os/kernelhwsrv/kernel/eka/nkernsmp/arm/ncutils.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// e32\nkernsmp\arm\ncutils.cpp
sl@0
    15
// 
sl@0
    16
//
sl@0
    17
sl@0
    18
#include <arm.h>
sl@0
    19
#include <arm_gic.h>
sl@0
    20
#include <arm_scu.h>
sl@0
    21
#include <arm_tmr.h>
sl@0
    22
#include <nk_irq.h>
sl@0
    23
sl@0
    24
extern "C" {
sl@0
    25
extern SVariantInterfaceBlock* VIB;
sl@0
    26
}
sl@0
    27
sl@0
    28
/******************************************************************************
sl@0
    29
 * Spin lock
sl@0
    30
 ******************************************************************************/
sl@0
    31
/** Create a spin lock
sl@0
    32
sl@0
    33
	@publishedPartner
sl@0
    34
	@released
sl@0
    35
*/
sl@0
    36
EXPORT_C TSpinLock::TSpinLock(TUint aOrder)
sl@0
    37
	{
sl@0
    38
	(void)aOrder;
sl@0
    39
	__NK_ASSERT_DEBUG( (aOrder==EOrderNone) || ((aOrder&0x7f)<0x20) );
sl@0
    40
	if (aOrder>=0x80 && aOrder!=EOrderNone)
sl@0
    41
		aOrder -= 0x60;
sl@0
    42
	aOrder |= 0xFF00u;
sl@0
    43
	iLock = TUint64(aOrder)<<48;	// byte 6 = 00-1F for interrupt, 20-3F for preemption
sl@0
    44
									// byte 7 = FF if not held
sl@0
    45
	}
sl@0
    46
sl@0
    47
sl@0
    48
/******************************************************************************
sl@0
    49
 * Read/Write Spin lock
sl@0
    50
 ******************************************************************************/
sl@0
    51
/** Create a spin lock
sl@0
    52
sl@0
    53
	@publishedPartner
sl@0
    54
	@released
sl@0
    55
*/
sl@0
    56
EXPORT_C TRWSpinLock::TRWSpinLock(TUint aOrder)
sl@0
    57
	{
sl@0
    58
	(void)aOrder;
sl@0
    59
	__NK_ASSERT_DEBUG( (aOrder==TSpinLock::EOrderNone) || ((aOrder&0x7f)<0x20) );
sl@0
    60
	if (aOrder>=0x80 && aOrder!=TSpinLock::EOrderNone)
sl@0
    61
		aOrder -= 0x60;
sl@0
    62
	aOrder |= 0xFF00u;
sl@0
    63
	iLock = TUint64(aOrder)<<48;	// byte 6 = 00-1F for interrupt, 20-3F for preemption
sl@0
    64
									// byte 7 = FF if not held
sl@0
    65
	}
sl@0
    66
sl@0
    67
sl@0
    68
sl@0
    69
#ifdef _DEBUG
sl@0
    70
void FastMutexNestAttempt()
sl@0
    71
	{
sl@0
    72
	FAULT();
sl@0
    73
	}
sl@0
    74
sl@0
    75
void FastMutexSignalError()
sl@0
    76
	{
sl@0
    77
	FAULT();
sl@0
    78
	}
sl@0
    79
#endif
sl@0
    80
sl@0
    81
void NKern::Init0(TAny* a)
sl@0
    82
	{
sl@0
    83
	__KTRACE_OPT(KBOOT,DEBUGPRINT("VIB=%08x", a));
sl@0
    84
	VIB = (SVariantInterfaceBlock*)a;
sl@0
    85
	__NK_ASSERT_ALWAYS(VIB && VIB->iVer==0 && VIB->iSize==sizeof(SVariantInterfaceBlock));
sl@0
    86
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iVer=%d iSize=%d", VIB->iVer, VIB->iSize));
sl@0
    87
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iMaxCpuClock=%08x %08x", I64HIGH(VIB->iMaxCpuClock), I64LOW(VIB->iMaxCpuClock)));
sl@0
    88
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iMaxTimerClock=%u", VIB->iMaxTimerClock));
sl@0
    89
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iScuAddr=%08x", VIB->iScuAddr));
sl@0
    90
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iGicDistAddr=%08x", VIB->iGicDistAddr));
sl@0
    91
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iGicCpuIfcAddr=%08x", VIB->iGicCpuIfcAddr));
sl@0
    92
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iLocalTimerAddr=%08x", VIB->iLocalTimerAddr));
sl@0
    93
sl@0
    94
	TScheduler& s = TheScheduler;
sl@0
    95
	s.i_ScuAddr = (TAny*)VIB->iScuAddr;
sl@0
    96
	s.i_GicDistAddr = (TAny*)VIB->iGicDistAddr;
sl@0
    97
	s.i_GicCpuIfcAddr = (TAny*)VIB->iGicCpuIfcAddr;
sl@0
    98
	s.i_LocalTimerAddr = (TAny*)VIB->iLocalTimerAddr;
sl@0
    99
	s.i_TimerMax = (TAny*)(VIB->iMaxTimerClock / 1);		// use prescaler value of 1
sl@0
   100
sl@0
   101
	TInt i;
sl@0
   102
	for (i=0; i<KMaxCpus; ++i)
sl@0
   103
		{
sl@0
   104
		TSubScheduler& ss = TheSubSchedulers[i];
sl@0
   105
		ss.i_TimerMultF = (TAny*)KMaxTUint32;
sl@0
   106
		ss.i_TimerMultI = (TAny*)0x01000000u;
sl@0
   107
		ss.i_CpuMult = (TAny*)KMaxTUint32;
sl@0
   108
		ss.i_LastTimerSet = (TAny*)KMaxTInt32;
sl@0
   109
		ss.i_TimestampError = (TAny*)0;
sl@0
   110
		ss.i_TimerGap = (TAny*)16;
sl@0
   111
		ss.i_MaxCorrection = (TAny*)64;
sl@0
   112
		VIB->iTimerMult[i] = (volatile STimerMult*)&ss.i_TimerMultF;
sl@0
   113
		VIB->iCpuMult[i] = (volatile TUint32*)&ss.i_CpuMult;
sl@0
   114
		}
sl@0
   115
	InterruptInit0();
sl@0
   116
	}
sl@0
   117
sl@0
   118
/** Register the global IRQ handler
sl@0
   119
	Called by the base port at boot time to bind the top level IRQ dispatcher
sl@0
   120
	to the ARM IRQ vector. Should not be called at any other time.
sl@0
   121
sl@0
   122
	The handler specified will be called in mode_irq with IRQs disabled and
sl@0
   123
	FIQs enabled. R0-R3, R12 and the return address from the interrupt will
sl@0
   124
	be on the top of the mode_irq stack. R14_irq will point to the kernel's
sl@0
   125
	IRQ postamble routine, which will run IDFCs and reschedule if necessary.
sl@0
   126
	R13_irq will point to the top of the mode_irq stack and will be 8-byte aligned.
sl@0
   127
	The handler should preserve all registers other than R0-R3, R12, R14_irq
sl@0
   128
	and should return to the address in R14_irq.
sl@0
   129
sl@0
   130
	@param	aHandler The address of the top level IRQ dispatcher routine
sl@0
   131
 */
sl@0
   132
EXPORT_C void Arm::SetIrqHandler(TLinAddr aHandler)
sl@0
   133
	{
sl@0
   134
	ArmInterruptInfo.iIrqHandler=aHandler;
sl@0
   135
	}
sl@0
   136
sl@0
   137
/** Register the global FIQ handler
sl@0
   138
	Called by the base port at boot time to bind the top level FIQ dispatcher
sl@0
   139
	to the ARM FIQ vector. Should not be called at any other time.
sl@0
   140
sl@0
   141
	The handler specified will be called in mode_fiq with both IRQs and FIQs
sl@0
   142
	disabled. The return address from the interrupt will be on the top of the
sl@0
   143
	mode_fiq stack. R14_fiq will point to the kernel's FIQ postamble routine,
sl@0
   144
	which will run IDFCs and reschedule if necessary.
sl@0
   145
	R13_fiq will point to the top of the mode_fiq stack and will be 4 modulo 8.
sl@0
   146
	The handler should preserve all registers other than R8_fiq-R12_fiq and
sl@0
   147
	R14_fiq	and should return to the address in R14_fiq.
sl@0
   148
sl@0
   149
	@param	aHandler The address of the top level FIQ dispatcher routine
sl@0
   150
 */
sl@0
   151
EXPORT_C void Arm::SetFiqHandler(TLinAddr aHandler)
sl@0
   152
	{
sl@0
   153
	ArmInterruptInfo.iFiqHandler=aHandler;
sl@0
   154
	}
sl@0
   155
sl@0
   156
extern void initialiseState(TInt aCpu, TSubScheduler* aSS);
sl@0
   157
sl@0
   158
void Arm::Init1Interrupts()
sl@0
   159
//
sl@0
   160
// Initialise the interrupt and exception vector handlers.
sl@0
   161
//
sl@0
   162
	{
sl@0
   163
	__KTRACE_OPT(KBOOT,DEBUGPRINT(">Arm::Init1Interrupts()"));
sl@0
   164
sl@0
   165
	TSubScheduler* ss = &TheSubSchedulers[0];
sl@0
   166
	initialiseState(0, ss);
sl@0
   167
sl@0
   168
	ArmLocalTimer& T = LOCAL_TIMER;
sl@0
   169
	T.iWatchdogDisable = E_ArmTmrWDD_1;
sl@0
   170
	T.iWatchdogDisable = E_ArmTmrWDD_2;
sl@0
   171
	T.iTimerCtrl = 0;
sl@0
   172
	T.iTimerIntStatus = E_ArmTmrIntStatus_Event;
sl@0
   173
	T.iWatchdogCtrl = 0;
sl@0
   174
	T.iWatchdogIntStatus = E_ArmTmrIntStatus_Event;
sl@0
   175
sl@0
   176
	NIrq::HwInit1();
sl@0
   177
sl@0
   178
	__KTRACE_OPT(KBOOT,DEBUGPRINT("<Arm::Init1Interrupts()"));
sl@0
   179
	}
sl@0
   180
sl@0
   181
extern "C" void __ArmVectorReset()
sl@0
   182
	{
sl@0
   183
	FAULT();
sl@0
   184
	}
sl@0
   185
sl@0
   186
extern "C" void __ArmVectorReserved()
sl@0
   187
	{
sl@0
   188
	FAULT();
sl@0
   189
	}
sl@0
   190
sl@0
   191
sl@0
   192
TInt BTraceDefaultControl(BTrace::TControl /*aFunction*/, TAny* /*aArg1*/, TAny* /*aArg2*/)
sl@0
   193
	{
sl@0
   194
	return KErrNotSupported;
sl@0
   195
	}
sl@0
   196
sl@0
   197
sl@0
   198
EXPORT_C void BTrace::SetHandlers(BTrace::THandler aNewHandler, BTrace::TControlFunction aNewControl, BTrace::THandler& aOldHandler, BTrace::TControlFunction& aOldControl)
sl@0
   199
	{
sl@0
   200
	BTrace::TControlFunction nc = aNewControl ? aNewControl : &BTraceDefaultControl;
sl@0
   201
	__ACQUIRE_BTRACE_LOCK();
sl@0
   202
	BTrace::THandler oldh = (BTrace::THandler)__e32_atomic_swp_ord_ptr(&BTraceData.iHandler, aNewHandler);
sl@0
   203
	BTrace::TControlFunction oldc = (BTrace::TControlFunction)__e32_atomic_swp_ord_ptr(&BTraceData.iControl, nc);
sl@0
   204
	__RELEASE_BTRACE_LOCK();
sl@0
   205
	aOldHandler = oldh;
sl@0
   206
	aOldControl = oldc;
sl@0
   207
	}
sl@0
   208
sl@0
   209
sl@0
   210
EXPORT_C TInt BTrace::SetFilter(TUint aCategory, TInt aValue)
sl@0
   211
	{
sl@0
   212
	if(!IsSupported(aCategory))
sl@0
   213
		return KErrNotSupported;
sl@0
   214
	TUint8* filter = BTraceData.iFilter+aCategory;
sl@0
   215
	TUint oldValue = *filter;
sl@0
   216
	if(TUint(aValue)<=1u)
sl@0
   217
		{
sl@0
   218
		oldValue = __e32_atomic_swp_ord8(filter, (TUint8)aValue);
sl@0
   219
		BTraceContext4(BTrace::EMetaTrace, BTrace::EMetaTraceFilterChange, (TUint8)aCategory | (aValue<<8));
sl@0
   220
		}
sl@0
   221
	return oldValue;
sl@0
   222
	}
sl@0
   223
sl@0
   224
EXPORT_C SCpuIdleHandler* NKern::CpuIdleHandler()
sl@0
   225
	{
sl@0
   226
	return &ArmInterruptInfo.iCpuIdleHandler;
sl@0
   227
	}
sl@0
   228
sl@0
   229
TUint32 NKern::IdleGenerationCount()
sl@0
   230
	{
sl@0
   231
	return TheScheduler.iIdleGenerationCount;
sl@0
   232
	}
sl@0
   233
sl@0
   234
void NKern::Idle()
sl@0
   235
	{
sl@0
   236
	TScheduler& s = TheScheduler;
sl@0
   237
	TSubScheduler& ss = SubScheduler();	// OK since idle thread locked to CPU
sl@0
   238
	TUint32 m = ss.iCpuMask;
sl@0
   239
	s.iIdleSpinLock.LockIrq();
sl@0
   240
	TUint32 orig_cpus_not_idle = __e32_atomic_and_acq32(&s.iCpusNotIdle, ~m);
sl@0
   241
	if (orig_cpus_not_idle == m)
sl@0
   242
		{
sl@0
   243
		// all CPUs idle
sl@0
   244
		if (!s.iIdleDfcs.IsEmpty())
sl@0
   245
			{
sl@0
   246
			__e32_atomic_ior_ord32(&s.iCpusNotIdle, m);	// we aren't idle after all
sl@0
   247
			s.iIdleGeneration ^= 1;
sl@0
   248
			++s.iIdleGenerationCount;
sl@0
   249
			s.iIdleSpillCpu = (TUint8)ss.iCpuNum;
sl@0
   250
			ss.iDfcs.MoveFrom(&s.iIdleDfcs);
sl@0
   251
			ss.iDfcPendingFlag = 1;
sl@0
   252
			s.iIdleSpinLock.UnlockIrq();
sl@0
   253
			NKern::Lock();
sl@0
   254
			NKern::Unlock();	// process idle DFCs here
sl@0
   255
			return;
sl@0
   256
			}
sl@0
   257
		}
sl@0
   258
sl@0
   259
	// postamble happens here - interrupts cannot be reenabled
sl@0
   260
	s.iIdleSpinLock.UnlockOnly();
sl@0
   261
	NKIdle(orig_cpus_not_idle & ~m);
sl@0
   262
sl@0
   263
	// interrupts have not been reenabled
sl@0
   264
	s.iIdleSpinLock.LockOnly();
sl@0
   265
	__e32_atomic_ior_ord32(&s.iCpusNotIdle, m);
sl@0
   266
	if (ArmInterruptInfo.iCpuIdleHandler.iPostambleRequired)
sl@0
   267
		{
sl@0
   268
		ArmInterruptInfo.iCpuIdleHandler.iPostambleRequired = FALSE;
sl@0
   269
		NKIdle(-1);
sl@0
   270
		}
sl@0
   271
	s.iIdleSpinLock.UnlockIrq();	// reenables interrupts
sl@0
   272
	}
sl@0
   273
sl@0
   274
sl@0
   275
EXPORT_C TUint32 NKern::CpuTimeMeasFreq()
sl@0
   276
	{
sl@0
   277
	return NKern::TimestampFrequency();
sl@0
   278
	}
sl@0
   279
sl@0
   280
sl@0
   281
/**	Converts a time interval in microseconds to thread timeslice ticks
sl@0
   282
sl@0
   283
	@param aMicroseconds time interval in microseconds.
sl@0
   284
	@return Number of thread timeslice ticks.  Non-integral results are rounded up.
sl@0
   285
sl@0
   286
 	@pre aMicroseconds should be nonnegative
sl@0
   287
	@pre any context
sl@0
   288
 */
sl@0
   289
EXPORT_C TInt NKern::TimesliceTicks(TUint32 aMicroseconds)
sl@0
   290
	{
sl@0
   291
	TUint32 mf32 = (TUint32)TheScheduler.i_TimerMax;
sl@0
   292
	TUint64 mf(mf32);
sl@0
   293
	TUint64 ticks = mf*TUint64(aMicroseconds) + UI64LIT(999999);
sl@0
   294
	ticks /= UI64LIT(1000000);
sl@0
   295
	if (ticks > TUint64(TInt(KMaxTInt)))
sl@0
   296
		return KMaxTInt;
sl@0
   297
	else
sl@0
   298
		return (TInt)ticks;
sl@0
   299
	}
sl@0
   300
sl@0
   301
sl@0
   302
/** Get the frequency of counter queried by NKern::Timestamp().
sl@0
   303
sl@0
   304
@publishedPartner
sl@0
   305
@prototype
sl@0
   306
*/
sl@0
   307
EXPORT_C TUint32 NKern::TimestampFrequency()
sl@0
   308
	{
sl@0
   309
	return (TUint32)TheScheduler.i_TimerMax;
sl@0
   310
	}
sl@0
   311