20000*/,0x40000);
|
sl@0
|
1022 |
test(gHeapPtr!=NULL);
|
sl@0
|
1023 |
TInt count=gHeapPtr->Count();
|
sl@0
|
1024 |
createTestThreads(sharedHeapTest1,gHeapPtr);
|
sl@0
|
1025 |
test(count==gHeapPtr->Count());
|
sl@0
|
1026 |
gHeapPtr->Close();
|
sl@0
|
1027 |
test.End();
|
sl@0
|
1028 |
}
|
sl@0
|
1029 |
|
sl@0
|
1030 |
LOCAL_C void SharedHeapTest2()
|
sl@0
|
1031 |
//
|
sl@0
|
1032 |
// Shared heap test using the current threads heap. Can test kernel
|
sl@0
|
1033 |
// cleanup since granularity will have been handled by running
|
sl@0
|
1034 |
// SharedHeapTest2().
|
sl@0
|
1035 |
//
|
sl@0
|
1036 |
{
|
sl@0
|
1037 |
|
sl@0
|
1038 |
test.Start(_L("Current chunk to share"));
|
sl@0
|
1039 |
test.Next(_L("Bump up granularities"));
|
sl@0
|
1040 |
//
|
sl@0
|
1041 |
// First create a number of threads to push up the kernels granularities
|
sl@0
|
1042 |
//
|
sl@0
|
1043 |
bumpKernelGranularity();
|
sl@0
|
1044 |
//
|
sl@0
|
1045 |
__KHEAP_MARK;
|
sl@0
|
1046 |
gHeapPtr = (RHeap*)&User::Allocator();
|
sl@0
|
1047 |
TInt biggest1;
|
sl@0
|
1048 |
TInt avail1=gHeapPtr->Available(biggest1);
|
sl@0
|
1049 |
TInt size1=gHeapPtr->Size();
|
sl@0
|
1050 |
|
sl@0
|
1051 |
createTestThreads(sharedHeapTest1,NULL);
|
sl@0
|
1052 |
|
sl@0
|
1053 |
TInt biggest2;
|
sl@0
|
1054 |
TInt avail2=gHeapPtr->Available(biggest2);
|
sl@0
|
1055 |
TInt size2=gHeapPtr->Size();
|
sl@0
|
1056 |
test.Printf(_L("Before: size %d, %d available (biggest %d)\r\n"),size1,avail1,biggest1);
|
sl@0
|
1057 |
test.Printf(_L("After: size %d, %d available (biggest %d)\r\n"),size2,avail2,biggest2);
|
sl@0
|
1058 |
test((size1-avail1)==(size2-avail2)); // no leaks
|
sl@0
|
1059 |
if (avail1==biggest1) // if it was a single block of free space before
|
sl@0
|
1060 |
test(avail2==biggest2); // then it should still be a single block
|
sl@0
|
1061 |
__KHEAP_MARKEND;
|
sl@0
|
1062 |
test.End();
|
sl@0
|
1063 |
}
|
sl@0
|
1064 |
|
sl@0
|
1065 |
LOCAL_C void SharedHeapTest3()
|
sl@0
|
1066 |
//
|
sl@0
|
1067 |
// Shared heap test borrowing a thread's default heap and
|
sl@0
|
1068 |
// killing threads in different orders.
|
sl@0
|
1069 |
//
|
sl@0
|
1070 |
{
|
sl@0
|
1071 |
|
sl@0
|
1072 |
test.Start(_L("Create t1 whose heap will be shared"));
|
sl@0
|
1073 |
gHeapPtr = NULL;
|
sl@0
|
1074 |
RThread t1;
|
sl@0
|
1075 |
TInt r=t1.Create(_L("Owner_T1"),sharedHeapTest1,KDefaultStackSize,0x20000,0x40000,(TAny*)1);
|
sl@0
|
1076 |
test(r==KErrNone);
|
sl@0
|
1077 |
TRequestStatus tStat1;
|
sl@0
|
1078 |
t1.Logon(tStat1);
|
sl@0
|
1079 |
test(tStat1==KRequestPending);
|
sl@0
|
1080 |
t1.SetPriority(EPriorityMore); //t1 gets to wait on semaphore sem, before we start t2
|
sl@0
|
1081 |
t1.Resume();
|
sl@0
|
1082 |
test.Next(_L("Create t2 sharing t1's heap"));
|
sl@0
|
1083 |
RThread t2;
|
sl@0
|
1084 |
r=t2.Create(_L("Sharer_T2"),sharedHeapTest1,KDefaultStackSize,gHeapPtr2,(TAny*)2);
|
sl@0
|
1085 |
test(r==KErrNone);
|
sl@0
|
1086 |
TRequestStatus tStat2;
|
sl@0
|
1087 |
t2.Logon(tStat2);
|
sl@0
|
1088 |
test(tStat2==KRequestPending);
|
sl@0
|
1089 |
|
sl@0
|
1090 |
test.Next(_L("Get t1 to exit while t2 continues running"));
|
sl@0
|
1091 |
test(tStat1==KRequestPending);
|
sl@0
|
1092 |
test(tStat2==KRequestPending);
|
sl@0
|
1093 |
t1.SetPriority(EPriorityNormal); //back to the same priority as t2
|
sl@0
|
1094 |
t2.Resume();
|
sl@0
|
1095 |
test(tStat1==KRequestPending);
|
sl@0
|
1096 |
test(tStat2==KRequestPending);
|
sl@0
|
1097 |
comeInNumber=1;
|
sl@0
|
1098 |
test.Next(_L("Wait for t1"));
|
sl@0
|
1099 |
User::WaitForRequest(tStat1);
|
sl@0
|
1100 |
test(tStat1==1);
|
sl@0
|
1101 |
test(t1.ExitType()==EExitKill);
|
sl@0
|
1102 |
test(t1.ExitReason()==1);
|
sl@0
|
1103 |
test(tStat2==KRequestPending);
|
sl@0
|
1104 |
test(t2.ExitType()==EExitPending);
|
sl@0
|
1105 |
test.Next(_L("Wait for t2"));
|
sl@0
|
1106 |
User::WaitForRequest(tStat2);
|
sl@0
|
1107 |
test(tStat2==2);
|
sl@0
|
1108 |
test(t2.ExitType()==EExitKill);
|
sl@0
|
1109 |
test(t2.ExitReason()==2);
|
sl@0
|
1110 |
CLOSE_AND_WAIT(t2);
|
sl@0
|
1111 |
CLOSE_AND_WAIT(t1);
|
sl@0
|
1112 |
test.End();
|
sl@0
|
1113 |
}
|
sl@0
|
1114 |
|
sl@0
|
1115 |
LOCAL_C void TestAuto()
|
sl@0
|
1116 |
//
|
sl@0
|
1117 |
// Test heap auto expansion and compression
|
sl@0
|
1118 |
//
|
sl@0
|
1119 |
{
|
sl@0
|
1120 |
|
sl@0
|
1121 |
test.Start(_L("Create chunk to"));
|
sl@0
|
1122 |
TPtrC autoHeap=_L("AutoHeap");
|
sl@0
|
1123 |
gHeapPtr=User::ChunkHeap(&autoHeap,0x1800,0x6000);
|
sl@0
|
1124 |
test(gHeapPtr!=NULL);
|
sl@0
|
1125 |
TInt biggest;
|
sl@0
|
1126 |
TInt avail=gHeapPtr->Available(biggest);
|
sl@0
|
1127 |
test(avail==biggest);
|
sl@0
|
1128 |
TAny *p1=gHeapPtr->Alloc(biggest);
|
sl@0
|
1129 |
test(p1!=NULL);
|
sl@0
|
1130 |
TAny *p2=gHeapPtr->Alloc(biggest);
|
sl@0
|
1131 |
test(p2!=NULL);
|
sl@0
|
1132 |
TAny *p3=gHeapPtr->Alloc(biggest);
|
sl@0
|
1133 |
test(p3!=NULL);
|
sl@0
|
1134 |
TAny *p4=gHeapPtr->Alloc(biggest);
|
sl@0
|
1135 |
test(p4==NULL);
|
sl@0
|
1136 |
TInt comp=gHeapPtr->Compress();
|
sl@0
|
1137 |
test(comp==0);
|
sl@0
|
1138 |
gHeapPtr->Free(p2);
|
sl@0
|
1139 |
comp=gHeapPtr->Compress();
|
sl@0
|
1140 |
test(comp==0);
|
sl@0
|
1141 |
gHeapPtr->Free(p3);
|
sl@0
|
1142 |
comp=gHeapPtr->Compress();
|
sl@0
|
1143 |
// stop wins compiler warning of constant expression as KHeapShrinkHysRatio
|
sl@0
|
1144 |
// isn't constant for non-emulator builds but ROM 'patchdata'
|
sl@0
|
1145 |
#pragma warning(disable : 4127)
|
sl@0
|
1146 |
// When hysteresis value > 4.0*GrowBy then Free() calls
|
sl@0
|
1147 |
// won't shrink heap but normally will shrink heap
|
sl@0
|
1148 |
if (KHeapShrinkHysRatio <= 1024)
|
sl@0
|
1149 |
test(comp==0);
|
sl@0
|
1150 |
else
|
sl@0
|
1151 |
test(comp==0x4000);
|
sl@0
|
1152 |
#pragma warning(default : 4127)
|
sl@0
|
1153 |
gHeapPtr->Free(p1);
|
sl@0
|
1154 |
comp=gHeapPtr->Compress();
|
sl@0
|
1155 |
test(comp==0);
|
sl@0
|
1156 |
TInt biggest1;
|
sl@0
|
1157 |
TInt avail1=gHeapPtr->Available(biggest1);
|
sl@0
|
1158 |
test(avail1==avail1);
|
sl@0
|
1159 |
test(biggest==biggest1);
|
sl@0
|
1160 |
test(gHeapPtr->Count()==0);
|
sl@0
|
1161 |
gHeapPtr->Close();
|
sl@0
|
1162 |
test.End();
|
sl@0
|
1163 |
}
|
sl@0
|
1164 |
|
sl@0
|
1165 |
|
sl@0
|
1166 |
GLDEF_C TInt E32Main(void)
|
sl@0
|
1167 |
{
|
sl@0
|
1168 |
|
sl@0
|
1169 |
test.Title();
|
sl@0
|
1170 |
|
sl@0
|
1171 |
__KHEAP_MARK;
|
sl@0
|
1172 |
|
sl@0
|
1173 |
test.Start(_L("Test 1"));
|
sl@0
|
1174 |
UserHal::PageSizeInBytes(PageSize);
|
sl@0
|
1175 |
TestRHeap T;
|
sl@0
|
1176 |
T.Test1();
|
sl@0
|
1177 |
test.Next(_L("Test auto expand and compress"));
|
sl@0
|
1178 |
TestAuto();
|
sl@0
|
1179 |
test.Next(_L("Test 2"));
|
sl@0
|
1180 |
T.Test2();
|
sl@0
|
1181 |
test.Next(_L("Test 3"));
|
sl@0
|
1182 |
T.Test3();
|
sl@0
|
1183 |
test.Next(_L("Test 4"));
|
sl@0
|
1184 |
T.Test4();
|
sl@0
|
1185 |
test.Next(_L("Test 5"));
|
sl@0
|
1186 |
T.Test5();
|
sl@0
|
1187 |
test.Next(_L("Test 7"));
|
sl@0
|
1188 |
T.Test7();
|
sl@0
|
1189 |
test.Next(_L("Test 8"));
|
sl@0
|
1190 |
T.Test8();
|
sl@0
|
1191 |
test.Next(_L("Test CompressAll()"));
|
sl@0
|
1192 |
T.TestCompressAll();
|
sl@0
|
1193 |
test.Next(_L("Test offset heap"));
|
sl@0
|
1194 |
T.TestOffset();
|
sl@0
|
1195 |
test.Next(_L("Shared heap test 1"));
|
sl@0
|
1196 |
SharedHeapTest1();
|
sl@0
|
1197 |
test.Next(_L("Shared heap test 2"));
|
sl@0
|
1198 |
SharedHeapTest2();
|
sl@0
|
1199 |
test.Next(_L("Shared heap test 3"));
|
sl@0
|
1200 |
SharedHeapTest3();
|
sl@0
|
1201 |
sem.Close();
|
sl@0
|
1202 |
|
sl@0
|
1203 |
__KHEAP_CHECK(0);
|
sl@0
|
1204 |
__KHEAP_MARKEND;
|
sl@0
|
1205 |
//
|
sl@0
|
1206 |
test.End();
|
sl@0
|
1207 |
return(0);
|
sl@0
|
1208 |
}
|
sl@0
|
1209 |
|