sl@0
|
1 |
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
// e32\memmodel\epoc\mmubase\mmubase.cpp
|
sl@0
|
15 |
//
|
sl@0
|
16 |
//
|
sl@0
|
17 |
|
sl@0
|
18 |
#include <memmodel/epoc/mmubase/mmubase.h>
|
sl@0
|
19 |
#include <mmubase.inl>
|
sl@0
|
20 |
#include <ramcache.h>
|
sl@0
|
21 |
#include <demand_paging.h>
|
sl@0
|
22 |
#include "cache_maintenance.h"
|
sl@0
|
23 |
#include "highrestimer.h"
|
sl@0
|
24 |
#include <defrag.h>
|
sl@0
|
25 |
#include <ramalloc.h>
|
sl@0
|
26 |
|
sl@0
|
27 |
|
sl@0
|
28 |
__ASSERT_COMPILE(sizeof(SPageInfo)==(1<<KPageInfoShift));
|
sl@0
|
29 |
|
sl@0
|
30 |
_LIT(KLitRamAlloc,"RamAlloc");
|
sl@0
|
31 |
_LIT(KLitHwChunk,"HwChunk");
|
sl@0
|
32 |
|
sl@0
|
33 |
|
sl@0
|
34 |
DMutex* MmuBase::HwChunkMutex;
|
sl@0
|
35 |
DMutex* MmuBase::RamAllocatorMutex;
|
sl@0
|
36 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
37 |
TInt Epoc::DriverAllocdPhysRam = 0;
|
sl@0
|
38 |
TInt Epoc::KernelMiscPages = 0;
|
sl@0
|
39 |
#endif
|
sl@0
|
40 |
|
sl@0
|
41 |
/******************************************************************************
|
sl@0
|
42 |
* Code common to all MMU memory models
|
sl@0
|
43 |
******************************************************************************/
|
sl@0
|
44 |
|
sl@0
|
45 |
const TInt KFreePagesStepSize=16;
|
sl@0
|
46 |
|
sl@0
|
47 |
void MmuBase::Panic(TPanic aPanic)
|
sl@0
|
48 |
{
|
sl@0
|
49 |
Kern::Fault("MMUBASE",aPanic);
|
sl@0
|
50 |
}
|
sl@0
|
51 |
|
sl@0
|
52 |
void SPageInfo::Lock()
|
sl@0
|
53 |
{
|
sl@0
|
54 |
CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::Lock");
|
sl@0
|
55 |
++iLockCount;
|
sl@0
|
56 |
if(!iLockCount)
|
sl@0
|
57 |
MmuBase::Panic(MmuBase::EPageLockedTooManyTimes);
|
sl@0
|
58 |
}
|
sl@0
|
59 |
|
sl@0
|
60 |
TInt SPageInfo::Unlock()
|
sl@0
|
61 |
{
|
sl@0
|
62 |
CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::Unlock");
|
sl@0
|
63 |
if(!iLockCount)
|
sl@0
|
64 |
MmuBase::Panic(MmuBase::EPageUnlockedTooManyTimes);
|
sl@0
|
65 |
return --iLockCount;
|
sl@0
|
66 |
}
|
sl@0
|
67 |
|
sl@0
|
68 |
#ifdef _DEBUG
|
sl@0
|
69 |
void SPageInfo::Set(TType aType, TAny* aOwner, TUint32 aOffset)
|
sl@0
|
70 |
{
|
sl@0
|
71 |
CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::Set");
|
sl@0
|
72 |
(TUint16&)iType = aType; // also sets iState to EStateNormal
|
sl@0
|
73 |
|
sl@0
|
74 |
iOwner = aOwner;
|
sl@0
|
75 |
iOffset = aOffset;
|
sl@0
|
76 |
iModifier = 0;
|
sl@0
|
77 |
}
|
sl@0
|
78 |
|
sl@0
|
79 |
void SPageInfo::Change(TType aType,TState aState)
|
sl@0
|
80 |
{
|
sl@0
|
81 |
CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::Change");
|
sl@0
|
82 |
iType = aType;
|
sl@0
|
83 |
iState = aState;
|
sl@0
|
84 |
iModifier = 0;
|
sl@0
|
85 |
}
|
sl@0
|
86 |
|
sl@0
|
87 |
void SPageInfo::SetState(TState aState)
|
sl@0
|
88 |
{
|
sl@0
|
89 |
CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::SetState");
|
sl@0
|
90 |
iState = aState;
|
sl@0
|
91 |
iModifier = 0;
|
sl@0
|
92 |
}
|
sl@0
|
93 |
|
sl@0
|
94 |
void SPageInfo::SetModifier(TAny* aModifier)
|
sl@0
|
95 |
{
|
sl@0
|
96 |
CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::SetModifier");
|
sl@0
|
97 |
iModifier = aModifier;
|
sl@0
|
98 |
}
|
sl@0
|
99 |
|
sl@0
|
100 |
TInt SPageInfo::CheckModified(TAny* aModifier)
|
sl@0
|
101 |
{
|
sl@0
|
102 |
CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::CheckModified");
|
sl@0
|
103 |
return iModifier!=aModifier;
|
sl@0
|
104 |
}
|
sl@0
|
105 |
|
sl@0
|
106 |
void SPageInfo::SetZone(TUint8 aZoneIndex)
|
sl@0
|
107 |
{
|
sl@0
|
108 |
__ASSERT_ALWAYS(K::Initialising,Kern::Fault("SPageInfo::SetZone",0));
|
sl@0
|
109 |
iZone = aZoneIndex;
|
sl@0
|
110 |
}
|
sl@0
|
111 |
|
sl@0
|
112 |
|
sl@0
|
113 |
#endif
|
sl@0
|
114 |
|
sl@0
|
115 |
MmuBase::MmuBase()
|
sl@0
|
116 |
: iRamCache(NULL), iDefrag(NULL)
|
sl@0
|
117 |
{
|
sl@0
|
118 |
}
|
sl@0
|
119 |
|
sl@0
|
120 |
TUint32 MmuBase::RoundToPageSize(TUint32 aSize)
|
sl@0
|
121 |
{
|
sl@0
|
122 |
return (aSize+KPageMask)&~KPageMask;
|
sl@0
|
123 |
}
|
sl@0
|
124 |
|
sl@0
|
125 |
TUint32 MmuBase::RoundToChunkSize(TUint32 aSize)
|
sl@0
|
126 |
{
|
sl@0
|
127 |
TUint32 mask=TheMmu->iChunkMask;
|
sl@0
|
128 |
return (aSize+mask)&~mask;
|
sl@0
|
129 |
}
|
sl@0
|
130 |
|
sl@0
|
131 |
TInt MmuBase::RoundUpRangeToPageSize(TUint32& aBase, TUint32& aSize)
|
sl@0
|
132 |
{
|
sl@0
|
133 |
TUint32 mask=KPageMask;
|
sl@0
|
134 |
TUint32 shift=KPageShift;
|
sl@0
|
135 |
TUint32 offset=aBase&mask;
|
sl@0
|
136 |
aBase&=~mask;
|
sl@0
|
137 |
aSize=(aSize+offset+mask)&~mask;
|
sl@0
|
138 |
return TInt(aSize>>shift);
|
sl@0
|
139 |
}
|
sl@0
|
140 |
|
sl@0
|
141 |
void MmuBase::Wait()
|
sl@0
|
142 |
{
|
sl@0
|
143 |
Kern::MutexWait(*RamAllocatorMutex);
|
sl@0
|
144 |
if (RamAllocatorMutex->iHoldCount==1)
|
sl@0
|
145 |
{
|
sl@0
|
146 |
MmuBase& m=*TheMmu;
|
sl@0
|
147 |
m.iInitialFreeMemory=Kern::FreeRamInBytes();
|
sl@0
|
148 |
m.iAllocFailed=EFalse;
|
sl@0
|
149 |
}
|
sl@0
|
150 |
}
|
sl@0
|
151 |
|
sl@0
|
152 |
void MmuBase::Signal()
|
sl@0
|
153 |
{
|
sl@0
|
154 |
if (RamAllocatorMutex->iHoldCount>1)
|
sl@0
|
155 |
{
|
sl@0
|
156 |
Kern::MutexSignal(*RamAllocatorMutex);
|
sl@0
|
157 |
return;
|
sl@0
|
158 |
}
|
sl@0
|
159 |
MmuBase& m=*TheMmu;
|
sl@0
|
160 |
TInt initial=m.iInitialFreeMemory;
|
sl@0
|
161 |
TBool failed=m.iAllocFailed;
|
sl@0
|
162 |
TInt final=Kern::FreeRamInBytes();
|
sl@0
|
163 |
Kern::MutexSignal(*RamAllocatorMutex);
|
sl@0
|
164 |
K::CheckFreeMemoryLevel(initial,final,failed);
|
sl@0
|
165 |
}
|
sl@0
|
166 |
|
sl@0
|
167 |
void MmuBase::WaitHwChunk()
|
sl@0
|
168 |
{
|
sl@0
|
169 |
Kern::MutexWait(*HwChunkMutex);
|
sl@0
|
170 |
}
|
sl@0
|
171 |
|
sl@0
|
172 |
void MmuBase::SignalHwChunk()
|
sl@0
|
173 |
{
|
sl@0
|
174 |
Kern::MutexSignal(*HwChunkMutex);
|
sl@0
|
175 |
}
|
sl@0
|
176 |
|
sl@0
|
177 |
|
sl@0
|
178 |
void MmuBase::MapRamPage(TLinAddr aAddr, TPhysAddr aPage, TPte aPtePerm)
|
sl@0
|
179 |
{
|
sl@0
|
180 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MapRamPage %08x@%08x perm %08x", aPage, aAddr, aPtePerm));
|
sl@0
|
181 |
TInt ptid=PageTableId(aAddr);
|
sl@0
|
182 |
NKern::LockSystem();
|
sl@0
|
183 |
MapRamPages(ptid,SPageInfo::EInvalid,0,aAddr,&aPage,1,aPtePerm);
|
sl@0
|
184 |
NKern::UnlockSystem();
|
sl@0
|
185 |
}
|
sl@0
|
186 |
|
sl@0
|
187 |
//
|
sl@0
|
188 |
// Unmap and free pages from a global area
|
sl@0
|
189 |
//
|
sl@0
|
190 |
void MmuBase::UnmapAndFree(TLinAddr aAddr, TInt aNumPages)
|
sl@0
|
191 |
{
|
sl@0
|
192 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::UnmapAndFree(%08x,%d)",aAddr,aNumPages));
|
sl@0
|
193 |
while(aNumPages)
|
sl@0
|
194 |
{
|
sl@0
|
195 |
TInt pt_np=(iChunkSize-(aAddr&iChunkMask))>>iPageShift;
|
sl@0
|
196 |
TInt np=Min(aNumPages,pt_np);
|
sl@0
|
197 |
aNumPages-=np;
|
sl@0
|
198 |
TInt id=PageTableId(aAddr);
|
sl@0
|
199 |
if (id>=0)
|
sl@0
|
200 |
{
|
sl@0
|
201 |
while(np)
|
sl@0
|
202 |
{
|
sl@0
|
203 |
TInt np2=Min(np,KFreePagesStepSize);
|
sl@0
|
204 |
TPhysAddr phys[KFreePagesStepSize];
|
sl@0
|
205 |
TInt nptes;
|
sl@0
|
206 |
TInt nfree;
|
sl@0
|
207 |
NKern::LockSystem();
|
sl@0
|
208 |
UnmapPages(id,aAddr,np2,phys,true,nptes,nfree,NULL);
|
sl@0
|
209 |
NKern::UnlockSystem();
|
sl@0
|
210 |
if (nfree)
|
sl@0
|
211 |
{
|
sl@0
|
212 |
if (iDecommitThreshold)
|
sl@0
|
213 |
CacheMaintenanceOnDecommit(phys, nfree);
|
sl@0
|
214 |
iRamPageAllocator->FreeRamPages(phys,nfree,EPageFixed);
|
sl@0
|
215 |
}
|
sl@0
|
216 |
np-=np2;
|
sl@0
|
217 |
aAddr+=(np2<<iPageShift);
|
sl@0
|
218 |
}
|
sl@0
|
219 |
}
|
sl@0
|
220 |
else
|
sl@0
|
221 |
{
|
sl@0
|
222 |
aAddr+=(np<<iPageShift);
|
sl@0
|
223 |
}
|
sl@0
|
224 |
}
|
sl@0
|
225 |
}
|
sl@0
|
226 |
|
sl@0
|
227 |
void MmuBase::FreePages(TPhysAddr* aPageList, TInt aCount, TZonePageType aPageType)
|
sl@0
|
228 |
{
|
sl@0
|
229 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::FreePages(%08x,%d)",aPageList,aCount));
|
sl@0
|
230 |
if (!aCount)
|
sl@0
|
231 |
return;
|
sl@0
|
232 |
TBool sync_decommit = (TUint(aCount)<iDecommitThreshold);
|
sl@0
|
233 |
TPhysAddr* ppa=aPageList;
|
sl@0
|
234 |
TPhysAddr* ppaE=ppa+aCount;
|
sl@0
|
235 |
NKern::LockSystem();
|
sl@0
|
236 |
while (ppa<ppaE)
|
sl@0
|
237 |
{
|
sl@0
|
238 |
TPhysAddr pa=*ppa++;
|
sl@0
|
239 |
SPageInfo* pi=SPageInfo::SafeFromPhysAddr(pa);
|
sl@0
|
240 |
if (pi)
|
sl@0
|
241 |
{
|
sl@0
|
242 |
pi->SetUnused();
|
sl@0
|
243 |
if (pi->LockCount())
|
sl@0
|
244 |
ppa[-1]=KPhysAddrInvalid; // don't free page if it's locked down
|
sl@0
|
245 |
else if (sync_decommit)
|
sl@0
|
246 |
{
|
sl@0
|
247 |
NKern::UnlockSystem();
|
sl@0
|
248 |
CacheMaintenanceOnDecommit(pa);
|
sl@0
|
249 |
NKern::LockSystem();
|
sl@0
|
250 |
}
|
sl@0
|
251 |
}
|
sl@0
|
252 |
if (!sync_decommit)
|
sl@0
|
253 |
NKern::FlashSystem();
|
sl@0
|
254 |
}
|
sl@0
|
255 |
NKern::UnlockSystem();
|
sl@0
|
256 |
if (iDecommitThreshold && !sync_decommit)
|
sl@0
|
257 |
CacheMaintenance::SyncPhysicalCache_All();
|
sl@0
|
258 |
iRamPageAllocator->FreeRamPages(aPageList,aCount, aPageType);
|
sl@0
|
259 |
}
|
sl@0
|
260 |
|
sl@0
|
261 |
TInt MmuBase::InitPageTableInfo(TInt aId)
|
sl@0
|
262 |
{
|
sl@0
|
263 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::InitPageTableInfo(%x)",aId));
|
sl@0
|
264 |
TInt ptb=aId>>iPtBlockShift;
|
sl@0
|
265 |
if (++iPtBlockCount[ptb]==1)
|
sl@0
|
266 |
{
|
sl@0
|
267 |
// expand page table info array
|
sl@0
|
268 |
TPhysAddr pagePhys;
|
sl@0
|
269 |
if (AllocRamPages(&pagePhys,1, EPageFixed)!=KErrNone)
|
sl@0
|
270 |
{
|
sl@0
|
271 |
__KTRACE_OPT(KMMU,Kern::Printf("Unable to allocate page"));
|
sl@0
|
272 |
iPtBlockCount[ptb]=0;
|
sl@0
|
273 |
iAllocFailed=ETrue;
|
sl@0
|
274 |
return KErrNoMemory;
|
sl@0
|
275 |
}
|
sl@0
|
276 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
277 |
BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscAlloc, 1<<KPageShift);
|
sl@0
|
278 |
++Epoc::KernelMiscPages;
|
sl@0
|
279 |
#endif
|
sl@0
|
280 |
TLinAddr pil=PtInfoBlockLinAddr(ptb);
|
sl@0
|
281 |
NKern::LockSystem();
|
sl@0
|
282 |
SPageInfo::FromPhysAddr(pagePhys)->SetPtInfo(ptb);
|
sl@0
|
283 |
NKern::UnlockSystem();
|
sl@0
|
284 |
MapRamPage(pil, pagePhys, iPtInfoPtePerm);
|
sl@0
|
285 |
memclr((TAny*)pil, iPageSize);
|
sl@0
|
286 |
}
|
sl@0
|
287 |
return KErrNone;
|
sl@0
|
288 |
}
|
sl@0
|
289 |
|
sl@0
|
290 |
TInt MmuBase::DoAllocPageTable(TPhysAddr& aPhysAddr)
|
sl@0
|
291 |
//
|
sl@0
|
292 |
// Allocate a new page table but don't map it.
|
sl@0
|
293 |
// Return page table id and page number/phys address of new page if any.
|
sl@0
|
294 |
//
|
sl@0
|
295 |
{
|
sl@0
|
296 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::DoAllocPageTable()"));
|
sl@0
|
297 |
#ifdef _DEBUG
|
sl@0
|
298 |
if(K::CheckForSimulatedAllocFail())
|
sl@0
|
299 |
return KErrNoMemory;
|
sl@0
|
300 |
#endif
|
sl@0
|
301 |
TInt id=iPageTableAllocator?iPageTableAllocator->Alloc():-1;
|
sl@0
|
302 |
if (id<0)
|
sl@0
|
303 |
{
|
sl@0
|
304 |
// need to allocate a new page
|
sl@0
|
305 |
if (AllocRamPages(&aPhysAddr,1, EPageFixed)!=KErrNone)
|
sl@0
|
306 |
{
|
sl@0
|
307 |
__KTRACE_OPT(KMMU,Kern::Printf("Unable to allocate page"));
|
sl@0
|
308 |
iAllocFailed=ETrue;
|
sl@0
|
309 |
return KErrNoMemory;
|
sl@0
|
310 |
}
|
sl@0
|
311 |
|
sl@0
|
312 |
// allocate an ID for the new page
|
sl@0
|
313 |
id=iPageTableLinearAllocator->Alloc();
|
sl@0
|
314 |
if (id>=0)
|
sl@0
|
315 |
{
|
sl@0
|
316 |
id<<=iPtClusterShift;
|
sl@0
|
317 |
__KTRACE_OPT(KMMU,Kern::Printf("Allocated ID %04x",id));
|
sl@0
|
318 |
}
|
sl@0
|
319 |
if (id<0 || InitPageTableInfo(id)!=KErrNone)
|
sl@0
|
320 |
{
|
sl@0
|
321 |
__KTRACE_OPT(KMMU,Kern::Printf("Unable to allocate page table info"));
|
sl@0
|
322 |
iPageTableLinearAllocator->Free(id>>iPtClusterShift);
|
sl@0
|
323 |
if (iDecommitThreshold)
|
sl@0
|
324 |
CacheMaintenanceOnDecommit(aPhysAddr);
|
sl@0
|
325 |
|
sl@0
|
326 |
iRamPageAllocator->FreeRamPage(aPhysAddr, EPageFixed);
|
sl@0
|
327 |
iAllocFailed=ETrue;
|
sl@0
|
328 |
return KErrNoMemory;
|
sl@0
|
329 |
}
|
sl@0
|
330 |
|
sl@0
|
331 |
// Set up page info for new page
|
sl@0
|
332 |
NKern::LockSystem();
|
sl@0
|
333 |
SPageInfo::FromPhysAddr(aPhysAddr)->SetPageTable(id>>iPtClusterShift);
|
sl@0
|
334 |
NKern::UnlockSystem();
|
sl@0
|
335 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
336 |
BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscAlloc, 1<<KPageShift);
|
sl@0
|
337 |
++Epoc::KernelMiscPages;
|
sl@0
|
338 |
#endif
|
sl@0
|
339 |
// mark all subpages other than first as free for use as page tables
|
sl@0
|
340 |
if (iPtClusterSize>1)
|
sl@0
|
341 |
iPageTableAllocator->Free(id+1,iPtClusterSize-1);
|
sl@0
|
342 |
}
|
sl@0
|
343 |
else
|
sl@0
|
344 |
aPhysAddr=KPhysAddrInvalid;
|
sl@0
|
345 |
|
sl@0
|
346 |
__KTRACE_OPT(KMMU,Kern::Printf("DoAllocPageTable returns %d (%08x)",id,aPhysAddr));
|
sl@0
|
347 |
PtInfo(id).SetUnused();
|
sl@0
|
348 |
return id;
|
sl@0
|
349 |
}
|
sl@0
|
350 |
|
sl@0
|
351 |
TInt MmuBase::MapPageTable(TInt aId, TPhysAddr aPhysAddr, TBool aAllowExpand)
|
sl@0
|
352 |
{
|
sl@0
|
353 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MapPageTable(%d,%08x)",aId,aPhysAddr));
|
sl@0
|
354 |
TLinAddr ptLin=PageTableLinAddr(aId);
|
sl@0
|
355 |
TInt ptg=aId>>iPtGroupShift;
|
sl@0
|
356 |
if (++iPtGroupCount[ptg]==1)
|
sl@0
|
357 |
{
|
sl@0
|
358 |
// need to allocate a new page table
|
sl@0
|
359 |
__ASSERT_ALWAYS(aAllowExpand, Panic(EMapPageTableBadExpand));
|
sl@0
|
360 |
TPhysAddr xptPhys;
|
sl@0
|
361 |
TInt xptid=DoAllocPageTable(xptPhys);
|
sl@0
|
362 |
if (xptid<0)
|
sl@0
|
363 |
{
|
sl@0
|
364 |
__KTRACE_OPT(KMMU,Kern::Printf("Unable to allocate extra page table"));
|
sl@0
|
365 |
iPtGroupCount[ptg]=0;
|
sl@0
|
366 |
return KErrNoMemory;
|
sl@0
|
367 |
}
|
sl@0
|
368 |
if (xptPhys==KPhysAddrInvalid)
|
sl@0
|
369 |
xptPhys=aPhysAddr + ((xptid-aId)<<iPageTableShift);
|
sl@0
|
370 |
BootstrapPageTable(xptid, xptPhys, aId, aPhysAddr); // initialise XPT and map it
|
sl@0
|
371 |
}
|
sl@0
|
372 |
else
|
sl@0
|
373 |
MapRamPage(ptLin, aPhysAddr, iPtPtePerm);
|
sl@0
|
374 |
return KErrNone;
|
sl@0
|
375 |
}
|
sl@0
|
376 |
|
sl@0
|
377 |
TInt MmuBase::AllocPageTable()
|
sl@0
|
378 |
//
|
sl@0
|
379 |
// Allocate a new page table, mapped at the correct linear address.
|
sl@0
|
380 |
// Clear all entries to Not Present. Return page table id.
|
sl@0
|
381 |
//
|
sl@0
|
382 |
{
|
sl@0
|
383 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::AllocPageTable()"));
|
sl@0
|
384 |
__ASSERT_MUTEX(MmuBase::RamAllocatorMutex);
|
sl@0
|
385 |
|
sl@0
|
386 |
TPhysAddr ptPhys;
|
sl@0
|
387 |
TInt id=DoAllocPageTable(ptPhys);
|
sl@0
|
388 |
if (id<0)
|
sl@0
|
389 |
return KErrNoMemory;
|
sl@0
|
390 |
if (ptPhys!=KPhysAddrInvalid)
|
sl@0
|
391 |
{
|
sl@0
|
392 |
TInt r=MapPageTable(id,ptPhys);
|
sl@0
|
393 |
if (r!=KErrNone)
|
sl@0
|
394 |
{
|
sl@0
|
395 |
DoFreePageTable(id);
|
sl@0
|
396 |
SPageInfo* pi=SPageInfo::FromPhysAddr(ptPhys);
|
sl@0
|
397 |
NKern::LockSystem();
|
sl@0
|
398 |
pi->SetUnused();
|
sl@0
|
399 |
NKern::UnlockSystem();
|
sl@0
|
400 |
if (iDecommitThreshold)
|
sl@0
|
401 |
CacheMaintenanceOnDecommit(ptPhys);
|
sl@0
|
402 |
|
sl@0
|
403 |
iRamPageAllocator->FreeRamPage(ptPhys, EPageFixed);
|
sl@0
|
404 |
return r;
|
sl@0
|
405 |
}
|
sl@0
|
406 |
}
|
sl@0
|
407 |
ClearPageTable(id);
|
sl@0
|
408 |
__KTRACE_OPT(KMMU,Kern::Printf("AllocPageTable returns %d",id));
|
sl@0
|
409 |
return id;
|
sl@0
|
410 |
}
|
sl@0
|
411 |
|
sl@0
|
412 |
TBool MmuBase::DoFreePageTable(TInt aId)
|
sl@0
|
413 |
//
|
sl@0
|
414 |
// Free an empty page table. We assume that all pages mapped by the page table have
|
sl@0
|
415 |
// already been unmapped and freed.
|
sl@0
|
416 |
//
|
sl@0
|
417 |
{
|
sl@0
|
418 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::DoFreePageTable(%d)",aId));
|
sl@0
|
419 |
SPageTableInfo& s=PtInfo(aId);
|
sl@0
|
420 |
__NK_ASSERT_DEBUG(!s.iCount); // shouldn't have any pages mapped
|
sl@0
|
421 |
s.SetUnused();
|
sl@0
|
422 |
|
sl@0
|
423 |
TInt id=aId &~ iPtClusterMask;
|
sl@0
|
424 |
if (iPageTableAllocator)
|
sl@0
|
425 |
{
|
sl@0
|
426 |
iPageTableAllocator->Free(aId);
|
sl@0
|
427 |
if (iPageTableAllocator->NotFree(id,iPtClusterSize))
|
sl@0
|
428 |
{
|
sl@0
|
429 |
// some subpages still in use
|
sl@0
|
430 |
return ETrue;
|
sl@0
|
431 |
}
|
sl@0
|
432 |
__KTRACE_OPT(KMMU,Kern::Printf("Freeing whole page, id=%d",id));
|
sl@0
|
433 |
// whole page is now free
|
sl@0
|
434 |
// remove it from the page table allocator
|
sl@0
|
435 |
iPageTableAllocator->Alloc(id,iPtClusterSize);
|
sl@0
|
436 |
}
|
sl@0
|
437 |
|
sl@0
|
438 |
TInt ptb=aId>>iPtBlockShift;
|
sl@0
|
439 |
if (--iPtBlockCount[ptb]==0)
|
sl@0
|
440 |
{
|
sl@0
|
441 |
// shrink page table info array
|
sl@0
|
442 |
TLinAddr pil=PtInfoBlockLinAddr(ptb);
|
sl@0
|
443 |
UnmapAndFree(pil,1); // remove PTE, null page info, free page
|
sl@0
|
444 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
445 |
BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscFree, 1<<KPageShift);
|
sl@0
|
446 |
--Epoc::KernelMiscPages;
|
sl@0
|
447 |
#endif
|
sl@0
|
448 |
}
|
sl@0
|
449 |
|
sl@0
|
450 |
// free the page table linear address
|
sl@0
|
451 |
iPageTableLinearAllocator->Free(id>>iPtClusterShift);
|
sl@0
|
452 |
return EFalse;
|
sl@0
|
453 |
}
|
sl@0
|
454 |
|
sl@0
|
455 |
void MmuBase::FreePageTable(TInt aId)
|
sl@0
|
456 |
//
|
sl@0
|
457 |
// Free an empty page table. We assume that all pages mapped by the page table have
|
sl@0
|
458 |
// already been unmapped and freed.
|
sl@0
|
459 |
//
|
sl@0
|
460 |
{
|
sl@0
|
461 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::FreePageTable(%d)",aId));
|
sl@0
|
462 |
if (DoFreePageTable(aId))
|
sl@0
|
463 |
return;
|
sl@0
|
464 |
|
sl@0
|
465 |
TInt id=aId &~ iPtClusterMask;
|
sl@0
|
466 |
|
sl@0
|
467 |
// calculate linear address of page
|
sl@0
|
468 |
TLinAddr ptLin=PageTableLinAddr(id);
|
sl@0
|
469 |
__KTRACE_OPT(KMMU,Kern::Printf("Page lin %08x",ptLin));
|
sl@0
|
470 |
|
sl@0
|
471 |
// unmap and free the page
|
sl@0
|
472 |
UnmapAndFree(ptLin,1);
|
sl@0
|
473 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
474 |
BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscFree, 1<<KPageShift);
|
sl@0
|
475 |
--Epoc::KernelMiscPages;
|
sl@0
|
476 |
#endif
|
sl@0
|
477 |
|
sl@0
|
478 |
TInt ptg=aId>>iPtGroupShift;
|
sl@0
|
479 |
--iPtGroupCount[ptg];
|
sl@0
|
480 |
// don't shrink the page table mapping for now
|
sl@0
|
481 |
}
|
sl@0
|
482 |
|
sl@0
|
483 |
TInt MmuBase::AllocPhysicalRam(TInt aSize, TPhysAddr& aPhysAddr, TInt aAlign)
|
sl@0
|
484 |
{
|
sl@0
|
485 |
__KTRACE_OPT(KMMU,Kern::Printf("Mmu::AllocPhysicalRam() size=%x align=%d",aSize,aAlign));
|
sl@0
|
486 |
TInt r=AllocContiguousRam(aSize, aPhysAddr, EPageFixed, aAlign);
|
sl@0
|
487 |
if (r!=KErrNone)
|
sl@0
|
488 |
{
|
sl@0
|
489 |
iAllocFailed=ETrue;
|
sl@0
|
490 |
return r;
|
sl@0
|
491 |
}
|
sl@0
|
492 |
TInt n=TInt(TUint32(aSize+iPageMask)>>iPageShift);
|
sl@0
|
493 |
SPageInfo* pI=SPageInfo::FromPhysAddr(aPhysAddr);
|
sl@0
|
494 |
SPageInfo* pE=pI+n;
|
sl@0
|
495 |
for (; pI<pE; ++pI)
|
sl@0
|
496 |
{
|
sl@0
|
497 |
NKern::LockSystem();
|
sl@0
|
498 |
__NK_ASSERT_DEBUG(pI->Type()==SPageInfo::EUnused);
|
sl@0
|
499 |
pI->Lock();
|
sl@0
|
500 |
NKern::UnlockSystem();
|
sl@0
|
501 |
}
|
sl@0
|
502 |
return KErrNone;
|
sl@0
|
503 |
}
|
sl@0
|
504 |
|
sl@0
|
505 |
/** Attempt to allocate a contiguous block of RAM from the specified zone.
|
sl@0
|
506 |
|
sl@0
|
507 |
@param aZoneIdList An array of the IDs of the RAM zones to allocate from.
|
sl@0
|
508 |
@param aZoneIdCount The number of RAM zone IDs listed in aZoneIdList.
|
sl@0
|
509 |
@param aSize The number of contiguous bytes to allocate
|
sl@0
|
510 |
@param aPhysAddr The physical address of the start of the contiguous block of
|
sl@0
|
511 |
memory allocated
|
sl@0
|
512 |
@param aAlign Required alignment
|
sl@0
|
513 |
@return KErrNone on success, KErrArgument if zone doesn't exist or aSize is larger than the
|
sl@0
|
514 |
size of the RAM zone or KErrNoMemory when the RAM zone is too full.
|
sl@0
|
515 |
*/
|
sl@0
|
516 |
TInt MmuBase::ZoneAllocPhysicalRam(TUint* aZoneIdList, TUint aZoneIdCount, TInt aSize, TPhysAddr& aPhysAddr, TInt aAlign)
|
sl@0
|
517 |
{
|
sl@0
|
518 |
__KTRACE_OPT(KMMU,Kern::Printf("Mmu::ZoneAllocPhysicalRam() size=0x%x align=%d", aSize, aAlign));
|
sl@0
|
519 |
TInt r = ZoneAllocContiguousRam(aZoneIdList, aZoneIdCount, aSize, aPhysAddr, EPageFixed, aAlign);
|
sl@0
|
520 |
if (r!=KErrNone)
|
sl@0
|
521 |
{
|
sl@0
|
522 |
iAllocFailed=ETrue;
|
sl@0
|
523 |
return r;
|
sl@0
|
524 |
}
|
sl@0
|
525 |
TInt n=TInt(TUint32(aSize+iPageMask)>>iPageShift);
|
sl@0
|
526 |
SPageInfo* pI=SPageInfo::FromPhysAddr(aPhysAddr);
|
sl@0
|
527 |
SPageInfo* pE=pI+n;
|
sl@0
|
528 |
for (; pI<pE; ++pI)
|
sl@0
|
529 |
{
|
sl@0
|
530 |
NKern::LockSystem();
|
sl@0
|
531 |
__NK_ASSERT_DEBUG(pI->Type()==SPageInfo::EUnused);
|
sl@0
|
532 |
pI->Lock();
|
sl@0
|
533 |
NKern::UnlockSystem();
|
sl@0
|
534 |
}
|
sl@0
|
535 |
return KErrNone;
|
sl@0
|
536 |
}
|
sl@0
|
537 |
|
sl@0
|
538 |
|
sl@0
|
539 |
/** Attempt to allocate discontiguous RAM pages.
|
sl@0
|
540 |
|
sl@0
|
541 |
@param aNumPages The number of pages to allocate.
|
sl@0
|
542 |
@param aPageList Pointer to an array where each element will be the physical
|
sl@0
|
543 |
address of each page allocated.
|
sl@0
|
544 |
@return KErrNone on success, KErrNoMemory otherwise
|
sl@0
|
545 |
*/
|
sl@0
|
546 |
TInt MmuBase::AllocPhysicalRam(TInt aNumPages, TPhysAddr* aPageList)
|
sl@0
|
547 |
{
|
sl@0
|
548 |
__KTRACE_OPT(KMMU,Kern::Printf("Mmu::AllocPhysicalRam() numpages=%x", aNumPages));
|
sl@0
|
549 |
TInt r = AllocRamPages(aPageList, aNumPages, EPageFixed);
|
sl@0
|
550 |
if (r!=KErrNone)
|
sl@0
|
551 |
{
|
sl@0
|
552 |
iAllocFailed=ETrue;
|
sl@0
|
553 |
return r;
|
sl@0
|
554 |
}
|
sl@0
|
555 |
TPhysAddr* pageEnd = aPageList + aNumPages;
|
sl@0
|
556 |
for (TPhysAddr* page = aPageList; page < pageEnd; page++)
|
sl@0
|
557 |
{
|
sl@0
|
558 |
SPageInfo* pageInfo = SPageInfo::FromPhysAddr(*page);
|
sl@0
|
559 |
NKern::LockSystem();
|
sl@0
|
560 |
__NK_ASSERT_DEBUG(pageInfo->Type() == SPageInfo::EUnused);
|
sl@0
|
561 |
pageInfo->Lock();
|
sl@0
|
562 |
NKern::UnlockSystem();
|
sl@0
|
563 |
}
|
sl@0
|
564 |
return KErrNone;
|
sl@0
|
565 |
}
|
sl@0
|
566 |
|
sl@0
|
567 |
|
sl@0
|
568 |
/** Attempt to allocate discontiguous RAM pages from the specified RAM zones.
|
sl@0
|
569 |
|
sl@0
|
570 |
@param aZoneIdList An array of the IDs of the RAM zones to allocate from.
|
sl@0
|
571 |
@param aZoneIdCount The number of RAM zone IDs listed in aZoneIdList.
|
sl@0
|
572 |
@param aNumPages The number of pages to allocate.
|
sl@0
|
573 |
@param aPageList Pointer to an array where each element will be the physical
|
sl@0
|
574 |
address of each page allocated.
|
sl@0
|
575 |
@return KErrNone on success, KErrArgument if zone doesn't exist or aNumPages is
|
sl@0
|
576 |
larger than the total number of pages in the RAM zone or KErrNoMemory when the RAM
|
sl@0
|
577 |
zone is too full.
|
sl@0
|
578 |
*/
|
sl@0
|
579 |
TInt MmuBase::ZoneAllocPhysicalRam(TUint* aZoneIdList, TUint aZoneIdCount, TInt aNumPages, TPhysAddr* aPageList)
|
sl@0
|
580 |
{
|
sl@0
|
581 |
__KTRACE_OPT(KMMU,Kern::Printf("Mmu::ZoneAllocPhysicalRam() numpages 0x%x zones 0x%x", aNumPages, aZoneIdCount));
|
sl@0
|
582 |
TInt r = ZoneAllocRamPages(aZoneIdList, aZoneIdCount, aPageList, aNumPages, EPageFixed);
|
sl@0
|
583 |
if (r!=KErrNone)
|
sl@0
|
584 |
{
|
sl@0
|
585 |
iAllocFailed=ETrue;
|
sl@0
|
586 |
return r;
|
sl@0
|
587 |
}
|
sl@0
|
588 |
|
sl@0
|
589 |
TPhysAddr* pageEnd = aPageList + aNumPages;
|
sl@0
|
590 |
for (TPhysAddr* page = aPageList; page < pageEnd; page++)
|
sl@0
|
591 |
{
|
sl@0
|
592 |
SPageInfo* pageInfo = SPageInfo::FromPhysAddr(*page);
|
sl@0
|
593 |
NKern::LockSystem();
|
sl@0
|
594 |
__NK_ASSERT_DEBUG(pageInfo->Type() == SPageInfo::EUnused);
|
sl@0
|
595 |
pageInfo->Lock();
|
sl@0
|
596 |
NKern::UnlockSystem();
|
sl@0
|
597 |
}
|
sl@0
|
598 |
return KErrNone;
|
sl@0
|
599 |
}
|
sl@0
|
600 |
|
sl@0
|
601 |
|
sl@0
|
602 |
TInt MmuBase::FreePhysicalRam(TPhysAddr aPhysAddr, TInt aSize)
|
sl@0
|
603 |
{
|
sl@0
|
604 |
__KTRACE_OPT(KMMU,Kern::Printf("Mmu::FreePhysicalRam(%08x,%x)",aPhysAddr,aSize));
|
sl@0
|
605 |
|
sl@0
|
606 |
TInt n=TInt(TUint32(aSize+iPageMask)>>iPageShift);
|
sl@0
|
607 |
SPageInfo* pI=SPageInfo::FromPhysAddr(aPhysAddr);
|
sl@0
|
608 |
SPageInfo* pE=pI+n;
|
sl@0
|
609 |
for (; pI<pE; ++pI)
|
sl@0
|
610 |
{
|
sl@0
|
611 |
NKern::LockSystem();
|
sl@0
|
612 |
__ASSERT_ALWAYS(pI->Type()==SPageInfo::EUnused && pI->Unlock()==0, Panic(EBadFreePhysicalRam));
|
sl@0
|
613 |
NKern::UnlockSystem();
|
sl@0
|
614 |
}
|
sl@0
|
615 |
TInt r=iRamPageAllocator->FreePhysicalRam(aPhysAddr, aSize);
|
sl@0
|
616 |
return r;
|
sl@0
|
617 |
}
|
sl@0
|
618 |
|
sl@0
|
619 |
/** Free discontiguous RAM pages that were previously allocated using discontiguous
|
sl@0
|
620 |
overload of MmuBase::AllocPhysicalRam() or MmuBase::ZoneAllocPhysicalRam().
|
sl@0
|
621 |
|
sl@0
|
622 |
Specifying one of the following may cause the system to panic:
|
sl@0
|
623 |
a) an invalid physical RAM address.
|
sl@0
|
624 |
b) valid physical RAM addresses where some had not been previously allocated.
|
sl@0
|
625 |
c) an adrress not aligned to a page boundary.
|
sl@0
|
626 |
|
sl@0
|
627 |
@param aNumPages Number of pages to free
|
sl@0
|
628 |
@param aPageList Array of the physical address of each page to free
|
sl@0
|
629 |
|
sl@0
|
630 |
@return KErrNone if the operation was successful.
|
sl@0
|
631 |
|
sl@0
|
632 |
*/
|
sl@0
|
633 |
TInt MmuBase::FreePhysicalRam(TInt aNumPages, TPhysAddr* aPageList)
|
sl@0
|
634 |
{
|
sl@0
|
635 |
__KTRACE_OPT(KMMU,Kern::Printf("Mmu::FreePhysicalRam(%08x,%08x)", aNumPages, aPageList));
|
sl@0
|
636 |
|
sl@0
|
637 |
TPhysAddr* pageEnd = aPageList + aNumPages;
|
sl@0
|
638 |
TInt r = KErrNone;
|
sl@0
|
639 |
|
sl@0
|
640 |
for (TPhysAddr* page = aPageList; page < pageEnd && r == KErrNone; page++)
|
sl@0
|
641 |
{
|
sl@0
|
642 |
SPageInfo* pageInfo = SPageInfo::FromPhysAddr(*page);
|
sl@0
|
643 |
NKern::LockSystem();
|
sl@0
|
644 |
__ASSERT_ALWAYS(pageInfo->Type()==SPageInfo::EUnused && pageInfo->Unlock()==0, Panic(EBadFreePhysicalRam));
|
sl@0
|
645 |
NKern::UnlockSystem();
|
sl@0
|
646 |
|
sl@0
|
647 |
// Free the page
|
sl@0
|
648 |
r = iRamPageAllocator->FreePhysicalRam(*page, KPageSize);
|
sl@0
|
649 |
}
|
sl@0
|
650 |
return r;
|
sl@0
|
651 |
}
|
sl@0
|
652 |
|
sl@0
|
653 |
|
sl@0
|
654 |
TInt MmuBase::ClaimPhysicalRam(TPhysAddr aPhysAddr, TInt aSize)
|
sl@0
|
655 |
{
|
sl@0
|
656 |
__KTRACE_OPT(KMMU,Kern::Printf("Mmu::ClaimPhysicalRam(%08x,%x)",aPhysAddr,aSize));
|
sl@0
|
657 |
TUint32 pa=aPhysAddr;
|
sl@0
|
658 |
TUint32 size=aSize;
|
sl@0
|
659 |
TInt n=RoundUpRangeToPageSize(pa,size);
|
sl@0
|
660 |
TInt r=iRamPageAllocator->ClaimPhysicalRam(pa, size);
|
sl@0
|
661 |
if (r==KErrNone)
|
sl@0
|
662 |
{
|
sl@0
|
663 |
SPageInfo* pI=SPageInfo::FromPhysAddr(pa);
|
sl@0
|
664 |
SPageInfo* pE=pI+n;
|
sl@0
|
665 |
for (; pI<pE; ++pI)
|
sl@0
|
666 |
{
|
sl@0
|
667 |
NKern::LockSystem();
|
sl@0
|
668 |
__NK_ASSERT_DEBUG(pI->Type()==SPageInfo::EUnused && pI->LockCount()==0);
|
sl@0
|
669 |
pI->Lock();
|
sl@0
|
670 |
NKern::UnlockSystem();
|
sl@0
|
671 |
}
|
sl@0
|
672 |
}
|
sl@0
|
673 |
return r;
|
sl@0
|
674 |
}
|
sl@0
|
675 |
|
sl@0
|
676 |
/**
|
sl@0
|
677 |
Allocate a set of discontiguous RAM pages from the specified zone.
|
sl@0
|
678 |
|
sl@0
|
679 |
@param aZoneIdList The array of IDs of the RAM zones to allocate from.
|
sl@0
|
680 |
@param aZoneIdCount The number of RAM zone IDs in aZoneIdList.
|
sl@0
|
681 |
@param aPageList Preallocated array of TPhysAddr elements that will receive the
|
sl@0
|
682 |
physical address of each page allocated.
|
sl@0
|
683 |
@param aNumPages The number of pages to allocate.
|
sl@0
|
684 |
@param aPageType The type of the pages being allocated.
|
sl@0
|
685 |
|
sl@0
|
686 |
@return KErrNone on success, KErrArgument if a zone of aZoneIdList doesn't exist,
|
sl@0
|
687 |
KErrNoMemory if there aren't enough free pages in the zone
|
sl@0
|
688 |
*/
|
sl@0
|
689 |
TInt MmuBase::ZoneAllocRamPages(TUint* aZoneIdList, TUint aZoneIdCount, TPhysAddr* aPageList, TInt aNumPages, TZonePageType aPageType)
|
sl@0
|
690 |
{
|
sl@0
|
691 |
#ifdef _DEBUG
|
sl@0
|
692 |
if(K::CheckForSimulatedAllocFail())
|
sl@0
|
693 |
return KErrNoMemory;
|
sl@0
|
694 |
#endif
|
sl@0
|
695 |
__NK_ASSERT_DEBUG(aPageType == EPageFixed);
|
sl@0
|
696 |
|
sl@0
|
697 |
return iRamPageAllocator->ZoneAllocRamPages(aZoneIdList, aZoneIdCount, aPageList, aNumPages, aPageType);
|
sl@0
|
698 |
}
|
sl@0
|
699 |
|
sl@0
|
700 |
|
sl@0
|
701 |
TInt MmuBase::AllocRamPages(TPhysAddr* aPageList, TInt aNumPages, TZonePageType aPageType, TUint aBlockedZoneId, TBool aBlockRest)
|
sl@0
|
702 |
{
|
sl@0
|
703 |
#ifdef _DEBUG
|
sl@0
|
704 |
if(K::CheckForSimulatedAllocFail())
|
sl@0
|
705 |
return KErrNoMemory;
|
sl@0
|
706 |
#endif
|
sl@0
|
707 |
TInt missing = iRamPageAllocator->AllocRamPages(aPageList, aNumPages, aPageType, aBlockedZoneId, aBlockRest);
|
sl@0
|
708 |
|
sl@0
|
709 |
// If missing some pages, ask the RAM cache to donate some of its pages.
|
sl@0
|
710 |
// Don't ask it for discardable pages as those are intended for itself.
|
sl@0
|
711 |
if(missing && aPageType != EPageDiscard && iRamCache->GetFreePages(missing))
|
sl@0
|
712 |
missing = iRamPageAllocator->AllocRamPages(aPageList, aNumPages, aPageType, aBlockedZoneId, aBlockRest);
|
sl@0
|
713 |
return missing ? KErrNoMemory : KErrNone;
|
sl@0
|
714 |
}
|
sl@0
|
715 |
|
sl@0
|
716 |
|
sl@0
|
717 |
TInt MmuBase::AllocContiguousRam(TInt aSize, TPhysAddr& aPhysAddr, TZonePageType aPageType, TInt aAlign, TUint aBlockedZoneId, TBool aBlockRest)
|
sl@0
|
718 |
{
|
sl@0
|
719 |
#ifdef _DEBUG
|
sl@0
|
720 |
if(K::CheckForSimulatedAllocFail())
|
sl@0
|
721 |
return KErrNoMemory;
|
sl@0
|
722 |
#endif
|
sl@0
|
723 |
__NK_ASSERT_DEBUG(aPageType == EPageFixed);
|
sl@0
|
724 |
TUint contigPages = (aSize + KPageSize - 1) >> KPageShift;
|
sl@0
|
725 |
TInt r = iRamPageAllocator->AllocContiguousRam(contigPages, aPhysAddr, aPageType, aAlign, aBlockedZoneId, aBlockRest);
|
sl@0
|
726 |
if (r == KErrNoMemory && contigPages > KMaxFreeableContiguousPages)
|
sl@0
|
727 |
{// Allocation failed but as this is a large allocation flush the RAM cache
|
sl@0
|
728 |
// and reattempt the allocation as large allocation wouldn't discard pages.
|
sl@0
|
729 |
iRamCache->FlushAll();
|
sl@0
|
730 |
r = iRamPageAllocator->AllocContiguousRam(contigPages, aPhysAddr, aPageType, aAlign, aBlockedZoneId, aBlockRest);
|
sl@0
|
731 |
}
|
sl@0
|
732 |
return r;
|
sl@0
|
733 |
}
|
sl@0
|
734 |
|
sl@0
|
735 |
|
sl@0
|
736 |
/**
|
sl@0
|
737 |
Allocate contiguous RAM from the specified RAM zones.
|
sl@0
|
738 |
@param aZoneIdList An array of IDs of the RAM zones to allocate from
|
sl@0
|
739 |
@param aZoneIdCount The number of IDs listed in aZoneIdList
|
sl@0
|
740 |
@param aSize The number of bytes to allocate
|
sl@0
|
741 |
@param aPhysAddr Will receive the physical base address of the allocated RAM
|
sl@0
|
742 |
@param aPageType The type of the pages being allocated
|
sl@0
|
743 |
@param aAlign The log base 2 alginment required
|
sl@0
|
744 |
*/
|
sl@0
|
745 |
TInt MmuBase::ZoneAllocContiguousRam(TUint* aZoneIdList, TUint aZoneIdCount, TInt aSize, TPhysAddr& aPhysAddr, TZonePageType aPageType, TInt aAlign)
|
sl@0
|
746 |
{
|
sl@0
|
747 |
#ifdef _DEBUG
|
sl@0
|
748 |
if(K::CheckForSimulatedAllocFail())
|
sl@0
|
749 |
return KErrNoMemory;
|
sl@0
|
750 |
#endif
|
sl@0
|
751 |
return iRamPageAllocator->ZoneAllocContiguousRam(aZoneIdList, aZoneIdCount, aSize, aPhysAddr, aPageType, aAlign);
|
sl@0
|
752 |
}
|
sl@0
|
753 |
|
sl@0
|
754 |
SPageInfo* SPageInfo::SafeFromPhysAddr(TPhysAddr aAddress)
|
sl@0
|
755 |
{
|
sl@0
|
756 |
TUint index = aAddress>>(KPageShift+KPageShift-KPageInfoShift);
|
sl@0
|
757 |
TUint flags = ((TUint8*)KPageInfoMap)[index>>3];
|
sl@0
|
758 |
TUint mask = 1<<(index&7);
|
sl@0
|
759 |
if(!(flags&mask))
|
sl@0
|
760 |
return 0; // no SPageInfo for aAddress
|
sl@0
|
761 |
SPageInfo* info = FromPhysAddr(aAddress);
|
sl@0
|
762 |
if(info->Type()==SPageInfo::EInvalid)
|
sl@0
|
763 |
return 0;
|
sl@0
|
764 |
return info;
|
sl@0
|
765 |
}
|
sl@0
|
766 |
|
sl@0
|
767 |
/** HAL Function wrapper for the RAM allocator.
|
sl@0
|
768 |
*/
|
sl@0
|
769 |
|
sl@0
|
770 |
TInt RamHalFunction(TAny*, TInt aFunction, TAny* a1, TAny* a2)
|
sl@0
|
771 |
{
|
sl@0
|
772 |
DRamAllocator *pRamAlloc = MmuBase::TheMmu->iRamPageAllocator;
|
sl@0
|
773 |
|
sl@0
|
774 |
if (pRamAlloc)
|
sl@0
|
775 |
return pRamAlloc->HalFunction(aFunction, a1, a2);
|
sl@0
|
776 |
return KErrNotSupported;
|
sl@0
|
777 |
}
|
sl@0
|
778 |
|
sl@0
|
779 |
|
sl@0
|
780 |
/******************************************************************************
|
sl@0
|
781 |
* Initialisation
|
sl@0
|
782 |
******************************************************************************/
|
sl@0
|
783 |
|
sl@0
|
784 |
void MmuBase::Init1()
|
sl@0
|
785 |
{
|
sl@0
|
786 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("MmuBase::Init1"));
|
sl@0
|
787 |
iInitialFreeMemory=0;
|
sl@0
|
788 |
iAllocFailed=EFalse;
|
sl@0
|
789 |
}
|
sl@0
|
790 |
|
sl@0
|
791 |
void MmuBase::Init2()
|
sl@0
|
792 |
{
|
sl@0
|
793 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("MmuBase::Init2"));
|
sl@0
|
794 |
TInt total_ram=TheSuperPage().iTotalRamSize;
|
sl@0
|
795 |
TInt total_ram_pages=total_ram>>iPageShift;
|
sl@0
|
796 |
iNumPages = total_ram_pages;
|
sl@0
|
797 |
const SRamInfo& info=*(const SRamInfo*)TheSuperPage().iRamBootData;
|
sl@0
|
798 |
iRamPageAllocator=DRamAllocator::New(info, RamZoneConfig, RamZoneCallback);
|
sl@0
|
799 |
|
sl@0
|
800 |
TInt max_pt=total_ram>>iPageTableShift;
|
sl@0
|
801 |
if (max_pt<iMaxPageTables)
|
sl@0
|
802 |
iMaxPageTables=max_pt;
|
sl@0
|
803 |
iMaxPageTables &= ~iPtClusterMask;
|
sl@0
|
804 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iMaxPageTables=%d",iMaxPageTables));
|
sl@0
|
805 |
TInt max_ptpg=iMaxPageTables>>iPtClusterShift;
|
sl@0
|
806 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("max_ptpg=%d",max_ptpg));
|
sl@0
|
807 |
iPageTableLinearAllocator=TBitMapAllocator::New(max_ptpg,ETrue);
|
sl@0
|
808 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iPageTableLinearAllocator=%08x",iPageTableLinearAllocator));
|
sl@0
|
809 |
__ASSERT_ALWAYS(iPageTableLinearAllocator,Panic(EPtLinAllocCreateFailed));
|
sl@0
|
810 |
if (iPtClusterShift) // if more than one page table per page
|
sl@0
|
811 |
{
|
sl@0
|
812 |
iPageTableAllocator=TBitMapAllocator::New(iMaxPageTables,EFalse);
|
sl@0
|
813 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iPageTableAllocator=%08x",iPageTableAllocator));
|
sl@0
|
814 |
__ASSERT_ALWAYS(iPageTableAllocator,Panic(EPtAllocCreateFailed));
|
sl@0
|
815 |
}
|
sl@0
|
816 |
TInt max_ptb=(iMaxPageTables+iPtBlockMask)>>iPtBlockShift;
|
sl@0
|
817 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("max_ptb=%d",max_ptb));
|
sl@0
|
818 |
iPtBlockCount=(TInt*)Kern::AllocZ(max_ptb*sizeof(TInt));
|
sl@0
|
819 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iPtBlockCount=%08x",iPtBlockCount));
|
sl@0
|
820 |
__ASSERT_ALWAYS(iPtBlockCount,Panic(EPtBlockCountCreateFailed));
|
sl@0
|
821 |
TInt max_ptg=(iMaxPageTables+iPtGroupMask)>>iPtGroupShift;
|
sl@0
|
822 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("ptg_shift=%d, max_ptg=%d",iPtGroupShift,max_ptg));
|
sl@0
|
823 |
iPtGroupCount=(TInt*)Kern::AllocZ(max_ptg*sizeof(TInt));
|
sl@0
|
824 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iPtGroupCount=%08x",iPtGroupCount));
|
sl@0
|
825 |
__ASSERT_ALWAYS(iPtGroupCount,Panic(EPtGroupCountCreateFailed));
|
sl@0
|
826 |
|
sl@0
|
827 |
|
sl@0
|
828 |
// Clear the inital (and only so far) page table info page so all unused
|
sl@0
|
829 |
// page tables will be marked as unused.
|
sl@0
|
830 |
memclr((TAny*)KPageTableInfoBase, KPageSize);
|
sl@0
|
831 |
|
sl@0
|
832 |
// look for page tables - assume first page table (id=0) maps page tables
|
sl@0
|
833 |
TPte* pPte=(TPte*)iPageTableLinBase;
|
sl@0
|
834 |
TInt i;
|
sl@0
|
835 |
for (i=0; i<iChunkSize/iPageSize; ++i)
|
sl@0
|
836 |
{
|
sl@0
|
837 |
TPte pte=*pPte++;
|
sl@0
|
838 |
if (!PteIsPresent(pte)) // after boot, page tables are contiguous
|
sl@0
|
839 |
break;
|
sl@0
|
840 |
iPageTableLinearAllocator->Alloc(i,1);
|
sl@0
|
841 |
TPhysAddr ptpgPhys=PtePhysAddr(pte, i);
|
sl@0
|
842 |
SPageInfo* pi = SPageInfo::SafeFromPhysAddr(ptpgPhys);
|
sl@0
|
843 |
__ASSERT_ALWAYS(pi, Panic(EInvalidPageTableAtBoot));
|
sl@0
|
844 |
pi->SetPageTable(i);
|
sl@0
|
845 |
pi->Lock();
|
sl@0
|
846 |
TInt id=i<<iPtClusterShift;
|
sl@0
|
847 |
TInt ptb=id>>iPtBlockShift;
|
sl@0
|
848 |
++iPtBlockCount[ptb];
|
sl@0
|
849 |
TInt ptg=id>>iPtGroupShift;
|
sl@0
|
850 |
++iPtGroupCount[ptg];
|
sl@0
|
851 |
}
|
sl@0
|
852 |
|
sl@0
|
853 |
// look for mapped pages
|
sl@0
|
854 |
TInt npdes=1<<(32-iChunkShift);
|
sl@0
|
855 |
TInt npt=0;
|
sl@0
|
856 |
for (i=0; i<npdes; ++i)
|
sl@0
|
857 |
{
|
sl@0
|
858 |
TLinAddr cAddr=TLinAddr(i<<iChunkShift);
|
sl@0
|
859 |
if (cAddr>=PP::RamDriveStartAddress && TUint32(cAddr-PP::RamDriveStartAddress)<TUint32(PP::RamDriveRange))
|
sl@0
|
860 |
continue; // leave RAM drive for now
|
sl@0
|
861 |
TInt ptid=PageTableId(cAddr);
|
sl@0
|
862 |
TPhysAddr pdePhys = PdePhysAddr(cAddr); // check for whole PDE mapping
|
sl@0
|
863 |
pPte = NULL;
|
sl@0
|
864 |
if (ptid>=0)
|
sl@0
|
865 |
{
|
sl@0
|
866 |
++npt;
|
sl@0
|
867 |
__KTRACE_OPT(KMMU,Kern::Printf("Addr %08x -> page table %d", cAddr, ptid));
|
sl@0
|
868 |
pPte=(TPte*)PageTableLinAddr(ptid);
|
sl@0
|
869 |
}
|
sl@0
|
870 |
#ifdef KMMU
|
sl@0
|
871 |
if (pdePhys != KPhysAddrInvalid)
|
sl@0
|
872 |
{
|
sl@0
|
873 |
__KTRACE_OPT(KMMU,Kern::Printf("Addr %08x -> Whole PDE Phys %08x", cAddr, pdePhys));
|
sl@0
|
874 |
}
|
sl@0
|
875 |
#endif
|
sl@0
|
876 |
if (ptid>=0 || pdePhys != KPhysAddrInvalid)
|
sl@0
|
877 |
{
|
sl@0
|
878 |
TInt j;
|
sl@0
|
879 |
TInt np=0;
|
sl@0
|
880 |
for (j=0; j<iChunkSize/iPageSize; ++j)
|
sl@0
|
881 |
{
|
sl@0
|
882 |
TBool present = ETrue; // all pages present if whole PDE mapping
|
sl@0
|
883 |
TPte pte = 0;
|
sl@0
|
884 |
if (pPte)
|
sl@0
|
885 |
{
|
sl@0
|
886 |
pte = pPte[j];
|
sl@0
|
887 |
present = PteIsPresent(pte);
|
sl@0
|
888 |
}
|
sl@0
|
889 |
if (present)
|
sl@0
|
890 |
{
|
sl@0
|
891 |
++np;
|
sl@0
|
892 |
TPhysAddr pa = pPte ? PtePhysAddr(pte, j) : (pdePhys + (j<<iPageShift));
|
sl@0
|
893 |
SPageInfo* pi = SPageInfo::SafeFromPhysAddr(pa);
|
sl@0
|
894 |
__KTRACE_OPT(KMMU,Kern::Printf("Addr: %08x PA=%08x",
|
sl@0
|
895 |
cAddr+(j<<iPageShift), pa));
|
sl@0
|
896 |
if (pi) // ignore non-RAM mappings
|
sl@0
|
897 |
{//these pages will never be freed and can't be moved
|
sl@0
|
898 |
TInt r = iRamPageAllocator->MarkPageAllocated(pa, EPageFixed);
|
sl@0
|
899 |
// allow KErrAlreadyExists since it's possible that a page is doubly mapped
|
sl@0
|
900 |
__ASSERT_ALWAYS(r==KErrNone || r==KErrAlreadyExists, Panic(EBadMappedPageAfterBoot));
|
sl@0
|
901 |
SetupInitialPageInfo(pi,cAddr,j);
|
sl@0
|
902 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
903 |
if(r==KErrNone)
|
sl@0
|
904 |
++Epoc::KernelMiscPages;
|
sl@0
|
905 |
#endif
|
sl@0
|
906 |
}
|
sl@0
|
907 |
}
|
sl@0
|
908 |
}
|
sl@0
|
909 |
__KTRACE_OPT(KMMU,Kern::Printf("Addr: %08x #PTEs=%d",cAddr,np));
|
sl@0
|
910 |
if (ptid>=0)
|
sl@0
|
911 |
SetupInitialPageTableInfo(ptid,cAddr,np);
|
sl@0
|
912 |
}
|
sl@0
|
913 |
}
|
sl@0
|
914 |
|
sl@0
|
915 |
TInt oddpt=npt & iPtClusterMask;
|
sl@0
|
916 |
if (oddpt)
|
sl@0
|
917 |
oddpt=iPtClusterSize-oddpt;
|
sl@0
|
918 |
__KTRACE_OPT(KBOOT,Kern::Printf("Total page tables %d, left over subpages %d",npt,oddpt));
|
sl@0
|
919 |
if (oddpt)
|
sl@0
|
920 |
iPageTableAllocator->Free(npt,oddpt);
|
sl@0
|
921 |
|
sl@0
|
922 |
DoInit2();
|
sl@0
|
923 |
|
sl@0
|
924 |
// Save current free RAM size - there can never be more free RAM than this
|
sl@0
|
925 |
TInt max_free = Kern::FreeRamInBytes();
|
sl@0
|
926 |
K::MaxFreeRam = max_free;
|
sl@0
|
927 |
if (max_free < PP::RamDriveMaxSize)
|
sl@0
|
928 |
PP::RamDriveMaxSize = max_free;
|
sl@0
|
929 |
|
sl@0
|
930 |
if (K::ColdStart)
|
sl@0
|
931 |
ClearRamDrive(PP::RamDriveStartAddress);
|
sl@0
|
932 |
else
|
sl@0
|
933 |
RecoverRamDrive();
|
sl@0
|
934 |
|
sl@0
|
935 |
TInt r=K::MutexCreate((DMutex*&)RamAllocatorMutex, KLitRamAlloc, NULL, EFalse, KMutexOrdRamAlloc);
|
sl@0
|
936 |
if (r!=KErrNone)
|
sl@0
|
937 |
Panic(ERamAllocMutexCreateFailed);
|
sl@0
|
938 |
r=K::MutexCreate((DMutex*&)HwChunkMutex, KLitHwChunk, NULL, EFalse, KMutexOrdHwChunk);
|
sl@0
|
939 |
if (r!=KErrNone)
|
sl@0
|
940 |
Panic(EHwChunkMutexCreateFailed);
|
sl@0
|
941 |
|
sl@0
|
942 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
943 |
if (DemandPaging::RomPagingRequested() || DemandPaging::CodePagingRequested())
|
sl@0
|
944 |
iRamCache = DemandPaging::New();
|
sl@0
|
945 |
else
|
sl@0
|
946 |
iRamCache = new RamCache;
|
sl@0
|
947 |
#else
|
sl@0
|
948 |
iRamCache = new RamCache;
|
sl@0
|
949 |
#endif
|
sl@0
|
950 |
if (!iRamCache)
|
sl@0
|
951 |
Panic(ERamCacheAllocFailed);
|
sl@0
|
952 |
iRamCache->Init2();
|
sl@0
|
953 |
RamCacheBase::TheRamCache = iRamCache;
|
sl@0
|
954 |
|
sl@0
|
955 |
// Get the allocator to signal to the variant which RAM zones are in use so far
|
sl@0
|
956 |
iRamPageAllocator->InitialCallback();
|
sl@0
|
957 |
}
|
sl@0
|
958 |
|
sl@0
|
959 |
void MmuBase::Init3()
|
sl@0
|
960 |
{
|
sl@0
|
961 |
__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("MmuBase::Init3"));
|
sl@0
|
962 |
|
sl@0
|
963 |
// Initialise demand paging
|
sl@0
|
964 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
965 |
M::DemandPagingInit();
|
sl@0
|
966 |
#endif
|
sl@0
|
967 |
|
sl@0
|
968 |
// Register a HAL Function for the Ram allocator.
|
sl@0
|
969 |
TInt r = Kern::AddHalEntry(EHalGroupRam, RamHalFunction, 0);
|
sl@0
|
970 |
__NK_ASSERT_ALWAYS(r==KErrNone);
|
sl@0
|
971 |
|
sl@0
|
972 |
//
|
sl@0
|
973 |
// Perform the intialisation for page moving and RAM defrag object.
|
sl@0
|
974 |
//
|
sl@0
|
975 |
|
sl@0
|
976 |
// allocate a page to use as an alt stack
|
sl@0
|
977 |
MmuBase::Wait();
|
sl@0
|
978 |
TPhysAddr stackpage;
|
sl@0
|
979 |
r = AllocPhysicalRam(KPageSize, stackpage);
|
sl@0
|
980 |
MmuBase::Signal();
|
sl@0
|
981 |
if (r!=KErrNone)
|
sl@0
|
982 |
Panic(EDefragStackAllocFailed);
|
sl@0
|
983 |
|
sl@0
|
984 |
// map it at a predetermined address
|
sl@0
|
985 |
TInt ptid = PageTableId(KDefragAltStackAddr);
|
sl@0
|
986 |
TPte perm = PtePermissions(EKernelStack);
|
sl@0
|
987 |
NKern::LockSystem();
|
sl@0
|
988 |
MapRamPages(ptid, SPageInfo::EFixed, NULL, KDefragAltStackAddr, &stackpage, 1, perm);
|
sl@0
|
989 |
NKern::UnlockSystem();
|
sl@0
|
990 |
iAltStackBase = KDefragAltStackAddr + KPageSize;
|
sl@0
|
991 |
|
sl@0
|
992 |
__KTRACE_OPT(KMMU,Kern::Printf("Allocated defrag alt stack page at %08x, mapped to %08x, base is now %08x", stackpage, KDefragAltStackAddr, iAltStackBase));
|
sl@0
|
993 |
|
sl@0
|
994 |
// Create the actual defrag object and initialise it.
|
sl@0
|
995 |
iDefrag = new Defrag;
|
sl@0
|
996 |
if (!iDefrag)
|
sl@0
|
997 |
Panic(EDefragAllocFailed);
|
sl@0
|
998 |
iDefrag->Init3(iRamPageAllocator);
|
sl@0
|
999 |
}
|
sl@0
|
1000 |
|
sl@0
|
1001 |
void MmuBase::CreateKernelSection(TLinAddr aEnd, TInt aHwChunkAlign)
|
sl@0
|
1002 |
{
|
sl@0
|
1003 |
TLinAddr base=(TLinAddr)TheRomHeader().iKernelLimit;
|
sl@0
|
1004 |
iKernelSection=TLinearSection::New(base, aEnd);
|
sl@0
|
1005 |
__ASSERT_ALWAYS(iKernelSection!=NULL, Panic(ECreateKernelSectionFailed));
|
sl@0
|
1006 |
iHwChunkAllocator=THwChunkAddressAllocator::New(aHwChunkAlign, iKernelSection);
|
sl@0
|
1007 |
__ASSERT_ALWAYS(iHwChunkAllocator!=NULL, Panic(ECreateHwChunkAllocFailed));
|
sl@0
|
1008 |
}
|
sl@0
|
1009 |
|
sl@0
|
1010 |
// Recover RAM drive contents after a reset
|
sl@0
|
1011 |
TInt MmuBase::RecoverRamDrive()
|
sl@0
|
1012 |
{
|
sl@0
|
1013 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::RecoverRamDrive()"));
|
sl@0
|
1014 |
TLinAddr ptlin;
|
sl@0
|
1015 |
TLinAddr chunk = PP::RamDriveStartAddress;
|
sl@0
|
1016 |
TLinAddr end = chunk + (TLinAddr)PP::RamDriveRange;
|
sl@0
|
1017 |
TInt size = 0;
|
sl@0
|
1018 |
TInt limit = RoundToPageSize(TheSuperPage().iRamDriveSize);
|
sl@0
|
1019 |
for( ; chunk<end; chunk+=iChunkSize)
|
sl@0
|
1020 |
{
|
sl@0
|
1021 |
if (size==limit) // have reached end of ram drive
|
sl@0
|
1022 |
break;
|
sl@0
|
1023 |
TPhysAddr ptphys = 0;
|
sl@0
|
1024 |
TInt ptid = BootPageTableId(chunk, ptphys); // ret KErrNotFound if PDE not present, KErrUnknown if present but as yet unknown page table
|
sl@0
|
1025 |
__KTRACE_OPT(KMMU,Kern::Printf("Addr %08x: PTID=%d PTPHYS=%08x", chunk, ptid, ptphys));
|
sl@0
|
1026 |
if (ptid==KErrNotFound)
|
sl@0
|
1027 |
break; // no page table so stop here and clear to end of range
|
sl@0
|
1028 |
TPhysAddr ptpgphys = ptphys & ~iPageMask;
|
sl@0
|
1029 |
TInt r = iRamPageAllocator->MarkPageAllocated(ptpgphys, EPageMovable);
|
sl@0
|
1030 |
__KTRACE_OPT(KMMU,Kern::Printf("MPA: r=%d",r));
|
sl@0
|
1031 |
if (r==KErrArgument)
|
sl@0
|
1032 |
break; // page table address was invalid - stop here and clear to end of range
|
sl@0
|
1033 |
if (r==KErrNone)
|
sl@0
|
1034 |
{
|
sl@0
|
1035 |
// this page was currently unallocated
|
sl@0
|
1036 |
if (ptid>=0)
|
sl@0
|
1037 |
break; // ID has been allocated - bad news - bail here
|
sl@0
|
1038 |
ptid = iPageTableLinearAllocator->Alloc();
|
sl@0
|
1039 |
__ASSERT_ALWAYS(ptid>=0, Panic(ERecoverRamDriveAllocPTIDFailed));
|
sl@0
|
1040 |
SPageInfo* pi = SPageInfo::SafeFromPhysAddr(ptpgphys);
|
sl@0
|
1041 |
__ASSERT_ALWAYS(pi, Panic(ERecoverRamDriveBadPageTable));
|
sl@0
|
1042 |
pi->SetPageTable(ptid); // id = cluster number here
|
sl@0
|
1043 |
ptid <<= iPtClusterShift;
|
sl@0
|
1044 |
MapPageTable(ptid, ptpgphys, EFalse);
|
sl@0
|
1045 |
if (iPageTableAllocator)
|
sl@0
|
1046 |
iPageTableAllocator->Free(ptid, iPtClusterSize);
|
sl@0
|
1047 |
ptid |= ((ptphys>>iPageTableShift)&iPtClusterMask);
|
sl@0
|
1048 |
ptlin = PageTableLinAddr(ptid);
|
sl@0
|
1049 |
__KTRACE_OPT(KMMU,Kern::Printf("Page table ID %d lin %08x", ptid, ptlin));
|
sl@0
|
1050 |
if (iPageTableAllocator)
|
sl@0
|
1051 |
iPageTableAllocator->Alloc(ptid, 1);
|
sl@0
|
1052 |
}
|
sl@0
|
1053 |
else
|
sl@0
|
1054 |
{
|
sl@0
|
1055 |
// this page was already allocated
|
sl@0
|
1056 |
if (ptid<0)
|
sl@0
|
1057 |
break; // ID not allocated - bad news - bail here
|
sl@0
|
1058 |
ptlin = PageTableLinAddr(ptid);
|
sl@0
|
1059 |
__KTRACE_OPT(KMMU,Kern::Printf("Page table lin %08x", ptlin));
|
sl@0
|
1060 |
if (iPageTableAllocator)
|
sl@0
|
1061 |
iPageTableAllocator->Alloc(ptid, 1);
|
sl@0
|
1062 |
}
|
sl@0
|
1063 |
TInt pte_index;
|
sl@0
|
1064 |
TBool chunk_inc = 0;
|
sl@0
|
1065 |
TPte* page_table = (TPte*)ptlin;
|
sl@0
|
1066 |
for (pte_index=0; pte_index<(iChunkSize>>iPageSize); ++pte_index)
|
sl@0
|
1067 |
{
|
sl@0
|
1068 |
if (size==limit) // have reached end of ram drive
|
sl@0
|
1069 |
break;
|
sl@0
|
1070 |
TPte pte = page_table[pte_index];
|
sl@0
|
1071 |
if (PteIsPresent(pte))
|
sl@0
|
1072 |
{
|
sl@0
|
1073 |
TPhysAddr pa=PtePhysAddr(pte, pte_index);
|
sl@0
|
1074 |
SPageInfo* pi = SPageInfo::SafeFromPhysAddr(pa);
|
sl@0
|
1075 |
if (!pi)
|
sl@0
|
1076 |
break;
|
sl@0
|
1077 |
TInt r = iRamPageAllocator->MarkPageAllocated(pa, EPageMovable);
|
sl@0
|
1078 |
__ASSERT_ALWAYS(r==KErrNone, Panic(ERecoverRamDriveBadPage));
|
sl@0
|
1079 |
size+=iPageSize;
|
sl@0
|
1080 |
chunk_inc = iChunkSize;
|
sl@0
|
1081 |
}
|
sl@0
|
1082 |
}
|
sl@0
|
1083 |
if (pte_index < (iChunkSize>>iPageSize) )
|
sl@0
|
1084 |
{
|
sl@0
|
1085 |
// if we recovered pages in this page table, leave it in place
|
sl@0
|
1086 |
chunk += chunk_inc;
|
sl@0
|
1087 |
|
sl@0
|
1088 |
// clear from here on
|
sl@0
|
1089 |
ClearPageTable(ptid, pte_index);
|
sl@0
|
1090 |
break;
|
sl@0
|
1091 |
}
|
sl@0
|
1092 |
}
|
sl@0
|
1093 |
if (chunk < end)
|
sl@0
|
1094 |
ClearRamDrive(chunk);
|
sl@0
|
1095 |
__KTRACE_OPT(KMMU,Kern::Printf("Recovered RAM drive size %08x",size));
|
sl@0
|
1096 |
if (size<TheSuperPage().iRamDriveSize)
|
sl@0
|
1097 |
{
|
sl@0
|
1098 |
__KTRACE_OPT(KMMU,Kern::Printf("Truncating RAM drive from %08x to %08x", TheSuperPage().iRamDriveSize, size));
|
sl@0
|
1099 |
TheSuperPage().iRamDriveSize=size;
|
sl@0
|
1100 |
}
|
sl@0
|
1101 |
return KErrNone;
|
sl@0
|
1102 |
}
|
sl@0
|
1103 |
|
sl@0
|
1104 |
TInt MmuBase::AllocShadowPage(TLinAddr aRomAddr)
|
sl@0
|
1105 |
{
|
sl@0
|
1106 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase:AllocShadowPage(%08x)", aRomAddr));
|
sl@0
|
1107 |
aRomAddr &= ~iPageMask;
|
sl@0
|
1108 |
TPhysAddr orig_phys = KPhysAddrInvalid;
|
sl@0
|
1109 |
if (aRomAddr>=iRomLinearBase && aRomAddr<=(iRomLinearEnd-iPageSize))
|
sl@0
|
1110 |
orig_phys = LinearToPhysical(aRomAddr);
|
sl@0
|
1111 |
__KTRACE_OPT(KMMU,Kern::Printf("OrigPhys = %08x",orig_phys));
|
sl@0
|
1112 |
if (orig_phys == KPhysAddrInvalid)
|
sl@0
|
1113 |
{
|
sl@0
|
1114 |
__KTRACE_OPT(KMMU,Kern::Printf("Invalid ROM address"));
|
sl@0
|
1115 |
return KErrArgument;
|
sl@0
|
1116 |
}
|
sl@0
|
1117 |
SPageInfo* pi = SPageInfo::SafeFromPhysAddr(orig_phys);
|
sl@0
|
1118 |
if (pi && pi->Type()==SPageInfo::EShadow)
|
sl@0
|
1119 |
{
|
sl@0
|
1120 |
__KTRACE_OPT(KMMU,Kern::Printf("ROM address already shadowed"));
|
sl@0
|
1121 |
return KErrAlreadyExists;
|
sl@0
|
1122 |
}
|
sl@0
|
1123 |
TInt ptid = PageTableId(aRomAddr);
|
sl@0
|
1124 |
__KTRACE_OPT(KMMU, Kern::Printf("Shadow PTID %d", ptid));
|
sl@0
|
1125 |
TInt newptid = -1;
|
sl@0
|
1126 |
if (ptid<0)
|
sl@0
|
1127 |
{
|
sl@0
|
1128 |
newptid = AllocPageTable();
|
sl@0
|
1129 |
__KTRACE_OPT(KMMU, Kern::Printf("New shadow PTID %d", newptid));
|
sl@0
|
1130 |
if (newptid<0)
|
sl@0
|
1131 |
return KErrNoMemory;
|
sl@0
|
1132 |
ptid = newptid;
|
sl@0
|
1133 |
PtInfo(ptid).SetShadow( (aRomAddr-iRomLinearBase)>>iChunkShift );
|
sl@0
|
1134 |
InitShadowPageTable(ptid, aRomAddr, orig_phys);
|
sl@0
|
1135 |
}
|
sl@0
|
1136 |
TPhysAddr shadow_phys;
|
sl@0
|
1137 |
|
sl@0
|
1138 |
if (AllocRamPages(&shadow_phys, 1, EPageFixed) != KErrNone)
|
sl@0
|
1139 |
{
|
sl@0
|
1140 |
__KTRACE_OPT(KMMU,Kern::Printf("Unable to allocate page"));
|
sl@0
|
1141 |
iAllocFailed=ETrue;
|
sl@0
|
1142 |
if (newptid>=0)
|
sl@0
|
1143 |
{
|
sl@0
|
1144 |
FreePageTable(newptid);
|
sl@0
|
1145 |
}
|
sl@0
|
1146 |
return KErrNoMemory;
|
sl@0
|
1147 |
}
|
sl@0
|
1148 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
1149 |
BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscAlloc, 1<<KPageShift);
|
sl@0
|
1150 |
++Epoc::KernelMiscPages;
|
sl@0
|
1151 |
#endif
|
sl@0
|
1152 |
InitShadowPage(shadow_phys, aRomAddr); // copy original ROM contents
|
sl@0
|
1153 |
NKern::LockSystem();
|
sl@0
|
1154 |
Pagify(ptid, aRomAddr);
|
sl@0
|
1155 |
MapRamPages(ptid, SPageInfo::EShadow, (TAny*)orig_phys, (aRomAddr-iRomLinearBase), &shadow_phys, 1, iShadowPtePerm);
|
sl@0
|
1156 |
NKern::UnlockSystem();
|
sl@0
|
1157 |
if (newptid>=0)
|
sl@0
|
1158 |
{
|
sl@0
|
1159 |
NKern::LockSystem();
|
sl@0
|
1160 |
AssignShadowPageTable(newptid, aRomAddr);
|
sl@0
|
1161 |
NKern::UnlockSystem();
|
sl@0
|
1162 |
}
|
sl@0
|
1163 |
FlushShadow(aRomAddr);
|
sl@0
|
1164 |
__KTRACE_OPT(KMMU,Kern::Printf("AllocShadowPage successful"));
|
sl@0
|
1165 |
return KErrNone;
|
sl@0
|
1166 |
}
|
sl@0
|
1167 |
|
sl@0
|
1168 |
TInt MmuBase::FreeShadowPage(TLinAddr aRomAddr)
|
sl@0
|
1169 |
{
|
sl@0
|
1170 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase:FreeShadowPage(%08x)", aRomAddr));
|
sl@0
|
1171 |
aRomAddr &= ~iPageMask;
|
sl@0
|
1172 |
TPhysAddr shadow_phys = KPhysAddrInvalid;
|
sl@0
|
1173 |
if (aRomAddr>=iRomLinearBase || aRomAddr<=(iRomLinearEnd-iPageSize))
|
sl@0
|
1174 |
shadow_phys = LinearToPhysical(aRomAddr);
|
sl@0
|
1175 |
__KTRACE_OPT(KMMU,Kern::Printf("ShadowPhys = %08x",shadow_phys));
|
sl@0
|
1176 |
if (shadow_phys == KPhysAddrInvalid)
|
sl@0
|
1177 |
{
|
sl@0
|
1178 |
__KTRACE_OPT(KMMU,Kern::Printf("Invalid ROM address"));
|
sl@0
|
1179 |
return KErrArgument;
|
sl@0
|
1180 |
}
|
sl@0
|
1181 |
TInt ptid = PageTableId(aRomAddr);
|
sl@0
|
1182 |
SPageInfo* pi = SPageInfo::SafeFromPhysAddr(shadow_phys);
|
sl@0
|
1183 |
if (ptid<0 || !pi || pi->Type()!=SPageInfo::EShadow)
|
sl@0
|
1184 |
{
|
sl@0
|
1185 |
__KTRACE_OPT(KMMU,Kern::Printf("No shadow page at this address"));
|
sl@0
|
1186 |
return KErrGeneral;
|
sl@0
|
1187 |
}
|
sl@0
|
1188 |
TPhysAddr orig_phys = (TPhysAddr)pi->Owner();
|
sl@0
|
1189 |
DoUnmapShadowPage(ptid, aRomAddr, orig_phys);
|
sl@0
|
1190 |
SPageTableInfo& pti = PtInfo(ptid);
|
sl@0
|
1191 |
if (pti.Attribs()==SPageTableInfo::EShadow && --pti.iCount==0)
|
sl@0
|
1192 |
{
|
sl@0
|
1193 |
TInt r = UnassignShadowPageTable(aRomAddr, orig_phys);
|
sl@0
|
1194 |
if (r==KErrNone)
|
sl@0
|
1195 |
FreePageTable(ptid);
|
sl@0
|
1196 |
else
|
sl@0
|
1197 |
pti.SetGlobal(aRomAddr>>iChunkShift);
|
sl@0
|
1198 |
}
|
sl@0
|
1199 |
|
sl@0
|
1200 |
FreePages(&shadow_phys, 1, EPageFixed);
|
sl@0
|
1201 |
__KTRACE_OPT(KMMU,Kern::Printf("FreeShadowPage successful"));
|
sl@0
|
1202 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
1203 |
BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscFree, 1<<KPageShift);
|
sl@0
|
1204 |
--Epoc::KernelMiscPages;
|
sl@0
|
1205 |
#endif
|
sl@0
|
1206 |
return KErrNone;
|
sl@0
|
1207 |
}
|
sl@0
|
1208 |
|
sl@0
|
1209 |
TInt MmuBase::FreezeShadowPage(TLinAddr aRomAddr)
|
sl@0
|
1210 |
{
|
sl@0
|
1211 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase:FreezeShadowPage(%08x)", aRomAddr));
|
sl@0
|
1212 |
aRomAddr &= ~iPageMask;
|
sl@0
|
1213 |
TPhysAddr shadow_phys = KPhysAddrInvalid;
|
sl@0
|
1214 |
if (aRomAddr>=iRomLinearBase || aRomAddr<=(iRomLinearEnd-iPageSize))
|
sl@0
|
1215 |
shadow_phys = LinearToPhysical(aRomAddr);
|
sl@0
|
1216 |
__KTRACE_OPT(KMMU,Kern::Printf("ShadowPhys = %08x",shadow_phys));
|
sl@0
|
1217 |
if (shadow_phys == KPhysAddrInvalid)
|
sl@0
|
1218 |
{
|
sl@0
|
1219 |
__KTRACE_OPT(KMMU,Kern::Printf("Invalid ROM address"));
|
sl@0
|
1220 |
return KErrArgument;
|
sl@0
|
1221 |
}
|
sl@0
|
1222 |
TInt ptid = PageTableId(aRomAddr);
|
sl@0
|
1223 |
SPageInfo* pi = SPageInfo::SafeFromPhysAddr(shadow_phys);
|
sl@0
|
1224 |
if (ptid<0 || pi==0)
|
sl@0
|
1225 |
{
|
sl@0
|
1226 |
__KTRACE_OPT(KMMU,Kern::Printf("No shadow page at this address"));
|
sl@0
|
1227 |
return KErrGeneral;
|
sl@0
|
1228 |
}
|
sl@0
|
1229 |
DoFreezeShadowPage(ptid, aRomAddr);
|
sl@0
|
1230 |
__KTRACE_OPT(KMMU,Kern::Printf("FreezeShadowPage successful"));
|
sl@0
|
1231 |
return KErrNone;
|
sl@0
|
1232 |
}
|
sl@0
|
1233 |
|
sl@0
|
1234 |
TInt MmuBase::CopyToShadowMemory(TLinAddr aDest, TLinAddr aSrc, TUint32 aLength)
|
sl@0
|
1235 |
{
|
sl@0
|
1236 |
memcpy ((TAny*)aDest, (const TAny*)aSrc, aLength);
|
sl@0
|
1237 |
return KErrNone;
|
sl@0
|
1238 |
}
|
sl@0
|
1239 |
|
sl@0
|
1240 |
void M::BTracePrime(TUint aCategory)
|
sl@0
|
1241 |
{
|
sl@0
|
1242 |
(void)aCategory;
|
sl@0
|
1243 |
|
sl@0
|
1244 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
1245 |
// Must check for -1 as that is the default value of aCategory for
|
sl@0
|
1246 |
// BTrace::Prime() which is intended to prime all categories that are
|
sl@0
|
1247 |
// currently enabled via a single invocation of BTrace::Prime().
|
sl@0
|
1248 |
if(aCategory==BTrace::EKernelMemory || (TInt)aCategory == -1)
|
sl@0
|
1249 |
{
|
sl@0
|
1250 |
NKern::ThreadEnterCS();
|
sl@0
|
1251 |
Mmu::Wait();
|
sl@0
|
1252 |
BTrace4(BTrace::EKernelMemory,BTrace::EKernelMemoryInitialFree,TheSuperPage().iTotalRamSize);
|
sl@0
|
1253 |
BTrace4(BTrace::EKernelMemory,BTrace::EKernelMemoryCurrentFree,Kern::FreeRamInBytes());
|
sl@0
|
1254 |
BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscAlloc, Epoc::KernelMiscPages<<KPageShift);
|
sl@0
|
1255 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
1256 |
if (DemandPaging::ThePager)
|
sl@0
|
1257 |
BTrace4(BTrace::EKernelMemory,BTrace::EKernelMemoryDemandPagingCache,DemandPaging::ThePager->iMinimumPageCount << KPageShift);
|
sl@0
|
1258 |
#endif
|
sl@0
|
1259 |
BTrace8(BTrace::EKernelMemory,BTrace::EKernelMemoryDrvPhysAlloc, Epoc::DriverAllocdPhysRam, -1);
|
sl@0
|
1260 |
Mmu::Signal();
|
sl@0
|
1261 |
NKern::ThreadLeaveCS();
|
sl@0
|
1262 |
}
|
sl@0
|
1263 |
#endif
|
sl@0
|
1264 |
|
sl@0
|
1265 |
#ifdef BTRACE_RAM_ALLOCATOR
|
sl@0
|
1266 |
// Must check for -1 as that is the default value of aCategroy for
|
sl@0
|
1267 |
// BTrace::Prime() which is intended to prime all categories that are
|
sl@0
|
1268 |
// currently enabled via a single invocation of BTrace::Prime().
|
sl@0
|
1269 |
if(aCategory==BTrace::ERamAllocator || (TInt)aCategory == -1)
|
sl@0
|
1270 |
{
|
sl@0
|
1271 |
NKern::ThreadEnterCS();
|
sl@0
|
1272 |
Mmu::Wait();
|
sl@0
|
1273 |
Mmu::Get().iRamPageAllocator->SendInitialBtraceLogs();
|
sl@0
|
1274 |
Mmu::Signal();
|
sl@0
|
1275 |
NKern::ThreadLeaveCS();
|
sl@0
|
1276 |
}
|
sl@0
|
1277 |
#endif
|
sl@0
|
1278 |
}
|
sl@0
|
1279 |
|
sl@0
|
1280 |
|
sl@0
|
1281 |
/******************************************************************************
|
sl@0
|
1282 |
* Code common to all virtual memory models
|
sl@0
|
1283 |
******************************************************************************/
|
sl@0
|
1284 |
|
sl@0
|
1285 |
void RHeapK::Mutate(TInt aOffset, TInt aMaxLength)
|
sl@0
|
1286 |
//
|
sl@0
|
1287 |
// Used by the kernel to mutate a fixed heap into a chunk heap.
|
sl@0
|
1288 |
//
|
sl@0
|
1289 |
{
|
sl@0
|
1290 |
iMinLength += aOffset;
|
sl@0
|
1291 |
iMaxLength = aMaxLength + aOffset;
|
sl@0
|
1292 |
iOffset = aOffset;
|
sl@0
|
1293 |
iChunkHandle = (TInt)K::HeapInfo.iChunk;
|
sl@0
|
1294 |
iPageSize = M::PageSizeInBytes();
|
sl@0
|
1295 |
iGrowBy = iPageSize;
|
sl@0
|
1296 |
iFlags = 0;
|
sl@0
|
1297 |
}
|
sl@0
|
1298 |
|
sl@0
|
1299 |
TInt M::PageSizeInBytes()
|
sl@0
|
1300 |
{
|
sl@0
|
1301 |
return KPageSize;
|
sl@0
|
1302 |
}
|
sl@0
|
1303 |
|
sl@0
|
1304 |
TInt MmuBase::FreeRamInBytes()
|
sl@0
|
1305 |
{
|
sl@0
|
1306 |
TInt free = iRamPageAllocator->FreeRamInBytes();
|
sl@0
|
1307 |
if(iRamCache)
|
sl@0
|
1308 |
free += iRamCache->NumberOfFreePages()<<iPageShift;
|
sl@0
|
1309 |
return free;
|
sl@0
|
1310 |
}
|
sl@0
|
1311 |
|
sl@0
|
1312 |
/** Returns the amount of free RAM currently available.
|
sl@0
|
1313 |
|
sl@0
|
1314 |
@return The number of bytes of free RAM currently available.
|
sl@0
|
1315 |
@pre any context
|
sl@0
|
1316 |
*/
|
sl@0
|
1317 |
EXPORT_C TInt Kern::FreeRamInBytes()
|
sl@0
|
1318 |
{
|
sl@0
|
1319 |
return MmuBase::TheMmu->FreeRamInBytes();
|
sl@0
|
1320 |
}
|
sl@0
|
1321 |
|
sl@0
|
1322 |
|
sl@0
|
1323 |
/** Rounds up the argument to the size of a MMU page.
|
sl@0
|
1324 |
|
sl@0
|
1325 |
To find out the size of a MMU page:
|
sl@0
|
1326 |
@code
|
sl@0
|
1327 |
size = Kern::RoundToPageSize(1);
|
sl@0
|
1328 |
@endcode
|
sl@0
|
1329 |
|
sl@0
|
1330 |
@param aSize Value to round up
|
sl@0
|
1331 |
@pre any context
|
sl@0
|
1332 |
*/
|
sl@0
|
1333 |
EXPORT_C TUint32 Kern::RoundToPageSize(TUint32 aSize)
|
sl@0
|
1334 |
{
|
sl@0
|
1335 |
return MmuBase::RoundToPageSize(aSize);
|
sl@0
|
1336 |
}
|
sl@0
|
1337 |
|
sl@0
|
1338 |
|
sl@0
|
1339 |
/** Rounds up the argument to the amount of memory mapped by a MMU page
|
sl@0
|
1340 |
directory entry.
|
sl@0
|
1341 |
|
sl@0
|
1342 |
Chunks occupy one or more consecutive page directory entries (PDE) and
|
sl@0
|
1343 |
therefore the amount of linear and physical memory allocated to a chunk is
|
sl@0
|
1344 |
always a multiple of the amount of memory mapped by a page directory entry.
|
sl@0
|
1345 |
*/
|
sl@0
|
1346 |
EXPORT_C TUint32 Kern::RoundToChunkSize(TUint32 aSize)
|
sl@0
|
1347 |
{
|
sl@0
|
1348 |
return MmuBase::RoundToChunkSize(aSize);
|
sl@0
|
1349 |
}
|
sl@0
|
1350 |
|
sl@0
|
1351 |
|
sl@0
|
1352 |
/**
|
sl@0
|
1353 |
Allows the variant to specify the details of the RAM zones. This should be invoked
|
sl@0
|
1354 |
by the variant in its implementation of the pure virtual function Asic::Init1().
|
sl@0
|
1355 |
|
sl@0
|
1356 |
There are some limitations to how the RAM zones can be specified:
|
sl@0
|
1357 |
- Each RAM zone's address space must be distinct and not overlap with any
|
sl@0
|
1358 |
other RAM zone's address space
|
sl@0
|
1359 |
- Each RAM zone's address space must have a size that is multiples of the
|
sl@0
|
1360 |
ASIC's MMU small page size and be aligned to the ASIC's MMU small page size,
|
sl@0
|
1361 |
usually 4KB on ARM MMUs.
|
sl@0
|
1362 |
- When taken together all of the RAM zones must cover the whole of the physical RAM
|
sl@0
|
1363 |
address space as specified by the bootstrap in the SuperPage members iTotalRamSize
|
sl@0
|
1364 |
and iRamBootData;.
|
sl@0
|
1365 |
- There can be no more than KMaxRamZones RAM zones specified by the base port
|
sl@0
|
1366 |
|
sl@0
|
1367 |
Note the verification of the RAM zone data is not performed here but by the ram
|
sl@0
|
1368 |
allocator later in the boot up sequence. This is because it is only possible to
|
sl@0
|
1369 |
verify the zone data once the physical RAM configuration has been read from
|
sl@0
|
1370 |
the super page. Any verification errors result in a "RAM-ALLOC" panic
|
sl@0
|
1371 |
faulting the kernel during initialisation.
|
sl@0
|
1372 |
|
sl@0
|
1373 |
@param aZones Pointer to an array of SRamZone structs containing the details for all
|
sl@0
|
1374 |
the zones. The end of the array is specified by an element with an iSize of zero. The array must
|
sl@0
|
1375 |
remain in memory at least until the kernel has successfully booted.
|
sl@0
|
1376 |
|
sl@0
|
1377 |
@param aCallback Pointer to a call back function that the kernel may invoke to request
|
sl@0
|
1378 |
one of the operations specified by TRamZoneOp.
|
sl@0
|
1379 |
|
sl@0
|
1380 |
@return KErrNone if successful, otherwise one of the system wide error codes
|
sl@0
|
1381 |
|
sl@0
|
1382 |
@see TRamZoneOp
|
sl@0
|
1383 |
@see SRamZone
|
sl@0
|
1384 |
@see TRamZoneCallback
|
sl@0
|
1385 |
*/
|
sl@0
|
1386 |
EXPORT_C TInt Epoc::SetRamZoneConfig(const SRamZone* aZones, TRamZoneCallback aCallback)
|
sl@0
|
1387 |
{
|
sl@0
|
1388 |
// Ensure this is only called once and only while we are initialising the kernel
|
sl@0
|
1389 |
if (!K::Initialising || MmuBase::RamZoneConfig != NULL)
|
sl@0
|
1390 |
{// fault kernel, won't return
|
sl@0
|
1391 |
K::Fault(K::EBadSetRamZoneConfig);
|
sl@0
|
1392 |
}
|
sl@0
|
1393 |
|
sl@0
|
1394 |
if (NULL == aZones)
|
sl@0
|
1395 |
{
|
sl@0
|
1396 |
return KErrArgument;
|
sl@0
|
1397 |
}
|
sl@0
|
1398 |
MmuBase::RamZoneConfig=aZones;
|
sl@0
|
1399 |
MmuBase::RamZoneCallback=aCallback;
|
sl@0
|
1400 |
return KErrNone;
|
sl@0
|
1401 |
}
|
sl@0
|
1402 |
|
sl@0
|
1403 |
|
sl@0
|
1404 |
/**
|
sl@0
|
1405 |
Modify the specified RAM zone's flags.
|
sl@0
|
1406 |
|
sl@0
|
1407 |
This allows the BSP or device driver to configure which type of pages, if any,
|
sl@0
|
1408 |
can be allocated into a RAM zone by the system.
|
sl@0
|
1409 |
|
sl@0
|
1410 |
Note: updating a RAM zone's flags can result in
|
sl@0
|
1411 |
1 - memory allocations failing despite there being enough free RAM in the system.
|
sl@0
|
1412 |
2 - the methods TRamDefragRequest::EmptyRamZone(), TRamDefragRequest::ClaimRamZone()
|
sl@0
|
1413 |
or TRamDefragRequest::DefragRam() never succeeding.
|
sl@0
|
1414 |
|
sl@0
|
1415 |
The flag masks KRamZoneFlagDiscardOnly, KRamZoneFlagMovAndDisOnly and KRamZoneFlagNoAlloc
|
sl@0
|
1416 |
are intended to be used with this method.
|
sl@0
|
1417 |
|
sl@0
|
1418 |
@param aId The ID of the RAM zone to modify.
|
sl@0
|
1419 |
@param aClearMask The bit mask to clear, each flag of which must already be set on the RAM zone.
|
sl@0
|
1420 |
@param aSetMask The bit mask to set.
|
sl@0
|
1421 |
|
sl@0
|
1422 |
@return KErrNone on success, KErrArgument if the RAM zone of aId not found or if
|
sl@0
|
1423 |
aSetMask contains invalid flag bits.
|
sl@0
|
1424 |
|
sl@0
|
1425 |
@see TRamDefragRequest::EmptyRamZone()
|
sl@0
|
1426 |
@see TRamDefragRequest::ClaimRamZone()
|
sl@0
|
1427 |
@see TRamDefragRequest::DefragRam()
|
sl@0
|
1428 |
|
sl@0
|
1429 |
@see KRamZoneFlagDiscardOnly
|
sl@0
|
1430 |
@see KRamZoneFlagMovAndDisOnly
|
sl@0
|
1431 |
@see KRamZoneFlagNoAlloc
|
sl@0
|
1432 |
*/
|
sl@0
|
1433 |
EXPORT_C TInt Epoc::ModifyRamZoneFlags(TUint aId, TUint aClearMask, TUint aSetMask)
|
sl@0
|
1434 |
{
|
sl@0
|
1435 |
MmuBase& m = *MmuBase::TheMmu;
|
sl@0
|
1436 |
MmuBase::Wait();
|
sl@0
|
1437 |
|
sl@0
|
1438 |
TInt ret = m.ModifyRamZoneFlags(aId, aClearMask, aSetMask);
|
sl@0
|
1439 |
|
sl@0
|
1440 |
MmuBase::Signal();
|
sl@0
|
1441 |
return ret;
|
sl@0
|
1442 |
}
|
sl@0
|
1443 |
|
sl@0
|
1444 |
TInt MmuBase::ModifyRamZoneFlags(TUint aId, TUint aClearMask, TUint aSetMask)
|
sl@0
|
1445 |
{
|
sl@0
|
1446 |
return iRamPageAllocator->ModifyZoneFlags(aId, aClearMask, aSetMask);
|
sl@0
|
1447 |
}
|
sl@0
|
1448 |
|
sl@0
|
1449 |
|
sl@0
|
1450 |
/**
|
sl@0
|
1451 |
Gets the current count of a particular RAM zone's pages by type.
|
sl@0
|
1452 |
|
sl@0
|
1453 |
@param aId The ID of the RAM zone to enquire about
|
sl@0
|
1454 |
@param aPageData If successful, on return this contains the page count
|
sl@0
|
1455 |
|
sl@0
|
1456 |
@return KErrNone if successful, KErrArgument if a RAM zone of aId is not found or
|
sl@0
|
1457 |
one of the system wide error codes
|
sl@0
|
1458 |
|
sl@0
|
1459 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1460 |
@pre Interrupts must be enabled.
|
sl@0
|
1461 |
@pre Kernel must be unlocked.
|
sl@0
|
1462 |
@pre No fast mutex can be held.
|
sl@0
|
1463 |
@pre Call in a thread context.
|
sl@0
|
1464 |
|
sl@0
|
1465 |
@see SRamZonePageCount
|
sl@0
|
1466 |
*/
|
sl@0
|
1467 |
EXPORT_C TInt Epoc::GetRamZonePageCount(TUint aId, SRamZonePageCount& aPageData)
|
sl@0
|
1468 |
{
|
sl@0
|
1469 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::GetRamZonePageCount");
|
sl@0
|
1470 |
|
sl@0
|
1471 |
MmuBase& m = *MmuBase::TheMmu;
|
sl@0
|
1472 |
MmuBase::Wait(); // Gets RAM alloc mutex
|
sl@0
|
1473 |
|
sl@0
|
1474 |
TInt r = m.GetRamZonePageCount(aId, aPageData);
|
sl@0
|
1475 |
|
sl@0
|
1476 |
MmuBase::Signal();
|
sl@0
|
1477 |
|
sl@0
|
1478 |
return r;
|
sl@0
|
1479 |
}
|
sl@0
|
1480 |
|
sl@0
|
1481 |
TInt MmuBase::GetRamZonePageCount(TUint aId, SRamZonePageCount& aPageData)
|
sl@0
|
1482 |
{
|
sl@0
|
1483 |
return iRamPageAllocator->GetZonePageCount(aId, aPageData);
|
sl@0
|
1484 |
}
|
sl@0
|
1485 |
|
sl@0
|
1486 |
/**
|
sl@0
|
1487 |
Replace a page of the system's execute-in-place (XIP) ROM image with a page of
|
sl@0
|
1488 |
RAM having the same contents. This RAM can subsequently be written to in order
|
sl@0
|
1489 |
to apply patches to the XIP ROM or to insert software breakpoints for debugging
|
sl@0
|
1490 |
purposes.
|
sl@0
|
1491 |
Call Epoc::FreeShadowPage() when you wish to revert to the original ROM page.
|
sl@0
|
1492 |
|
sl@0
|
1493 |
@param aRomAddr The virtual address of the ROM page to be replaced.
|
sl@0
|
1494 |
@return KErrNone if the operation completed successfully.
|
sl@0
|
1495 |
KErrArgument if the specified address is not a valid XIP ROM address.
|
sl@0
|
1496 |
KErrNoMemory if the operation failed due to insufficient free RAM.
|
sl@0
|
1497 |
KErrAlreadyExists if the XIP ROM page at the specified address has
|
sl@0
|
1498 |
already been shadowed by a RAM page.
|
sl@0
|
1499 |
|
sl@0
|
1500 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1501 |
@pre Interrupts must be enabled.
|
sl@0
|
1502 |
@pre Kernel must be unlocked.
|
sl@0
|
1503 |
@pre No fast mutex can be held.
|
sl@0
|
1504 |
@pre Call in a thread context.
|
sl@0
|
1505 |
*/
|
sl@0
|
1506 |
EXPORT_C TInt Epoc::AllocShadowPage(TLinAddr aRomAddr)
|
sl@0
|
1507 |
{
|
sl@0
|
1508 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::AllocShadowPage");
|
sl@0
|
1509 |
|
sl@0
|
1510 |
TInt r;
|
sl@0
|
1511 |
r=M::LockRegion(aRomAddr,1);
|
sl@0
|
1512 |
if(r!=KErrNone && r!=KErrNotFound)
|
sl@0
|
1513 |
return r;
|
sl@0
|
1514 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
1515 |
MmuBase::Wait();
|
sl@0
|
1516 |
r=m.AllocShadowPage(aRomAddr);
|
sl@0
|
1517 |
MmuBase::Signal();
|
sl@0
|
1518 |
if(r!=KErrNone)
|
sl@0
|
1519 |
M::UnlockRegion(aRomAddr,1);
|
sl@0
|
1520 |
return r;
|
sl@0
|
1521 |
}
|
sl@0
|
1522 |
|
sl@0
|
1523 |
/**
|
sl@0
|
1524 |
Copies data into shadow memory. Source data is presumed to be in Kernel memory.
|
sl@0
|
1525 |
|
sl@0
|
1526 |
@param aSrc Data to copy from.
|
sl@0
|
1527 |
@param aDest Address to copy into.
|
sl@0
|
1528 |
@param aLength Number of bytes to copy. Maximum of 32 bytes of data can be copied.
|
sl@0
|
1529 |
.
|
sl@0
|
1530 |
@return KErrNone if the operation completed successfully.
|
sl@0
|
1531 |
KErrArgument if any part of destination region is not shadow page or
|
sl@0
|
1532 |
if aLength is greater then 32 bytes.
|
sl@0
|
1533 |
|
sl@0
|
1534 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1535 |
@pre Interrupts must be enabled.
|
sl@0
|
1536 |
@pre Kernel must be unlocked.
|
sl@0
|
1537 |
@pre No fast mutex can be held.
|
sl@0
|
1538 |
@pre Call in a thread context.
|
sl@0
|
1539 |
*/
|
sl@0
|
1540 |
EXPORT_C TInt Epoc::CopyToShadowMemory(TLinAddr aDest, TLinAddr aSrc, TUint32 aLength)
|
sl@0
|
1541 |
{
|
sl@0
|
1542 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::CopyToShadowMemory");
|
sl@0
|
1543 |
|
sl@0
|
1544 |
if (aLength>32)
|
sl@0
|
1545 |
return KErrArgument;
|
sl@0
|
1546 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
1547 |
// This is a simple copy operation except on platforms with __CPU_MEMORY_TYPE_REMAPPING defined,
|
sl@0
|
1548 |
// where shadow page is read-only and it has to be remapped before it is written into.
|
sl@0
|
1549 |
return m.CopyToShadowMemory(aDest, aSrc, aLength);
|
sl@0
|
1550 |
}
|
sl@0
|
1551 |
/**
|
sl@0
|
1552 |
Revert an XIP ROM address which has previously been shadowed to the original
|
sl@0
|
1553 |
page of ROM.
|
sl@0
|
1554 |
|
sl@0
|
1555 |
@param aRomAddr The virtual address of the ROM page to be reverted.
|
sl@0
|
1556 |
@return KErrNone if the operation completed successfully.
|
sl@0
|
1557 |
KErrArgument if the specified address is not a valid XIP ROM address.
|
sl@0
|
1558 |
KErrGeneral if the specified address has not previously been shadowed
|
sl@0
|
1559 |
using Epoc::AllocShadowPage().
|
sl@0
|
1560 |
|
sl@0
|
1561 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1562 |
@pre Interrupts must be enabled.
|
sl@0
|
1563 |
@pre Kernel must be unlocked.
|
sl@0
|
1564 |
@pre No fast mutex can be held.
|
sl@0
|
1565 |
@pre Call in a thread context.
|
sl@0
|
1566 |
*/
|
sl@0
|
1567 |
EXPORT_C TInt Epoc::FreeShadowPage(TLinAddr aRomAddr)
|
sl@0
|
1568 |
{
|
sl@0
|
1569 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::FreeShadowPage");
|
sl@0
|
1570 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
1571 |
MmuBase::Wait();
|
sl@0
|
1572 |
TInt r=m.FreeShadowPage(aRomAddr);
|
sl@0
|
1573 |
MmuBase::Signal();
|
sl@0
|
1574 |
if(r==KErrNone)
|
sl@0
|
1575 |
M::UnlockRegion(aRomAddr,1);
|
sl@0
|
1576 |
return r;
|
sl@0
|
1577 |
}
|
sl@0
|
1578 |
|
sl@0
|
1579 |
|
sl@0
|
1580 |
/**
|
sl@0
|
1581 |
Change the permissions on an XIP ROM address which has previously been shadowed
|
sl@0
|
1582 |
by a RAM page so that the RAM page may no longer be written to.
|
sl@0
|
1583 |
|
sl@0
|
1584 |
Note: Shadow page on the latest platforms (that use the reduced set of access permissions:
|
sl@0
|
1585 |
arm11mpcore, arm1176, cortex) is implemented with read only permissions. Therefore, calling
|
sl@0
|
1586 |
this function in not necessary, as shadow page is already created as 'frozen'.
|
sl@0
|
1587 |
|
sl@0
|
1588 |
@param aRomAddr The virtual address of the shadow RAM page to be frozen.
|
sl@0
|
1589 |
@return KErrNone if the operation completed successfully.
|
sl@0
|
1590 |
KErrArgument if the specified address is not a valid XIP ROM address.
|
sl@0
|
1591 |
KErrGeneral if the specified address has not previously been shadowed
|
sl@0
|
1592 |
using Epoc::AllocShadowPage().
|
sl@0
|
1593 |
|
sl@0
|
1594 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1595 |
@pre Interrupts must be enabled.
|
sl@0
|
1596 |
@pre Kernel must be unlocked.
|
sl@0
|
1597 |
@pre No fast mutex can be held.
|
sl@0
|
1598 |
@pre Call in a thread context.
|
sl@0
|
1599 |
*/
|
sl@0
|
1600 |
EXPORT_C TInt Epoc::FreezeShadowPage(TLinAddr aRomAddr)
|
sl@0
|
1601 |
{
|
sl@0
|
1602 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::FreezeShadowPage");
|
sl@0
|
1603 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
1604 |
MmuBase::Wait();
|
sl@0
|
1605 |
TInt r=m.FreezeShadowPage(aRomAddr);
|
sl@0
|
1606 |
MmuBase::Signal();
|
sl@0
|
1607 |
return r;
|
sl@0
|
1608 |
}
|
sl@0
|
1609 |
|
sl@0
|
1610 |
|
sl@0
|
1611 |
/**
|
sl@0
|
1612 |
Allocate a block of physically contiguous RAM with a physical address aligned
|
sl@0
|
1613 |
to a specified power of 2 boundary.
|
sl@0
|
1614 |
When the RAM is no longer required it should be freed using
|
sl@0
|
1615 |
Epoc::FreePhysicalRam()
|
sl@0
|
1616 |
|
sl@0
|
1617 |
@param aSize The size in bytes of the required block. The specified size
|
sl@0
|
1618 |
is rounded up to the page size, since only whole pages of
|
sl@0
|
1619 |
physical RAM can be allocated.
|
sl@0
|
1620 |
@param aPhysAddr Receives the physical address of the base of the block on
|
sl@0
|
1621 |
successful allocation.
|
sl@0
|
1622 |
@param aAlign Specifies the number of least significant bits of the
|
sl@0
|
1623 |
physical address which are required to be zero. If a value
|
sl@0
|
1624 |
less than log2(page size) is specified, page alignment is
|
sl@0
|
1625 |
assumed. Pass 0 for aAlign if there are no special alignment
|
sl@0
|
1626 |
constraints (other than page alignment).
|
sl@0
|
1627 |
@return KErrNone if the allocation was successful.
|
sl@0
|
1628 |
KErrNoMemory if a sufficiently large physically contiguous block of free
|
sl@0
|
1629 |
RAM with the specified alignment could not be found.
|
sl@0
|
1630 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1631 |
@pre Interrupts must be enabled.
|
sl@0
|
1632 |
@pre Kernel must be unlocked.
|
sl@0
|
1633 |
@pre No fast mutex can be held.
|
sl@0
|
1634 |
@pre Call in a thread context.
|
sl@0
|
1635 |
@pre Can be used in a device driver.
|
sl@0
|
1636 |
*/
|
sl@0
|
1637 |
EXPORT_C TInt Epoc::AllocPhysicalRam(TInt aSize, TPhysAddr& aPhysAddr, TInt aAlign)
|
sl@0
|
1638 |
{
|
sl@0
|
1639 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::AllocPhysicalRam");
|
sl@0
|
1640 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
1641 |
MmuBase::Wait();
|
sl@0
|
1642 |
TInt r=m.AllocPhysicalRam(aSize,aPhysAddr,aAlign);
|
sl@0
|
1643 |
if (r == KErrNone)
|
sl@0
|
1644 |
{
|
sl@0
|
1645 |
// For the sake of platform security we have to clear the memory. E.g. the driver
|
sl@0
|
1646 |
// could assign it to a chunk visible to user side.
|
sl@0
|
1647 |
m.ClearPages(Kern::RoundToPageSize(aSize)>>m.iPageShift, (TPhysAddr*)(aPhysAddr|1));
|
sl@0
|
1648 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
1649 |
TUint size = Kern::RoundToPageSize(aSize);
|
sl@0
|
1650 |
BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysAlloc, size, aPhysAddr);
|
sl@0
|
1651 |
Epoc::DriverAllocdPhysRam += size;
|
sl@0
|
1652 |
#endif
|
sl@0
|
1653 |
}
|
sl@0
|
1654 |
MmuBase::Signal();
|
sl@0
|
1655 |
return r;
|
sl@0
|
1656 |
}
|
sl@0
|
1657 |
|
sl@0
|
1658 |
/**
|
sl@0
|
1659 |
Allocate a block of physically contiguous RAM with a physical address aligned
|
sl@0
|
1660 |
to a specified power of 2 boundary from the specified zone.
|
sl@0
|
1661 |
When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam().
|
sl@0
|
1662 |
|
sl@0
|
1663 |
Note that this method only repsects the KRamZoneFlagNoAlloc flag and will always attempt
|
sl@0
|
1664 |
to allocate regardless of whether the other flags are set for the specified RAM zones
|
sl@0
|
1665 |
or not.
|
sl@0
|
1666 |
|
sl@0
|
1667 |
When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam().
|
sl@0
|
1668 |
|
sl@0
|
1669 |
@param aZoneId The ID of the zone to attempt to allocate from.
|
sl@0
|
1670 |
@param aSize The size in bytes of the required block. The specified size
|
sl@0
|
1671 |
is rounded up to the page size, since only whole pages of
|
sl@0
|
1672 |
physical RAM can be allocated.
|
sl@0
|
1673 |
@param aPhysAddr Receives the physical address of the base of the block on
|
sl@0
|
1674 |
successful allocation.
|
sl@0
|
1675 |
@param aAlign Specifies the number of least significant bits of the
|
sl@0
|
1676 |
physical address which are required to be zero. If a value
|
sl@0
|
1677 |
less than log2(page size) is specified, page alignment is
|
sl@0
|
1678 |
assumed. Pass 0 for aAlign if there are no special alignment
|
sl@0
|
1679 |
constraints (other than page alignment).
|
sl@0
|
1680 |
@return KErrNone if the allocation was successful.
|
sl@0
|
1681 |
KErrNoMemory if a sufficiently large physically contiguous block of free
|
sl@0
|
1682 |
RAM with the specified alignment could not be found within the specified
|
sl@0
|
1683 |
zone.
|
sl@0
|
1684 |
KErrArgument if a RAM zone of the specified ID can't be found or if the
|
sl@0
|
1685 |
RAM zone has a total number of physical pages which is less than those
|
sl@0
|
1686 |
requested for the allocation.
|
sl@0
|
1687 |
|
sl@0
|
1688 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1689 |
@pre Interrupts must be enabled.
|
sl@0
|
1690 |
@pre Kernel must be unlocked.
|
sl@0
|
1691 |
@pre No fast mutex can be held.
|
sl@0
|
1692 |
@pre Call in a thread context.
|
sl@0
|
1693 |
@pre Can be used in a device driver.
|
sl@0
|
1694 |
*/
|
sl@0
|
1695 |
EXPORT_C TInt Epoc::ZoneAllocPhysicalRam(TUint aZoneId, TInt aSize, TPhysAddr& aPhysAddr, TInt aAlign)
|
sl@0
|
1696 |
{
|
sl@0
|
1697 |
return ZoneAllocPhysicalRam(&aZoneId, 1, aSize, aPhysAddr, aAlign);
|
sl@0
|
1698 |
}
|
sl@0
|
1699 |
|
sl@0
|
1700 |
|
sl@0
|
1701 |
/**
|
sl@0
|
1702 |
Allocate a block of physically contiguous RAM with a physical address aligned
|
sl@0
|
1703 |
to a specified power of 2 boundary from the specified RAM zones.
|
sl@0
|
1704 |
When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam().
|
sl@0
|
1705 |
|
sl@0
|
1706 |
RAM will be allocated into the RAM zones in the order they are specified in the
|
sl@0
|
1707 |
aZoneIdList parameter. If the contiguous allocations are intended to span RAM zones
|
sl@0
|
1708 |
when required then aZoneIdList should be listed with the RAM zones in ascending
|
sl@0
|
1709 |
physical address order.
|
sl@0
|
1710 |
|
sl@0
|
1711 |
Note that this method only repsects the KRamZoneFlagNoAlloc flag and will always attempt
|
sl@0
|
1712 |
to allocate regardless of whether the other flags are set for the specified RAM zones
|
sl@0
|
1713 |
or not.
|
sl@0
|
1714 |
|
sl@0
|
1715 |
When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam().
|
sl@0
|
1716 |
|
sl@0
|
1717 |
@param aZoneIdList A pointer to an array of RAM zone IDs of the RAM zones to
|
sl@0
|
1718 |
attempt to allocate from.
|
sl@0
|
1719 |
@param aZoneIdCount The number of RAM zone IDs contained in aZoneIdList.
|
sl@0
|
1720 |
@param aSize The size in bytes of the required block. The specified size
|
sl@0
|
1721 |
is rounded up to the page size, since only whole pages of
|
sl@0
|
1722 |
physical RAM can be allocated.
|
sl@0
|
1723 |
@param aPhysAddr Receives the physical address of the base of the block on
|
sl@0
|
1724 |
successful allocation.
|
sl@0
|
1725 |
@param aAlign Specifies the number of least significant bits of the
|
sl@0
|
1726 |
physical address which are required to be zero. If a value
|
sl@0
|
1727 |
less than log2(page size) is specified, page alignment is
|
sl@0
|
1728 |
assumed. Pass 0 for aAlign if there are no special alignment
|
sl@0
|
1729 |
constraints (other than page alignment).
|
sl@0
|
1730 |
@return KErrNone if the allocation was successful.
|
sl@0
|
1731 |
KErrNoMemory if a sufficiently large physically contiguous block of free
|
sl@0
|
1732 |
RAM with the specified alignment could not be found within the specified
|
sl@0
|
1733 |
zone.
|
sl@0
|
1734 |
KErrArgument if a RAM zone of a specified ID can't be found or if the
|
sl@0
|
1735 |
RAM zones have a total number of physical pages which is less than those
|
sl@0
|
1736 |
requested for the allocation.
|
sl@0
|
1737 |
|
sl@0
|
1738 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1739 |
@pre Interrupts must be enabled.
|
sl@0
|
1740 |
@pre Kernel must be unlocked.
|
sl@0
|
1741 |
@pre No fast mutex can be held.
|
sl@0
|
1742 |
@pre Call in a thread context.
|
sl@0
|
1743 |
@pre Can be used in a device driver.
|
sl@0
|
1744 |
*/
|
sl@0
|
1745 |
EXPORT_C TInt Epoc::ZoneAllocPhysicalRam(TUint* aZoneIdList, TUint aZoneIdCount, TInt aSize, TPhysAddr& aPhysAddr, TInt aAlign)
|
sl@0
|
1746 |
{
|
sl@0
|
1747 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::ZoneAllocPhysicalRam");
|
sl@0
|
1748 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
1749 |
MmuBase::Wait();
|
sl@0
|
1750 |
TInt r = m.ZoneAllocPhysicalRam(aZoneIdList, aZoneIdCount, aSize, aPhysAddr, aAlign);
|
sl@0
|
1751 |
if (r == KErrNone)
|
sl@0
|
1752 |
{
|
sl@0
|
1753 |
// For the sake of platform security we have to clear the memory. E.g. the driver
|
sl@0
|
1754 |
// could assign it to a chunk visible to user side.
|
sl@0
|
1755 |
m.ClearPages(Kern::RoundToPageSize(aSize)>>m.iPageShift, (TPhysAddr*)(aPhysAddr|1));
|
sl@0
|
1756 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
1757 |
TUint size = Kern::RoundToPageSize(aSize);
|
sl@0
|
1758 |
BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysAlloc, size, aPhysAddr);
|
sl@0
|
1759 |
Epoc::DriverAllocdPhysRam += size;
|
sl@0
|
1760 |
#endif
|
sl@0
|
1761 |
}
|
sl@0
|
1762 |
MmuBase::Signal();
|
sl@0
|
1763 |
return r;
|
sl@0
|
1764 |
}
|
sl@0
|
1765 |
|
sl@0
|
1766 |
|
sl@0
|
1767 |
/**
|
sl@0
|
1768 |
Attempt to allocate discontiguous RAM pages.
|
sl@0
|
1769 |
|
sl@0
|
1770 |
When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam().
|
sl@0
|
1771 |
|
sl@0
|
1772 |
@param aNumPages The number of discontiguous pages required to be allocated
|
sl@0
|
1773 |
@param aPageList This should be a pointer to a previously allocated array of
|
sl@0
|
1774 |
aNumPages TPhysAddr elements. On a succesful allocation it
|
sl@0
|
1775 |
will receive the physical addresses of each page allocated.
|
sl@0
|
1776 |
|
sl@0
|
1777 |
@return KErrNone if the allocation was successful.
|
sl@0
|
1778 |
KErrNoMemory if the requested number of pages can't be allocated
|
sl@0
|
1779 |
|
sl@0
|
1780 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1781 |
@pre Interrupts must be enabled.
|
sl@0
|
1782 |
@pre Kernel must be unlocked.
|
sl@0
|
1783 |
@pre No fast mutex can be held.
|
sl@0
|
1784 |
@pre Call in a thread context.
|
sl@0
|
1785 |
@pre Can be used in a device driver.
|
sl@0
|
1786 |
*/
|
sl@0
|
1787 |
EXPORT_C TInt Epoc::AllocPhysicalRam(TInt aNumPages, TPhysAddr* aPageList)
|
sl@0
|
1788 |
{
|
sl@0
|
1789 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL, "Epoc::AllocPhysicalRam");
|
sl@0
|
1790 |
MmuBase& m = *MmuBase::TheMmu;
|
sl@0
|
1791 |
MmuBase::Wait();
|
sl@0
|
1792 |
TInt r = m.AllocPhysicalRam(aNumPages, aPageList);
|
sl@0
|
1793 |
if (r == KErrNone)
|
sl@0
|
1794 |
{
|
sl@0
|
1795 |
// For the sake of platform security we have to clear the memory. E.g. the driver
|
sl@0
|
1796 |
// could assign it to a chunk visible to user side.
|
sl@0
|
1797 |
m.ClearPages(aNumPages, aPageList);
|
sl@0
|
1798 |
|
sl@0
|
1799 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
1800 |
if (BTrace::CheckFilter(BTrace::EKernelMemory))
|
sl@0
|
1801 |
{// Only loop round each page if EKernelMemory tracing is enabled
|
sl@0
|
1802 |
TPhysAddr* pAddr = aPageList;
|
sl@0
|
1803 |
TPhysAddr* pAddrEnd = aPageList + aNumPages;
|
sl@0
|
1804 |
while (pAddr < pAddrEnd)
|
sl@0
|
1805 |
{
|
sl@0
|
1806 |
BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysAlloc, KPageSize, *pAddr++);
|
sl@0
|
1807 |
Epoc::DriverAllocdPhysRam += KPageSize;
|
sl@0
|
1808 |
}
|
sl@0
|
1809 |
}
|
sl@0
|
1810 |
#endif
|
sl@0
|
1811 |
}
|
sl@0
|
1812 |
MmuBase::Signal();
|
sl@0
|
1813 |
return r;
|
sl@0
|
1814 |
}
|
sl@0
|
1815 |
|
sl@0
|
1816 |
|
sl@0
|
1817 |
/**
|
sl@0
|
1818 |
Attempt to allocate discontiguous RAM pages from the specified zone.
|
sl@0
|
1819 |
|
sl@0
|
1820 |
Note that this method only repsects the KRamZoneFlagNoAlloc flag and will always attempt
|
sl@0
|
1821 |
to allocate regardless of whether the other flags are set for the specified RAM zones
|
sl@0
|
1822 |
or not.
|
sl@0
|
1823 |
|
sl@0
|
1824 |
When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam().
|
sl@0
|
1825 |
|
sl@0
|
1826 |
@param aZoneId The ID of the zone to attempt to allocate from.
|
sl@0
|
1827 |
@param aNumPages The number of discontiguous pages required to be allocated
|
sl@0
|
1828 |
from the specified zone.
|
sl@0
|
1829 |
@param aPageList This should be a pointer to a previously allocated array of
|
sl@0
|
1830 |
aNumPages TPhysAddr elements. On a succesful
|
sl@0
|
1831 |
allocation it will receive the physical addresses of each
|
sl@0
|
1832 |
page allocated.
|
sl@0
|
1833 |
@return KErrNone if the allocation was successful.
|
sl@0
|
1834 |
KErrNoMemory if the requested number of pages can't be allocated from the
|
sl@0
|
1835 |
specified zone.
|
sl@0
|
1836 |
KErrArgument if a RAM zone of the specified ID can't be found or if the
|
sl@0
|
1837 |
RAM zone has a total number of physical pages which is less than those
|
sl@0
|
1838 |
requested for the allocation.
|
sl@0
|
1839 |
|
sl@0
|
1840 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1841 |
@pre Interrupts must be enabled.
|
sl@0
|
1842 |
@pre Kernel must be unlocked.
|
sl@0
|
1843 |
@pre No fast mutex can be held.
|
sl@0
|
1844 |
@pre Call in a thread context.
|
sl@0
|
1845 |
@pre Can be used in a device driver.
|
sl@0
|
1846 |
*/
|
sl@0
|
1847 |
EXPORT_C TInt Epoc::ZoneAllocPhysicalRam(TUint aZoneId, TInt aNumPages, TPhysAddr* aPageList)
|
sl@0
|
1848 |
{
|
sl@0
|
1849 |
return ZoneAllocPhysicalRam(&aZoneId, 1, aNumPages, aPageList);
|
sl@0
|
1850 |
}
|
sl@0
|
1851 |
|
sl@0
|
1852 |
|
sl@0
|
1853 |
/**
|
sl@0
|
1854 |
Attempt to allocate discontiguous RAM pages from the specified RAM zones.
|
sl@0
|
1855 |
The RAM pages will be allocated into the RAM zones in the order that they are specified
|
sl@0
|
1856 |
in the aZoneIdList parameter, the RAM zone preferences will be ignored.
|
sl@0
|
1857 |
|
sl@0
|
1858 |
Note that this method only repsects the KRamZoneFlagNoAlloc flag and will always attempt
|
sl@0
|
1859 |
to allocate regardless of whether the other flags are set for the specified RAM zones
|
sl@0
|
1860 |
or not.
|
sl@0
|
1861 |
|
sl@0
|
1862 |
When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam().
|
sl@0
|
1863 |
|
sl@0
|
1864 |
@param aZoneIdList A pointer to an array of RAM zone IDs of the RAM zones to
|
sl@0
|
1865 |
attempt to allocate from.
|
sl@0
|
1866 |
@param aZoneIdCount The number of RAM zone IDs pointed to by aZoneIdList.
|
sl@0
|
1867 |
@param aNumPages The number of discontiguous pages required to be allocated
|
sl@0
|
1868 |
from the specified zone.
|
sl@0
|
1869 |
@param aPageList This should be a pointer to a previously allocated array of
|
sl@0
|
1870 |
aNumPages TPhysAddr elements. On a succesful
|
sl@0
|
1871 |
allocation it will receive the physical addresses of each
|
sl@0
|
1872 |
page allocated.
|
sl@0
|
1873 |
@return KErrNone if the allocation was successful.
|
sl@0
|
1874 |
KErrNoMemory if the requested number of pages can't be allocated from the
|
sl@0
|
1875 |
specified zone.
|
sl@0
|
1876 |
KErrArgument if a RAM zone of a specified ID can't be found or if the
|
sl@0
|
1877 |
RAM zones have a total number of physical pages which is less than those
|
sl@0
|
1878 |
requested for the allocation.
|
sl@0
|
1879 |
|
sl@0
|
1880 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1881 |
@pre Interrupts must be enabled.
|
sl@0
|
1882 |
@pre Kernel must be unlocked.
|
sl@0
|
1883 |
@pre No fast mutex can be held.
|
sl@0
|
1884 |
@pre Call in a thread context.
|
sl@0
|
1885 |
@pre Can be used in a device driver.
|
sl@0
|
1886 |
*/
|
sl@0
|
1887 |
EXPORT_C TInt Epoc::ZoneAllocPhysicalRam(TUint* aZoneIdList, TUint aZoneIdCount, TInt aNumPages, TPhysAddr* aPageList)
|
sl@0
|
1888 |
{
|
sl@0
|
1889 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL, "Epoc::ZoneAllocPhysicalRam");
|
sl@0
|
1890 |
MmuBase& m = *MmuBase::TheMmu;
|
sl@0
|
1891 |
MmuBase::Wait();
|
sl@0
|
1892 |
TInt r = m.ZoneAllocPhysicalRam(aZoneIdList, aZoneIdCount, aNumPages, aPageList);
|
sl@0
|
1893 |
if (r == KErrNone)
|
sl@0
|
1894 |
{
|
sl@0
|
1895 |
// For the sake of platform security we have to clear the memory. E.g. the driver
|
sl@0
|
1896 |
// could assign it to a chunk visible to user side.
|
sl@0
|
1897 |
m.ClearPages(aNumPages, aPageList);
|
sl@0
|
1898 |
|
sl@0
|
1899 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
1900 |
if (BTrace::CheckFilter(BTrace::EKernelMemory))
|
sl@0
|
1901 |
{// Only loop round each page if EKernelMemory tracing is enabled
|
sl@0
|
1902 |
TPhysAddr* pAddr = aPageList;
|
sl@0
|
1903 |
TPhysAddr* pAddrEnd = aPageList + aNumPages;
|
sl@0
|
1904 |
while (pAddr < pAddrEnd)
|
sl@0
|
1905 |
{
|
sl@0
|
1906 |
BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysAlloc, KPageSize, *pAddr++);
|
sl@0
|
1907 |
Epoc::DriverAllocdPhysRam += KPageSize;
|
sl@0
|
1908 |
}
|
sl@0
|
1909 |
}
|
sl@0
|
1910 |
#endif
|
sl@0
|
1911 |
}
|
sl@0
|
1912 |
MmuBase::Signal();
|
sl@0
|
1913 |
return r;
|
sl@0
|
1914 |
}
|
sl@0
|
1915 |
|
sl@0
|
1916 |
/**
|
sl@0
|
1917 |
Free a previously-allocated block of physically contiguous RAM.
|
sl@0
|
1918 |
|
sl@0
|
1919 |
Specifying one of the following may cause the system to panic:
|
sl@0
|
1920 |
a) an invalid physical RAM address.
|
sl@0
|
1921 |
b) valid physical RAM addresses where some had not been previously allocated.
|
sl@0
|
1922 |
c) an adrress not aligned to a page boundary.
|
sl@0
|
1923 |
|
sl@0
|
1924 |
@param aPhysAddr The physical address of the base of the block to be freed.
|
sl@0
|
1925 |
This must be the address returned by a previous call to
|
sl@0
|
1926 |
Epoc::AllocPhysicalRam(), Epoc::ZoneAllocPhysicalRam(),
|
sl@0
|
1927 |
Epoc::ClaimPhysicalRam() or Epoc::ClaimRamZone().
|
sl@0
|
1928 |
@param aSize The size in bytes of the required block. The specified size
|
sl@0
|
1929 |
is rounded up to the page size, since only whole pages of
|
sl@0
|
1930 |
physical RAM can be allocated.
|
sl@0
|
1931 |
@return KErrNone if the operation was successful.
|
sl@0
|
1932 |
|
sl@0
|
1933 |
|
sl@0
|
1934 |
|
sl@0
|
1935 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1936 |
@pre Interrupts must be enabled.
|
sl@0
|
1937 |
@pre Kernel must be unlocked.
|
sl@0
|
1938 |
@pre No fast mutex can be held.
|
sl@0
|
1939 |
@pre Call in a thread context.
|
sl@0
|
1940 |
@pre Can be used in a device driver.
|
sl@0
|
1941 |
*/
|
sl@0
|
1942 |
EXPORT_C TInt Epoc::FreePhysicalRam(TPhysAddr aPhysAddr, TInt aSize)
|
sl@0
|
1943 |
{
|
sl@0
|
1944 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::FreePhysicalRam");
|
sl@0
|
1945 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
1946 |
MmuBase::Wait();
|
sl@0
|
1947 |
TInt r=m.FreePhysicalRam(aPhysAddr,aSize);
|
sl@0
|
1948 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
1949 |
if (r == KErrNone)
|
sl@0
|
1950 |
{
|
sl@0
|
1951 |
TUint size = Kern::RoundToPageSize(aSize);
|
sl@0
|
1952 |
BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysFree, size, aPhysAddr);
|
sl@0
|
1953 |
Epoc::DriverAllocdPhysRam -= size;
|
sl@0
|
1954 |
}
|
sl@0
|
1955 |
#endif
|
sl@0
|
1956 |
MmuBase::Signal();
|
sl@0
|
1957 |
return r;
|
sl@0
|
1958 |
}
|
sl@0
|
1959 |
|
sl@0
|
1960 |
|
sl@0
|
1961 |
/**
|
sl@0
|
1962 |
Free a number of physical RAM pages that were previously allocated using
|
sl@0
|
1963 |
Epoc::AllocPhysicalRam() or Epoc::ZoneAllocPhysicalRam().
|
sl@0
|
1964 |
|
sl@0
|
1965 |
Specifying one of the following may cause the system to panic:
|
sl@0
|
1966 |
a) an invalid physical RAM address.
|
sl@0
|
1967 |
b) valid physical RAM addresses where some had not been previously allocated.
|
sl@0
|
1968 |
c) an adrress not aligned to a page boundary.
|
sl@0
|
1969 |
|
sl@0
|
1970 |
@param aNumPages The number of pages to be freed.
|
sl@0
|
1971 |
@param aPhysAddr An array of aNumPages TPhysAddr elements. Where each element
|
sl@0
|
1972 |
should contain the physical address of each page to be freed.
|
sl@0
|
1973 |
This must be the same set of addresses as those returned by a
|
sl@0
|
1974 |
previous call to Epoc::AllocPhysicalRam() or
|
sl@0
|
1975 |
Epoc::ZoneAllocPhysicalRam().
|
sl@0
|
1976 |
@return KErrNone if the operation was successful.
|
sl@0
|
1977 |
|
sl@0
|
1978 |
@pre Calling thread must be in a critical section.
|
sl@0
|
1979 |
@pre Interrupts must be enabled.
|
sl@0
|
1980 |
@pre Kernel must be unlocked.
|
sl@0
|
1981 |
@pre No fast mutex can be held.
|
sl@0
|
1982 |
@pre Call in a thread context.
|
sl@0
|
1983 |
@pre Can be used in a device driver.
|
sl@0
|
1984 |
|
sl@0
|
1985 |
*/
|
sl@0
|
1986 |
EXPORT_C TInt Epoc::FreePhysicalRam(TInt aNumPages, TPhysAddr* aPageList)
|
sl@0
|
1987 |
{
|
sl@0
|
1988 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::FreePhysicalRam");
|
sl@0
|
1989 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
1990 |
MmuBase::Wait();
|
sl@0
|
1991 |
TInt r=m.FreePhysicalRam(aNumPages, aPageList);
|
sl@0
|
1992 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
1993 |
if (r == KErrNone && BTrace::CheckFilter(BTrace::EKernelMemory))
|
sl@0
|
1994 |
{// Only loop round each page if EKernelMemory tracing is enabled
|
sl@0
|
1995 |
TPhysAddr* pAddr = aPageList;
|
sl@0
|
1996 |
TPhysAddr* pAddrEnd = aPageList + aNumPages;
|
sl@0
|
1997 |
while (pAddr < pAddrEnd)
|
sl@0
|
1998 |
{
|
sl@0
|
1999 |
BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysFree, KPageSize, *pAddr++);
|
sl@0
|
2000 |
Epoc::DriverAllocdPhysRam -= KPageSize;
|
sl@0
|
2001 |
}
|
sl@0
|
2002 |
}
|
sl@0
|
2003 |
#endif
|
sl@0
|
2004 |
MmuBase::Signal();
|
sl@0
|
2005 |
return r;
|
sl@0
|
2006 |
}
|
sl@0
|
2007 |
|
sl@0
|
2008 |
|
sl@0
|
2009 |
/**
|
sl@0
|
2010 |
Allocate a specific block of physically contiguous RAM, specified by physical
|
sl@0
|
2011 |
base address and size.
|
sl@0
|
2012 |
If and when the RAM is no longer required it should be freed using
|
sl@0
|
2013 |
Epoc::FreePhysicalRam()
|
sl@0
|
2014 |
|
sl@0
|
2015 |
@param aPhysAddr The physical address of the base of the required block.
|
sl@0
|
2016 |
@param aSize The size in bytes of the required block. The specified size
|
sl@0
|
2017 |
is rounded up to the page size, since only whole pages of
|
sl@0
|
2018 |
physical RAM can be allocated.
|
sl@0
|
2019 |
@return KErrNone if the operation was successful.
|
sl@0
|
2020 |
KErrArgument if the range of physical addresses specified included some
|
sl@0
|
2021 |
which are not valid physical RAM addresses.
|
sl@0
|
2022 |
KErrInUse if the range of physical addresses specified are all valid
|
sl@0
|
2023 |
physical RAM addresses but some of them have already been
|
sl@0
|
2024 |
allocated for other purposes.
|
sl@0
|
2025 |
@pre Calling thread must be in a critical section.
|
sl@0
|
2026 |
@pre Interrupts must be enabled.
|
sl@0
|
2027 |
@pre Kernel must be unlocked.
|
sl@0
|
2028 |
@pre No fast mutex can be held.
|
sl@0
|
2029 |
@pre Call in a thread context.
|
sl@0
|
2030 |
@pre Can be used in a device driver.
|
sl@0
|
2031 |
*/
|
sl@0
|
2032 |
EXPORT_C TInt Epoc::ClaimPhysicalRam(TPhysAddr aPhysAddr, TInt aSize)
|
sl@0
|
2033 |
{
|
sl@0
|
2034 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::ClaimPhysicalRam");
|
sl@0
|
2035 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
2036 |
MmuBase::Wait();
|
sl@0
|
2037 |
TInt r=m.ClaimPhysicalRam(aPhysAddr,aSize);
|
sl@0
|
2038 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
2039 |
if(r==KErrNone)
|
sl@0
|
2040 |
{
|
sl@0
|
2041 |
TUint32 pa=aPhysAddr;
|
sl@0
|
2042 |
TUint32 size=aSize;
|
sl@0
|
2043 |
m.RoundUpRangeToPageSize(pa,size);
|
sl@0
|
2044 |
BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysAlloc, size, pa);
|
sl@0
|
2045 |
Epoc::DriverAllocdPhysRam += size;
|
sl@0
|
2046 |
}
|
sl@0
|
2047 |
#endif
|
sl@0
|
2048 |
MmuBase::Signal();
|
sl@0
|
2049 |
return r;
|
sl@0
|
2050 |
}
|
sl@0
|
2051 |
|
sl@0
|
2052 |
|
sl@0
|
2053 |
/**
|
sl@0
|
2054 |
Translate a virtual address to the corresponding physical address.
|
sl@0
|
2055 |
|
sl@0
|
2056 |
@param aLinAddr The virtual address to be translated.
|
sl@0
|
2057 |
@return The physical address corresponding to the given virtual address, or
|
sl@0
|
2058 |
KPhysAddrInvalid if the specified virtual address is unmapped.
|
sl@0
|
2059 |
@pre Interrupts must be enabled.
|
sl@0
|
2060 |
@pre Kernel must be unlocked.
|
sl@0
|
2061 |
@pre Call in a thread context.
|
sl@0
|
2062 |
@pre Can be used in a device driver.
|
sl@0
|
2063 |
@pre Hold system lock if there is any possibility that the virtual address is
|
sl@0
|
2064 |
unmapped, may become unmapped, or may be remapped during the operation.
|
sl@0
|
2065 |
This will potentially be the case unless the virtual address refers to a
|
sl@0
|
2066 |
hardware chunk or shared chunk under the control of the driver calling this
|
sl@0
|
2067 |
function.
|
sl@0
|
2068 |
*/
|
sl@0
|
2069 |
EXPORT_C TPhysAddr Epoc::LinearToPhysical(TLinAddr aLinAddr)
|
sl@0
|
2070 |
{
|
sl@0
|
2071 |
// This precondition is violated by various parts of the system under some conditions,
|
sl@0
|
2072 |
// e.g. when __FLUSH_PT_INTO_RAM__ is defined. This function might also be called by
|
sl@0
|
2073 |
// a higher-level RTOS for which these conditions are meaningless. Thus, it's been
|
sl@0
|
2074 |
// disabled for now.
|
sl@0
|
2075 |
// CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"Epoc::LinearToPhysical");
|
sl@0
|
2076 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
2077 |
TPhysAddr pa=m.LinearToPhysical(aLinAddr);
|
sl@0
|
2078 |
return pa;
|
sl@0
|
2079 |
}
|
sl@0
|
2080 |
|
sl@0
|
2081 |
|
sl@0
|
2082 |
EXPORT_C TInt TInternalRamDrive::MaxSize()
|
sl@0
|
2083 |
{
|
sl@0
|
2084 |
return TheSuperPage().iRamDriveSize+Kern::FreeRamInBytes();
|
sl@0
|
2085 |
}
|
sl@0
|
2086 |
|
sl@0
|
2087 |
|
sl@0
|
2088 |
/******************************************************************************
|
sl@0
|
2089 |
* Address allocator
|
sl@0
|
2090 |
******************************************************************************/
|
sl@0
|
2091 |
TLinearSection* TLinearSection::New(TLinAddr aBase, TLinAddr aEnd)
|
sl@0
|
2092 |
{
|
sl@0
|
2093 |
__KTRACE_OPT(KMMU,Kern::Printf("TLinearSection::New(%08x,%08x)", aBase, aEnd));
|
sl@0
|
2094 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
2095 |
TUint npdes=(aEnd-aBase)>>m.iChunkShift;
|
sl@0
|
2096 |
TInt nmapw=(npdes+31)>>5;
|
sl@0
|
2097 |
TInt memsz=sizeof(TLinearSection)+(nmapw-1)*sizeof(TUint32);
|
sl@0
|
2098 |
TLinearSection* p=(TLinearSection*)Kern::Alloc(memsz);
|
sl@0
|
2099 |
if (p)
|
sl@0
|
2100 |
{
|
sl@0
|
2101 |
new(&p->iAllocator) TBitMapAllocator(npdes, ETrue);
|
sl@0
|
2102 |
p->iBase=aBase;
|
sl@0
|
2103 |
p->iEnd=aEnd;
|
sl@0
|
2104 |
}
|
sl@0
|
2105 |
__KTRACE_OPT(KMMU,Kern::Printf("TLinearSection at %08x", p));
|
sl@0
|
2106 |
return p;
|
sl@0
|
2107 |
}
|
sl@0
|
2108 |
|
sl@0
|
2109 |
/******************************************************************************
|
sl@0
|
2110 |
* Address allocator for HW chunks
|
sl@0
|
2111 |
******************************************************************************/
|
sl@0
|
2112 |
THwChunkPageTable::THwChunkPageTable(TInt aIndex, TInt aSize, TPde aPdePerm)
|
sl@0
|
2113 |
: THwChunkRegion(aIndex, 0, aPdePerm),
|
sl@0
|
2114 |
iAllocator(aSize, ETrue)
|
sl@0
|
2115 |
{
|
sl@0
|
2116 |
}
|
sl@0
|
2117 |
|
sl@0
|
2118 |
THwChunkPageTable* THwChunkPageTable::New(TInt aIndex, TPde aPdePerm)
|
sl@0
|
2119 |
{
|
sl@0
|
2120 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChunkPageTable::New(%03x,%08x)",aIndex,aPdePerm));
|
sl@0
|
2121 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
2122 |
TInt pdepages=m.iChunkSize>>m.iPageShift;
|
sl@0
|
2123 |
TInt nmapw=(pdepages+31)>>5;
|
sl@0
|
2124 |
TInt memsz=sizeof(THwChunkPageTable)+(nmapw-1)*sizeof(TUint32);
|
sl@0
|
2125 |
THwChunkPageTable* p=(THwChunkPageTable*)Kern::Alloc(memsz);
|
sl@0
|
2126 |
if (p)
|
sl@0
|
2127 |
new (p) THwChunkPageTable(aIndex, pdepages, aPdePerm);
|
sl@0
|
2128 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChunkPageTable at %08x",p));
|
sl@0
|
2129 |
return p;
|
sl@0
|
2130 |
}
|
sl@0
|
2131 |
|
sl@0
|
2132 |
THwChunkAddressAllocator::THwChunkAddressAllocator()
|
sl@0
|
2133 |
{
|
sl@0
|
2134 |
}
|
sl@0
|
2135 |
|
sl@0
|
2136 |
THwChunkAddressAllocator* THwChunkAddressAllocator::New(TInt aAlign, TLinearSection* aSection)
|
sl@0
|
2137 |
{
|
sl@0
|
2138 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChunkAddressAllocator::New(%d,%08x)",aAlign,aSection));
|
sl@0
|
2139 |
THwChunkAddressAllocator* p=new THwChunkAddressAllocator;
|
sl@0
|
2140 |
if (p)
|
sl@0
|
2141 |
{
|
sl@0
|
2142 |
p->iAlign=aAlign;
|
sl@0
|
2143 |
p->iSection=aSection;
|
sl@0
|
2144 |
}
|
sl@0
|
2145 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChunkAddressAllocator at %08x",p));
|
sl@0
|
2146 |
return p;
|
sl@0
|
2147 |
}
|
sl@0
|
2148 |
|
sl@0
|
2149 |
THwChunkRegion* THwChunkAddressAllocator::NewRegion(TInt aIndex, TInt aSize, TPde aPdePerm)
|
sl@0
|
2150 |
{
|
sl@0
|
2151 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::NewRegion(index=%x, size=%x, pde=%08x)",aIndex,aSize,aPdePerm));
|
sl@0
|
2152 |
THwChunkRegion* p=new THwChunkRegion(aIndex, aSize, aPdePerm);
|
sl@0
|
2153 |
if (p)
|
sl@0
|
2154 |
{
|
sl@0
|
2155 |
TInt r=InsertInOrder(p, Order);
|
sl@0
|
2156 |
__KTRACE_OPT(KMMU, Kern::Printf("p=%08x, insert ret %d",p,r));
|
sl@0
|
2157 |
if (r<0)
|
sl@0
|
2158 |
delete p, p=NULL;
|
sl@0
|
2159 |
}
|
sl@0
|
2160 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::NewRegion ret %08x)",p));
|
sl@0
|
2161 |
return p;
|
sl@0
|
2162 |
}
|
sl@0
|
2163 |
|
sl@0
|
2164 |
THwChunkPageTable* THwChunkAddressAllocator::NewPageTable(TInt aIndex, TPde aPdePerm, TInt aInitB, TInt aInitC)
|
sl@0
|
2165 |
{
|
sl@0
|
2166 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::NewPageTable(index=%x, pde=%08x, iB=%d, iC=%d)",aIndex,aPdePerm,aInitB,aInitC));
|
sl@0
|
2167 |
THwChunkPageTable* p=THwChunkPageTable::New(aIndex, aPdePerm);
|
sl@0
|
2168 |
if (p)
|
sl@0
|
2169 |
{
|
sl@0
|
2170 |
TInt r=InsertInOrder(p, Order);
|
sl@0
|
2171 |
__KTRACE_OPT(KMMU, Kern::Printf("p=%08x, insert ret %d",p,r));
|
sl@0
|
2172 |
if (r<0)
|
sl@0
|
2173 |
delete p, p=NULL;
|
sl@0
|
2174 |
else
|
sl@0
|
2175 |
p->iAllocator.Alloc(aInitB, aInitC);
|
sl@0
|
2176 |
}
|
sl@0
|
2177 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::NewPageTable ret %08x)",p));
|
sl@0
|
2178 |
return p;
|
sl@0
|
2179 |
}
|
sl@0
|
2180 |
|
sl@0
|
2181 |
TLinAddr THwChunkAddressAllocator::SearchExisting(TInt aNumPages, TInt aPageAlign, TInt aPageOffset, TPde aPdePerm)
|
sl@0
|
2182 |
{
|
sl@0
|
2183 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::SrchEx np=%03x align=%d offset=%03x pdeperm=%08x",
|
sl@0
|
2184 |
aNumPages, aPageAlign, aPageOffset, aPdePerm));
|
sl@0
|
2185 |
TInt c=Count();
|
sl@0
|
2186 |
if (c==0)
|
sl@0
|
2187 |
return 0; // don't try to access [0] if array empty!
|
sl@0
|
2188 |
THwChunkPageTable** pp=(THwChunkPageTable**)&(*this)[0];
|
sl@0
|
2189 |
THwChunkPageTable** ppE=pp+c;
|
sl@0
|
2190 |
while(pp<ppE)
|
sl@0
|
2191 |
{
|
sl@0
|
2192 |
THwChunkPageTable* p=*pp++;
|
sl@0
|
2193 |
if (p->iRegionSize!=0 || p->iPdePerm!=aPdePerm)
|
sl@0
|
2194 |
continue; // if not page table or PDE permissions wrong, we can't use it
|
sl@0
|
2195 |
TInt r=p->iAllocator.AllocAligned(aNumPages, aPageAlign, -aPageOffset, EFalse);
|
sl@0
|
2196 |
__KTRACE_OPT(KMMU, Kern::Printf("r=%d", r));
|
sl@0
|
2197 |
if (r<0)
|
sl@0
|
2198 |
continue; // not enough space in this page table
|
sl@0
|
2199 |
|
sl@0
|
2200 |
// got enough space in existing page table, so use it
|
sl@0
|
2201 |
p->iAllocator.Alloc(r, aNumPages);
|
sl@0
|
2202 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
2203 |
TLinAddr a = iSection->iBase + (TLinAddr(p->iIndex)<<m.iChunkShift) + (r<<m.iPageShift);
|
sl@0
|
2204 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::SrchEx OK, returning %08x", a));
|
sl@0
|
2205 |
return a;
|
sl@0
|
2206 |
}
|
sl@0
|
2207 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::SrchEx not found"));
|
sl@0
|
2208 |
return 0;
|
sl@0
|
2209 |
}
|
sl@0
|
2210 |
|
sl@0
|
2211 |
TLinAddr THwChunkAddressAllocator::Alloc(TInt aSize, TInt aAlign, TInt aOffset, TPde aPdePerm)
|
sl@0
|
2212 |
{
|
sl@0
|
2213 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::Alloc size=%08x align=%d offset=%08x pdeperm=%08x",
|
sl@0
|
2214 |
aSize, aAlign, aOffset, aPdePerm));
|
sl@0
|
2215 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
2216 |
TInt npages=(aSize+m.iPageMask)>>m.iPageShift;
|
sl@0
|
2217 |
TInt align=Max(aAlign,iAlign);
|
sl@0
|
2218 |
if (align>m.iChunkShift)
|
sl@0
|
2219 |
return 0;
|
sl@0
|
2220 |
TInt aligns=1<<align;
|
sl@0
|
2221 |
TInt alignm=aligns-1;
|
sl@0
|
2222 |
TInt offset=(aOffset&alignm)>>m.iPageShift;
|
sl@0
|
2223 |
TInt pdepages=m.iChunkSize>>m.iPageShift;
|
sl@0
|
2224 |
TInt pdepageshift=m.iChunkShift-m.iPageShift;
|
sl@0
|
2225 |
MmuBase::WaitHwChunk();
|
sl@0
|
2226 |
if (npages<pdepages)
|
sl@0
|
2227 |
{
|
sl@0
|
2228 |
// for small regions, first try to share an existing page table
|
sl@0
|
2229 |
TLinAddr a=SearchExisting(npages, align-m.iPageShift, offset, aPdePerm);
|
sl@0
|
2230 |
if (a)
|
sl@0
|
2231 |
{
|
sl@0
|
2232 |
MmuBase::SignalHwChunk();
|
sl@0
|
2233 |
return a;
|
sl@0
|
2234 |
}
|
sl@0
|
2235 |
}
|
sl@0
|
2236 |
|
sl@0
|
2237 |
// large region or no free space in existing page tables - allocate whole PDEs
|
sl@0
|
2238 |
TInt npdes=(npages+offset+pdepages-1)>>pdepageshift;
|
sl@0
|
2239 |
__KTRACE_OPT(KMMU, Kern::Printf("Allocate %d PDEs", npdes));
|
sl@0
|
2240 |
MmuBase::Wait();
|
sl@0
|
2241 |
TInt ix=iSection->iAllocator.AllocConsecutive(npdes, EFalse);
|
sl@0
|
2242 |
if (ix>=0)
|
sl@0
|
2243 |
iSection->iAllocator.Alloc(ix, npdes);
|
sl@0
|
2244 |
MmuBase::Signal();
|
sl@0
|
2245 |
TLinAddr a=0;
|
sl@0
|
2246 |
if (ix>=0)
|
sl@0
|
2247 |
a = iSection->iBase + (TLinAddr(ix)<<m.iChunkShift) + (TLinAddr(offset)<<m.iPageShift);
|
sl@0
|
2248 |
|
sl@0
|
2249 |
// Create bitmaps for each page table and placeholders for section blocks.
|
sl@0
|
2250 |
// We only create a bitmap for the first and last PDE and then only if they are not
|
sl@0
|
2251 |
// fully occupied by this request
|
sl@0
|
2252 |
THwChunkPageTable* first=NULL;
|
sl@0
|
2253 |
THwChunkRegion* middle=NULL;
|
sl@0
|
2254 |
TInt remain=npages;
|
sl@0
|
2255 |
TInt nix=ix;
|
sl@0
|
2256 |
if (a && (offset || npages<pdepages))
|
sl@0
|
2257 |
{
|
sl@0
|
2258 |
// first PDE is bitmap
|
sl@0
|
2259 |
TInt first_count = Min(remain, pdepages-offset);
|
sl@0
|
2260 |
first=NewPageTable(nix, aPdePerm, offset, first_count);
|
sl@0
|
2261 |
++nix;
|
sl@0
|
2262 |
remain -= first_count;
|
sl@0
|
2263 |
if (!first)
|
sl@0
|
2264 |
a=0;
|
sl@0
|
2265 |
}
|
sl@0
|
2266 |
if (a && remain>=pdepages)
|
sl@0
|
2267 |
{
|
sl@0
|
2268 |
// next need whole-PDE-block placeholder
|
sl@0
|
2269 |
TInt whole_pdes=remain>>pdepageshift;
|
sl@0
|
2270 |
middle=NewRegion(nix, whole_pdes, aPdePerm);
|
sl@0
|
2271 |
nix+=whole_pdes;
|
sl@0
|
2272 |
remain-=(whole_pdes<<pdepageshift);
|
sl@0
|
2273 |
if (!middle)
|
sl@0
|
2274 |
a=0;
|
sl@0
|
2275 |
}
|
sl@0
|
2276 |
if (a && remain)
|
sl@0
|
2277 |
{
|
sl@0
|
2278 |
// need final bitmap section
|
sl@0
|
2279 |
if (!NewPageTable(nix, aPdePerm, 0, remain))
|
sl@0
|
2280 |
a=0;
|
sl@0
|
2281 |
}
|
sl@0
|
2282 |
if (!a)
|
sl@0
|
2283 |
{
|
sl@0
|
2284 |
// alloc failed somewhere - free anything we did create
|
sl@0
|
2285 |
if (middle)
|
sl@0
|
2286 |
Discard(middle);
|
sl@0
|
2287 |
if (first)
|
sl@0
|
2288 |
Discard(first);
|
sl@0
|
2289 |
if (ix>=0)
|
sl@0
|
2290 |
{
|
sl@0
|
2291 |
MmuBase::Wait();
|
sl@0
|
2292 |
iSection->iAllocator.Free(ix, npdes);
|
sl@0
|
2293 |
MmuBase::Signal();
|
sl@0
|
2294 |
}
|
sl@0
|
2295 |
}
|
sl@0
|
2296 |
MmuBase::SignalHwChunk();
|
sl@0
|
2297 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::Alloc returns %08x", a));
|
sl@0
|
2298 |
return a;
|
sl@0
|
2299 |
}
|
sl@0
|
2300 |
|
sl@0
|
2301 |
void THwChunkAddressAllocator::Discard(THwChunkRegion* aRegion)
|
sl@0
|
2302 |
{
|
sl@0
|
2303 |
// remove a region from the array and destroy it
|
sl@0
|
2304 |
TInt r=FindInOrder(aRegion, Order);
|
sl@0
|
2305 |
if (r>=0)
|
sl@0
|
2306 |
Remove(r);
|
sl@0
|
2307 |
Kern::Free(aRegion);
|
sl@0
|
2308 |
}
|
sl@0
|
2309 |
|
sl@0
|
2310 |
TInt THwChunkAddressAllocator::Order(const THwChunkRegion& a1, const THwChunkRegion& a2)
|
sl@0
|
2311 |
{
|
sl@0
|
2312 |
// order two regions by address
|
sl@0
|
2313 |
return a1.iIndex-a2.iIndex;
|
sl@0
|
2314 |
}
|
sl@0
|
2315 |
|
sl@0
|
2316 |
THwChunkRegion* THwChunkAddressAllocator::Free(TLinAddr aAddr, TInt aSize)
|
sl@0
|
2317 |
{
|
sl@0
|
2318 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::Free addr=%08x size=%08x", aAddr, aSize));
|
sl@0
|
2319 |
__ASSERT_ALWAYS(aAddr>=iSection->iBase && (aAddr+aSize)<=iSection->iEnd,
|
sl@0
|
2320 |
MmuBase::Panic(MmuBase::EFreeHwChunkAddrInvalid));
|
sl@0
|
2321 |
THwChunkRegion* list=NULL;
|
sl@0
|
2322 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
2323 |
TInt ix=(aAddr - iSection->iBase)>>m.iChunkShift;
|
sl@0
|
2324 |
TInt remain=(aSize+m.iPageMask)>>m.iPageShift;
|
sl@0
|
2325 |
TInt pdepageshift=m.iChunkShift-m.iPageShift;
|
sl@0
|
2326 |
TInt offset=(aAddr&m.iChunkMask)>>m.iPageShift;
|
sl@0
|
2327 |
THwChunkRegion find(ix, 0, 0);
|
sl@0
|
2328 |
MmuBase::WaitHwChunk();
|
sl@0
|
2329 |
TInt r=FindInOrder(&find, Order);
|
sl@0
|
2330 |
__ASSERT_ALWAYS(r>=0, MmuBase::Panic(MmuBase::EFreeHwChunkAddrInvalid));
|
sl@0
|
2331 |
while (remain)
|
sl@0
|
2332 |
{
|
sl@0
|
2333 |
THwChunkPageTable* p=(THwChunkPageTable*)(*this)[r];
|
sl@0
|
2334 |
__ASSERT_ALWAYS(p->iIndex==ix, MmuBase::Panic(MmuBase::EFreeHwChunkIndexInvalid));
|
sl@0
|
2335 |
if (p->iRegionSize)
|
sl@0
|
2336 |
{
|
sl@0
|
2337 |
// multiple-whole-PDE region
|
sl@0
|
2338 |
TInt rsz=p->iRegionSize;
|
sl@0
|
2339 |
remain-=(rsz<<pdepageshift);
|
sl@0
|
2340 |
Remove(r); // r now indexes following array entry
|
sl@0
|
2341 |
ix+=rsz;
|
sl@0
|
2342 |
}
|
sl@0
|
2343 |
else
|
sl@0
|
2344 |
{
|
sl@0
|
2345 |
// bitmap region
|
sl@0
|
2346 |
TInt n=Min(remain, (1<<pdepageshift)-offset);
|
sl@0
|
2347 |
p->iAllocator.Free(offset, n);
|
sl@0
|
2348 |
remain-=n;
|
sl@0
|
2349 |
++ix;
|
sl@0
|
2350 |
if (p->iAllocator.iAvail < p->iAllocator.iSize)
|
sl@0
|
2351 |
{
|
sl@0
|
2352 |
// bitmap still in use
|
sl@0
|
2353 |
offset=0;
|
sl@0
|
2354 |
++r; // r indexes following array entry
|
sl@0
|
2355 |
continue;
|
sl@0
|
2356 |
}
|
sl@0
|
2357 |
Remove(r); // r now indexes following array entry
|
sl@0
|
2358 |
}
|
sl@0
|
2359 |
offset=0;
|
sl@0
|
2360 |
p->iNext=list;
|
sl@0
|
2361 |
list=p; // chain free region descriptors together
|
sl@0
|
2362 |
}
|
sl@0
|
2363 |
MmuBase::SignalHwChunk();
|
sl@0
|
2364 |
__KTRACE_OPT(KMMU, Kern::Printf("THwChAA::Free returns %08x", list));
|
sl@0
|
2365 |
return list;
|
sl@0
|
2366 |
}
|
sl@0
|
2367 |
|
sl@0
|
2368 |
/********************************************
|
sl@0
|
2369 |
* Hardware chunk abstraction
|
sl@0
|
2370 |
********************************************/
|
sl@0
|
2371 |
THwChunkAddressAllocator* MmuBase::MappingRegion(TUint)
|
sl@0
|
2372 |
{
|
sl@0
|
2373 |
return iHwChunkAllocator;
|
sl@0
|
2374 |
}
|
sl@0
|
2375 |
|
sl@0
|
2376 |
TInt MmuBase::AllocateAllPageTables(TLinAddr aLinAddr, TInt aSize, TPde aPdePerm, TInt aMapShift, SPageTableInfo::TAttribs aAttrib)
|
sl@0
|
2377 |
{
|
sl@0
|
2378 |
__KTRACE_OPT(KMMU,Kern::Printf("AllocateAllPageTables lin=%08x, size=%x, pde=%08x, mapshift=%d attribs=%d",
|
sl@0
|
2379 |
aLinAddr, aSize, aPdePerm, aMapShift, aAttrib));
|
sl@0
|
2380 |
TInt offset=aLinAddr&iChunkMask;
|
sl@0
|
2381 |
TInt remain=aSize;
|
sl@0
|
2382 |
TLinAddr a=aLinAddr&~iChunkMask;
|
sl@0
|
2383 |
TInt newpts=0;
|
sl@0
|
2384 |
for (; remain>0; a+=iChunkSize)
|
sl@0
|
2385 |
{
|
sl@0
|
2386 |
// don't need page table if a whole PDE mapping is permitted here
|
sl@0
|
2387 |
if (aMapShift<iChunkShift || offset || remain<iChunkSize)
|
sl@0
|
2388 |
{
|
sl@0
|
2389 |
// need to check for a page table at a
|
sl@0
|
2390 |
TInt id=PageTableId(a);
|
sl@0
|
2391 |
if (id<0)
|
sl@0
|
2392 |
{
|
sl@0
|
2393 |
// no page table - must allocate one
|
sl@0
|
2394 |
id = AllocPageTable();
|
sl@0
|
2395 |
if (id<0)
|
sl@0
|
2396 |
break;
|
sl@0
|
2397 |
// got page table, assign it
|
sl@0
|
2398 |
// AssignPageTable(TInt aId, TInt aUsage, TAny* aObject, TLinAddr aAddr, TPde aPdePerm)
|
sl@0
|
2399 |
AssignPageTable(id, aAttrib, NULL, a, aPdePerm);
|
sl@0
|
2400 |
++newpts;
|
sl@0
|
2401 |
}
|
sl@0
|
2402 |
}
|
sl@0
|
2403 |
remain -= (iChunkSize-offset);
|
sl@0
|
2404 |
offset=0;
|
sl@0
|
2405 |
}
|
sl@0
|
2406 |
if (remain<=0)
|
sl@0
|
2407 |
return KErrNone; // completed OK
|
sl@0
|
2408 |
|
sl@0
|
2409 |
// ran out of memory somewhere - free page tables which were allocated
|
sl@0
|
2410 |
for (; newpts; --newpts)
|
sl@0
|
2411 |
{
|
sl@0
|
2412 |
a-=iChunkSize;
|
sl@0
|
2413 |
TInt id=UnassignPageTable(a);
|
sl@0
|
2414 |
FreePageTable(id);
|
sl@0
|
2415 |
}
|
sl@0
|
2416 |
return KErrNoMemory;
|
sl@0
|
2417 |
}
|
sl@0
|
2418 |
|
sl@0
|
2419 |
|
sl@0
|
2420 |
/**
|
sl@0
|
2421 |
Create a hardware chunk object mapping a specified block of physical addresses
|
sl@0
|
2422 |
with specified access permissions and cache policy.
|
sl@0
|
2423 |
|
sl@0
|
2424 |
When the mapping is no longer required, close the chunk using chunk->Close(0);
|
sl@0
|
2425 |
Note that closing a chunk does not free any RAM pages which were mapped by the
|
sl@0
|
2426 |
chunk - these must be freed separately using Epoc::FreePhysicalRam().
|
sl@0
|
2427 |
|
sl@0
|
2428 |
@param aChunk Upon successful completion this parameter receives a pointer to
|
sl@0
|
2429 |
the newly created chunk. Upon unsuccessful completion it is
|
sl@0
|
2430 |
written with a NULL pointer. The virtual address of the mapping
|
sl@0
|
2431 |
can subsequently be discovered using the LinearAddress()
|
sl@0
|
2432 |
function on the chunk.
|
sl@0
|
2433 |
@param aAddr The base address of the physical region to be mapped. This will
|
sl@0
|
2434 |
be rounded down to a multiple of the hardware page size before
|
sl@0
|
2435 |
being used.
|
sl@0
|
2436 |
@param aSize The size of the physical address region to be mapped. This will
|
sl@0
|
2437 |
be rounded up to a multiple of the hardware page size before
|
sl@0
|
2438 |
being used; the rounding is such that the entire range from
|
sl@0
|
2439 |
aAddr to aAddr+aSize-1 inclusive is mapped. For example if
|
sl@0
|
2440 |
aAddr=0xB0001FFF, aSize=2 and the hardware page size is 4KB, an
|
sl@0
|
2441 |
8KB range of physical addresses from 0xB0001000 to 0xB0002FFF
|
sl@0
|
2442 |
inclusive will be mapped.
|
sl@0
|
2443 |
@param aMapAttr Mapping attributes required for the mapping. This is formed
|
sl@0
|
2444 |
by ORing together values from the TMappingAttributes enumeration
|
sl@0
|
2445 |
to specify the access permissions and caching policy.
|
sl@0
|
2446 |
|
sl@0
|
2447 |
@pre Calling thread must be in a critical section.
|
sl@0
|
2448 |
@pre Interrupts must be enabled.
|
sl@0
|
2449 |
@pre Kernel must be unlocked.
|
sl@0
|
2450 |
@pre No fast mutex can be held.
|
sl@0
|
2451 |
@pre Call in a thread context.
|
sl@0
|
2452 |
@pre Can be used in a device driver.
|
sl@0
|
2453 |
@see TMappingAttributes
|
sl@0
|
2454 |
*/
|
sl@0
|
2455 |
EXPORT_C TInt DPlatChunkHw::New(DPlatChunkHw*& aChunk, TPhysAddr aAddr, TInt aSize, TUint aMapAttr)
|
sl@0
|
2456 |
{
|
sl@0
|
2457 |
if (aAddr == KPhysAddrInvalid)
|
sl@0
|
2458 |
return KErrNotSupported;
|
sl@0
|
2459 |
return DoNew(aChunk, aAddr, aSize, aMapAttr);
|
sl@0
|
2460 |
}
|
sl@0
|
2461 |
|
sl@0
|
2462 |
TInt DPlatChunkHw::DoNew(DPlatChunkHw*& aChunk, TPhysAddr aAddr, TInt aSize, TUint aMapAttr)
|
sl@0
|
2463 |
{
|
sl@0
|
2464 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"DPlatChunkHw::New");
|
sl@0
|
2465 |
__KTRACE_OPT(KMMU,Kern::Printf("DPlatChunkHw::New phys=%08x, size=%x, attribs=%x",aAddr,aSize,aMapAttr));
|
sl@0
|
2466 |
if (aSize<=0)
|
sl@0
|
2467 |
return KErrArgument;
|
sl@0
|
2468 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
2469 |
aChunk=NULL;
|
sl@0
|
2470 |
TPhysAddr pa=aAddr!=KPhysAddrInvalid ? aAddr&~m.iPageMask : 0;
|
sl@0
|
2471 |
TInt size=((aAddr+aSize+m.iPageMask)&~m.iPageMask)-pa;
|
sl@0
|
2472 |
__KTRACE_OPT(KMMU,Kern::Printf("Rounded %08x+%x", pa, size));
|
sl@0
|
2473 |
DMemModelChunkHw* pC=new DMemModelChunkHw;
|
sl@0
|
2474 |
if (!pC)
|
sl@0
|
2475 |
return KErrNoMemory;
|
sl@0
|
2476 |
__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunkHw created at %08x",pC));
|
sl@0
|
2477 |
pC->iPhysAddr=aAddr;
|
sl@0
|
2478 |
pC->iSize=size;
|
sl@0
|
2479 |
TUint mapattr=aMapAttr;
|
sl@0
|
2480 |
TPde pdePerm=0;
|
sl@0
|
2481 |
TPte ptePerm=0;
|
sl@0
|
2482 |
TInt r=m.PdePtePermissions(mapattr, pdePerm, ptePerm);
|
sl@0
|
2483 |
if (r==KErrNone)
|
sl@0
|
2484 |
{
|
sl@0
|
2485 |
pC->iAllocator=m.MappingRegion(mapattr);
|
sl@0
|
2486 |
pC->iAttribs=mapattr; // save actual mapping attributes
|
sl@0
|
2487 |
r=pC->AllocateLinearAddress(pdePerm);
|
sl@0
|
2488 |
if (r>=0)
|
sl@0
|
2489 |
{
|
sl@0
|
2490 |
TInt map_shift=r;
|
sl@0
|
2491 |
MmuBase::Wait();
|
sl@0
|
2492 |
r=m.AllocateAllPageTables(pC->iLinAddr, size, pdePerm, map_shift, SPageTableInfo::EGlobal);
|
sl@0
|
2493 |
if (r==KErrNone && aAddr!=KPhysAddrInvalid)
|
sl@0
|
2494 |
m.Map(pC->iLinAddr, pa, size, pdePerm, ptePerm, map_shift);
|
sl@0
|
2495 |
MmuBase::Signal();
|
sl@0
|
2496 |
}
|
sl@0
|
2497 |
}
|
sl@0
|
2498 |
if (r==KErrNone)
|
sl@0
|
2499 |
aChunk=pC;
|
sl@0
|
2500 |
else
|
sl@0
|
2501 |
pC->Close(NULL);
|
sl@0
|
2502 |
return r;
|
sl@0
|
2503 |
}
|
sl@0
|
2504 |
|
sl@0
|
2505 |
TInt DMemModelChunkHw::AllocateLinearAddress(TPde aPdePerm)
|
sl@0
|
2506 |
{
|
sl@0
|
2507 |
__KTRACE_OPT(KMMU, Kern::Printf("DMemModelChunkHw::AllocateLinearAddress(%08x)", aPdePerm));
|
sl@0
|
2508 |
__KTRACE_OPT(KMMU, Kern::Printf("iAllocator=%08x iPhysAddr=%08x iSize=%08x", iAllocator, iPhysAddr, iSize));
|
sl@0
|
2509 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
2510 |
TInt map_shift = (iPhysAddr<0xffffffffu) ? 30 : m.iPageShift;
|
sl@0
|
2511 |
for (; map_shift>=m.iPageShift; --map_shift)
|
sl@0
|
2512 |
{
|
sl@0
|
2513 |
TUint32 map_size = 1<<map_shift;
|
sl@0
|
2514 |
TUint32 map_mask = map_size-1;
|
sl@0
|
2515 |
if (!(m.iMapSizes & map_size))
|
sl@0
|
2516 |
continue; // map_size is not supported on this hardware
|
sl@0
|
2517 |
TPhysAddr base = (iPhysAddr+map_mask) &~ map_mask; // base rounded up
|
sl@0
|
2518 |
TPhysAddr end = (iPhysAddr+iSize)&~map_mask; // end rounded down
|
sl@0
|
2519 |
if ((base-end)<0x80000000u && map_shift>m.iPageShift)
|
sl@0
|
2520 |
continue; // region not big enough to use this mapping size
|
sl@0
|
2521 |
__KTRACE_OPT(KMMU, Kern::Printf("Try map size %08x", map_size));
|
sl@0
|
2522 |
iLinAddr=iAllocator->Alloc(iSize, map_shift, iPhysAddr, aPdePerm);
|
sl@0
|
2523 |
if (iLinAddr)
|
sl@0
|
2524 |
break; // done
|
sl@0
|
2525 |
}
|
sl@0
|
2526 |
TInt r=iLinAddr ? map_shift : KErrNoMemory;
|
sl@0
|
2527 |
__KTRACE_OPT(KMMU, Kern::Printf("iLinAddr=%08x, returning %d", iLinAddr, r));
|
sl@0
|
2528 |
return r;
|
sl@0
|
2529 |
}
|
sl@0
|
2530 |
|
sl@0
|
2531 |
void DMemModelChunkHw::DeallocateLinearAddress()
|
sl@0
|
2532 |
{
|
sl@0
|
2533 |
__KTRACE_OPT(KMMU, Kern::Printf("DMemModelChunkHw::DeallocateLinearAddress %O", this));
|
sl@0
|
2534 |
MmuBase& m=*MmuBase::TheMmu;
|
sl@0
|
2535 |
MmuBase::WaitHwChunk();
|
sl@0
|
2536 |
THwChunkRegion* rgn=iAllocator->Free(iLinAddr, iSize);
|
sl@0
|
2537 |
iLinAddr=0;
|
sl@0
|
2538 |
MmuBase::SignalHwChunk();
|
sl@0
|
2539 |
TLinAddr base = iAllocator->iSection->iBase;
|
sl@0
|
2540 |
TBitMapAllocator& section_allocator = iAllocator->iSection->iAllocator;
|
sl@0
|
2541 |
while (rgn)
|
sl@0
|
2542 |
{
|
sl@0
|
2543 |
MmuBase::Wait();
|
sl@0
|
2544 |
if (rgn->iRegionSize)
|
sl@0
|
2545 |
{
|
sl@0
|
2546 |
// free address range
|
sl@0
|
2547 |
__KTRACE_OPT(KMMU, Kern::Printf("Freeing range %03x+%03x", rgn->iIndex, rgn->iRegionSize));
|
sl@0
|
2548 |
section_allocator.Free(rgn->iIndex, rgn->iRegionSize);
|
sl@0
|
2549 |
|
sl@0
|
2550 |
// Though this is large region, it still can be made up of page tables (not sections).
|
sl@0
|
2551 |
// Check each chunk and remove tables in neccessary
|
sl@0
|
2552 |
TInt i = 0;
|
sl@0
|
2553 |
TLinAddr a = base + (TLinAddr(rgn->iIndex)<<m.iChunkShift);
|
sl@0
|
2554 |
for (; i<rgn->iRegionSize ; i++,a+=m.iChunkSize)
|
sl@0
|
2555 |
{
|
sl@0
|
2556 |
TInt id = m.UnassignPageTable(a);
|
sl@0
|
2557 |
if (id>=0)
|
sl@0
|
2558 |
m.FreePageTable(id);
|
sl@0
|
2559 |
}
|
sl@0
|
2560 |
}
|
sl@0
|
2561 |
else
|
sl@0
|
2562 |
{
|
sl@0
|
2563 |
// free address and page table if it exists
|
sl@0
|
2564 |
__KTRACE_OPT(KMMU, Kern::Printf("Freeing index %03x", rgn->iIndex));
|
sl@0
|
2565 |
section_allocator.Free(rgn->iIndex);
|
sl@0
|
2566 |
TLinAddr a = base + (TLinAddr(rgn->iIndex)<<m.iChunkShift);
|
sl@0
|
2567 |
TInt id = m.UnassignPageTable(a);
|
sl@0
|
2568 |
if (id>=0)
|
sl@0
|
2569 |
m.FreePageTable(id);
|
sl@0
|
2570 |
}
|
sl@0
|
2571 |
MmuBase::Signal();
|
sl@0
|
2572 |
THwChunkRegion* free=rgn;
|
sl@0
|
2573 |
rgn=rgn->iNext;
|
sl@0
|
2574 |
Kern::Free(free);
|
sl@0
|
2575 |
}
|
sl@0
|
2576 |
}
|
sl@0
|
2577 |
|
sl@0
|
2578 |
|
sl@0
|
2579 |
//
|
sl@0
|
2580 |
// RamCacheBase
|
sl@0
|
2581 |
//
|
sl@0
|
2582 |
|
sl@0
|
2583 |
|
sl@0
|
2584 |
RamCacheBase* RamCacheBase::TheRamCache = NULL;
|
sl@0
|
2585 |
|
sl@0
|
2586 |
|
sl@0
|
2587 |
RamCacheBase::RamCacheBase()
|
sl@0
|
2588 |
{
|
sl@0
|
2589 |
}
|
sl@0
|
2590 |
|
sl@0
|
2591 |
|
sl@0
|
2592 |
void RamCacheBase::Init2()
|
sl@0
|
2593 |
{
|
sl@0
|
2594 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">RamCacheBase::Init2"));
|
sl@0
|
2595 |
iMmu = MmuBase::TheMmu;
|
sl@0
|
2596 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("<RamCacheBase::Init2"));
|
sl@0
|
2597 |
}
|
sl@0
|
2598 |
|
sl@0
|
2599 |
|
sl@0
|
2600 |
void RamCacheBase::ReturnToSystem(SPageInfo* aPageInfo)
|
sl@0
|
2601 |
{
|
sl@0
|
2602 |
__ASSERT_MUTEX(MmuBase::RamAllocatorMutex);
|
sl@0
|
2603 |
__ASSERT_SYSTEM_LOCK;
|
sl@0
|
2604 |
aPageInfo->SetUnused();
|
sl@0
|
2605 |
--iNumberOfFreePages;
|
sl@0
|
2606 |
__NK_ASSERT_DEBUG(iNumberOfFreePages>=0);
|
sl@0
|
2607 |
// Release system lock before using the RAM allocator.
|
sl@0
|
2608 |
NKern::UnlockSystem();
|
sl@0
|
2609 |
iMmu->iRamPageAllocator->FreeRamPage(aPageInfo->PhysAddr(), EPageDiscard);
|
sl@0
|
2610 |
NKern::LockSystem();
|
sl@0
|
2611 |
}
|
sl@0
|
2612 |
|
sl@0
|
2613 |
|
sl@0
|
2614 |
SPageInfo* RamCacheBase::GetPageFromSystem(TUint aBlockedZoneId, TBool aBlockRest)
|
sl@0
|
2615 |
{
|
sl@0
|
2616 |
__ASSERT_MUTEX(MmuBase::RamAllocatorMutex);
|
sl@0
|
2617 |
SPageInfo* pageInfo;
|
sl@0
|
2618 |
TPhysAddr pagePhys;
|
sl@0
|
2619 |
TInt r = iMmu->iRamPageAllocator->AllocRamPages(&pagePhys,1, EPageDiscard, aBlockedZoneId, aBlockRest);
|
sl@0
|
2620 |
if(r==KErrNone)
|
sl@0
|
2621 |
{
|
sl@0
|
2622 |
NKern::LockSystem();
|
sl@0
|
2623 |
pageInfo = SPageInfo::FromPhysAddr(pagePhys);
|
sl@0
|
2624 |
pageInfo->Change(SPageInfo::EPagedFree,SPageInfo::EStatePagedDead);
|
sl@0
|
2625 |
++iNumberOfFreePages;
|
sl@0
|
2626 |
NKern::UnlockSystem();
|
sl@0
|
2627 |
}
|
sl@0
|
2628 |
else
|
sl@0
|
2629 |
pageInfo = NULL;
|
sl@0
|
2630 |
return pageInfo;
|
sl@0
|
2631 |
}
|
sl@0
|
2632 |
|
sl@0
|
2633 |
|
sl@0
|
2634 |
//
|
sl@0
|
2635 |
// RamCache
|
sl@0
|
2636 |
//
|
sl@0
|
2637 |
|
sl@0
|
2638 |
|
sl@0
|
2639 |
void RamCache::Init2()
|
sl@0
|
2640 |
{
|
sl@0
|
2641 |
__KTRACE_OPT(KBOOT,Kern::Printf(">RamCache::Init2"));
|
sl@0
|
2642 |
RamCacheBase::Init2();
|
sl@0
|
2643 |
__KTRACE_OPT(KBOOT,Kern::Printf("<RamCache::Init2"));
|
sl@0
|
2644 |
}
|
sl@0
|
2645 |
|
sl@0
|
2646 |
|
sl@0
|
2647 |
TInt RamCache::Init3()
|
sl@0
|
2648 |
{
|
sl@0
|
2649 |
return KErrNone;
|
sl@0
|
2650 |
}
|
sl@0
|
2651 |
|
sl@0
|
2652 |
void RamCache::RemovePage(SPageInfo& aPageInfo)
|
sl@0
|
2653 |
{
|
sl@0
|
2654 |
__NK_ASSERT_DEBUG(aPageInfo.Type() == SPageInfo::EPagedCache);
|
sl@0
|
2655 |
__NK_ASSERT_DEBUG(aPageInfo.State() == SPageInfo::EStatePagedYoung);
|
sl@0
|
2656 |
aPageInfo.iLink.Deque();
|
sl@0
|
2657 |
aPageInfo.SetState(SPageInfo::EStatePagedDead);
|
sl@0
|
2658 |
}
|
sl@0
|
2659 |
|
sl@0
|
2660 |
TBool RamCache::GetFreePages(TInt aNumPages)
|
sl@0
|
2661 |
{
|
sl@0
|
2662 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: >GetFreePages %d",aNumPages));
|
sl@0
|
2663 |
NKern::LockSystem();
|
sl@0
|
2664 |
|
sl@0
|
2665 |
while(aNumPages>0 && NumberOfFreePages()>=aNumPages)
|
sl@0
|
2666 |
{
|
sl@0
|
2667 |
// steal a page from cache list and return it to the free pool...
|
sl@0
|
2668 |
SPageInfo* pageInfo = SPageInfo::FromLink(iPageList.First()->Deque());
|
sl@0
|
2669 |
pageInfo->SetState(SPageInfo::EStatePagedDead);
|
sl@0
|
2670 |
SetFree(pageInfo);
|
sl@0
|
2671 |
ReturnToSystem(pageInfo);
|
sl@0
|
2672 |
--aNumPages;
|
sl@0
|
2673 |
}
|
sl@0
|
2674 |
|
sl@0
|
2675 |
NKern::UnlockSystem();
|
sl@0
|
2676 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: <GetFreePages %d",!aNumPages));
|
sl@0
|
2677 |
return !aNumPages;
|
sl@0
|
2678 |
}
|
sl@0
|
2679 |
|
sl@0
|
2680 |
|
sl@0
|
2681 |
void RamCache::DonateRamCachePage(SPageInfo* aPageInfo)
|
sl@0
|
2682 |
{
|
sl@0
|
2683 |
SPageInfo::TType type = aPageInfo->Type();
|
sl@0
|
2684 |
if(type==SPageInfo::EChunk)
|
sl@0
|
2685 |
{
|
sl@0
|
2686 |
//Must not donate locked page. An example is DMA trasferred memory.
|
sl@0
|
2687 |
__NK_ASSERT_DEBUG(0 == aPageInfo->LockCount());
|
sl@0
|
2688 |
|
sl@0
|
2689 |
aPageInfo->Change(SPageInfo::EPagedCache,SPageInfo::EStatePagedYoung);
|
sl@0
|
2690 |
iPageList.Add(&aPageInfo->iLink);
|
sl@0
|
2691 |
++iNumberOfFreePages;
|
sl@0
|
2692 |
// Update ram allocator counts as this page has changed its type
|
sl@0
|
2693 |
DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner();
|
sl@0
|
2694 |
iMmu->iRamPageAllocator->ChangePageType(aPageInfo, chunk->GetPageType(), EPageDiscard);
|
sl@0
|
2695 |
|
sl@0
|
2696 |
#ifdef BTRACE_PAGING
|
sl@0
|
2697 |
BTraceContext8(BTrace::EPaging, BTrace::EPagingChunkDonatePage, chunk, aPageInfo->Offset());
|
sl@0
|
2698 |
#endif
|
sl@0
|
2699 |
return;
|
sl@0
|
2700 |
}
|
sl@0
|
2701 |
// allow already donated pages...
|
sl@0
|
2702 |
__NK_ASSERT_DEBUG(type==SPageInfo::EPagedCache);
|
sl@0
|
2703 |
}
|
sl@0
|
2704 |
|
sl@0
|
2705 |
|
sl@0
|
2706 |
TBool RamCache::ReclaimRamCachePage(SPageInfo* aPageInfo)
|
sl@0
|
2707 |
{
|
sl@0
|
2708 |
SPageInfo::TType type = aPageInfo->Type();
|
sl@0
|
2709 |
// Kern::Printf("DemandPaging::ReclaimRamCachePage %x %d free=%d",aPageInfo,type,iNumberOfFreePages);
|
sl@0
|
2710 |
|
sl@0
|
2711 |
if(type==SPageInfo::EChunk)
|
sl@0
|
2712 |
return ETrue; // page already reclaimed
|
sl@0
|
2713 |
|
sl@0
|
2714 |
__NK_ASSERT_DEBUG(type==SPageInfo::EPagedCache);
|
sl@0
|
2715 |
__NK_ASSERT_DEBUG(aPageInfo->State()==SPageInfo::EStatePagedYoung);
|
sl@0
|
2716 |
// Update ram allocator counts as this page has changed its type
|
sl@0
|
2717 |
DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner();
|
sl@0
|
2718 |
iMmu->iRamPageAllocator->ChangePageType(aPageInfo, EPageDiscard, chunk->GetPageType());
|
sl@0
|
2719 |
aPageInfo->iLink.Deque();
|
sl@0
|
2720 |
--iNumberOfFreePages;
|
sl@0
|
2721 |
aPageInfo->Change(SPageInfo::EChunk,SPageInfo::EStateNormal);
|
sl@0
|
2722 |
|
sl@0
|
2723 |
#ifdef BTRACE_PAGING
|
sl@0
|
2724 |
BTraceContext8(BTrace::EPaging, BTrace::EPagingChunkReclaimPage, chunk, aPageInfo->Offset());
|
sl@0
|
2725 |
#endif
|
sl@0
|
2726 |
return ETrue;
|
sl@0
|
2727 |
}
|
sl@0
|
2728 |
|
sl@0
|
2729 |
|
sl@0
|
2730 |
/**
|
sl@0
|
2731 |
Discard the specified page.
|
sl@0
|
2732 |
Should only be called on a page if a previous call to IsPageDiscardable()
|
sl@0
|
2733 |
returned ETrue and the system lock hasn't been released between the calls.
|
sl@0
|
2734 |
|
sl@0
|
2735 |
@param aPageInfo The page info of the page to be discarded
|
sl@0
|
2736 |
@param aBlockedZoneId Not used by this overload.
|
sl@0
|
2737 |
@param aBlockRest Not used by this overload.
|
sl@0
|
2738 |
@return ETrue if page succesfully discarded
|
sl@0
|
2739 |
|
sl@0
|
2740 |
@pre System lock held.
|
sl@0
|
2741 |
@post System lock held.
|
sl@0
|
2742 |
*/
|
sl@0
|
2743 |
TBool RamCache::DoDiscardPage(SPageInfo& aPageInfo, TUint aBlockedZoneId, TBool aBlockRest)
|
sl@0
|
2744 |
{
|
sl@0
|
2745 |
__NK_ASSERT_DEBUG(iNumberOfFreePages > 0);
|
sl@0
|
2746 |
RemovePage(aPageInfo);
|
sl@0
|
2747 |
SetFree(&aPageInfo);
|
sl@0
|
2748 |
ReturnToSystem(&aPageInfo);
|
sl@0
|
2749 |
return ETrue;
|
sl@0
|
2750 |
}
|
sl@0
|
2751 |
|
sl@0
|
2752 |
|
sl@0
|
2753 |
/**
|
sl@0
|
2754 |
First stage in discarding a list of pages.
|
sl@0
|
2755 |
|
sl@0
|
2756 |
Must ensure that the pages will still be discardable even if system lock is released.
|
sl@0
|
2757 |
To be used in conjunction with RamCacheBase::DoDiscardPages1().
|
sl@0
|
2758 |
|
sl@0
|
2759 |
@param aPageList A NULL terminated list of the pages to be discarded
|
sl@0
|
2760 |
@return KErrNone on success.
|
sl@0
|
2761 |
|
sl@0
|
2762 |
@pre System lock held
|
sl@0
|
2763 |
@post System lock held
|
sl@0
|
2764 |
*/
|
sl@0
|
2765 |
TInt RamCache::DoDiscardPages0(SPageInfo** aPageList)
|
sl@0
|
2766 |
{
|
sl@0
|
2767 |
__ASSERT_SYSTEM_LOCK;
|
sl@0
|
2768 |
|
sl@0
|
2769 |
SPageInfo* pageInfo;
|
sl@0
|
2770 |
while((pageInfo = *aPageList++) != 0)
|
sl@0
|
2771 |
{
|
sl@0
|
2772 |
RemovePage(*pageInfo);
|
sl@0
|
2773 |
}
|
sl@0
|
2774 |
return KErrNone;
|
sl@0
|
2775 |
}
|
sl@0
|
2776 |
|
sl@0
|
2777 |
|
sl@0
|
2778 |
/**
|
sl@0
|
2779 |
Final stage in discarding a list of page
|
sl@0
|
2780 |
Finish discarding the pages previously removed by RamCacheBase::DoDiscardPages0().
|
sl@0
|
2781 |
This overload doesn't actually need to do anything.
|
sl@0
|
2782 |
|
sl@0
|
2783 |
@param aPageList A NULL terminated list of the pages to be discarded
|
sl@0
|
2784 |
@return KErrNone on success.
|
sl@0
|
2785 |
|
sl@0
|
2786 |
@pre System lock held
|
sl@0
|
2787 |
@post System lock held
|
sl@0
|
2788 |
*/
|
sl@0
|
2789 |
TInt RamCache::DoDiscardPages1(SPageInfo** aPageList)
|
sl@0
|
2790 |
{
|
sl@0
|
2791 |
__ASSERT_SYSTEM_LOCK;
|
sl@0
|
2792 |
SPageInfo* pageInfo;
|
sl@0
|
2793 |
while((pageInfo = *aPageList++) != 0)
|
sl@0
|
2794 |
{
|
sl@0
|
2795 |
SetFree(pageInfo);
|
sl@0
|
2796 |
ReturnToSystem(pageInfo);
|
sl@0
|
2797 |
}
|
sl@0
|
2798 |
return KErrNone;
|
sl@0
|
2799 |
}
|
sl@0
|
2800 |
|
sl@0
|
2801 |
|
sl@0
|
2802 |
/**
|
sl@0
|
2803 |
Check whether the specified page can be discarded by the RAM cache.
|
sl@0
|
2804 |
|
sl@0
|
2805 |
@param aPageInfo The page info of the page being queried.
|
sl@0
|
2806 |
@return ETrue when the page can be discarded, EFalse otherwise.
|
sl@0
|
2807 |
@pre System lock held.
|
sl@0
|
2808 |
@post System lock held.
|
sl@0
|
2809 |
*/
|
sl@0
|
2810 |
TBool RamCache::IsPageDiscardable(SPageInfo& aPageInfo)
|
sl@0
|
2811 |
{
|
sl@0
|
2812 |
SPageInfo::TType type = aPageInfo.Type();
|
sl@0
|
2813 |
SPageInfo::TState state = aPageInfo.State();
|
sl@0
|
2814 |
return (type == SPageInfo::EPagedCache && state == SPageInfo::EStatePagedYoung);
|
sl@0
|
2815 |
}
|
sl@0
|
2816 |
|
sl@0
|
2817 |
|
sl@0
|
2818 |
/**
|
sl@0
|
2819 |
@return ETrue when the unmapped page should be freed, EFalse otherwise
|
sl@0
|
2820 |
*/
|
sl@0
|
2821 |
TBool RamCache::PageUnmapped(SPageInfo* aPageInfo)
|
sl@0
|
2822 |
{
|
sl@0
|
2823 |
SPageInfo::TType type = aPageInfo->Type();
|
sl@0
|
2824 |
// Kern::Printf("DemandPaging::PageUnmapped %x %d",aPageInfo,type);
|
sl@0
|
2825 |
if(type!=SPageInfo::EPagedCache)
|
sl@0
|
2826 |
return ETrue;
|
sl@0
|
2827 |
SPageInfo::TState state = aPageInfo->State();
|
sl@0
|
2828 |
if(state==SPageInfo::EStatePagedYoung)
|
sl@0
|
2829 |
{
|
sl@0
|
2830 |
// This page will be freed by DChunk::DoDecommit as it was originally
|
sl@0
|
2831 |
// allocated so update page counts in ram allocator
|
sl@0
|
2832 |
DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner();
|
sl@0
|
2833 |
iMmu->iRamPageAllocator->ChangePageType(aPageInfo, EPageDiscard, chunk->GetPageType());
|
sl@0
|
2834 |
aPageInfo->iLink.Deque();
|
sl@0
|
2835 |
--iNumberOfFreePages;
|
sl@0
|
2836 |
}
|
sl@0
|
2837 |
return ETrue;
|
sl@0
|
2838 |
}
|
sl@0
|
2839 |
|
sl@0
|
2840 |
|
sl@0
|
2841 |
void RamCache::Panic(TFault aFault)
|
sl@0
|
2842 |
{
|
sl@0
|
2843 |
Kern::Fault("RamCache",aFault);
|
sl@0
|
2844 |
}
|
sl@0
|
2845 |
|
sl@0
|
2846 |
/**
|
sl@0
|
2847 |
Flush all cache pages.
|
sl@0
|
2848 |
|
sl@0
|
2849 |
@pre RAM allocator mutex held
|
sl@0
|
2850 |
@post RAM allocator mutex held
|
sl@0
|
2851 |
*/
|
sl@0
|
2852 |
void RamCache::FlushAll()
|
sl@0
|
2853 |
{
|
sl@0
|
2854 |
__ASSERT_MUTEX(MmuBase::RamAllocatorMutex);
|
sl@0
|
2855 |
#ifdef _DEBUG
|
sl@0
|
2856 |
// Should always succeed
|
sl@0
|
2857 |
__NK_ASSERT_DEBUG(GetFreePages(iNumberOfFreePages));
|
sl@0
|
2858 |
#else
|
sl@0
|
2859 |
GetFreePages(iNumberOfFreePages);
|
sl@0
|
2860 |
#endif
|
sl@0
|
2861 |
}
|
sl@0
|
2862 |
|
sl@0
|
2863 |
|
sl@0
|
2864 |
//
|
sl@0
|
2865 |
// Demand Paging
|
sl@0
|
2866 |
//
|
sl@0
|
2867 |
|
sl@0
|
2868 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
2869 |
|
sl@0
|
2870 |
DemandPaging* DemandPaging::ThePager = 0;
|
sl@0
|
2871 |
TBool DemandPaging::PseudoRandInitialised = EFalse;
|
sl@0
|
2872 |
volatile TUint32 DemandPaging::PseudoRandSeed = 0;
|
sl@0
|
2873 |
|
sl@0
|
2874 |
|
sl@0
|
2875 |
void M::DemandPagingInit()
|
sl@0
|
2876 |
{
|
sl@0
|
2877 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">M::DemandPagingInit"));
|
sl@0
|
2878 |
TInt r = RamCacheBase::TheRamCache->Init3();
|
sl@0
|
2879 |
if (r != KErrNone)
|
sl@0
|
2880 |
DemandPaging::Panic(DemandPaging::EInitialiseFailed);
|
sl@0
|
2881 |
|
sl@0
|
2882 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("<M::DemandPagingInit"));
|
sl@0
|
2883 |
}
|
sl@0
|
2884 |
|
sl@0
|
2885 |
|
sl@0
|
2886 |
TInt M::DemandPagingFault(TAny* aExceptionInfo)
|
sl@0
|
2887 |
{
|
sl@0
|
2888 |
DemandPaging* pager = DemandPaging::ThePager;
|
sl@0
|
2889 |
if(pager)
|
sl@0
|
2890 |
return pager->Fault(aExceptionInfo);
|
sl@0
|
2891 |
return KErrAbort;
|
sl@0
|
2892 |
}
|
sl@0
|
2893 |
|
sl@0
|
2894 |
#ifdef _DEBUG
|
sl@0
|
2895 |
extern "C" void ASMCheckPagingSafe(TLinAddr aPC, TLinAddr aLR, TLinAddr aStartAddres, TUint aLength)
|
sl@0
|
2896 |
{
|
sl@0
|
2897 |
if(M::CheckPagingSafe(EFalse, aStartAddres, aLength))
|
sl@0
|
2898 |
return;
|
sl@0
|
2899 |
Kern::Printf("ASM_ASSERT_PAGING_SAFE FAILED: pc=%x lr=%x",aPC,aLR);
|
sl@0
|
2900 |
__NK_ASSERT_ALWAYS(0);
|
sl@0
|
2901 |
}
|
sl@0
|
2902 |
|
sl@0
|
2903 |
extern "C" void ASMCheckDataPagingSafe(TLinAddr aPC, TLinAddr aLR, TLinAddr aStartAddres, TUint aLength)
|
sl@0
|
2904 |
{
|
sl@0
|
2905 |
if(M::CheckPagingSafe(ETrue, aStartAddres, aLength))
|
sl@0
|
2906 |
return;
|
sl@0
|
2907 |
__KTRACE_OPT(KDATAPAGEWARN,Kern::Printf("Data paging: ASM_ASSERT_DATA_PAGING_SAFE FAILED: pc=%x lr=%x",aPC,aLR));
|
sl@0
|
2908 |
}
|
sl@0
|
2909 |
#endif
|
sl@0
|
2910 |
|
sl@0
|
2911 |
|
sl@0
|
2912 |
TBool M::CheckPagingSafe(TBool aDataPaging, TLinAddr aStartAddr, TUint aLength)
|
sl@0
|
2913 |
{
|
sl@0
|
2914 |
DemandPaging* pager = DemandPaging::ThePager;
|
sl@0
|
2915 |
if(!pager || K::Initialising)
|
sl@0
|
2916 |
return ETrue;
|
sl@0
|
2917 |
|
sl@0
|
2918 |
NThread* nt = NCurrentThread();
|
sl@0
|
2919 |
if(!nt)
|
sl@0
|
2920 |
return ETrue; // We've not booted properly yet!
|
sl@0
|
2921 |
|
sl@0
|
2922 |
if (!pager->NeedsMutexOrderCheck(aStartAddr, aLength))
|
sl@0
|
2923 |
return ETrue;
|
sl@0
|
2924 |
|
sl@0
|
2925 |
TBool dataPagingEnabled = EFalse; // data paging not supported on moving or multiple models
|
sl@0
|
2926 |
|
sl@0
|
2927 |
DThread* thread = _LOFF(nt,DThread,iNThread);
|
sl@0
|
2928 |
NFastMutex* fm = NKern::HeldFastMutex();
|
sl@0
|
2929 |
if(fm)
|
sl@0
|
2930 |
{
|
sl@0
|
2931 |
if(!thread->iPagingExcTrap || fm!=&TheScheduler.iLock)
|
sl@0
|
2932 |
{
|
sl@0
|
2933 |
if (!aDataPaging)
|
sl@0
|
2934 |
{
|
sl@0
|
2935 |
__KTRACE_OPT2(KPAGING,KPANIC,Kern::Printf("DP: CheckPagingSafe FAILED - FM Held"));
|
sl@0
|
2936 |
return EFalse;
|
sl@0
|
2937 |
}
|
sl@0
|
2938 |
else
|
sl@0
|
2939 |
{
|
sl@0
|
2940 |
__KTRACE_OPT(KDATAPAGEWARN, Kern::Printf("Data paging: CheckPagingSafe FAILED - FM Held"));
|
sl@0
|
2941 |
return !dataPagingEnabled;
|
sl@0
|
2942 |
}
|
sl@0
|
2943 |
}
|
sl@0
|
2944 |
}
|
sl@0
|
2945 |
|
sl@0
|
2946 |
DMutex* m = pager->CheckMutexOrder();
|
sl@0
|
2947 |
if (m)
|
sl@0
|
2948 |
{
|
sl@0
|
2949 |
if (!aDataPaging)
|
sl@0
|
2950 |
{
|
sl@0
|
2951 |
__KTRACE_OPT2(KPAGING,KPANIC,Kern::Printf("DP: Mutex Order Fault %O",m));
|
sl@0
|
2952 |
return EFalse;
|
sl@0
|
2953 |
}
|
sl@0
|
2954 |
else
|
sl@0
|
2955 |
{
|
sl@0
|
2956 |
__KTRACE_OPT(KDATAPAGEWARN, Kern::Printf("Data paging: Mutex Order Fault %O",m));
|
sl@0
|
2957 |
return !dataPagingEnabled;
|
sl@0
|
2958 |
}
|
sl@0
|
2959 |
}
|
sl@0
|
2960 |
|
sl@0
|
2961 |
return ETrue;
|
sl@0
|
2962 |
}
|
sl@0
|
2963 |
|
sl@0
|
2964 |
|
sl@0
|
2965 |
TInt M::LockRegion(TLinAddr aStart,TInt aSize)
|
sl@0
|
2966 |
{
|
sl@0
|
2967 |
DemandPaging* pager = DemandPaging::ThePager;
|
sl@0
|
2968 |
if(pager)
|
sl@0
|
2969 |
return pager->LockRegion(aStart,aSize,NULL);
|
sl@0
|
2970 |
return KErrNone;
|
sl@0
|
2971 |
}
|
sl@0
|
2972 |
|
sl@0
|
2973 |
|
sl@0
|
2974 |
TInt M::UnlockRegion(TLinAddr aStart,TInt aSize)
|
sl@0
|
2975 |
{
|
sl@0
|
2976 |
DemandPaging* pager = DemandPaging::ThePager;
|
sl@0
|
2977 |
if(pager)
|
sl@0
|
2978 |
return pager->UnlockRegion(aStart,aSize,NULL);
|
sl@0
|
2979 |
return KErrNone;
|
sl@0
|
2980 |
}
|
sl@0
|
2981 |
|
sl@0
|
2982 |
#else // !__DEMAND_PAGING__
|
sl@0
|
2983 |
|
sl@0
|
2984 |
TInt M::LockRegion(TLinAddr /*aStart*/,TInt /*aSize*/)
|
sl@0
|
2985 |
{
|
sl@0
|
2986 |
return KErrNone;
|
sl@0
|
2987 |
}
|
sl@0
|
2988 |
|
sl@0
|
2989 |
|
sl@0
|
2990 |
TInt M::UnlockRegion(TLinAddr /*aStart*/,TInt /*aSize*/)
|
sl@0
|
2991 |
{
|
sl@0
|
2992 |
return KErrNone;
|
sl@0
|
2993 |
}
|
sl@0
|
2994 |
|
sl@0
|
2995 |
#endif // __DEMAND_PAGING__
|
sl@0
|
2996 |
|
sl@0
|
2997 |
|
sl@0
|
2998 |
|
sl@0
|
2999 |
|
sl@0
|
3000 |
//
|
sl@0
|
3001 |
// DemandPaging
|
sl@0
|
3002 |
//
|
sl@0
|
3003 |
|
sl@0
|
3004 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
3005 |
|
sl@0
|
3006 |
|
sl@0
|
3007 |
const TUint16 KDefaultYoungOldRatio = 3;
|
sl@0
|
3008 |
const TUint KDefaultMinPages = 256;
|
sl@0
|
3009 |
const TUint KDefaultMaxPages = KMaxTUint >> KPageShift;
|
sl@0
|
3010 |
|
sl@0
|
3011 |
/* Need at least 4 mapped pages to guarentee to be able to execute all ARM instructions.
|
sl@0
|
3012 |
(Worst case is a THUMB2 STM instruction with both instruction and data stradling page
|
sl@0
|
3013 |
boundaries.)
|
sl@0
|
3014 |
*/
|
sl@0
|
3015 |
const TUint KMinYoungPages = 4;
|
sl@0
|
3016 |
const TUint KMinOldPages = 1;
|
sl@0
|
3017 |
|
sl@0
|
3018 |
/* A minimum young/old ratio of 1 means that we need at least twice KMinYoungPages pages...
|
sl@0
|
3019 |
*/
|
sl@0
|
3020 |
const TUint KAbsoluteMinPageCount = 2*KMinYoungPages;
|
sl@0
|
3021 |
|
sl@0
|
3022 |
__ASSERT_COMPILE(KMinOldPages<=KAbsoluteMinPageCount/2);
|
sl@0
|
3023 |
|
sl@0
|
3024 |
class DMissingPagingDevice : public DPagingDevice
|
sl@0
|
3025 |
{
|
sl@0
|
3026 |
TInt Read(TThreadMessage* /*aReq*/,TLinAddr /*aBuffer*/,TUint /*aOffset*/,TUint /*aSize*/,TInt /*aDrvNumber*/)
|
sl@0
|
3027 |
{ DemandPaging::Panic(DemandPaging::EDeviceMissing); return 0; }
|
sl@0
|
3028 |
};
|
sl@0
|
3029 |
|
sl@0
|
3030 |
|
sl@0
|
3031 |
TBool DemandPaging::RomPagingRequested()
|
sl@0
|
3032 |
{
|
sl@0
|
3033 |
return TheRomHeader().iPageableRomSize != 0;
|
sl@0
|
3034 |
}
|
sl@0
|
3035 |
|
sl@0
|
3036 |
|
sl@0
|
3037 |
TBool DemandPaging::CodePagingRequested()
|
sl@0
|
3038 |
{
|
sl@0
|
3039 |
return (TheSuperPage().KernelConfigFlags() & EKernelConfigCodePagingPolicyDefaultPaged) != EKernelConfigCodePagingPolicyNoPaging;
|
sl@0
|
3040 |
}
|
sl@0
|
3041 |
|
sl@0
|
3042 |
|
sl@0
|
3043 |
DemandPaging::DemandPaging()
|
sl@0
|
3044 |
{
|
sl@0
|
3045 |
}
|
sl@0
|
3046 |
|
sl@0
|
3047 |
|
sl@0
|
3048 |
void DemandPaging::Init2()
|
sl@0
|
3049 |
{
|
sl@0
|
3050 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">DemandPaging::Init2"));
|
sl@0
|
3051 |
|
sl@0
|
3052 |
RamCacheBase::Init2();
|
sl@0
|
3053 |
|
sl@0
|
3054 |
// initialise live list...
|
sl@0
|
3055 |
SDemandPagingConfig config = TheRomHeader().iDemandPagingConfig;
|
sl@0
|
3056 |
|
sl@0
|
3057 |
iMinimumPageCount = KDefaultMinPages;
|
sl@0
|
3058 |
if(config.iMinPages)
|
sl@0
|
3059 |
iMinimumPageCount = config.iMinPages;
|
sl@0
|
3060 |
if(iMinimumPageCount<KAbsoluteMinPageCount)
|
sl@0
|
3061 |
iMinimumPageCount = KAbsoluteMinPageCount;
|
sl@0
|
3062 |
iInitMinimumPageCount = iMinimumPageCount;
|
sl@0
|
3063 |
|
sl@0
|
3064 |
iMaximumPageCount = KDefaultMaxPages;
|
sl@0
|
3065 |
if(config.iMaxPages)
|
sl@0
|
3066 |
iMaximumPageCount = config.iMaxPages;
|
sl@0
|
3067 |
iInitMaximumPageCount = iMaximumPageCount;
|
sl@0
|
3068 |
|
sl@0
|
3069 |
iYoungOldRatio = KDefaultYoungOldRatio;
|
sl@0
|
3070 |
if(config.iYoungOldRatio)
|
sl@0
|
3071 |
iYoungOldRatio = config.iYoungOldRatio;
|
sl@0
|
3072 |
TInt ratioLimit = (iMinimumPageCount-KMinOldPages)/KMinOldPages;
|
sl@0
|
3073 |
if(iYoungOldRatio>ratioLimit)
|
sl@0
|
3074 |
iYoungOldRatio = ratioLimit;
|
sl@0
|
3075 |
|
sl@0
|
3076 |
iMinimumPageLimit = (KMinYoungPages * (1 + iYoungOldRatio)) / iYoungOldRatio;
|
sl@0
|
3077 |
if(iMinimumPageLimit<KAbsoluteMinPageCount)
|
sl@0
|
3078 |
iMinimumPageLimit = KAbsoluteMinPageCount;
|
sl@0
|
3079 |
|
sl@0
|
3080 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">DemandPaging::InitialiseLiveList min=%d max=%d ratio=%d",iMinimumPageCount,iMaximumPageCount,iYoungOldRatio));
|
sl@0
|
3081 |
|
sl@0
|
3082 |
if(iMaximumPageCount<iMinimumPageCount)
|
sl@0
|
3083 |
Panic(EInitialiseBadArgs);
|
sl@0
|
3084 |
|
sl@0
|
3085 |
//
|
sl@0
|
3086 |
// This routine doesn't acuire any mutexes because it should be called before the system
|
sl@0
|
3087 |
// is fully up and running. I.e. called before another thread can preempt this.
|
sl@0
|
3088 |
//
|
sl@0
|
3089 |
|
sl@0
|
3090 |
// Calculate page counts
|
sl@0
|
3091 |
iOldCount = iMinimumPageCount/(1+iYoungOldRatio);
|
sl@0
|
3092 |
if(iOldCount<KMinOldPages)
|
sl@0
|
3093 |
Panic(EInitialiseBadArgs);
|
sl@0
|
3094 |
iYoungCount = iMinimumPageCount-iOldCount;
|
sl@0
|
3095 |
if(iYoungCount<KMinYoungPages)
|
sl@0
|
3096 |
Panic(EInitialiseBadArgs); // Need at least 4 pages mapped to execute an ARM LDM instruction in THUMB2 mode
|
sl@0
|
3097 |
iNumberOfFreePages = 0;
|
sl@0
|
3098 |
|
sl@0
|
3099 |
// Allocate RAM pages and put them all on the old list
|
sl@0
|
3100 |
iYoungCount = 0;
|
sl@0
|
3101 |
iOldCount = 0;
|
sl@0
|
3102 |
for(TUint i=0; i<iMinimumPageCount; i++)
|
sl@0
|
3103 |
{
|
sl@0
|
3104 |
// Allocate a single page
|
sl@0
|
3105 |
TPhysAddr pagePhys;
|
sl@0
|
3106 |
TInt r = iMmu->iRamPageAllocator->AllocRamPages(&pagePhys,1, EPageDiscard);
|
sl@0
|
3107 |
if(r!=0)
|
sl@0
|
3108 |
Panic(EInitialiseFailed);
|
sl@0
|
3109 |
AddAsFreePage(SPageInfo::FromPhysAddr(pagePhys));
|
sl@0
|
3110 |
}
|
sl@0
|
3111 |
|
sl@0
|
3112 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("<DemandPaging::Init2"));
|
sl@0
|
3113 |
}
|
sl@0
|
3114 |
|
sl@0
|
3115 |
|
sl@0
|
3116 |
TInt VMHalFunction(TAny*, TInt aFunction, TAny* a1, TAny* a2);
|
sl@0
|
3117 |
|
sl@0
|
3118 |
TInt DemandPaging::Init3()
|
sl@0
|
3119 |
{
|
sl@0
|
3120 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">DemandPaging::Init3"));
|
sl@0
|
3121 |
TInt r;
|
sl@0
|
3122 |
|
sl@0
|
3123 |
// construct iBufferChunk
|
sl@0
|
3124 |
iDeviceBufferSize = 2*KPageSize;
|
sl@0
|
3125 |
TChunkCreateInfo info;
|
sl@0
|
3126 |
info.iType = TChunkCreateInfo::ESharedKernelMultiple;
|
sl@0
|
3127 |
info.iMaxSize = iDeviceBufferSize*KMaxPagingDevices;
|
sl@0
|
3128 |
info.iMapAttr = EMapAttrCachedMax;
|
sl@0
|
3129 |
info.iOwnsMemory = ETrue;
|
sl@0
|
3130 |
TUint32 mapAttr;
|
sl@0
|
3131 |
r = Kern::ChunkCreate(info,iDeviceBuffersChunk,iDeviceBuffers,mapAttr);
|
sl@0
|
3132 |
if(r!=KErrNone)
|
sl@0
|
3133 |
return r;
|
sl@0
|
3134 |
|
sl@0
|
3135 |
// Install 'null' paging devices which panic if used...
|
sl@0
|
3136 |
DMissingPagingDevice* missingPagingDevice = new DMissingPagingDevice;
|
sl@0
|
3137 |
for(TInt i=0; i<KMaxPagingDevices; i++)
|
sl@0
|
3138 |
{
|
sl@0
|
3139 |
iPagingDevices[i].iInstalled = EFalse;
|
sl@0
|
3140 |
iPagingDevices[i].iDevice = missingPagingDevice;
|
sl@0
|
3141 |
}
|
sl@0
|
3142 |
|
sl@0
|
3143 |
// Initialise ROM info...
|
sl@0
|
3144 |
const TRomHeader& romHeader = TheRomHeader();
|
sl@0
|
3145 |
iRomLinearBase = (TLinAddr)&romHeader;
|
sl@0
|
3146 |
iRomSize = iMmu->RoundToPageSize(romHeader.iUncompressedSize);
|
sl@0
|
3147 |
if(romHeader.iRomPageIndex)
|
sl@0
|
3148 |
iRomPageIndex = (SRomPageInfo*)((TInt)&romHeader+romHeader.iRomPageIndex);
|
sl@0
|
3149 |
|
sl@0
|
3150 |
TLinAddr pagedStart = romHeader.iPageableRomSize ? (TLinAddr)&romHeader+romHeader.iPageableRomStart : 0;
|
sl@0
|
3151 |
if(pagedStart)
|
sl@0
|
3152 |
{
|
sl@0
|
3153 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("ROM=%x+%x PagedStart=%x",iRomLinearBase,iRomSize,pagedStart));
|
sl@0
|
3154 |
__NK_ASSERT_ALWAYS(TUint(pagedStart-iRomLinearBase)<TUint(iRomSize));
|
sl@0
|
3155 |
iRomPagedLinearBase = pagedStart;
|
sl@0
|
3156 |
iRomPagedSize = iRomLinearBase+iRomSize-pagedStart;
|
sl@0
|
3157 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("DemandPaging::Init3, ROM Paged start(0x%x), sixe(0x%x)",iRomPagedLinearBase,iRomPagedSize));
|
sl@0
|
3158 |
|
sl@0
|
3159 |
#ifdef __SUPPORT_DEMAND_PAGING_EMULATION__
|
sl@0
|
3160 |
// Get physical addresses of ROM pages
|
sl@0
|
3161 |
iOriginalRomPageCount = iMmu->RoundToPageSize(iRomSize)>>KPageShift;
|
sl@0
|
3162 |
iOriginalRomPages = new TPhysAddr[iOriginalRomPageCount];
|
sl@0
|
3163 |
__NK_ASSERT_ALWAYS(iOriginalRomPages);
|
sl@0
|
3164 |
TPhysAddr romPhysAddress;
|
sl@0
|
3165 |
iMmu->LinearToPhysical(iRomLinearBase,iRomSize,romPhysAddress,iOriginalRomPages);
|
sl@0
|
3166 |
#endif
|
sl@0
|
3167 |
}
|
sl@0
|
3168 |
|
sl@0
|
3169 |
r = Kern::AddHalEntry(EHalGroupVM, VMHalFunction, 0);
|
sl@0
|
3170 |
__NK_ASSERT_ALWAYS(r==KErrNone);
|
sl@0
|
3171 |
|
sl@0
|
3172 |
#ifdef __DEMAND_PAGING_BENCHMARKS__
|
sl@0
|
3173 |
for (TInt i = 0 ; i < EMaxPagingBm ; ++i)
|
sl@0
|
3174 |
ResetBenchmarkData((TPagingBenchmark)i);
|
sl@0
|
3175 |
#endif
|
sl@0
|
3176 |
|
sl@0
|
3177 |
// Initialisation now complete
|
sl@0
|
3178 |
ThePager = this;
|
sl@0
|
3179 |
return KErrNone;
|
sl@0
|
3180 |
}
|
sl@0
|
3181 |
|
sl@0
|
3182 |
|
sl@0
|
3183 |
DemandPaging::~DemandPaging()
|
sl@0
|
3184 |
{
|
sl@0
|
3185 |
#ifdef __SUPPORT_DEMAND_PAGING_EMULATION__
|
sl@0
|
3186 |
delete[] iOriginalRomPages;
|
sl@0
|
3187 |
#endif
|
sl@0
|
3188 |
for (TUint i = 0 ; i < iPagingRequestCount ; ++i)
|
sl@0
|
3189 |
delete iPagingRequests[i];
|
sl@0
|
3190 |
}
|
sl@0
|
3191 |
|
sl@0
|
3192 |
|
sl@0
|
3193 |
TInt DemandPaging::InstallPagingDevice(DPagingDevice* aDevice)
|
sl@0
|
3194 |
{
|
sl@0
|
3195 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">DemandPaging::InstallPagingDevice name='%s' type=%d",aDevice->iName,aDevice->iType));
|
sl@0
|
3196 |
|
sl@0
|
3197 |
if(aDevice->iReadUnitShift>KPageShift)
|
sl@0
|
3198 |
Panic(EInvalidPagingDevice);
|
sl@0
|
3199 |
|
sl@0
|
3200 |
TInt i;
|
sl@0
|
3201 |
TInt r = KErrNone;
|
sl@0
|
3202 |
TBool createRequestObjects = EFalse;
|
sl@0
|
3203 |
|
sl@0
|
3204 |
if ((aDevice->iType & DPagingDevice::ERom) && RomPagingRequested())
|
sl@0
|
3205 |
{
|
sl@0
|
3206 |
r = DoInstallPagingDevice(aDevice, 0);
|
sl@0
|
3207 |
if (r != KErrNone)
|
sl@0
|
3208 |
goto done;
|
sl@0
|
3209 |
K::MemModelAttributes|=EMemModelAttrRomPaging;
|
sl@0
|
3210 |
createRequestObjects = ETrue;
|
sl@0
|
3211 |
}
|
sl@0
|
3212 |
|
sl@0
|
3213 |
if ((aDevice->iType & DPagingDevice::ECode) && CodePagingRequested())
|
sl@0
|
3214 |
{
|
sl@0
|
3215 |
for (i = 0 ; i < KMaxLocalDrives ; ++i)
|
sl@0
|
3216 |
{
|
sl@0
|
3217 |
if (aDevice->iDrivesSupported & (1<<i))
|
sl@0
|
3218 |
{
|
sl@0
|
3219 |
r = DoInstallPagingDevice(aDevice, i + 1);
|
sl@0
|
3220 |
if (r != KErrNone)
|
sl@0
|
3221 |
goto done;
|
sl@0
|
3222 |
}
|
sl@0
|
3223 |
}
|
sl@0
|
3224 |
K::MemModelAttributes|=EMemModelAttrCodePaging;
|
sl@0
|
3225 |
createRequestObjects = ETrue;
|
sl@0
|
3226 |
}
|
sl@0
|
3227 |
|
sl@0
|
3228 |
if (createRequestObjects)
|
sl@0
|
3229 |
{
|
sl@0
|
3230 |
for (i = 0 ; i < KPagingRequestsPerDevice ; ++i)
|
sl@0
|
3231 |
{
|
sl@0
|
3232 |
r = CreateRequestObject();
|
sl@0
|
3233 |
if (r != KErrNone)
|
sl@0
|
3234 |
goto done;
|
sl@0
|
3235 |
}
|
sl@0
|
3236 |
}
|
sl@0
|
3237 |
|
sl@0
|
3238 |
done:
|
sl@0
|
3239 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("<DemandPaging::InstallPagingDevice returns %d",r));
|
sl@0
|
3240 |
return r;
|
sl@0
|
3241 |
}
|
sl@0
|
3242 |
|
sl@0
|
3243 |
TInt DemandPaging::DoInstallPagingDevice(DPagingDevice* aDevice, TInt aId)
|
sl@0
|
3244 |
{
|
sl@0
|
3245 |
NKern::LockSystem();
|
sl@0
|
3246 |
SPagingDevice* device = &iPagingDevices[aId];
|
sl@0
|
3247 |
if(device->iInstalled)
|
sl@0
|
3248 |
{
|
sl@0
|
3249 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("**** Attempt to install more than one ROM paging device !!!!!!!! ****"));
|
sl@0
|
3250 |
//Panic(EDeviceAlreadyExists);
|
sl@0
|
3251 |
NKern::UnlockSystem();
|
sl@0
|
3252 |
return KErrNone;
|
sl@0
|
3253 |
}
|
sl@0
|
3254 |
|
sl@0
|
3255 |
aDevice->iDeviceId = aId;
|
sl@0
|
3256 |
device->iDevice = aDevice;
|
sl@0
|
3257 |
device->iInstalled = ETrue;
|
sl@0
|
3258 |
NKern::UnlockSystem();
|
sl@0
|
3259 |
|
sl@0
|
3260 |
__KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("DemandPaging::InstallPagingDevice id=%d, device=%08x",aId,device));
|
sl@0
|
3261 |
|
sl@0
|
3262 |
return KErrNone;
|
sl@0
|
3263 |
}
|
sl@0
|
3264 |
|
sl@0
|
3265 |
DemandPaging::DPagingRequest::~DPagingRequest()
|
sl@0
|
3266 |
{
|
sl@0
|
3267 |
if (iMutex)
|
sl@0
|
3268 |
iMutex->Close(NULL);
|
sl@0
|
3269 |
}
|
sl@0
|
3270 |
|
sl@0
|
3271 |
TInt DemandPaging::CreateRequestObject()
|
sl@0
|
3272 |
{
|
sl@0
|
3273 |
_LIT(KLitPagingRequest,"PagingRequest-");
|
sl@0
|
3274 |
|
sl@0
|
3275 |
TInt index;
|
sl@0
|
3276 |
TInt id = (TInt)__e32_atomic_add_ord32(&iNextPagingRequestCount, 1);
|
sl@0
|
3277 |
TLinAddr offset = id * iDeviceBufferSize;
|
sl@0
|
3278 |
TUint32 physAddr = 0;
|
sl@0
|
3279 |
TInt r = Kern::ChunkCommitContiguous(iDeviceBuffersChunk,offset,iDeviceBufferSize, physAddr);
|
sl@0
|
3280 |
if(r != KErrNone)
|
sl@0
|
3281 |
return r;
|
sl@0
|
3282 |
|
sl@0
|
3283 |
DPagingRequest* req = new DPagingRequest();
|
sl@0
|
3284 |
if (!req)
|
sl@0
|
3285 |
return KErrNoMemory;
|
sl@0
|
3286 |
|
sl@0
|
3287 |
req->iBuffer = iDeviceBuffers + offset;
|
sl@0
|
3288 |
AllocLoadAddress(*req, id);
|
sl@0
|
3289 |
|
sl@0
|
3290 |
TBuf<16> mutexName(KLitPagingRequest);
|
sl@0
|
3291 |
mutexName.AppendNum(id);
|
sl@0
|
3292 |
r = K::MutexCreate(req->iMutex, mutexName, NULL, EFalse, KMutexOrdPageIn);
|
sl@0
|
3293 |
if (r!=KErrNone)
|
sl@0
|
3294 |
goto done;
|
sl@0
|
3295 |
|
sl@0
|
3296 |
// Ensure there are enough young pages to cope with new request object
|
sl@0
|
3297 |
r = ResizeLiveList(iMinimumPageCount, iMaximumPageCount);
|
sl@0
|
3298 |
if (r!=KErrNone)
|
sl@0
|
3299 |
goto done;
|
sl@0
|
3300 |
|
sl@0
|
3301 |
NKern::LockSystem();
|
sl@0
|
3302 |
index = iPagingRequestCount++;
|
sl@0
|
3303 |
__NK_ASSERT_ALWAYS(index < KMaxPagingRequests);
|
sl@0
|
3304 |
iPagingRequests[index] = req;
|
sl@0
|
3305 |
iFreeRequestPool.AddHead(req);
|
sl@0
|
3306 |
NKern::UnlockSystem();
|
sl@0
|
3307 |
|
sl@0
|
3308 |
done:
|
sl@0
|
3309 |
if (r != KErrNone)
|
sl@0
|
3310 |
delete req;
|
sl@0
|
3311 |
|
sl@0
|
3312 |
return r;
|
sl@0
|
3313 |
}
|
sl@0
|
3314 |
|
sl@0
|
3315 |
DemandPaging::DPagingRequest* DemandPaging::AcquireRequestObject()
|
sl@0
|
3316 |
{
|
sl@0
|
3317 |
__ASSERT_SYSTEM_LOCK;
|
sl@0
|
3318 |
__NK_ASSERT_DEBUG(iPagingRequestCount > 0);
|
sl@0
|
3319 |
|
sl@0
|
3320 |
DPagingRequest* req = NULL;
|
sl@0
|
3321 |
|
sl@0
|
3322 |
// System lock used to serialise access to our data strucures as we have to hold it anyway when
|
sl@0
|
3323 |
// we wait on the mutex
|
sl@0
|
3324 |
|
sl@0
|
3325 |
req = (DPagingRequest*)iFreeRequestPool.GetFirst();
|
sl@0
|
3326 |
if (req != NULL)
|
sl@0
|
3327 |
__NK_ASSERT_DEBUG(req->iUsageCount == 0);
|
sl@0
|
3328 |
else
|
sl@0
|
3329 |
{
|
sl@0
|
3330 |
// Pick a random request object to wait on
|
sl@0
|
3331 |
TUint index = (FastPseudoRand() * TUint64(iPagingRequestCount)) >> 32;
|
sl@0
|
3332 |
__NK_ASSERT_DEBUG(index < iPagingRequestCount);
|
sl@0
|
3333 |
req = iPagingRequests[index];
|
sl@0
|
3334 |
__NK_ASSERT_DEBUG(req->iUsageCount > 0);
|
sl@0
|
3335 |
}
|
sl@0
|
3336 |
|
sl@0
|
3337 |
#ifdef __CONCURRENT_PAGING_INSTRUMENTATION__
|
sl@0
|
3338 |
++iWaitingCount;
|
sl@0
|
3339 |
if (iWaitingCount > iMaxWaitingCount)
|
sl@0
|
3340 |
iMaxWaitingCount = iWaitingCount;
|
sl@0
|
3341 |
#endif
|
sl@0
|
3342 |
|
sl@0
|
3343 |
++req->iUsageCount;
|
sl@0
|
3344 |
TInt r = req->iMutex->Wait();
|
sl@0
|
3345 |
__NK_ASSERT_ALWAYS(r == KErrNone);
|
sl@0
|
3346 |
|
sl@0
|
3347 |
#ifdef __CONCURRENT_PAGING_INSTRUMENTATION__
|
sl@0
|
3348 |
--iWaitingCount;
|
sl@0
|
3349 |
++iPagingCount;
|
sl@0
|
3350 |
if (iPagingCount > iMaxPagingCount)
|
sl@0
|
3351 |
iMaxPagingCount = iPagingCount;
|
sl@0
|
3352 |
#endif
|
sl@0
|
3353 |
|
sl@0
|
3354 |
return req;
|
sl@0
|
3355 |
}
|
sl@0
|
3356 |
|
sl@0
|
3357 |
void DemandPaging::ReleaseRequestObject(DPagingRequest* aReq)
|
sl@0
|
3358 |
{
|
sl@0
|
3359 |
__ASSERT_SYSTEM_LOCK;
|
sl@0
|
3360 |
|
sl@0
|
3361 |
#ifdef __CONCURRENT_PAGING_INSTRUMENTATION__
|
sl@0
|
3362 |
--iPagingCount;
|
sl@0
|
3363 |
#endif
|
sl@0
|
3364 |
|
sl@0
|
3365 |
// If there are no threads waiting on the mutex then return it to the free pool
|
sl@0
|
3366 |
__NK_ASSERT_DEBUG(aReq->iUsageCount > 0);
|
sl@0
|
3367 |
if (--aReq->iUsageCount == 0)
|
sl@0
|
3368 |
iFreeRequestPool.AddHead(aReq);
|
sl@0
|
3369 |
|
sl@0
|
3370 |
aReq->iMutex->Signal();
|
sl@0
|
3371 |
NKern::LockSystem();
|
sl@0
|
3372 |
}
|
sl@0
|
3373 |
|
sl@0
|
3374 |
TInt DemandPaging::ReadRomPage(const DPagingRequest* aReq, TLinAddr aRomAddress)
|
sl@0
|
3375 |
{
|
sl@0
|
3376 |
START_PAGING_BENCHMARK;
|
sl@0
|
3377 |
|
sl@0
|
3378 |
TInt pageSize = KPageSize;
|
sl@0
|
3379 |
TInt dataOffset = aRomAddress-iRomLinearBase;
|
sl@0
|
3380 |
TInt pageNumber = dataOffset>>KPageShift;
|
sl@0
|
3381 |
TInt readUnitShift = RomPagingDevice().iDevice->iReadUnitShift;
|
sl@0
|
3382 |
TInt r;
|
sl@0
|
3383 |
if(!iRomPageIndex)
|
sl@0
|
3384 |
{
|
sl@0
|
3385 |
// ROM not broken into pages, so just read it in directly
|
sl@0
|
3386 |
START_PAGING_BENCHMARK;
|
sl@0
|
3387 |
r = RomPagingDevice().iDevice->Read(const_cast<TThreadMessage*>(&aReq->iMessage),aReq->iLoadAddr,dataOffset>>readUnitShift,pageSize>>readUnitShift,-1/*token for ROM paging*/);
|
sl@0
|
3388 |
END_PAGING_BENCHMARK(DemandPaging::ThePager, EPagingBmReadMedia);
|
sl@0
|
3389 |
}
|
sl@0
|
3390 |
else
|
sl@0
|
3391 |
{
|
sl@0
|
3392 |
// Work out where data for page is located
|
sl@0
|
3393 |
SRomPageInfo* romPageInfo = iRomPageIndex+pageNumber;
|
sl@0
|
3394 |
dataOffset = romPageInfo->iDataStart;
|
sl@0
|
3395 |
TInt dataSize = romPageInfo->iDataSize;
|
sl@0
|
3396 |
if(!dataSize)
|
sl@0
|
3397 |
{
|
sl@0
|
3398 |
// empty page, fill it with 0xff...
|
sl@0
|
3399 |
memset((void*)aReq->iLoadAddr,-1,pageSize);
|
sl@0
|
3400 |
r = KErrNone;
|
sl@0
|
3401 |
}
|
sl@0
|
3402 |
else
|
sl@0
|
3403 |
{
|
sl@0
|
3404 |
__NK_ASSERT_ALWAYS(romPageInfo->iPagingAttributes&SRomPageInfo::EPageable);
|
sl@0
|
3405 |
|
sl@0
|
3406 |
// Read data for page...
|
sl@0
|
3407 |
TThreadMessage* msg= const_cast<TThreadMessage*>(&aReq->iMessage);
|
sl@0
|
3408 |
TLinAddr buffer = aReq->iBuffer;
|
sl@0
|
3409 |
TUint readStart = dataOffset>>readUnitShift;
|
sl@0
|
3410 |
TUint readSize = ((dataOffset+dataSize-1)>>readUnitShift)-readStart+1;
|
sl@0
|
3411 |
__NK_ASSERT_DEBUG((readSize<<readUnitShift)<=iDeviceBufferSize);
|
sl@0
|
3412 |
START_PAGING_BENCHMARK;
|
sl@0
|
3413 |
r = RomPagingDevice().iDevice->Read(msg,buffer,readStart,readSize,-1/*token for ROM paging*/);
|
sl@0
|
3414 |
END_PAGING_BENCHMARK(DemandPaging::ThePager, EPagingBmReadMedia);
|
sl@0
|
3415 |
if(r==KErrNone)
|
sl@0
|
3416 |
{
|
sl@0
|
3417 |
// Decompress data...
|
sl@0
|
3418 |
TLinAddr data = buffer+dataOffset-(readStart<<readUnitShift);
|
sl@0
|
3419 |
r = Decompress(romPageInfo->iCompressionType,aReq->iLoadAddr,data,dataSize);
|
sl@0
|
3420 |
if(r>=0)
|
sl@0
|
3421 |
{
|
sl@0
|
3422 |
__NK_ASSERT_ALWAYS(r==pageSize);
|
sl@0
|
3423 |
r = KErrNone;
|
sl@0
|
3424 |
}
|
sl@0
|
3425 |
}
|
sl@0
|
3426 |
}
|
sl@0
|
3427 |
}
|
sl@0
|
3428 |
|
sl@0
|
3429 |
END_PAGING_BENCHMARK(this, EPagingBmReadRomPage);
|
sl@0
|
3430 |
return r;
|
sl@0
|
3431 |
}
|
sl@0
|
3432 |
|
sl@0
|
3433 |
TInt ReadFunc(TAny* aArg1, TAny* aArg2, TLinAddr aBuffer, TInt aBlockNumber, TInt aBlockCount)
|
sl@0
|
3434 |
{
|
sl@0
|
3435 |
START_PAGING_BENCHMARK;
|
sl@0
|
3436 |
TInt drive = (TInt)aArg1;
|
sl@0
|
3437 |
TThreadMessage* msg= (TThreadMessage*)aArg2;
|
sl@0
|
3438 |
DemandPaging::SPagingDevice& device = DemandPaging::ThePager->CodePagingDevice(drive);
|
sl@0
|
3439 |
TInt r = device.iDevice->Read(msg, aBuffer, aBlockNumber, aBlockCount, drive);
|
sl@0
|
3440 |
END_PAGING_BENCHMARK(DemandPaging::ThePager, EPagingBmReadMedia);
|
sl@0
|
3441 |
return r;
|
sl@0
|
3442 |
}
|
sl@0
|
3443 |
|
sl@0
|
3444 |
TInt DemandPaging::ReadCodePage(const DPagingRequest* aReq, DMmuCodeSegMemory* aCodeSegMemory, TLinAddr aCodeAddress)
|
sl@0
|
3445 |
{
|
sl@0
|
3446 |
__KTRACE_OPT(KPAGING,Kern::Printf("ReadCodePage buffer = %08x, csm == %08x, addr == %08x", aReq->iLoadAddr, aCodeSegMemory, aCodeAddress));
|
sl@0
|
3447 |
|
sl@0
|
3448 |
START_PAGING_BENCHMARK;
|
sl@0
|
3449 |
|
sl@0
|
3450 |
// Get the paging device for this drive
|
sl@0
|
3451 |
SPagingDevice& device = CodePagingDevice(aCodeSegMemory->iCodeLocalDrive);
|
sl@0
|
3452 |
|
sl@0
|
3453 |
// Work out which bit of the file to read
|
sl@0
|
3454 |
SRamCodeInfo& ri = aCodeSegMemory->iRamInfo;
|
sl@0
|
3455 |
TInt codeOffset = aCodeAddress - ri.iCodeRunAddr;
|
sl@0
|
3456 |
TInt pageNumber = codeOffset >> KPageShift;
|
sl@0
|
3457 |
TBool compressed = aCodeSegMemory->iCompressionType != SRomPageInfo::ENoCompression;
|
sl@0
|
3458 |
TInt dataOffset, dataSize;
|
sl@0
|
3459 |
if (compressed)
|
sl@0
|
3460 |
{
|
sl@0
|
3461 |
dataOffset = aCodeSegMemory->iCodePageOffsets[pageNumber];
|
sl@0
|
3462 |
dataSize = aCodeSegMemory->iCodePageOffsets[pageNumber + 1] - dataOffset;
|
sl@0
|
3463 |
__KTRACE_OPT(KPAGING,Kern::Printf(" compressed, file offset == %x, size == %d", dataOffset, dataSize));
|
sl@0
|
3464 |
}
|
sl@0
|
3465 |
else
|
sl@0
|
3466 |
{
|
sl@0
|
3467 |
dataOffset = codeOffset + aCodeSegMemory->iCodeStartInFile;
|
sl@0
|
3468 |
dataSize = Min(KPageSize, aCodeSegMemory->iBlockMap.DataLength() - dataOffset);
|
sl@0
|
3469 |
__NK_ASSERT_DEBUG(dataSize >= 0);
|
sl@0
|
3470 |
__KTRACE_OPT(KPAGING,Kern::Printf(" uncompressed, file offset == %x, size == %d", dataOffset, dataSize));
|
sl@0
|
3471 |
}
|
sl@0
|
3472 |
|
sl@0
|
3473 |
TInt bufferStart = aCodeSegMemory->iBlockMap.Read(aReq->iBuffer,
|
sl@0
|
3474 |
dataOffset,
|
sl@0
|
3475 |
dataSize,
|
sl@0
|
3476 |
device.iDevice->iReadUnitShift,
|
sl@0
|
3477 |
ReadFunc,
|
sl@0
|
3478 |
(TAny*)aCodeSegMemory->iCodeLocalDrive,
|
sl@0
|
3479 |
(TAny*)&aReq->iMessage);
|
sl@0
|
3480 |
|
sl@0
|
3481 |
|
sl@0
|
3482 |
TInt r = KErrNone;
|
sl@0
|
3483 |
if(bufferStart<0)
|
sl@0
|
3484 |
{
|
sl@0
|
3485 |
r = bufferStart; // return error
|
sl@0
|
3486 |
__NK_ASSERT_DEBUG(0);
|
sl@0
|
3487 |
}
|
sl@0
|
3488 |
else
|
sl@0
|
3489 |
{
|
sl@0
|
3490 |
TLinAddr data = aReq->iBuffer + bufferStart;
|
sl@0
|
3491 |
if (compressed)
|
sl@0
|
3492 |
{
|
sl@0
|
3493 |
TInt r = Decompress(aCodeSegMemory->iCompressionType, aReq->iLoadAddr, data, dataSize);
|
sl@0
|
3494 |
if(r>=0)
|
sl@0
|
3495 |
{
|
sl@0
|
3496 |
dataSize = Min(KPageSize, ri.iCodeSize - codeOffset);
|
sl@0
|
3497 |
if(r!=dataSize)
|
sl@0
|
3498 |
{
|
sl@0
|
3499 |
__NK_ASSERT_DEBUG(0);
|
sl@0
|
3500 |
r = KErrCorrupt;
|
sl@0
|
3501 |
}
|
sl@0
|
3502 |
else
|
sl@0
|
3503 |
r = KErrNone;
|
sl@0
|
3504 |
}
|
sl@0
|
3505 |
else
|
sl@0
|
3506 |
{
|
sl@0
|
3507 |
__NK_ASSERT_DEBUG(0);
|
sl@0
|
3508 |
}
|
sl@0
|
3509 |
}
|
sl@0
|
3510 |
else
|
sl@0
|
3511 |
{
|
sl@0
|
3512 |
#ifdef BTRACE_PAGING_VERBOSE
|
sl@0
|
3513 |
BTraceContext4(BTrace::EPaging,BTrace::EPagingDecompressStart,SRomPageInfo::ENoCompression);
|
sl@0
|
3514 |
#endif
|
sl@0
|
3515 |
memcpy((TAny*)aReq->iLoadAddr, (TAny*)data, dataSize);
|
sl@0
|
3516 |
#ifdef BTRACE_PAGING_VERBOSE
|
sl@0
|
3517 |
BTraceContext0(BTrace::EPaging,BTrace::EPagingDecompressEnd);
|
sl@0
|
3518 |
#endif
|
sl@0
|
3519 |
}
|
sl@0
|
3520 |
}
|
sl@0
|
3521 |
|
sl@0
|
3522 |
if(r==KErrNone)
|
sl@0
|
3523 |
if (dataSize < KPageSize)
|
sl@0
|
3524 |
memset((TAny*)(aReq->iLoadAddr + dataSize), KPageSize - dataSize, 0x03);
|
sl@0
|
3525 |
|
sl@0
|
3526 |
END_PAGING_BENCHMARK(this, EPagingBmReadCodePage);
|
sl@0
|
3527 |
|
sl@0
|
3528 |
return KErrNone;
|
sl@0
|
3529 |
}
|
sl@0
|
3530 |
|
sl@0
|
3531 |
|
sl@0
|
3532 |
#include "decompress.h"
|
sl@0
|
3533 |
|
sl@0
|
3534 |
|
sl@0
|
3535 |
TInt DemandPaging::Decompress(TInt aCompressionType,TLinAddr aDst,TLinAddr aSrc,TUint aSrcSize)
|
sl@0
|
3536 |
{
|
sl@0
|
3537 |
#ifdef BTRACE_PAGING_VERBOSE
|
sl@0
|
3538 |
BTraceContext4(BTrace::EPaging,BTrace::EPagingDecompressStart,aCompressionType);
|
sl@0
|
3539 |
#endif
|
sl@0
|
3540 |
TInt r;
|
sl@0
|
3541 |
switch(aCompressionType)
|
sl@0
|
3542 |
{
|
sl@0
|
3543 |
case SRomPageInfo::ENoCompression:
|
sl@0
|
3544 |
memcpy((void*)aDst,(void*)aSrc,aSrcSize);
|
sl@0
|
3545 |
r = aSrcSize;
|
sl@0
|
3546 |
break;
|
sl@0
|
3547 |
|
sl@0
|
3548 |
case SRomPageInfo::EBytePair:
|
sl@0
|
3549 |
{
|
sl@0
|
3550 |
START_PAGING_BENCHMARK;
|
sl@0
|
3551 |
TUint8* srcNext=0;
|
sl@0
|
3552 |
r=BytePairDecompress((TUint8*)aDst,KPageSize,(TUint8*)aSrc,aSrcSize,srcNext);
|
sl@0
|
3553 |
if (r == KErrNone)
|
sl@0
|
3554 |
__NK_ASSERT_ALWAYS((TLinAddr)srcNext == aSrc + aSrcSize);
|
sl@0
|
3555 |
END_PAGING_BENCHMARK(this, EPagingBmDecompress);
|
sl@0
|
3556 |
}
|
sl@0
|
3557 |
break;
|
sl@0
|
3558 |
|
sl@0
|
3559 |
default:
|
sl@0
|
3560 |
r = KErrNotSupported;
|
sl@0
|
3561 |
break;
|
sl@0
|
3562 |
}
|
sl@0
|
3563 |
#ifdef BTRACE_PAGING_VERBOSE
|
sl@0
|
3564 |
BTraceContext0(BTrace::EPaging,BTrace::EPagingDecompressEnd);
|
sl@0
|
3565 |
#endif
|
sl@0
|
3566 |
return r;
|
sl@0
|
3567 |
}
|
sl@0
|
3568 |
|
sl@0
|
3569 |
|
sl@0
|
3570 |
void DemandPaging::BalanceAges()
|
sl@0
|
3571 |
{
|
sl@0
|
3572 |
if(iOldCount*iYoungOldRatio>=iYoungCount)
|
sl@0
|
3573 |
return; // We have enough old pages
|
sl@0
|
3574 |
|
sl@0
|
3575 |
// make one young page into an old page...
|
sl@0
|
3576 |
|
sl@0
|
3577 |
__NK_ASSERT_DEBUG(!iYoungList.IsEmpty());
|
sl@0
|
3578 |
__NK_ASSERT_DEBUG(iYoungCount);
|
sl@0
|
3579 |
SDblQueLink* link = iYoungList.Last()->Deque();
|
sl@0
|
3580 |
--iYoungCount;
|
sl@0
|
3581 |
|
sl@0
|
3582 |
SPageInfo* pageInfo = SPageInfo::FromLink(link);
|
sl@0
|
3583 |
pageInfo->SetState(SPageInfo::EStatePagedOld);
|
sl@0
|
3584 |
|
sl@0
|
3585 |
iOldList.AddHead(link);
|
sl@0
|
3586 |
++iOldCount;
|
sl@0
|
3587 |
|
sl@0
|
3588 |
SetOld(pageInfo);
|
sl@0
|
3589 |
|
sl@0
|
3590 |
#ifdef BTRACE_PAGING_VERBOSE
|
sl@0
|
3591 |
BTraceContext4(BTrace::EPaging,BTrace::EPagingAged,pageInfo->PhysAddr());
|
sl@0
|
3592 |
#endif
|
sl@0
|
3593 |
}
|
sl@0
|
3594 |
|
sl@0
|
3595 |
|
sl@0
|
3596 |
void DemandPaging::AddAsYoungest(SPageInfo* aPageInfo)
|
sl@0
|
3597 |
{
|
sl@0
|
3598 |
#ifdef _DEBUG
|
sl@0
|
3599 |
SPageInfo::TType type = aPageInfo->Type();
|
sl@0
|
3600 |
__NK_ASSERT_DEBUG(type==SPageInfo::EPagedROM || type==SPageInfo::EPagedCode || type==SPageInfo::EPagedData || type==SPageInfo::EPagedCache);
|
sl@0
|
3601 |
#endif
|
sl@0
|
3602 |
aPageInfo->SetState(SPageInfo::EStatePagedYoung);
|
sl@0
|
3603 |
iYoungList.AddHead(&aPageInfo->iLink);
|
sl@0
|
3604 |
++iYoungCount;
|
sl@0
|
3605 |
}
|
sl@0
|
3606 |
|
sl@0
|
3607 |
|
sl@0
|
3608 |
void DemandPaging::AddAsFreePage(SPageInfo* aPageInfo)
|
sl@0
|
3609 |
{
|
sl@0
|
3610 |
#ifdef BTRACE_PAGING
|
sl@0
|
3611 |
TPhysAddr phys = aPageInfo->PhysAddr();
|
sl@0
|
3612 |
BTraceContext4(BTrace::EPaging,BTrace::EPagingPageInFree,phys);
|
sl@0
|
3613 |
#endif
|
sl@0
|
3614 |
aPageInfo->Change(SPageInfo::EPagedFree,SPageInfo::EStatePagedOld);
|
sl@0
|
3615 |
iOldList.Add(&aPageInfo->iLink);
|
sl@0
|
3616 |
++iOldCount;
|
sl@0
|
3617 |
}
|
sl@0
|
3618 |
|
sl@0
|
3619 |
|
sl@0
|
3620 |
void DemandPaging::RemovePage(SPageInfo* aPageInfo)
|
sl@0
|
3621 |
{
|
sl@0
|
3622 |
switch(aPageInfo->State())
|
sl@0
|
3623 |
{
|
sl@0
|
3624 |
case SPageInfo::EStatePagedYoung:
|
sl@0
|
3625 |
__NK_ASSERT_DEBUG(iYoungCount);
|
sl@0
|
3626 |
aPageInfo->iLink.Deque();
|
sl@0
|
3627 |
--iYoungCount;
|
sl@0
|
3628 |
break;
|
sl@0
|
3629 |
|
sl@0
|
3630 |
case SPageInfo::EStatePagedOld:
|
sl@0
|
3631 |
__NK_ASSERT_DEBUG(iOldCount);
|
sl@0
|
3632 |
aPageInfo->iLink.Deque();
|
sl@0
|
3633 |
--iOldCount;
|
sl@0
|
3634 |
break;
|
sl@0
|
3635 |
|
sl@0
|
3636 |
case SPageInfo::EStatePagedLocked:
|
sl@0
|
3637 |
break;
|
sl@0
|
3638 |
|
sl@0
|
3639 |
default:
|
sl@0
|
3640 |
__NK_ASSERT_DEBUG(0);
|
sl@0
|
3641 |
}
|
sl@0
|
3642 |
aPageInfo->SetState(SPageInfo::EStatePagedDead);
|
sl@0
|
3643 |
}
|
sl@0
|
3644 |
|
sl@0
|
3645 |
|
sl@0
|
3646 |
SPageInfo* DemandPaging::GetOldestPage()
|
sl@0
|
3647 |
{
|
sl@0
|
3648 |
// remove oldest from list...
|
sl@0
|
3649 |
SDblQueLink* link;
|
sl@0
|
3650 |
if(iOldCount)
|
sl@0
|
3651 |
{
|
sl@0
|
3652 |
__NK_ASSERT_DEBUG(!iOldList.IsEmpty());
|
sl@0
|
3653 |
link = iOldList.Last()->Deque();
|
sl@0
|
3654 |
--iOldCount;
|
sl@0
|
3655 |
}
|
sl@0
|
3656 |
else
|
sl@0
|
3657 |
{
|
sl@0
|
3658 |
__NK_ASSERT_DEBUG(iYoungCount);
|
sl@0
|
3659 |
__NK_ASSERT_DEBUG(!iYoungList.IsEmpty());
|
sl@0
|
3660 |
link = iYoungList.Last()->Deque();
|
sl@0
|
3661 |
--iYoungCount;
|
sl@0
|
3662 |
}
|
sl@0
|
3663 |
SPageInfo* pageInfo = SPageInfo::FromLink(link);
|
sl@0
|
3664 |
pageInfo->SetState(SPageInfo::EStatePagedDead);
|
sl@0
|
3665 |
|
sl@0
|
3666 |
// put page in a free state...
|
sl@0
|
3667 |
SetFree(pageInfo);
|
sl@0
|
3668 |
pageInfo->Change(SPageInfo::EPagedFree,SPageInfo::EStatePagedDead);
|
sl@0
|
3669 |
|
sl@0
|
3670 |
// keep live list balanced...
|
sl@0
|
3671 |
BalanceAges();
|
sl@0
|
3672 |
|
sl@0
|
3673 |
return pageInfo;
|
sl@0
|
3674 |
}
|
sl@0
|
3675 |
|
sl@0
|
3676 |
|
sl@0
|
3677 |
TBool DemandPaging::GetFreePages(TInt aNumPages)
|
sl@0
|
3678 |
{
|
sl@0
|
3679 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: >GetFreePages %d",aNumPages));
|
sl@0
|
3680 |
NKern::LockSystem();
|
sl@0
|
3681 |
|
sl@0
|
3682 |
while(aNumPages>0 && NumberOfFreePages()>=aNumPages)
|
sl@0
|
3683 |
{
|
sl@0
|
3684 |
// steal a page from live page list and return it to the free pool...
|
sl@0
|
3685 |
ReturnToSystem(GetOldestPage());
|
sl@0
|
3686 |
--aNumPages;
|
sl@0
|
3687 |
}
|
sl@0
|
3688 |
|
sl@0
|
3689 |
NKern::UnlockSystem();
|
sl@0
|
3690 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: <GetFreePages %d",!aNumPages));
|
sl@0
|
3691 |
return !aNumPages;
|
sl@0
|
3692 |
}
|
sl@0
|
3693 |
|
sl@0
|
3694 |
|
sl@0
|
3695 |
void DemandPaging::DonateRamCachePage(SPageInfo* aPageInfo)
|
sl@0
|
3696 |
{
|
sl@0
|
3697 |
__NK_ASSERT_DEBUG(iMinimumPageCount + iNumberOfFreePages <= iMaximumPageCount);
|
sl@0
|
3698 |
SPageInfo::TType type = aPageInfo->Type();
|
sl@0
|
3699 |
if(type==SPageInfo::EChunk)
|
sl@0
|
3700 |
{
|
sl@0
|
3701 |
//Must not donate locked page. An example is DMA trasferred memory.
|
sl@0
|
3702 |
__NK_ASSERT_DEBUG(0 == aPageInfo->LockCount());
|
sl@0
|
3703 |
|
sl@0
|
3704 |
aPageInfo->Change(SPageInfo::EPagedCache,SPageInfo::EStatePagedYoung);
|
sl@0
|
3705 |
|
sl@0
|
3706 |
// Update ram allocator counts as this page has changed its type
|
sl@0
|
3707 |
DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner();
|
sl@0
|
3708 |
iMmu->iRamPageAllocator->ChangePageType(aPageInfo, chunk->GetPageType(), EPageDiscard);
|
sl@0
|
3709 |
|
sl@0
|
3710 |
AddAsYoungest(aPageInfo);
|
sl@0
|
3711 |
++iNumberOfFreePages;
|
sl@0
|
3712 |
if (iMinimumPageCount + iNumberOfFreePages > iMaximumPageCount)
|
sl@0
|
3713 |
ReturnToSystem(GetOldestPage());
|
sl@0
|
3714 |
BalanceAges();
|
sl@0
|
3715 |
return;
|
sl@0
|
3716 |
}
|
sl@0
|
3717 |
// allow already donated pages...
|
sl@0
|
3718 |
__NK_ASSERT_DEBUG(type==SPageInfo::EPagedCache);
|
sl@0
|
3719 |
}
|
sl@0
|
3720 |
|
sl@0
|
3721 |
|
sl@0
|
3722 |
TBool DemandPaging::ReclaimRamCachePage(SPageInfo* aPageInfo)
|
sl@0
|
3723 |
{
|
sl@0
|
3724 |
SPageInfo::TType type = aPageInfo->Type();
|
sl@0
|
3725 |
if(type==SPageInfo::EChunk)
|
sl@0
|
3726 |
return ETrue; // page already reclaimed
|
sl@0
|
3727 |
|
sl@0
|
3728 |
__NK_ASSERT_DEBUG(type==SPageInfo::EPagedCache);
|
sl@0
|
3729 |
|
sl@0
|
3730 |
if(!iNumberOfFreePages)
|
sl@0
|
3731 |
return EFalse;
|
sl@0
|
3732 |
--iNumberOfFreePages;
|
sl@0
|
3733 |
|
sl@0
|
3734 |
RemovePage(aPageInfo);
|
sl@0
|
3735 |
aPageInfo->Change(SPageInfo::EChunk,SPageInfo::EStateNormal);
|
sl@0
|
3736 |
|
sl@0
|
3737 |
// Update ram allocator counts as this page has changed its type
|
sl@0
|
3738 |
DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner();
|
sl@0
|
3739 |
iMmu->iRamPageAllocator->ChangePageType(aPageInfo, EPageDiscard, chunk->GetPageType());
|
sl@0
|
3740 |
return ETrue;
|
sl@0
|
3741 |
}
|
sl@0
|
3742 |
|
sl@0
|
3743 |
|
sl@0
|
3744 |
SPageInfo* DemandPaging::AllocateNewPage()
|
sl@0
|
3745 |
{
|
sl@0
|
3746 |
__ASSERT_SYSTEM_LOCK
|
sl@0
|
3747 |
SPageInfo* pageInfo;
|
sl@0
|
3748 |
|
sl@0
|
3749 |
NKern::UnlockSystem();
|
sl@0
|
3750 |
MmuBase::Wait();
|
sl@0
|
3751 |
NKern::LockSystem();
|
sl@0
|
3752 |
|
sl@0
|
3753 |
// Try getting a free page from our active page list
|
sl@0
|
3754 |
if(iOldCount)
|
sl@0
|
3755 |
{
|
sl@0
|
3756 |
pageInfo = SPageInfo::FromLink(iOldList.Last());
|
sl@0
|
3757 |
if(pageInfo->Type()==SPageInfo::EPagedFree)
|
sl@0
|
3758 |
{
|
sl@0
|
3759 |
pageInfo = GetOldestPage();
|
sl@0
|
3760 |
goto done;
|
sl@0
|
3761 |
}
|
sl@0
|
3762 |
}
|
sl@0
|
3763 |
|
sl@0
|
3764 |
// Try getting a free page from the system pool
|
sl@0
|
3765 |
if(iMinimumPageCount+iNumberOfFreePages<iMaximumPageCount)
|
sl@0
|
3766 |
{
|
sl@0
|
3767 |
NKern::UnlockSystem();
|
sl@0
|
3768 |
pageInfo = GetPageFromSystem();
|
sl@0
|
3769 |
NKern::LockSystem();
|
sl@0
|
3770 |
if(pageInfo)
|
sl@0
|
3771 |
goto done;
|
sl@0
|
3772 |
}
|
sl@0
|
3773 |
|
sl@0
|
3774 |
// As a last resort, steal one from our list of active pages
|
sl@0
|
3775 |
pageInfo = GetOldestPage();
|
sl@0
|
3776 |
|
sl@0
|
3777 |
done:
|
sl@0
|
3778 |
NKern::UnlockSystem();
|
sl@0
|
3779 |
MmuBase::Signal();
|
sl@0
|
3780 |
NKern::LockSystem();
|
sl@0
|
3781 |
return pageInfo;
|
sl@0
|
3782 |
}
|
sl@0
|
3783 |
|
sl@0
|
3784 |
|
sl@0
|
3785 |
void DemandPaging::Rejuvenate(SPageInfo* aPageInfo)
|
sl@0
|
3786 |
{
|
sl@0
|
3787 |
SPageInfo::TState state = aPageInfo->State();
|
sl@0
|
3788 |
if(state==SPageInfo::EStatePagedOld)
|
sl@0
|
3789 |
{
|
sl@0
|
3790 |
// move page from old list to head of young list...
|
sl@0
|
3791 |
__NK_ASSERT_DEBUG(iOldCount);
|
sl@0
|
3792 |
aPageInfo->iLink.Deque();
|
sl@0
|
3793 |
--iOldCount;
|
sl@0
|
3794 |
AddAsYoungest(aPageInfo);
|
sl@0
|
3795 |
BalanceAges();
|
sl@0
|
3796 |
}
|
sl@0
|
3797 |
else if(state==SPageInfo::EStatePagedYoung)
|
sl@0
|
3798 |
{
|
sl@0
|
3799 |
// page was already young, move it to the start of the list (make it the youngest)
|
sl@0
|
3800 |
aPageInfo->iLink.Deque();
|
sl@0
|
3801 |
iYoungList.AddHead(&aPageInfo->iLink);
|
sl@0
|
3802 |
}
|
sl@0
|
3803 |
else
|
sl@0
|
3804 |
{
|
sl@0
|
3805 |
// leave locked pages alone
|
sl@0
|
3806 |
__NK_ASSERT_DEBUG(state==SPageInfo::EStatePagedLocked);
|
sl@0
|
3807 |
}
|
sl@0
|
3808 |
}
|
sl@0
|
3809 |
|
sl@0
|
3810 |
|
sl@0
|
3811 |
TInt DemandPaging::CheckRealtimeThreadFault(DThread* aThread, TAny* aContext)
|
sl@0
|
3812 |
{
|
sl@0
|
3813 |
TInt r = KErrNone;
|
sl@0
|
3814 |
DThread* client = aThread->iIpcClient;
|
sl@0
|
3815 |
|
sl@0
|
3816 |
// If iIpcClient is set then we are accessing the address space of a remote thread. If we are
|
sl@0
|
3817 |
// in an IPC trap, this will contain information the local and remte addresses being accessed.
|
sl@0
|
3818 |
// If this is not set then we assume than any fault must be the fault of a bad remote address.
|
sl@0
|
3819 |
TIpcExcTrap* ipcTrap = (TIpcExcTrap*)aThread->iExcTrap;
|
sl@0
|
3820 |
if (ipcTrap && !ipcTrap->IsTIpcExcTrap())
|
sl@0
|
3821 |
ipcTrap = 0;
|
sl@0
|
3822 |
if (client && (!ipcTrap || ipcTrap->ExcLocation(aThread, aContext) == TIpcExcTrap::EExcRemote))
|
sl@0
|
3823 |
{
|
sl@0
|
3824 |
// Kill client thread...
|
sl@0
|
3825 |
NKern::UnlockSystem();
|
sl@0
|
3826 |
if(K::IllegalFunctionForRealtimeThread(client,"Access to Paged Memory (by other thread)"))
|
sl@0
|
3827 |
{
|
sl@0
|
3828 |
// Treat memory access as bad...
|
sl@0
|
3829 |
r = KErrAbort;
|
sl@0
|
3830 |
}
|
sl@0
|
3831 |
// else thread is in 'warning only' state so allow paging
|
sl@0
|
3832 |
}
|
sl@0
|
3833 |
else
|
sl@0
|
3834 |
{
|
sl@0
|
3835 |
// Kill current thread...
|
sl@0
|
3836 |
NKern::UnlockSystem();
|
sl@0
|
3837 |
if(K::IllegalFunctionForRealtimeThread(NULL,"Access to Paged Memory"))
|
sl@0
|
3838 |
{
|
sl@0
|
3839 |
// If current thread is in critical section, then the above kill will be deferred
|
sl@0
|
3840 |
// and we will continue executing. We will handle this by returning an error
|
sl@0
|
3841 |
// which means that the thread will take an exception (which hopfully is XTRAPed!)
|
sl@0
|
3842 |
r = KErrAbort;
|
sl@0
|
3843 |
}
|
sl@0
|
3844 |
// else thread is in 'warning only' state so allow paging
|
sl@0
|
3845 |
}
|
sl@0
|
3846 |
|
sl@0
|
3847 |
NKern::LockSystem();
|
sl@0
|
3848 |
return r;
|
sl@0
|
3849 |
}
|
sl@0
|
3850 |
|
sl@0
|
3851 |
|
sl@0
|
3852 |
TInt DemandPaging::ResizeLiveList(TUint aMinimumPageCount,TUint aMaximumPageCount)
|
sl@0
|
3853 |
{
|
sl@0
|
3854 |
if(!aMaximumPageCount)
|
sl@0
|
3855 |
{
|
sl@0
|
3856 |
aMinimumPageCount = iInitMinimumPageCount;
|
sl@0
|
3857 |
aMaximumPageCount = iInitMaximumPageCount;
|
sl@0
|
3858 |
}
|
sl@0
|
3859 |
|
sl@0
|
3860 |
// Min must not be greater than max...
|
sl@0
|
3861 |
if(aMinimumPageCount>aMaximumPageCount)
|
sl@0
|
3862 |
return KErrArgument;
|
sl@0
|
3863 |
|
sl@0
|
3864 |
NKern::ThreadEnterCS();
|
sl@0
|
3865 |
MmuBase::Wait();
|
sl@0
|
3866 |
|
sl@0
|
3867 |
NKern::LockSystem();
|
sl@0
|
3868 |
|
sl@0
|
3869 |
// Make sure aMinimumPageCount is not less than absolute minimum we can cope with...
|
sl@0
|
3870 |
iMinimumPageLimit = ((KMinYoungPages + iNextPagingRequestCount) * (1 + iYoungOldRatio)) / iYoungOldRatio;
|
sl@0
|
3871 |
if(iMinimumPageLimit<KAbsoluteMinPageCount)
|
sl@0
|
3872 |
iMinimumPageLimit = KAbsoluteMinPageCount;
|
sl@0
|
3873 |
if(aMinimumPageCount<iMinimumPageLimit+iReservePageCount)
|
sl@0
|
3874 |
aMinimumPageCount = iMinimumPageLimit+iReservePageCount;
|
sl@0
|
3875 |
if(aMaximumPageCount<aMinimumPageCount)
|
sl@0
|
3876 |
aMaximumPageCount=aMinimumPageCount;
|
sl@0
|
3877 |
|
sl@0
|
3878 |
// Increase iMaximumPageCount?
|
sl@0
|
3879 |
TInt extra = aMaximumPageCount-iMaximumPageCount;
|
sl@0
|
3880 |
if(extra>0)
|
sl@0
|
3881 |
iMaximumPageCount += extra;
|
sl@0
|
3882 |
|
sl@0
|
3883 |
// Reduce iMinimumPageCount?
|
sl@0
|
3884 |
TInt spare = iMinimumPageCount-aMinimumPageCount;
|
sl@0
|
3885 |
if(spare>0)
|
sl@0
|
3886 |
{
|
sl@0
|
3887 |
iMinimumPageCount -= spare;
|
sl@0
|
3888 |
iNumberOfFreePages += spare;
|
sl@0
|
3889 |
}
|
sl@0
|
3890 |
|
sl@0
|
3891 |
// Increase iMinimumPageCount?
|
sl@0
|
3892 |
TInt r=KErrNone;
|
sl@0
|
3893 |
while(aMinimumPageCount>iMinimumPageCount)
|
sl@0
|
3894 |
{
|
sl@0
|
3895 |
if(iNumberOfFreePages==0) // Need more pages?
|
sl@0
|
3896 |
{
|
sl@0
|
3897 |
// get a page from the system
|
sl@0
|
3898 |
NKern::UnlockSystem();
|
sl@0
|
3899 |
SPageInfo* pageInfo = GetPageFromSystem();
|
sl@0
|
3900 |
NKern::LockSystem();
|
sl@0
|
3901 |
if(!pageInfo)
|
sl@0
|
3902 |
{
|
sl@0
|
3903 |
r=KErrNoMemory;
|
sl@0
|
3904 |
break;
|
sl@0
|
3905 |
}
|
sl@0
|
3906 |
AddAsFreePage(pageInfo);
|
sl@0
|
3907 |
}
|
sl@0
|
3908 |
++iMinimumPageCount;
|
sl@0
|
3909 |
--iNumberOfFreePages;
|
sl@0
|
3910 |
NKern::FlashSystem();
|
sl@0
|
3911 |
}
|
sl@0
|
3912 |
|
sl@0
|
3913 |
// Reduce iMaximumPageCount?
|
sl@0
|
3914 |
while(iMaximumPageCount>aMaximumPageCount)
|
sl@0
|
3915 |
{
|
sl@0
|
3916 |
if (iMinimumPageCount+iNumberOfFreePages==iMaximumPageCount) // Need to free pages?
|
sl@0
|
3917 |
{
|
sl@0
|
3918 |
ReturnToSystem(GetOldestPage());
|
sl@0
|
3919 |
}
|
sl@0
|
3920 |
--iMaximumPageCount;
|
sl@0
|
3921 |
NKern::FlashSystem();
|
sl@0
|
3922 |
}
|
sl@0
|
3923 |
|
sl@0
|
3924 |
#ifdef BTRACE_KERNEL_MEMORY
|
sl@0
|
3925 |
BTrace4(BTrace::EKernelMemory,BTrace::EKernelMemoryDemandPagingCache,ThePager->iMinimumPageCount << KPageShift);
|
sl@0
|
3926 |
#endif
|
sl@0
|
3927 |
|
sl@0
|
3928 |
__NK_ASSERT_DEBUG(iMinimumPageCount + iNumberOfFreePages <= iMaximumPageCount);
|
sl@0
|
3929 |
|
sl@0
|
3930 |
NKern::UnlockSystem();
|
sl@0
|
3931 |
|
sl@0
|
3932 |
MmuBase::Signal();
|
sl@0
|
3933 |
NKern::ThreadLeaveCS();
|
sl@0
|
3934 |
|
sl@0
|
3935 |
return r;
|
sl@0
|
3936 |
}
|
sl@0
|
3937 |
|
sl@0
|
3938 |
|
sl@0
|
3939 |
TInt VMHalFunction(TAny*, TInt aFunction, TAny* a1, TAny* a2)
|
sl@0
|
3940 |
{
|
sl@0
|
3941 |
DemandPaging* pager = DemandPaging::ThePager;
|
sl@0
|
3942 |
switch(aFunction)
|
sl@0
|
3943 |
{
|
sl@0
|
3944 |
case EVMHalFlushCache:
|
sl@0
|
3945 |
if(!TheCurrentThread->HasCapability(ECapabilityWriteDeviceData,__PLATSEC_DIAGNOSTIC_STRING("Checked by VMHalFunction(EVMHalFlushCache)")))
|
sl@0
|
3946 |
K::UnlockedPlatformSecurityPanic();
|
sl@0
|
3947 |
pager->FlushAll();
|
sl@0
|
3948 |
return KErrNone;
|
sl@0
|
3949 |
|
sl@0
|
3950 |
case EVMHalSetCacheSize:
|
sl@0
|
3951 |
{
|
sl@0
|
3952 |
if(!TheCurrentThread->HasCapability(ECapabilityWriteDeviceData,__PLATSEC_DIAGNOSTIC_STRING("Checked by VMHalFunction(EVMHalSetCacheSize)")))
|
sl@0
|
3953 |
K::UnlockedPlatformSecurityPanic();
|
sl@0
|
3954 |
TUint min = (TUint)a1>>KPageShift;
|
sl@0
|
3955 |
if((TUint)a1&KPageMask)
|
sl@0
|
3956 |
++min;
|
sl@0
|
3957 |
TUint max = (TUint)a2>>KPageShift;
|
sl@0
|
3958 |
if((TUint)a2&KPageMask)
|
sl@0
|
3959 |
++max;
|
sl@0
|
3960 |
return pager->ResizeLiveList(min,max);
|
sl@0
|
3961 |
}
|
sl@0
|
3962 |
|
sl@0
|
3963 |
case EVMHalGetCacheSize:
|
sl@0
|
3964 |
{
|
sl@0
|
3965 |
SVMCacheInfo info;
|
sl@0
|
3966 |
NKern::LockSystem(); // lock system to ensure consistent set of values are read...
|
sl@0
|
3967 |
info.iMinSize = pager->iMinimumPageCount<<KPageShift;
|
sl@0
|
3968 |
info.iMaxSize = pager->iMaximumPageCount<<KPageShift;
|
sl@0
|
3969 |
info.iCurrentSize = (pager->iMinimumPageCount+pager->iNumberOfFreePages)<<KPageShift;
|
sl@0
|
3970 |
info.iMaxFreeSize = pager->iNumberOfFreePages<<KPageShift;
|
sl@0
|
3971 |
NKern::UnlockSystem();
|
sl@0
|
3972 |
kumemput32(a1,&info,sizeof(info));
|
sl@0
|
3973 |
}
|
sl@0
|
3974 |
return KErrNone;
|
sl@0
|
3975 |
|
sl@0
|
3976 |
case EVMHalGetEventInfo:
|
sl@0
|
3977 |
{
|
sl@0
|
3978 |
SVMEventInfo info;
|
sl@0
|
3979 |
NKern::LockSystem(); // lock system to ensure consistent set of values are read...
|
sl@0
|
3980 |
info = pager->iEventInfo;
|
sl@0
|
3981 |
NKern::UnlockSystem();
|
sl@0
|
3982 |
Kern::InfoCopy(*(TDes8*)a1,(TUint8*)&info,sizeof(info));
|
sl@0
|
3983 |
}
|
sl@0
|
3984 |
return KErrNone;
|
sl@0
|
3985 |
|
sl@0
|
3986 |
case EVMHalResetEventInfo:
|
sl@0
|
3987 |
NKern::LockSystem();
|
sl@0
|
3988 |
memclr(&pager->iEventInfo, sizeof(pager->iEventInfo));
|
sl@0
|
3989 |
NKern::UnlockSystem();
|
sl@0
|
3990 |
return KErrNone;
|
sl@0
|
3991 |
|
sl@0
|
3992 |
#ifdef __SUPPORT_DEMAND_PAGING_EMULATION__
|
sl@0
|
3993 |
case EVMHalGetOriginalRomPages:
|
sl@0
|
3994 |
*(TPhysAddr**)a1 = pager->iOriginalRomPages;
|
sl@0
|
3995 |
*(TInt*)a2 = pager->iOriginalRomPageCount;
|
sl@0
|
3996 |
return KErrNone;
|
sl@0
|
3997 |
#endif
|
sl@0
|
3998 |
|
sl@0
|
3999 |
case EVMPageState:
|
sl@0
|
4000 |
return pager->PageState((TLinAddr)a1);
|
sl@0
|
4001 |
|
sl@0
|
4002 |
#ifdef __CONCURRENT_PAGING_INSTRUMENTATION__
|
sl@0
|
4003 |
case EVMHalGetConcurrencyInfo:
|
sl@0
|
4004 |
{
|
sl@0
|
4005 |
NKern::LockSystem();
|
sl@0
|
4006 |
SPagingConcurrencyInfo info = { pager->iMaxWaitingCount, pager->iMaxPagingCount };
|
sl@0
|
4007 |
NKern::UnlockSystem();
|
sl@0
|
4008 |
kumemput32(a1,&info,sizeof(info));
|
sl@0
|
4009 |
}
|
sl@0
|
4010 |
return KErrNone;
|
sl@0
|
4011 |
|
sl@0
|
4012 |
case EVMHalResetConcurrencyInfo:
|
sl@0
|
4013 |
NKern::LockSystem();
|
sl@0
|
4014 |
pager->iMaxWaitingCount = 0;
|
sl@0
|
4015 |
pager->iMaxPagingCount = 0;
|
sl@0
|
4016 |
NKern::UnlockSystem();
|
sl@0
|
4017 |
return KErrNone;
|
sl@0
|
4018 |
#endif
|
sl@0
|
4019 |
|
sl@0
|
4020 |
#ifdef __DEMAND_PAGING_BENCHMARKS__
|
sl@0
|
4021 |
case EVMHalGetPagingBenchmark:
|
sl@0
|
4022 |
{
|
sl@0
|
4023 |
TUint index = (TInt) a1;
|
sl@0
|
4024 |
if (index >= EMaxPagingBm)
|
sl@0
|
4025 |
return KErrNotFound;
|
sl@0
|
4026 |
NKern::LockSystem();
|
sl@0
|
4027 |
SPagingBenchmarkInfo info = pager->iBenchmarkInfo[index];
|
sl@0
|
4028 |
NKern::UnlockSystem();
|
sl@0
|
4029 |
kumemput32(a2,&info,sizeof(info));
|
sl@0
|
4030 |
}
|
sl@0
|
4031 |
return KErrNone;
|
sl@0
|
4032 |
|
sl@0
|
4033 |
case EVMHalResetPagingBenchmark:
|
sl@0
|
4034 |
{
|
sl@0
|
4035 |
TUint index = (TInt) a1;
|
sl@0
|
4036 |
if (index >= EMaxPagingBm)
|
sl@0
|
4037 |
return KErrNotFound;
|
sl@0
|
4038 |
NKern::LockSystem();
|
sl@0
|
4039 |
pager->ResetBenchmarkData((TPagingBenchmark)index);
|
sl@0
|
4040 |
NKern::UnlockSystem();
|
sl@0
|
4041 |
}
|
sl@0
|
4042 |
return KErrNone;
|
sl@0
|
4043 |
#endif
|
sl@0
|
4044 |
|
sl@0
|
4045 |
default:
|
sl@0
|
4046 |
return KErrNotSupported;
|
sl@0
|
4047 |
}
|
sl@0
|
4048 |
}
|
sl@0
|
4049 |
|
sl@0
|
4050 |
void DemandPaging::Panic(TFault aFault)
|
sl@0
|
4051 |
{
|
sl@0
|
4052 |
Kern::Fault("DEMAND-PAGING",aFault);
|
sl@0
|
4053 |
}
|
sl@0
|
4054 |
|
sl@0
|
4055 |
|
sl@0
|
4056 |
DMutex* DemandPaging::CheckMutexOrder()
|
sl@0
|
4057 |
{
|
sl@0
|
4058 |
#ifdef _DEBUG
|
sl@0
|
4059 |
SDblQue& ml = TheCurrentThread->iMutexList;
|
sl@0
|
4060 |
if(ml.IsEmpty())
|
sl@0
|
4061 |
return NULL;
|
sl@0
|
4062 |
DMutex* mm = _LOFF(ml.First(), DMutex, iOrderLink);
|
sl@0
|
4063 |
if (KMutexOrdPageIn >= mm->iOrder)
|
sl@0
|
4064 |
return mm;
|
sl@0
|
4065 |
#endif
|
sl@0
|
4066 |
return NULL;
|
sl@0
|
4067 |
}
|
sl@0
|
4068 |
|
sl@0
|
4069 |
|
sl@0
|
4070 |
TBool DemandPaging::ReservePage()
|
sl@0
|
4071 |
{
|
sl@0
|
4072 |
__ASSERT_SYSTEM_LOCK;
|
sl@0
|
4073 |
__ASSERT_CRITICAL;
|
sl@0
|
4074 |
|
sl@0
|
4075 |
NKern::UnlockSystem();
|
sl@0
|
4076 |
MmuBase::Wait();
|
sl@0
|
4077 |
NKern::LockSystem();
|
sl@0
|
4078 |
|
sl@0
|
4079 |
__NK_ASSERT_DEBUG(iMinimumPageCount >= iMinimumPageLimit + iReservePageCount);
|
sl@0
|
4080 |
while (iMinimumPageCount == iMinimumPageLimit + iReservePageCount &&
|
sl@0
|
4081 |
iNumberOfFreePages == 0)
|
sl@0
|
4082 |
{
|
sl@0
|
4083 |
NKern::UnlockSystem();
|
sl@0
|
4084 |
SPageInfo* pageInfo = GetPageFromSystem();
|
sl@0
|
4085 |
if(!pageInfo)
|
sl@0
|
4086 |
{
|
sl@0
|
4087 |
MmuBase::Signal();
|
sl@0
|
4088 |
NKern::LockSystem();
|
sl@0
|
4089 |
return EFalse;
|
sl@0
|
4090 |
}
|
sl@0
|
4091 |
NKern::LockSystem();
|
sl@0
|
4092 |
AddAsFreePage(pageInfo);
|
sl@0
|
4093 |
}
|
sl@0
|
4094 |
if (iMinimumPageCount == iMinimumPageLimit + iReservePageCount)
|
sl@0
|
4095 |
{
|
sl@0
|
4096 |
++iMinimumPageCount;
|
sl@0
|
4097 |
--iNumberOfFreePages;
|
sl@0
|
4098 |
if (iMinimumPageCount > iMaximumPageCount)
|
sl@0
|
4099 |
iMaximumPageCount = iMinimumPageCount;
|
sl@0
|
4100 |
}
|
sl@0
|
4101 |
++iReservePageCount;
|
sl@0
|
4102 |
__NK_ASSERT_DEBUG(iMinimumPageCount >= iMinimumPageLimit + iReservePageCount);
|
sl@0
|
4103 |
__NK_ASSERT_DEBUG(iMinimumPageCount + iNumberOfFreePages <= iMaximumPageCount);
|
sl@0
|
4104 |
|
sl@0
|
4105 |
NKern::UnlockSystem();
|
sl@0
|
4106 |
MmuBase::Signal();
|
sl@0
|
4107 |
NKern::LockSystem();
|
sl@0
|
4108 |
return ETrue;
|
sl@0
|
4109 |
}
|
sl@0
|
4110 |
|
sl@0
|
4111 |
|
sl@0
|
4112 |
TInt DemandPaging::LockRegion(TLinAddr aStart,TInt aSize,DProcess* aProcess)
|
sl@0
|
4113 |
{
|
sl@0
|
4114 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: LockRegion(%08x,%x)",aStart,aSize));
|
sl@0
|
4115 |
NKern::ThreadEnterCS();
|
sl@0
|
4116 |
|
sl@0
|
4117 |
// calculate the number of pages required to lock aSize bytes
|
sl@0
|
4118 |
TUint32 mask=KPageMask;
|
sl@0
|
4119 |
TUint32 offset=aStart&mask;
|
sl@0
|
4120 |
TInt numPages = (aSize+offset+mask)>>KPageShift;
|
sl@0
|
4121 |
|
sl@0
|
4122 |
// Lock pages...
|
sl@0
|
4123 |
TInt r=KErrNone;
|
sl@0
|
4124 |
TLinAddr page = aStart;
|
sl@0
|
4125 |
|
sl@0
|
4126 |
NKern::LockSystem();
|
sl@0
|
4127 |
while(--numPages>=0)
|
sl@0
|
4128 |
{
|
sl@0
|
4129 |
if (!ReservePage())
|
sl@0
|
4130 |
break;
|
sl@0
|
4131 |
TPhysAddr phys;
|
sl@0
|
4132 |
r = LockPage(page,aProcess,phys);
|
sl@0
|
4133 |
NKern::FlashSystem();
|
sl@0
|
4134 |
if(r!=KErrNone)
|
sl@0
|
4135 |
break;
|
sl@0
|
4136 |
page += KPageSize;
|
sl@0
|
4137 |
}
|
sl@0
|
4138 |
|
sl@0
|
4139 |
NKern::UnlockSystem();
|
sl@0
|
4140 |
|
sl@0
|
4141 |
// If error, unlock whatever we managed to lock...
|
sl@0
|
4142 |
if(r!=KErrNone)
|
sl@0
|
4143 |
{
|
sl@0
|
4144 |
while((page-=KPageSize)>=aStart)
|
sl@0
|
4145 |
{
|
sl@0
|
4146 |
NKern::LockSystem();
|
sl@0
|
4147 |
UnlockPage(aStart,aProcess,KPhysAddrInvalid);
|
sl@0
|
4148 |
--iReservePageCount;
|
sl@0
|
4149 |
NKern::UnlockSystem();
|
sl@0
|
4150 |
}
|
sl@0
|
4151 |
}
|
sl@0
|
4152 |
|
sl@0
|
4153 |
NKern::ThreadLeaveCS();
|
sl@0
|
4154 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: LockRegion returns %d",r));
|
sl@0
|
4155 |
return r;
|
sl@0
|
4156 |
}
|
sl@0
|
4157 |
|
sl@0
|
4158 |
|
sl@0
|
4159 |
TInt DemandPaging::UnlockRegion(TLinAddr aStart,TInt aSize,DProcess* aProcess)
|
sl@0
|
4160 |
{
|
sl@0
|
4161 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: UnlockRegion(%08x,%x)",aStart,aSize));
|
sl@0
|
4162 |
TUint32 mask=KPageMask;
|
sl@0
|
4163 |
TUint32 offset=aStart&mask;
|
sl@0
|
4164 |
TInt numPages = (aSize+offset+mask)>>KPageShift;
|
sl@0
|
4165 |
NKern::LockSystem();
|
sl@0
|
4166 |
__NK_ASSERT_DEBUG(iReservePageCount >= (TUint)numPages);
|
sl@0
|
4167 |
while(--numPages>=0)
|
sl@0
|
4168 |
{
|
sl@0
|
4169 |
UnlockPage(aStart,aProcess,KPhysAddrInvalid);
|
sl@0
|
4170 |
--iReservePageCount;
|
sl@0
|
4171 |
NKern::FlashSystem();
|
sl@0
|
4172 |
aStart += KPageSize;
|
sl@0
|
4173 |
}
|
sl@0
|
4174 |
NKern::UnlockSystem();
|
sl@0
|
4175 |
return KErrNone;
|
sl@0
|
4176 |
}
|
sl@0
|
4177 |
|
sl@0
|
4178 |
|
sl@0
|
4179 |
void DemandPaging::FlushAll()
|
sl@0
|
4180 |
{
|
sl@0
|
4181 |
NKern::ThreadEnterCS();
|
sl@0
|
4182 |
MmuBase::Wait();
|
sl@0
|
4183 |
// look at all RAM pages in the system, and unmap all those used for paging
|
sl@0
|
4184 |
const TUint32* piMap = (TUint32*)KPageInfoMap;
|
sl@0
|
4185 |
const TUint32* piMapEnd = piMap+(KNumPageInfoPages>>5);
|
sl@0
|
4186 |
SPageInfo* pi = (SPageInfo*)KPageInfoLinearBase;
|
sl@0
|
4187 |
NKern::LockSystem();
|
sl@0
|
4188 |
do
|
sl@0
|
4189 |
{
|
sl@0
|
4190 |
SPageInfo* piNext = pi+(KPageInfosPerPage<<5);
|
sl@0
|
4191 |
for(TUint32 piFlags=*piMap++; piFlags; piFlags>>=1)
|
sl@0
|
4192 |
{
|
sl@0
|
4193 |
if(!(piFlags&1))
|
sl@0
|
4194 |
{
|
sl@0
|
4195 |
pi += KPageInfosPerPage;
|
sl@0
|
4196 |
continue;
|
sl@0
|
4197 |
}
|
sl@0
|
4198 |
SPageInfo* piEnd = pi+KPageInfosPerPage;
|
sl@0
|
4199 |
do
|
sl@0
|
4200 |
{
|
sl@0
|
4201 |
SPageInfo::TState state = pi->State();
|
sl@0
|
4202 |
if(state==SPageInfo::EStatePagedYoung || state==SPageInfo::EStatePagedOld)
|
sl@0
|
4203 |
{
|
sl@0
|
4204 |
RemovePage(pi);
|
sl@0
|
4205 |
SetFree(pi);
|
sl@0
|
4206 |
AddAsFreePage(pi);
|
sl@0
|
4207 |
NKern::FlashSystem();
|
sl@0
|
4208 |
}
|
sl@0
|
4209 |
++pi;
|
sl@0
|
4210 |
const TUint KFlashCount = 64; // flash every 64 page infos (must be a power-of-2)
|
sl@0
|
4211 |
__ASSERT_COMPILE((TUint)KPageInfosPerPage >= KFlashCount);
|
sl@0
|
4212 |
if(((TUint)pi&((KFlashCount-1)<<KPageInfoShift))==0)
|
sl@0
|
4213 |
NKern::FlashSystem();
|
sl@0
|
4214 |
}
|
sl@0
|
4215 |
while(pi<piEnd);
|
sl@0
|
4216 |
}
|
sl@0
|
4217 |
pi = piNext;
|
sl@0
|
4218 |
}
|
sl@0
|
4219 |
while(piMap<piMapEnd);
|
sl@0
|
4220 |
NKern::UnlockSystem();
|
sl@0
|
4221 |
|
sl@0
|
4222 |
// reduce live page list to a minimum
|
sl@0
|
4223 |
while(GetFreePages(1)) {};
|
sl@0
|
4224 |
|
sl@0
|
4225 |
MmuBase::Signal();
|
sl@0
|
4226 |
NKern::ThreadLeaveCS();
|
sl@0
|
4227 |
}
|
sl@0
|
4228 |
|
sl@0
|
4229 |
|
sl@0
|
4230 |
TInt DemandPaging::LockPage(TLinAddr aPage, DProcess *aProcess, TPhysAddr& aPhysAddr)
|
sl@0
|
4231 |
{
|
sl@0
|
4232 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: LockPage() %08x",aPage));
|
sl@0
|
4233 |
__ASSERT_SYSTEM_LOCK
|
sl@0
|
4234 |
|
sl@0
|
4235 |
aPhysAddr = KPhysAddrInvalid;
|
sl@0
|
4236 |
|
sl@0
|
4237 |
TInt r = EnsurePagePresent(aPage,aProcess);
|
sl@0
|
4238 |
if (r != KErrNone)
|
sl@0
|
4239 |
return KErrArgument; // page doesn't exist
|
sl@0
|
4240 |
|
sl@0
|
4241 |
// get info about page to be locked...
|
sl@0
|
4242 |
TPhysAddr phys = LinearToPhysical(aPage,aProcess);
|
sl@0
|
4243 |
retry:
|
sl@0
|
4244 |
__NK_ASSERT_DEBUG(phys!=KPhysAddrInvalid);
|
sl@0
|
4245 |
|
sl@0
|
4246 |
SPageInfo* pageInfo = SPageInfo::SafeFromPhysAddr(phys);
|
sl@0
|
4247 |
if(!pageInfo)
|
sl@0
|
4248 |
return KErrNotFound;
|
sl@0
|
4249 |
|
sl@0
|
4250 |
// lock it...
|
sl@0
|
4251 |
SPageInfo::TType type = pageInfo->Type();
|
sl@0
|
4252 |
if(type==SPageInfo::EShadow)
|
sl@0
|
4253 |
{
|
sl@0
|
4254 |
// get the page which is being shadowed and lock that
|
sl@0
|
4255 |
phys = (TPhysAddr)pageInfo->Owner();
|
sl@0
|
4256 |
goto retry;
|
sl@0
|
4257 |
}
|
sl@0
|
4258 |
|
sl@0
|
4259 |
switch(pageInfo->State())
|
sl@0
|
4260 |
{
|
sl@0
|
4261 |
case SPageInfo::EStatePagedLocked:
|
sl@0
|
4262 |
// already locked, so just increment lock count...
|
sl@0
|
4263 |
++pageInfo->PagedLock();
|
sl@0
|
4264 |
break;
|
sl@0
|
4265 |
|
sl@0
|
4266 |
case SPageInfo::EStatePagedYoung:
|
sl@0
|
4267 |
{
|
sl@0
|
4268 |
if(type!=SPageInfo::EPagedROM && type !=SPageInfo::EPagedCode)
|
sl@0
|
4269 |
{
|
sl@0
|
4270 |
// not implemented yet
|
sl@0
|
4271 |
__NK_ASSERT_ALWAYS(0);
|
sl@0
|
4272 |
}
|
sl@0
|
4273 |
|
sl@0
|
4274 |
// remove page to be locked from live list...
|
sl@0
|
4275 |
RemovePage(pageInfo);
|
sl@0
|
4276 |
|
sl@0
|
4277 |
// change to locked state...
|
sl@0
|
4278 |
pageInfo->SetState(SPageInfo::EStatePagedLocked);
|
sl@0
|
4279 |
pageInfo->PagedLock() = 1; // Start with lock count of one
|
sl@0
|
4280 |
|
sl@0
|
4281 |
// open reference on memory...
|
sl@0
|
4282 |
if(type==SPageInfo::EPagedCode)
|
sl@0
|
4283 |
{
|
sl@0
|
4284 |
DMemModelCodeSegMemory* codeSegMemory = (DMemModelCodeSegMemory*)pageInfo->Owner();
|
sl@0
|
4285 |
if(codeSegMemory->Open()!=KErrNone)
|
sl@0
|
4286 |
{
|
sl@0
|
4287 |
__NK_ASSERT_DEBUG(0);
|
sl@0
|
4288 |
}
|
sl@0
|
4289 |
}
|
sl@0
|
4290 |
}
|
sl@0
|
4291 |
|
sl@0
|
4292 |
break;
|
sl@0
|
4293 |
|
sl@0
|
4294 |
case SPageInfo::EStatePagedOld:
|
sl@0
|
4295 |
// can't happen because we forced the page to be accessible earlier
|
sl@0
|
4296 |
__NK_ASSERT_ALWAYS(0);
|
sl@0
|
4297 |
return KErrCorrupt;
|
sl@0
|
4298 |
|
sl@0
|
4299 |
default:
|
sl@0
|
4300 |
return KErrNotFound;
|
sl@0
|
4301 |
}
|
sl@0
|
4302 |
|
sl@0
|
4303 |
aPhysAddr = phys;
|
sl@0
|
4304 |
|
sl@0
|
4305 |
#ifdef BTRACE_PAGING
|
sl@0
|
4306 |
BTraceContext8(BTrace::EPaging,BTrace::EPagingPageLock,phys,pageInfo->PagedLock());
|
sl@0
|
4307 |
#endif
|
sl@0
|
4308 |
return KErrNone;
|
sl@0
|
4309 |
}
|
sl@0
|
4310 |
|
sl@0
|
4311 |
|
sl@0
|
4312 |
TInt DemandPaging::UnlockPage(TLinAddr aPage, DProcess* aProcess, TPhysAddr aPhysAddr)
|
sl@0
|
4313 |
{
|
sl@0
|
4314 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: UnlockPage() %08x",aPage));
|
sl@0
|
4315 |
__ASSERT_SYSTEM_LOCK;
|
sl@0
|
4316 |
__ASSERT_CRITICAL;
|
sl@0
|
4317 |
|
sl@0
|
4318 |
// Get info about page to be unlocked
|
sl@0
|
4319 |
TPhysAddr phys = LinearToPhysical(aPage,aProcess);
|
sl@0
|
4320 |
if(phys==KPhysAddrInvalid)
|
sl@0
|
4321 |
{
|
sl@0
|
4322 |
phys = aPhysAddr;
|
sl@0
|
4323 |
if(phys==KPhysAddrInvalid)
|
sl@0
|
4324 |
return KErrNotFound;
|
sl@0
|
4325 |
}
|
sl@0
|
4326 |
retry:
|
sl@0
|
4327 |
SPageInfo* pageInfo = SPageInfo::SafeFromPhysAddr(phys);
|
sl@0
|
4328 |
if(!pageInfo)
|
sl@0
|
4329 |
return KErrNotFound;
|
sl@0
|
4330 |
|
sl@0
|
4331 |
SPageInfo::TType type = pageInfo->Type();
|
sl@0
|
4332 |
if(type==SPageInfo::EShadow)
|
sl@0
|
4333 |
{
|
sl@0
|
4334 |
// Get the page which is being shadowed and unlock that
|
sl@0
|
4335 |
phys = (TPhysAddr)pageInfo->Owner();
|
sl@0
|
4336 |
goto retry;
|
sl@0
|
4337 |
}
|
sl@0
|
4338 |
|
sl@0
|
4339 |
__NK_ASSERT_DEBUG(phys==aPhysAddr || aPhysAddr==KPhysAddrInvalid);
|
sl@0
|
4340 |
|
sl@0
|
4341 |
// Unlock it...
|
sl@0
|
4342 |
switch(pageInfo->State())
|
sl@0
|
4343 |
{
|
sl@0
|
4344 |
case SPageInfo::EStatePagedLocked:
|
sl@0
|
4345 |
#ifdef BTRACE_PAGING
|
sl@0
|
4346 |
BTraceContext8(BTrace::EPaging,BTrace::EPagingPageUnlock,phys,pageInfo->PagedLock());
|
sl@0
|
4347 |
#endif
|
sl@0
|
4348 |
if(!(--pageInfo->PagedLock()))
|
sl@0
|
4349 |
{
|
sl@0
|
4350 |
// get pointer to memory...
|
sl@0
|
4351 |
DMemModelCodeSegMemory* codeSegMemory = 0;
|
sl@0
|
4352 |
if(type==SPageInfo::EPagedCode)
|
sl@0
|
4353 |
codeSegMemory = (DMemModelCodeSegMemory*)pageInfo->Owner();
|
sl@0
|
4354 |
|
sl@0
|
4355 |
// put page back on live list...
|
sl@0
|
4356 |
AddAsYoungest(pageInfo);
|
sl@0
|
4357 |
BalanceAges();
|
sl@0
|
4358 |
|
sl@0
|
4359 |
// close reference on memory...
|
sl@0
|
4360 |
if(codeSegMemory)
|
sl@0
|
4361 |
{
|
sl@0
|
4362 |
NKern::UnlockSystem();
|
sl@0
|
4363 |
codeSegMemory->Close();
|
sl@0
|
4364 |
NKern::LockSystem();
|
sl@0
|
4365 |
}
|
sl@0
|
4366 |
}
|
sl@0
|
4367 |
break;
|
sl@0
|
4368 |
|
sl@0
|
4369 |
default:
|
sl@0
|
4370 |
return KErrNotFound;
|
sl@0
|
4371 |
}
|
sl@0
|
4372 |
|
sl@0
|
4373 |
return KErrNone;
|
sl@0
|
4374 |
}
|
sl@0
|
4375 |
|
sl@0
|
4376 |
|
sl@0
|
4377 |
|
sl@0
|
4378 |
TInt DemandPaging::ReserveAlloc(TInt aSize, DDemandPagingLock& aLock)
|
sl@0
|
4379 |
{
|
sl@0
|
4380 |
__NK_ASSERT_DEBUG(aLock.iPages == NULL);
|
sl@0
|
4381 |
|
sl@0
|
4382 |
// calculate the number of pages required to lock aSize bytes
|
sl@0
|
4383 |
TInt numPages = ((aSize-1+KPageMask)>>KPageShift)+1;
|
sl@0
|
4384 |
|
sl@0
|
4385 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: ReserveAlloc() pages %d",numPages));
|
sl@0
|
4386 |
|
sl@0
|
4387 |
NKern::ThreadEnterCS();
|
sl@0
|
4388 |
|
sl@0
|
4389 |
aLock.iPages = (TPhysAddr*)Kern::Alloc(numPages*sizeof(TPhysAddr));
|
sl@0
|
4390 |
if(!aLock.iPages)
|
sl@0
|
4391 |
{
|
sl@0
|
4392 |
NKern::ThreadLeaveCS();
|
sl@0
|
4393 |
return KErrNoMemory;
|
sl@0
|
4394 |
}
|
sl@0
|
4395 |
|
sl@0
|
4396 |
MmuBase::Wait();
|
sl@0
|
4397 |
NKern::LockSystem();
|
sl@0
|
4398 |
|
sl@0
|
4399 |
// reserve pages, adding more if necessary
|
sl@0
|
4400 |
while (aLock.iReservedPageCount < numPages)
|
sl@0
|
4401 |
{
|
sl@0
|
4402 |
if (!ReservePage())
|
sl@0
|
4403 |
break;
|
sl@0
|
4404 |
++aLock.iReservedPageCount;
|
sl@0
|
4405 |
}
|
sl@0
|
4406 |
|
sl@0
|
4407 |
NKern::UnlockSystem();
|
sl@0
|
4408 |
MmuBase::Signal();
|
sl@0
|
4409 |
|
sl@0
|
4410 |
TBool enoughPages = aLock.iReservedPageCount == numPages;
|
sl@0
|
4411 |
if(!enoughPages)
|
sl@0
|
4412 |
ReserveFree(aLock);
|
sl@0
|
4413 |
|
sl@0
|
4414 |
NKern::ThreadLeaveCS();
|
sl@0
|
4415 |
return enoughPages ? KErrNone : KErrNoMemory;
|
sl@0
|
4416 |
}
|
sl@0
|
4417 |
|
sl@0
|
4418 |
|
sl@0
|
4419 |
|
sl@0
|
4420 |
void DemandPaging::ReserveFree(DDemandPagingLock& aLock)
|
sl@0
|
4421 |
{
|
sl@0
|
4422 |
NKern::ThreadEnterCS();
|
sl@0
|
4423 |
|
sl@0
|
4424 |
// make sure pages aren't still locked
|
sl@0
|
4425 |
ReserveUnlock(aLock);
|
sl@0
|
4426 |
|
sl@0
|
4427 |
NKern::LockSystem();
|
sl@0
|
4428 |
__NK_ASSERT_DEBUG(iReservePageCount >= (TUint)aLock.iReservedPageCount);
|
sl@0
|
4429 |
iReservePageCount -= aLock.iReservedPageCount;
|
sl@0
|
4430 |
aLock.iReservedPageCount = 0;
|
sl@0
|
4431 |
NKern::UnlockSystem();
|
sl@0
|
4432 |
|
sl@0
|
4433 |
// free page array...
|
sl@0
|
4434 |
Kern::Free(aLock.iPages);
|
sl@0
|
4435 |
aLock.iPages = 0;
|
sl@0
|
4436 |
|
sl@0
|
4437 |
NKern::ThreadLeaveCS();
|
sl@0
|
4438 |
}
|
sl@0
|
4439 |
|
sl@0
|
4440 |
|
sl@0
|
4441 |
|
sl@0
|
4442 |
TBool DemandPaging::ReserveLock(DThread* aThread, TLinAddr aStart,TInt aSize, DDemandPagingLock& aLock)
|
sl@0
|
4443 |
{
|
sl@0
|
4444 |
if(aLock.iLockedPageCount)
|
sl@0
|
4445 |
Panic(ELockTwice);
|
sl@0
|
4446 |
|
sl@0
|
4447 |
// calculate the number of pages that need to be locked...
|
sl@0
|
4448 |
TUint32 mask=KPageMask;
|
sl@0
|
4449 |
TUint32 offset=aStart&mask;
|
sl@0
|
4450 |
TInt numPages = (aSize+offset+mask)>>KPageShift;
|
sl@0
|
4451 |
if(numPages>aLock.iReservedPageCount)
|
sl@0
|
4452 |
Panic(ELockTooBig);
|
sl@0
|
4453 |
|
sl@0
|
4454 |
NKern::LockSystem();
|
sl@0
|
4455 |
|
sl@0
|
4456 |
// lock the pages
|
sl@0
|
4457 |
TBool locked = EFalse; // becomes true if any pages were locked
|
sl@0
|
4458 |
DProcess* process = aThread->iOwningProcess;
|
sl@0
|
4459 |
TLinAddr page=aStart;
|
sl@0
|
4460 |
TInt count=numPages;
|
sl@0
|
4461 |
TPhysAddr* physPages = aLock.iPages;
|
sl@0
|
4462 |
while(--count>=0)
|
sl@0
|
4463 |
{
|
sl@0
|
4464 |
if(LockPage(page,process,*physPages)==KErrNone)
|
sl@0
|
4465 |
locked = ETrue;
|
sl@0
|
4466 |
NKern::FlashSystem();
|
sl@0
|
4467 |
page += KPageSize;
|
sl@0
|
4468 |
++physPages;
|
sl@0
|
4469 |
}
|
sl@0
|
4470 |
|
sl@0
|
4471 |
// if any pages were locked, save the lock info...
|
sl@0
|
4472 |
if(locked)
|
sl@0
|
4473 |
{
|
sl@0
|
4474 |
if(aLock.iLockedPageCount)
|
sl@0
|
4475 |
Panic(ELockTwice);
|
sl@0
|
4476 |
aLock.iLockedStart = aStart;
|
sl@0
|
4477 |
aLock.iLockedPageCount = numPages;
|
sl@0
|
4478 |
aLock.iProcess = process;
|
sl@0
|
4479 |
aLock.iProcess->Open();
|
sl@0
|
4480 |
}
|
sl@0
|
4481 |
|
sl@0
|
4482 |
NKern::UnlockSystem();
|
sl@0
|
4483 |
return locked;
|
sl@0
|
4484 |
}
|
sl@0
|
4485 |
|
sl@0
|
4486 |
|
sl@0
|
4487 |
|
sl@0
|
4488 |
void DemandPaging::ReserveUnlock(DDemandPagingLock& aLock)
|
sl@0
|
4489 |
{
|
sl@0
|
4490 |
NKern::ThreadEnterCS();
|
sl@0
|
4491 |
|
sl@0
|
4492 |
DProcess* process = NULL;
|
sl@0
|
4493 |
NKern::LockSystem();
|
sl@0
|
4494 |
TInt numPages = aLock.iLockedPageCount;
|
sl@0
|
4495 |
TLinAddr page = aLock.iLockedStart;
|
sl@0
|
4496 |
TPhysAddr* physPages = aLock.iPages;
|
sl@0
|
4497 |
while(--numPages>=0)
|
sl@0
|
4498 |
{
|
sl@0
|
4499 |
UnlockPage(page, aLock.iProcess,*physPages);
|
sl@0
|
4500 |
NKern::FlashSystem();
|
sl@0
|
4501 |
page += KPageSize;
|
sl@0
|
4502 |
++physPages;
|
sl@0
|
4503 |
}
|
sl@0
|
4504 |
process = aLock.iProcess;
|
sl@0
|
4505 |
aLock.iProcess = NULL;
|
sl@0
|
4506 |
aLock.iLockedPageCount = 0;
|
sl@0
|
4507 |
NKern::UnlockSystem();
|
sl@0
|
4508 |
if (process)
|
sl@0
|
4509 |
process->Close(NULL);
|
sl@0
|
4510 |
|
sl@0
|
4511 |
NKern::ThreadLeaveCS();
|
sl@0
|
4512 |
}
|
sl@0
|
4513 |
|
sl@0
|
4514 |
/**
|
sl@0
|
4515 |
Check whether the specified page can be discarded by the RAM cache.
|
sl@0
|
4516 |
|
sl@0
|
4517 |
@param aPageInfo The page info of the page being queried.
|
sl@0
|
4518 |
@return ETrue when the page can be discarded, EFalse otherwise.
|
sl@0
|
4519 |
@pre System lock held.
|
sl@0
|
4520 |
@post System lock held.
|
sl@0
|
4521 |
*/
|
sl@0
|
4522 |
TBool DemandPaging::IsPageDiscardable(SPageInfo& aPageInfo)
|
sl@0
|
4523 |
{
|
sl@0
|
4524 |
// on live list?
|
sl@0
|
4525 |
SPageInfo::TState state = aPageInfo.State();
|
sl@0
|
4526 |
return (state == SPageInfo::EStatePagedYoung || state == SPageInfo::EStatePagedOld);
|
sl@0
|
4527 |
}
|
sl@0
|
4528 |
|
sl@0
|
4529 |
|
sl@0
|
4530 |
/**
|
sl@0
|
4531 |
Discard the specified page.
|
sl@0
|
4532 |
Should only be called on a page if a previous call to IsPageDiscardable()
|
sl@0
|
4533 |
returned ETrue and the system lock hasn't been released between the calls.
|
sl@0
|
4534 |
|
sl@0
|
4535 |
@param aPageInfo The page info of the page to be discarded
|
sl@0
|
4536 |
@param aBlockZoneId The ID of the RAM zone that shouldn't be allocated into.
|
sl@0
|
4537 |
@param aBlockRest Set to ETrue to stop allocation as soon as aBlockedZoneId is reached
|
sl@0
|
4538 |
in preference ordering. EFalse otherwise.
|
sl@0
|
4539 |
@return ETrue if the page could be discarded, EFalse otherwise.
|
sl@0
|
4540 |
|
sl@0
|
4541 |
@pre System lock held.
|
sl@0
|
4542 |
@post System lock held.
|
sl@0
|
4543 |
*/
|
sl@0
|
4544 |
TBool DemandPaging::DoDiscardPage(SPageInfo& aPageInfo, TUint aBlockedZoneId, TBool aBlockRest)
|
sl@0
|
4545 |
{
|
sl@0
|
4546 |
__ASSERT_SYSTEM_LOCK;
|
sl@0
|
4547 |
// Ensure that we don't reduce the cache beyond its minimum.
|
sl@0
|
4548 |
if (iNumberOfFreePages == 0)
|
sl@0
|
4549 |
{
|
sl@0
|
4550 |
NKern::UnlockSystem();
|
sl@0
|
4551 |
SPageInfo* newPage = GetPageFromSystem(aBlockedZoneId, aBlockRest);
|
sl@0
|
4552 |
NKern::LockSystem();
|
sl@0
|
4553 |
if (newPage == NULL)
|
sl@0
|
4554 |
{// couldn't allocate a new page
|
sl@0
|
4555 |
return EFalse;
|
sl@0
|
4556 |
}
|
sl@0
|
4557 |
if (IsPageDiscardable(aPageInfo))
|
sl@0
|
4558 |
{// page can still be discarded so use new page
|
sl@0
|
4559 |
// and discard old one
|
sl@0
|
4560 |
AddAsFreePage(newPage);
|
sl@0
|
4561 |
RemovePage(&aPageInfo);
|
sl@0
|
4562 |
SetFree(&aPageInfo);
|
sl@0
|
4563 |
ReturnToSystem(&aPageInfo);
|
sl@0
|
4564 |
BalanceAges();
|
sl@0
|
4565 |
return ETrue;
|
sl@0
|
4566 |
}
|
sl@0
|
4567 |
else
|
sl@0
|
4568 |
{// page no longer discardable so no longer require new page
|
sl@0
|
4569 |
ReturnToSystem(newPage);
|
sl@0
|
4570 |
return EFalse;
|
sl@0
|
4571 |
}
|
sl@0
|
4572 |
}
|
sl@0
|
4573 |
|
sl@0
|
4574 |
// Discard the page
|
sl@0
|
4575 |
RemovePage(&aPageInfo);
|
sl@0
|
4576 |
SetFree(&aPageInfo);
|
sl@0
|
4577 |
ReturnToSystem(&aPageInfo);
|
sl@0
|
4578 |
BalanceAges();
|
sl@0
|
4579 |
|
sl@0
|
4580 |
return ETrue;
|
sl@0
|
4581 |
}
|
sl@0
|
4582 |
|
sl@0
|
4583 |
|
sl@0
|
4584 |
/**
|
sl@0
|
4585 |
First stage in discarding a list of pages.
|
sl@0
|
4586 |
|
sl@0
|
4587 |
Must ensure that the pages will still be discardable even if system lock is released.
|
sl@0
|
4588 |
To be used in conjunction with RamCacheBase::DoDiscardPages1().
|
sl@0
|
4589 |
|
sl@0
|
4590 |
@param aPageList A NULL terminated list of the pages to be discarded
|
sl@0
|
4591 |
@return KErrNone on success.
|
sl@0
|
4592 |
|
sl@0
|
4593 |
@pre System lock held
|
sl@0
|
4594 |
@post System lock held
|
sl@0
|
4595 |
*/
|
sl@0
|
4596 |
TInt DemandPaging::DoDiscardPages0(SPageInfo** aPageList)
|
sl@0
|
4597 |
{
|
sl@0
|
4598 |
__ASSERT_SYSTEM_LOCK;
|
sl@0
|
4599 |
|
sl@0
|
4600 |
SPageInfo* pageInfo;
|
sl@0
|
4601 |
while((pageInfo = *aPageList++) != 0)
|
sl@0
|
4602 |
{
|
sl@0
|
4603 |
RemovePage(pageInfo);
|
sl@0
|
4604 |
}
|
sl@0
|
4605 |
return KErrNone;
|
sl@0
|
4606 |
}
|
sl@0
|
4607 |
|
sl@0
|
4608 |
|
sl@0
|
4609 |
/**
|
sl@0
|
4610 |
Final stage in discarding a list of page
|
sl@0
|
4611 |
Finish discarding the pages previously removed by RamCacheBase::DoDiscardPages0().
|
sl@0
|
4612 |
|
sl@0
|
4613 |
@param aPageList A NULL terminated list of the pages to be discarded
|
sl@0
|
4614 |
@return KErrNone on success.
|
sl@0
|
4615 |
|
sl@0
|
4616 |
@pre System lock held
|
sl@0
|
4617 |
@post System lock held
|
sl@0
|
4618 |
*/
|
sl@0
|
4619 |
TInt DemandPaging::DoDiscardPages1(SPageInfo** aPageList)
|
sl@0
|
4620 |
{
|
sl@0
|
4621 |
__ASSERT_SYSTEM_LOCK;
|
sl@0
|
4622 |
|
sl@0
|
4623 |
SPageInfo* pageInfo;
|
sl@0
|
4624 |
while((pageInfo = *aPageList++)!=0)
|
sl@0
|
4625 |
{
|
sl@0
|
4626 |
SetFree(pageInfo);
|
sl@0
|
4627 |
ReturnToSystem(pageInfo);
|
sl@0
|
4628 |
BalanceAges();
|
sl@0
|
4629 |
}
|
sl@0
|
4630 |
return KErrNone;
|
sl@0
|
4631 |
}
|
sl@0
|
4632 |
|
sl@0
|
4633 |
|
sl@0
|
4634 |
TBool DemandPaging::MayBePaged(TLinAddr aStartAddr, TUint aLength)
|
sl@0
|
4635 |
{
|
sl@0
|
4636 |
TLinAddr endAddr = aStartAddr + aLength;
|
sl@0
|
4637 |
TBool rangeTouchesPagedRom =
|
sl@0
|
4638 |
TUint(aStartAddr - iRomPagedLinearBase) < iRomSize ||
|
sl@0
|
4639 |
TUint(endAddr - iRomPagedLinearBase) < iRomSize;
|
sl@0
|
4640 |
TBool rangeTouchesCodeArea =
|
sl@0
|
4641 |
TUint(aStartAddr - iCodeLinearBase) < iCodeSize ||
|
sl@0
|
4642 |
TUint(endAddr - iCodeLinearBase) < iCodeSize;
|
sl@0
|
4643 |
return rangeTouchesPagedRom || rangeTouchesCodeArea;
|
sl@0
|
4644 |
}
|
sl@0
|
4645 |
|
sl@0
|
4646 |
|
sl@0
|
4647 |
#ifdef __DEMAND_PAGING_BENCHMARKS__
|
sl@0
|
4648 |
|
sl@0
|
4649 |
void DemandPaging::ResetBenchmarkData(TPagingBenchmark aBm)
|
sl@0
|
4650 |
{
|
sl@0
|
4651 |
SPagingBenchmarkInfo& info = iBenchmarkInfo[aBm];
|
sl@0
|
4652 |
info.iCount = 0;
|
sl@0
|
4653 |
info.iTotalTime = 0;
|
sl@0
|
4654 |
info.iMaxTime = 0;
|
sl@0
|
4655 |
info.iMinTime = KMaxTInt;
|
sl@0
|
4656 |
}
|
sl@0
|
4657 |
|
sl@0
|
4658 |
void DemandPaging::RecordBenchmarkData(TPagingBenchmark aBm, TUint32 aStartTime, TUint32 aEndTime)
|
sl@0
|
4659 |
{
|
sl@0
|
4660 |
SPagingBenchmarkInfo& info = iBenchmarkInfo[aBm];
|
sl@0
|
4661 |
++info.iCount;
|
sl@0
|
4662 |
#if !defined(HIGH_RES_TIMER) || defined(HIGH_RES_TIMER_COUNTS_UP)
|
sl@0
|
4663 |
TInt64 elapsed = aEndTime - aStartTime;
|
sl@0
|
4664 |
#else
|
sl@0
|
4665 |
TInt64 elapsed = aStartTime - aEndTime;
|
sl@0
|
4666 |
#endif
|
sl@0
|
4667 |
info.iTotalTime += elapsed;
|
sl@0
|
4668 |
if (elapsed > info.iMaxTime)
|
sl@0
|
4669 |
info.iMaxTime = elapsed;
|
sl@0
|
4670 |
if (elapsed < info.iMinTime)
|
sl@0
|
4671 |
info.iMinTime = elapsed;
|
sl@0
|
4672 |
}
|
sl@0
|
4673 |
|
sl@0
|
4674 |
#endif
|
sl@0
|
4675 |
|
sl@0
|
4676 |
|
sl@0
|
4677 |
//
|
sl@0
|
4678 |
// DDemandPagingLock
|
sl@0
|
4679 |
//
|
sl@0
|
4680 |
|
sl@0
|
4681 |
EXPORT_C DDemandPagingLock::DDemandPagingLock()
|
sl@0
|
4682 |
: iThePager(DemandPaging::ThePager), iReservedPageCount(0), iLockedPageCount(0), iPages(0)
|
sl@0
|
4683 |
{
|
sl@0
|
4684 |
}
|
sl@0
|
4685 |
|
sl@0
|
4686 |
|
sl@0
|
4687 |
EXPORT_C TInt DDemandPagingLock::Alloc(TInt aSize)
|
sl@0
|
4688 |
{
|
sl@0
|
4689 |
if (iThePager)
|
sl@0
|
4690 |
return iThePager->ReserveAlloc(aSize,*this);
|
sl@0
|
4691 |
else
|
sl@0
|
4692 |
return KErrNone;
|
sl@0
|
4693 |
}
|
sl@0
|
4694 |
|
sl@0
|
4695 |
|
sl@0
|
4696 |
EXPORT_C void DDemandPagingLock::DoUnlock()
|
sl@0
|
4697 |
{
|
sl@0
|
4698 |
if (iThePager)
|
sl@0
|
4699 |
iThePager->ReserveUnlock(*this);
|
sl@0
|
4700 |
}
|
sl@0
|
4701 |
|
sl@0
|
4702 |
|
sl@0
|
4703 |
EXPORT_C void DDemandPagingLock::Free()
|
sl@0
|
4704 |
{
|
sl@0
|
4705 |
if (iThePager)
|
sl@0
|
4706 |
iThePager->ReserveFree(*this);
|
sl@0
|
4707 |
}
|
sl@0
|
4708 |
|
sl@0
|
4709 |
|
sl@0
|
4710 |
EXPORT_C TInt Kern::InstallPagingDevice(DPagingDevice* aDevice)
|
sl@0
|
4711 |
{
|
sl@0
|
4712 |
if (DemandPaging::ThePager)
|
sl@0
|
4713 |
return DemandPaging::ThePager->InstallPagingDevice(aDevice);
|
sl@0
|
4714 |
else
|
sl@0
|
4715 |
return KErrNotSupported;
|
sl@0
|
4716 |
}
|
sl@0
|
4717 |
|
sl@0
|
4718 |
|
sl@0
|
4719 |
#else // !__DEMAND_PAGING__
|
sl@0
|
4720 |
|
sl@0
|
4721 |
EXPORT_C DDemandPagingLock::DDemandPagingLock()
|
sl@0
|
4722 |
: iLockedPageCount(0)
|
sl@0
|
4723 |
{
|
sl@0
|
4724 |
}
|
sl@0
|
4725 |
|
sl@0
|
4726 |
EXPORT_C TInt DDemandPagingLock::Alloc(TInt /*aSize*/)
|
sl@0
|
4727 |
{
|
sl@0
|
4728 |
return KErrNone;
|
sl@0
|
4729 |
}
|
sl@0
|
4730 |
|
sl@0
|
4731 |
EXPORT_C TBool DDemandPagingLock::Lock(DThread* /*aThread*/, TLinAddr /*aStart*/, TInt /*aSize*/)
|
sl@0
|
4732 |
{
|
sl@0
|
4733 |
return EFalse;
|
sl@0
|
4734 |
}
|
sl@0
|
4735 |
|
sl@0
|
4736 |
EXPORT_C void DDemandPagingLock::DoUnlock()
|
sl@0
|
4737 |
{
|
sl@0
|
4738 |
}
|
sl@0
|
4739 |
|
sl@0
|
4740 |
EXPORT_C void DDemandPagingLock::Free()
|
sl@0
|
4741 |
{
|
sl@0
|
4742 |
}
|
sl@0
|
4743 |
|
sl@0
|
4744 |
EXPORT_C TInt Kern::InstallPagingDevice(DPagingDevice* aDevice)
|
sl@0
|
4745 |
{
|
sl@0
|
4746 |
return KErrNotSupported;
|
sl@0
|
4747 |
}
|
sl@0
|
4748 |
|
sl@0
|
4749 |
#endif // __DEMAND_PAGING__
|
sl@0
|
4750 |
|
sl@0
|
4751 |
|
sl@0
|
4752 |
DMmuCodeSegMemory::DMmuCodeSegMemory(DEpocCodeSeg* aCodeSeg)
|
sl@0
|
4753 |
: DEpocCodeSegMemory(aCodeSeg), iCodeAllocBase(KMinTInt)
|
sl@0
|
4754 |
{
|
sl@0
|
4755 |
}
|
sl@0
|
4756 |
|
sl@0
|
4757 |
//#define __DUMP_BLOCKMAP_INFO
|
sl@0
|
4758 |
DMmuCodeSegMemory::~DMmuCodeSegMemory()
|
sl@0
|
4759 |
{
|
sl@0
|
4760 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
4761 |
Kern::Free(iCodeRelocTable);
|
sl@0
|
4762 |
Kern::Free(iCodePageOffsets);
|
sl@0
|
4763 |
Kern::Free(iDataSectionMemory);
|
sl@0
|
4764 |
#endif
|
sl@0
|
4765 |
}
|
sl@0
|
4766 |
|
sl@0
|
4767 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
4768 |
|
sl@0
|
4769 |
/**
|
sl@0
|
4770 |
Read and process the block map and related data.
|
sl@0
|
4771 |
*/
|
sl@0
|
4772 |
TInt DMmuCodeSegMemory::ReadBlockMap(const TCodeSegCreateInfo& aInfo)
|
sl@0
|
4773 |
{
|
sl@0
|
4774 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: Reading block map for %C", iCodeSeg));
|
sl@0
|
4775 |
|
sl@0
|
4776 |
if (aInfo.iCodeBlockMapEntriesSize <= 0)
|
sl@0
|
4777 |
return KErrArgument; // no block map provided
|
sl@0
|
4778 |
|
sl@0
|
4779 |
// Get compression data
|
sl@0
|
4780 |
switch (aInfo.iCompressionType)
|
sl@0
|
4781 |
{
|
sl@0
|
4782 |
case KFormatNotCompressed:
|
sl@0
|
4783 |
iCompressionType = SRomPageInfo::ENoCompression;
|
sl@0
|
4784 |
break;
|
sl@0
|
4785 |
|
sl@0
|
4786 |
case KUidCompressionBytePair:
|
sl@0
|
4787 |
{
|
sl@0
|
4788 |
iCompressionType = SRomPageInfo::EBytePair;
|
sl@0
|
4789 |
if (!aInfo.iCodePageOffsets)
|
sl@0
|
4790 |
return KErrArgument;
|
sl@0
|
4791 |
TInt size = sizeof(TInt32) * (iPageCount + 1);
|
sl@0
|
4792 |
iCodePageOffsets = (TInt32*)Kern::Alloc(size);
|
sl@0
|
4793 |
if (!iCodePageOffsets)
|
sl@0
|
4794 |
return KErrNoMemory;
|
sl@0
|
4795 |
kumemget32(iCodePageOffsets, aInfo.iCodePageOffsets, size);
|
sl@0
|
4796 |
|
sl@0
|
4797 |
#ifdef __DUMP_BLOCKMAP_INFO
|
sl@0
|
4798 |
Kern::Printf("CodePageOffsets:");
|
sl@0
|
4799 |
for (TInt i = 0 ; i < iPageCount + 1 ; ++i)
|
sl@0
|
4800 |
Kern::Printf(" %08x", iCodePageOffsets[i]);
|
sl@0
|
4801 |
#endif
|
sl@0
|
4802 |
|
sl@0
|
4803 |
TInt last = 0;
|
sl@0
|
4804 |
for (TInt j = 0 ; j < iPageCount + 1 ; ++j)
|
sl@0
|
4805 |
{
|
sl@0
|
4806 |
if (iCodePageOffsets[j] < last ||
|
sl@0
|
4807 |
iCodePageOffsets[j] > (aInfo.iCodeLengthInFile + aInfo.iCodeStartInFile))
|
sl@0
|
4808 |
{
|
sl@0
|
4809 |
__NK_ASSERT_DEBUG(0);
|
sl@0
|
4810 |
return KErrCorrupt;
|
sl@0
|
4811 |
}
|
sl@0
|
4812 |
last = iCodePageOffsets[j];
|
sl@0
|
4813 |
}
|
sl@0
|
4814 |
}
|
sl@0
|
4815 |
break;
|
sl@0
|
4816 |
|
sl@0
|
4817 |
default:
|
sl@0
|
4818 |
return KErrNotSupported;
|
sl@0
|
4819 |
}
|
sl@0
|
4820 |
|
sl@0
|
4821 |
// Copy block map data itself...
|
sl@0
|
4822 |
|
sl@0
|
4823 |
#ifdef __DUMP_BLOCKMAP_INFO
|
sl@0
|
4824 |
Kern::Printf("Original block map");
|
sl@0
|
4825 |
Kern::Printf(" block granularity: %d", aInfo.iCodeBlockMapCommon.iBlockGranularity);
|
sl@0
|
4826 |
Kern::Printf(" block start offset: %x", aInfo.iCodeBlockMapCommon.iBlockStartOffset);
|
sl@0
|
4827 |
Kern::Printf(" start block address: %016lx", aInfo.iCodeBlockMapCommon.iStartBlockAddress);
|
sl@0
|
4828 |
Kern::Printf(" local drive number: %d", aInfo.iCodeBlockMapCommon.iLocalDriveNumber);
|
sl@0
|
4829 |
Kern::Printf(" entry size: %d", aInfo.iCodeBlockMapEntriesSize);
|
sl@0
|
4830 |
#endif
|
sl@0
|
4831 |
|
sl@0
|
4832 |
// Find relevant paging device
|
sl@0
|
4833 |
iCodeLocalDrive = aInfo.iCodeBlockMapCommon.iLocalDriveNumber;
|
sl@0
|
4834 |
if (TUint(iCodeLocalDrive) >= (TUint)KMaxLocalDrives)
|
sl@0
|
4835 |
{
|
sl@0
|
4836 |
__KTRACE_OPT(KPAGING,Kern::Printf("Bad local drive number"));
|
sl@0
|
4837 |
return KErrArgument;
|
sl@0
|
4838 |
}
|
sl@0
|
4839 |
DemandPaging* pager = DemandPaging::ThePager;
|
sl@0
|
4840 |
|
sl@0
|
4841 |
if (!pager->CodePagingDevice(iCodeLocalDrive).iInstalled)
|
sl@0
|
4842 |
{
|
sl@0
|
4843 |
__KTRACE_OPT(KPAGING,Kern::Printf("No paging device installed for drive"));
|
sl@0
|
4844 |
return KErrNotSupported;
|
sl@0
|
4845 |
}
|
sl@0
|
4846 |
DPagingDevice* device = pager->CodePagingDevice(iCodeLocalDrive).iDevice;
|
sl@0
|
4847 |
|
sl@0
|
4848 |
// Set code start offset
|
sl@0
|
4849 |
iCodeStartInFile = aInfo.iCodeStartInFile;
|
sl@0
|
4850 |
if (iCodeStartInFile < 0)
|
sl@0
|
4851 |
{
|
sl@0
|
4852 |
__KTRACE_OPT(KPAGING,Kern::Printf("Bad code start offset"));
|
sl@0
|
4853 |
return KErrArgument;
|
sl@0
|
4854 |
}
|
sl@0
|
4855 |
|
sl@0
|
4856 |
// Allocate buffer for block map and copy from user-side
|
sl@0
|
4857 |
TBlockMapEntryBase* buffer = (TBlockMapEntryBase*)Kern::Alloc(aInfo.iCodeBlockMapEntriesSize);
|
sl@0
|
4858 |
if (!buffer)
|
sl@0
|
4859 |
return KErrNoMemory;
|
sl@0
|
4860 |
kumemget32(buffer, aInfo.iCodeBlockMapEntries, aInfo.iCodeBlockMapEntriesSize);
|
sl@0
|
4861 |
|
sl@0
|
4862 |
#ifdef __DUMP_BLOCKMAP_INFO
|
sl@0
|
4863 |
Kern::Printf(" entries:");
|
sl@0
|
4864 |
for (TInt k = 0 ; k < aInfo.iCodeBlockMapEntriesSize / sizeof(TBlockMapEntryBase) ; ++k)
|
sl@0
|
4865 |
Kern::Printf(" %d: %d blocks at %08x", k, buffer[k].iNumberOfBlocks, buffer[k].iStartBlock);
|
sl@0
|
4866 |
#endif
|
sl@0
|
4867 |
|
sl@0
|
4868 |
// Initialise block map
|
sl@0
|
4869 |
TInt r = iBlockMap.Initialise(aInfo.iCodeBlockMapCommon,
|
sl@0
|
4870 |
buffer,
|
sl@0
|
4871 |
aInfo.iCodeBlockMapEntriesSize,
|
sl@0
|
4872 |
device->iReadUnitShift,
|
sl@0
|
4873 |
iCodeStartInFile + aInfo.iCodeLengthInFile);
|
sl@0
|
4874 |
if (r != KErrNone)
|
sl@0
|
4875 |
{
|
sl@0
|
4876 |
Kern::Free(buffer);
|
sl@0
|
4877 |
return r;
|
sl@0
|
4878 |
}
|
sl@0
|
4879 |
|
sl@0
|
4880 |
#if defined(__DUMP_BLOCKMAP_INFO) && defined(_DEBUG)
|
sl@0
|
4881 |
iBlockMap.Dump();
|
sl@0
|
4882 |
#endif
|
sl@0
|
4883 |
|
sl@0
|
4884 |
return KErrNone;
|
sl@0
|
4885 |
}
|
sl@0
|
4886 |
|
sl@0
|
4887 |
/**
|
sl@0
|
4888 |
Read code relocation table and import fixup table from user side.
|
sl@0
|
4889 |
*/
|
sl@0
|
4890 |
TInt DMmuCodeSegMemory::ReadFixupTables(const TCodeSegCreateInfo& aInfo)
|
sl@0
|
4891 |
{
|
sl@0
|
4892 |
__KTRACE_OPT(KPAGING,Kern::Printf("DP: Reading fixup tables for %C", iCodeSeg));
|
sl@0
|
4893 |
|
sl@0
|
4894 |
iCodeRelocTableSize = aInfo.iCodeRelocTableSize;
|
sl@0
|
4895 |
iImportFixupTableSize = aInfo.iImportFixupTableSize;
|
sl@0
|
4896 |
iCodeDelta = aInfo.iCodeDelta;
|
sl@0
|
4897 |
iDataDelta = aInfo.iDataDelta;
|
sl@0
|
4898 |
|
sl@0
|
4899 |
// round sizes to four-byte boundaris...
|
sl@0
|
4900 |
TInt relocSize = (iCodeRelocTableSize + 3) & ~3;
|
sl@0
|
4901 |
TInt fixupSize = (iImportFixupTableSize + 3) & ~3;
|
sl@0
|
4902 |
|
sl@0
|
4903 |
// copy relocs and fixups...
|
sl@0
|
4904 |
iCodeRelocTable = (TUint8*)Kern::Alloc(relocSize+fixupSize);
|
sl@0
|
4905 |
if (!iCodeRelocTable)
|
sl@0
|
4906 |
return KErrNoMemory;
|
sl@0
|
4907 |
iImportFixupTable = iCodeRelocTable + relocSize;
|
sl@0
|
4908 |
kumemget32(iCodeRelocTable, aInfo.iCodeRelocTable, relocSize);
|
sl@0
|
4909 |
kumemget32(iImportFixupTable, aInfo.iImportFixupTable, fixupSize);
|
sl@0
|
4910 |
|
sl@0
|
4911 |
return KErrNone;
|
sl@0
|
4912 |
}
|
sl@0
|
4913 |
|
sl@0
|
4914 |
#endif
|
sl@0
|
4915 |
|
sl@0
|
4916 |
|
sl@0
|
4917 |
TInt DMmuCodeSegMemory::Create(TCodeSegCreateInfo& aInfo)
|
sl@0
|
4918 |
{
|
sl@0
|
4919 |
TInt r = KErrNone;
|
sl@0
|
4920 |
if (!aInfo.iUseCodePaging)
|
sl@0
|
4921 |
iPageCount=(iRamInfo.iCodeSize+iRamInfo.iDataSize+KPageMask)>>KPageShift;
|
sl@0
|
4922 |
else
|
sl@0
|
4923 |
{
|
sl@0
|
4924 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
4925 |
iDataSectionMemory = Kern::Alloc(iRamInfo.iDataSize);
|
sl@0
|
4926 |
if (!iDataSectionMemory)
|
sl@0
|
4927 |
return KErrNoMemory;
|
sl@0
|
4928 |
|
sl@0
|
4929 |
iPageCount=(iRamInfo.iCodeSize+KPageMask)>>KPageShift;
|
sl@0
|
4930 |
iDataPageCount=(iRamInfo.iDataSize+KPageMask)>>KPageShift;
|
sl@0
|
4931 |
|
sl@0
|
4932 |
r = ReadBlockMap(aInfo);
|
sl@0
|
4933 |
if (r != KErrNone)
|
sl@0
|
4934 |
return r;
|
sl@0
|
4935 |
|
sl@0
|
4936 |
iIsDemandPaged = ETrue;
|
sl@0
|
4937 |
iCodeSeg->iAttr |= ECodeSegAttCodePaged;
|
sl@0
|
4938 |
#endif
|
sl@0
|
4939 |
}
|
sl@0
|
4940 |
|
sl@0
|
4941 |
iCodeSeg->iSize = (iPageCount+iDataPageCount)<<KPageShift;
|
sl@0
|
4942 |
return r;
|
sl@0
|
4943 |
}
|
sl@0
|
4944 |
|
sl@0
|
4945 |
|
sl@0
|
4946 |
TInt DMmuCodeSegMemory::Loaded(TCodeSegCreateInfo& aInfo)
|
sl@0
|
4947 |
{
|
sl@0
|
4948 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
4949 |
if(iIsDemandPaged)
|
sl@0
|
4950 |
{
|
sl@0
|
4951 |
TInt r = ReadFixupTables(aInfo);
|
sl@0
|
4952 |
if (r != KErrNone)
|
sl@0
|
4953 |
return r;
|
sl@0
|
4954 |
}
|
sl@0
|
4955 |
TAny* dataSection = iDataSectionMemory;
|
sl@0
|
4956 |
if(dataSection)
|
sl@0
|
4957 |
{
|
sl@0
|
4958 |
UNLOCK_USER_MEMORY();
|
sl@0
|
4959 |
memcpy(dataSection,(TAny*)iRamInfo.iDataLoadAddr,iRamInfo.iDataSize);
|
sl@0
|
4960 |
LOCK_USER_MEMORY();
|
sl@0
|
4961 |
iRamInfo.iDataLoadAddr = (TLinAddr)dataSection;
|
sl@0
|
4962 |
}
|
sl@0
|
4963 |
#endif
|
sl@0
|
4964 |
return KErrNone;
|
sl@0
|
4965 |
}
|
sl@0
|
4966 |
|
sl@0
|
4967 |
|
sl@0
|
4968 |
void DMmuCodeSegMemory::ApplyCodeFixups(TUint32* aBuffer, TLinAddr aDestAddress)
|
sl@0
|
4969 |
{
|
sl@0
|
4970 |
__NK_ASSERT_DEBUG(iRamInfo.iCodeRunAddr==iRamInfo.iCodeLoadAddr); // code doesn't work if this isn't true
|
sl@0
|
4971 |
|
sl@0
|
4972 |
START_PAGING_BENCHMARK;
|
sl@0
|
4973 |
|
sl@0
|
4974 |
TUint offset = aDestAddress - iRamInfo.iCodeRunAddr;
|
sl@0
|
4975 |
__ASSERT_ALWAYS(offset < (TUint)(iRamInfo.iCodeSize + iRamInfo.iDataSize), K::Fault(K::ECodeSegBadFixupAddress));
|
sl@0
|
4976 |
|
sl@0
|
4977 |
// Index tables are only valid for pages containg code
|
sl@0
|
4978 |
if (offset >= (TUint)iRamInfo.iCodeSize)
|
sl@0
|
4979 |
return;
|
sl@0
|
4980 |
|
sl@0
|
4981 |
UNLOCK_USER_MEMORY();
|
sl@0
|
4982 |
|
sl@0
|
4983 |
TInt page = offset >> KPageShift;
|
sl@0
|
4984 |
|
sl@0
|
4985 |
// Relocate code
|
sl@0
|
4986 |
|
sl@0
|
4987 |
if (iCodeRelocTableSize > 0)
|
sl@0
|
4988 |
{
|
sl@0
|
4989 |
TUint32* codeRelocTable32 = (TUint32*)iCodeRelocTable;
|
sl@0
|
4990 |
TUint startOffset = codeRelocTable32[page];
|
sl@0
|
4991 |
TUint endOffset = codeRelocTable32[page + 1];
|
sl@0
|
4992 |
|
sl@0
|
4993 |
__KTRACE_OPT(KPAGING, Kern::Printf("Performing code relocation: start == %x, end == %x", startOffset, endOffset));
|
sl@0
|
4994 |
__ASSERT_ALWAYS(startOffset <= endOffset && endOffset <= (TUint)iCodeRelocTableSize,
|
sl@0
|
4995 |
K::Fault(K::ECodeSegBadFixupTables));
|
sl@0
|
4996 |
|
sl@0
|
4997 |
TUint8* codeRelocTable8 = (TUint8*)codeRelocTable32;
|
sl@0
|
4998 |
const TUint16* ptr = (const TUint16*)(codeRelocTable8 + startOffset);
|
sl@0
|
4999 |
const TUint16* end = (const TUint16*)(codeRelocTable8 + endOffset);
|
sl@0
|
5000 |
|
sl@0
|
5001 |
const TUint32 codeDelta = iCodeDelta;
|
sl@0
|
5002 |
const TUint32 dataDelta = iDataDelta;
|
sl@0
|
5003 |
|
sl@0
|
5004 |
while (ptr < end)
|
sl@0
|
5005 |
{
|
sl@0
|
5006 |
TUint16 entry = *ptr++;
|
sl@0
|
5007 |
|
sl@0
|
5008 |
// address of word to fix up is sum of page start and 12-bit offset
|
sl@0
|
5009 |
TUint32* addr = (TUint32*)((TUint8*)aBuffer + (entry & 0x0fff));
|
sl@0
|
5010 |
|
sl@0
|
5011 |
TUint32 word = *addr;
|
sl@0
|
5012 |
#ifdef _DEBUG
|
sl@0
|
5013 |
TInt type = entry & 0xf000;
|
sl@0
|
5014 |
__NK_ASSERT_DEBUG(type == KTextRelocType || type == KDataRelocType);
|
sl@0
|
5015 |
#endif
|
sl@0
|
5016 |
if (entry < KDataRelocType /* => type == KTextRelocType */)
|
sl@0
|
5017 |
word += codeDelta;
|
sl@0
|
5018 |
else
|
sl@0
|
5019 |
word += dataDelta;
|
sl@0
|
5020 |
*addr = word;
|
sl@0
|
5021 |
}
|
sl@0
|
5022 |
}
|
sl@0
|
5023 |
|
sl@0
|
5024 |
// Fixup imports
|
sl@0
|
5025 |
|
sl@0
|
5026 |
if (iImportFixupTableSize > 0)
|
sl@0
|
5027 |
{
|
sl@0
|
5028 |
TUint32* importFixupTable32 = (TUint32*)iImportFixupTable;
|
sl@0
|
5029 |
TUint startOffset = importFixupTable32[page];
|
sl@0
|
5030 |
TUint endOffset = importFixupTable32[page + 1];
|
sl@0
|
5031 |
|
sl@0
|
5032 |
__KTRACE_OPT(KPAGING, Kern::Printf("Performing import fixup: start == %x, end == %x", startOffset, endOffset));
|
sl@0
|
5033 |
__ASSERT_ALWAYS(startOffset <= endOffset && endOffset <= (TUint)iImportFixupTableSize,
|
sl@0
|
5034 |
K::Fault(K::ECodeSegBadFixupTables));
|
sl@0
|
5035 |
|
sl@0
|
5036 |
TUint8* importFixupTable8 = (TUint8*)importFixupTable32;
|
sl@0
|
5037 |
const TUint16* ptr = (const TUint16*)(importFixupTable8 + startOffset);
|
sl@0
|
5038 |
const TUint16* end = (const TUint16*)(importFixupTable8 + endOffset);
|
sl@0
|
5039 |
|
sl@0
|
5040 |
while (ptr < end)
|
sl@0
|
5041 |
{
|
sl@0
|
5042 |
TUint16 offset = *ptr++;
|
sl@0
|
5043 |
|
sl@0
|
5044 |
// get word to write into that address
|
sl@0
|
5045 |
// (don't read as a single TUint32 because may not be word-aligned)
|
sl@0
|
5046 |
TUint32 wordLow = *ptr++;
|
sl@0
|
5047 |
TUint32 wordHigh = *ptr++;
|
sl@0
|
5048 |
TUint32 word = (wordHigh << 16) | wordLow;
|
sl@0
|
5049 |
|
sl@0
|
5050 |
__KTRACE_OPT(KPAGING, Kern::Printf("DP: Fixup %08x=%08x", iRamInfo.iCodeRunAddr+(page<<KPageShift)+offset, word));
|
sl@0
|
5051 |
*(TUint32*)((TLinAddr)aBuffer+offset) = word;
|
sl@0
|
5052 |
}
|
sl@0
|
5053 |
}
|
sl@0
|
5054 |
|
sl@0
|
5055 |
LOCK_USER_MEMORY();
|
sl@0
|
5056 |
|
sl@0
|
5057 |
END_PAGING_BENCHMARK(DemandPaging::ThePager, EPagingBmFixupCodePage);
|
sl@0
|
5058 |
}
|
sl@0
|
5059 |
|
sl@0
|
5060 |
|
sl@0
|
5061 |
TInt DMmuCodeSegMemory::ApplyCodeFixupsOnLoad(TUint32* aBuffer, TLinAddr aDestAddress)
|
sl@0
|
5062 |
{
|
sl@0
|
5063 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
5064 |
TInt r=DemandPaging::ThePager->LockRegion((TLinAddr)aBuffer,KPageSize,&Kern::CurrentProcess());
|
sl@0
|
5065 |
if(r!=KErrNone)
|
sl@0
|
5066 |
return r;
|
sl@0
|
5067 |
#endif
|
sl@0
|
5068 |
ApplyCodeFixups(aBuffer,aDestAddress);
|
sl@0
|
5069 |
UNLOCK_USER_MEMORY();
|
sl@0
|
5070 |
CacheMaintenance::CodeChanged((TLinAddr)aBuffer, KPageSize);
|
sl@0
|
5071 |
LOCK_USER_MEMORY();
|
sl@0
|
5072 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
5073 |
DemandPaging::ThePager->UnlockRegion((TLinAddr)aBuffer,KPageSize,&Kern::CurrentProcess());
|
sl@0
|
5074 |
#endif
|
sl@0
|
5075 |
return KErrNone;
|
sl@0
|
5076 |
}
|
sl@0
|
5077 |
|
sl@0
|
5078 |
|
sl@0
|
5079 |
#ifdef __DEMAND_PAGING__
|
sl@0
|
5080 |
|
sl@0
|
5081 |
TInt M::CreateVirtualPinObject(TVirtualPinObject*& aPinObject)
|
sl@0
|
5082 |
{
|
sl@0
|
5083 |
aPinObject = (TVirtualPinObject*) new DDemandPagingLock;
|
sl@0
|
5084 |
return aPinObject != NULL ? KErrNone : KErrNoMemory;
|
sl@0
|
5085 |
}
|
sl@0
|
5086 |
|
sl@0
|
5087 |
TInt M::PinVirtualMemory(TVirtualPinObject* aPinObject, TLinAddr aStart, TUint aSize, DThread* aThread)
|
sl@0
|
5088 |
{
|
sl@0
|
5089 |
if (!DemandPaging::ThePager)
|
sl@0
|
5090 |
return KErrNone;
|
sl@0
|
5091 |
|
sl@0
|
5092 |
if (!DemandPaging::ThePager->MayBePaged(aStart, aSize))
|
sl@0
|
5093 |
return KErrNone;
|
sl@0
|
5094 |
|
sl@0
|
5095 |
DDemandPagingLock* lock = (DDemandPagingLock*)aPinObject;
|
sl@0
|
5096 |
TInt r = lock->Alloc(aSize);
|
sl@0
|
5097 |
if (r != KErrNone)
|
sl@0
|
5098 |
return r;
|
sl@0
|
5099 |
lock->Lock(aThread, aStart, aSize);
|
sl@0
|
5100 |
return KErrNone;
|
sl@0
|
5101 |
}
|
sl@0
|
5102 |
|
sl@0
|
5103 |
TInt M::CreateAndPinVirtualMemory(TVirtualPinObject*& aPinObject, TLinAddr aStart, TUint aSize)
|
sl@0
|
5104 |
{
|
sl@0
|
5105 |
aPinObject = 0;
|
sl@0
|
5106 |
|
sl@0
|
5107 |
if (!DemandPaging::ThePager)
|
sl@0
|
5108 |
return KErrNone;
|
sl@0
|
5109 |
if (!DemandPaging::ThePager->MayBePaged(aStart, aSize))
|
sl@0
|
5110 |
return KErrNone;
|
sl@0
|
5111 |
|
sl@0
|
5112 |
TInt r = CreateVirtualPinObject(aPinObject);
|
sl@0
|
5113 |
if (r != KErrNone)
|
sl@0
|
5114 |
return r;
|
sl@0
|
5115 |
|
sl@0
|
5116 |
DDemandPagingLock* lock = (DDemandPagingLock*)aPinObject;
|
sl@0
|
5117 |
r = lock->Alloc(aSize);
|
sl@0
|
5118 |
if (r != KErrNone)
|
sl@0
|
5119 |
return r;
|
sl@0
|
5120 |
lock->Lock(TheCurrentThread, aStart, aSize);
|
sl@0
|
5121 |
return KErrNone;
|
sl@0
|
5122 |
}
|
sl@0
|
5123 |
|
sl@0
|
5124 |
void M::UnpinVirtualMemory(TVirtualPinObject* aPinObject)
|
sl@0
|
5125 |
{
|
sl@0
|
5126 |
DDemandPagingLock* lock = (DDemandPagingLock*)aPinObject;
|
sl@0
|
5127 |
if (lock)
|
sl@0
|
5128 |
lock->Free();
|
sl@0
|
5129 |
}
|
sl@0
|
5130 |
|
sl@0
|
5131 |
void M::DestroyVirtualPinObject(TVirtualPinObject*& aPinObject)
|
sl@0
|
5132 |
{
|
sl@0
|
5133 |
DDemandPagingLock* lock = (DDemandPagingLock*)__e32_atomic_swp_ord_ptr(&aPinObject, 0);
|
sl@0
|
5134 |
if (lock)
|
sl@0
|
5135 |
lock->AsyncDelete();
|
sl@0
|
5136 |
}
|
sl@0
|
5137 |
|
sl@0
|
5138 |
#else
|
sl@0
|
5139 |
|
sl@0
|
5140 |
class TVirtualPinObject
|
sl@0
|
5141 |
{
|
sl@0
|
5142 |
};
|
sl@0
|
5143 |
|
sl@0
|
5144 |
TInt M::CreateVirtualPinObject(TVirtualPinObject*& aPinObject)
|
sl@0
|
5145 |
{
|
sl@0
|
5146 |
aPinObject = new TVirtualPinObject;
|
sl@0
|
5147 |
return aPinObject != NULL ? KErrNone : KErrNoMemory;
|
sl@0
|
5148 |
}
|
sl@0
|
5149 |
|
sl@0
|
5150 |
TInt M::PinVirtualMemory(TVirtualPinObject* aPinObject, TLinAddr, TUint, DThread*)
|
sl@0
|
5151 |
{
|
sl@0
|
5152 |
__ASSERT_DEBUG(aPinObject, K::Fault(K::EVirtualPinObjectBad));
|
sl@0
|
5153 |
(void)aPinObject;
|
sl@0
|
5154 |
return KErrNone;
|
sl@0
|
5155 |
}
|
sl@0
|
5156 |
|
sl@0
|
5157 |
TInt M::CreateAndPinVirtualMemory(TVirtualPinObject*& aPinObject, TLinAddr, TUint)
|
sl@0
|
5158 |
{
|
sl@0
|
5159 |
aPinObject = 0;
|
sl@0
|
5160 |
return KErrNone;
|
sl@0
|
5161 |
}
|
sl@0
|
5162 |
|
sl@0
|
5163 |
void M::UnpinVirtualMemory(TVirtualPinObject* aPinObject)
|
sl@0
|
5164 |
{
|
sl@0
|
5165 |
__ASSERT_DEBUG(aPinObject, K::Fault(K::EVirtualPinObjectBad));
|
sl@0
|
5166 |
(void)aPinObject;
|
sl@0
|
5167 |
}
|
sl@0
|
5168 |
|
sl@0
|
5169 |
void M::DestroyVirtualPinObject(TVirtualPinObject*& aPinObject)
|
sl@0
|
5170 |
{
|
sl@0
|
5171 |
TVirtualPinObject* object = (TVirtualPinObject*)__e32_atomic_swp_ord_ptr(&aPinObject, 0);
|
sl@0
|
5172 |
if (object)
|
sl@0
|
5173 |
Kern::AsyncFree(object);
|
sl@0
|
5174 |
}
|
sl@0
|
5175 |
|
sl@0
|
5176 |
#endif
|
sl@0
|
5177 |
|
sl@0
|
5178 |
TInt M::CreatePhysicalPinObject(TPhysicalPinObject*& aPinObject)
|
sl@0
|
5179 |
{
|
sl@0
|
5180 |
return KErrNotSupported;
|
sl@0
|
5181 |
}
|
sl@0
|
5182 |
|
sl@0
|
5183 |
TInt M::PinPhysicalMemory(TPhysicalPinObject*, TLinAddr, TUint, TBool, TUint32&, TUint32*, TUint32&, TUint&, DThread*)
|
sl@0
|
5184 |
{
|
sl@0
|
5185 |
K::Fault(K::EPhysicalPinObjectBad);
|
sl@0
|
5186 |
return KErrNone;
|
sl@0
|
5187 |
}
|
sl@0
|
5188 |
|
sl@0
|
5189 |
void M::UnpinPhysicalMemory(TPhysicalPinObject* aPinObject)
|
sl@0
|
5190 |
{
|
sl@0
|
5191 |
K::Fault(K::EPhysicalPinObjectBad);
|
sl@0
|
5192 |
}
|
sl@0
|
5193 |
|
sl@0
|
5194 |
void M::DestroyPhysicalPinObject(TPhysicalPinObject*& aPinObject)
|
sl@0
|
5195 |
{
|
sl@0
|
5196 |
K::Fault(K::EPhysicalPinObjectBad);
|
sl@0
|
5197 |
}
|
sl@0
|
5198 |
|
sl@0
|
5199 |
|
sl@0
|
5200 |
//
|
sl@0
|
5201 |
// Kernel map and pin (Not supported on the moving or multiple memory models).
|
sl@0
|
5202 |
//
|
sl@0
|
5203 |
|
sl@0
|
5204 |
TInt M::CreateKernelMapObject(TKernelMapObject*&, TUint)
|
sl@0
|
5205 |
{
|
sl@0
|
5206 |
return KErrNotSupported;
|
sl@0
|
5207 |
}
|
sl@0
|
5208 |
|
sl@0
|
5209 |
|
sl@0
|
5210 |
TInt M::MapAndPinMemory(TKernelMapObject*, DThread*, TLinAddr, TUint, TUint, TLinAddr&, TPhysAddr*)
|
sl@0
|
5211 |
{
|
sl@0
|
5212 |
return KErrNotSupported;
|
sl@0
|
5213 |
}
|
sl@0
|
5214 |
|
sl@0
|
5215 |
|
sl@0
|
5216 |
void M::UnmapAndUnpinMemory(TKernelMapObject*)
|
sl@0
|
5217 |
{
|
sl@0
|
5218 |
}
|
sl@0
|
5219 |
|
sl@0
|
5220 |
|
sl@0
|
5221 |
void M::DestroyKernelMapObject(TKernelMapObject*&)
|
sl@0
|
5222 |
{
|
sl@0
|
5223 |
}
|
sl@0
|
5224 |
|
sl@0
|
5225 |
|
sl@0
|
5226 |
// Misc DPagingDevice methods
|
sl@0
|
5227 |
|
sl@0
|
5228 |
EXPORT_C void DPagingDevice::NotifyIdle()
|
sl@0
|
5229 |
{
|
sl@0
|
5230 |
// Not used on this memory model
|
sl@0
|
5231 |
}
|
sl@0
|
5232 |
|
sl@0
|
5233 |
EXPORT_C void DPagingDevice::NotifyBusy()
|
sl@0
|
5234 |
{
|
sl@0
|
5235 |
// Not used on this memory model
|
sl@0
|
5236 |
}
|
sl@0
|
5237 |
|
sl@0
|
5238 |
EXPORT_C TInt Cache::SyncPhysicalMemoryBeforeDmaWrite(TPhysAddr* , TUint , TUint , TUint , TUint32 )
|
sl@0
|
5239 |
{
|
sl@0
|
5240 |
CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"Cache::SyncPhysicalMemoryBeforeDmaWrite");
|
sl@0
|
5241 |
return KErrNotSupported;
|
sl@0
|
5242 |
}
|
sl@0
|
5243 |
|
sl@0
|
5244 |
EXPORT_C TInt Cache::SyncPhysicalMemoryBeforeDmaRead(TPhysAddr* , TUint , TUint , TUint , TUint32 )
|
sl@0
|
5245 |
{
|
sl@0
|
5246 |
CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"Cache::SyncPhysicalMemoryBeforeDmaRead");
|
sl@0
|
5247 |
return KErrNotSupported;
|
sl@0
|
5248 |
}
|
sl@0
|
5249 |
EXPORT_C TInt Cache::SyncPhysicalMemoryAfterDmaRead(TPhysAddr* , TUint , TUint , TUint , TUint32 )
|
sl@0
|
5250 |
{
|
sl@0
|
5251 |
CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"Cache::SyncPhysicalMemoryAfterDmaRead");
|
sl@0
|
5252 |
return KErrNotSupported;
|
sl@0
|
5253 |
}
|
sl@0
|
5254 |
|
sl@0
|
5255 |
//
|
sl@0
|
5256 |
// Page moving methods
|
sl@0
|
5257 |
//
|
sl@0
|
5258 |
|
sl@0
|
5259 |
/*
|
sl@0
|
5260 |
* Move a page from aOld to aNew safely, updating any references to the page
|
sl@0
|
5261 |
* stored elsewhere (such as page table entries). The destination page must
|
sl@0
|
5262 |
* already be allocated. If the move is successful, the source page will be
|
sl@0
|
5263 |
* freed and returned to the allocator.
|
sl@0
|
5264 |
*
|
sl@0
|
5265 |
* @pre RAM alloc mutex must be held.
|
sl@0
|
5266 |
* @pre Calling thread must be in a critical section.
|
sl@0
|
5267 |
* @pre Interrupts must be enabled.
|
sl@0
|
5268 |
* @pre Kernel must be unlocked.
|
sl@0
|
5269 |
* @pre No fast mutex can be held.
|
sl@0
|
5270 |
* @pre Call in a thread context.
|
sl@0
|
5271 |
*/
|
sl@0
|
5272 |
TInt MmuBase::MovePage(TPhysAddr aOld, TPhysAddr& aNew, TUint aBlockZoneId, TBool aBlockRest)
|
sl@0
|
5273 |
{
|
sl@0
|
5274 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL, "Defrag::DoMovePage");
|
sl@0
|
5275 |
__ASSERT_WITH_MESSAGE_MUTEX(MmuBase::RamAllocatorMutex, "Ram allocator mutex must be held", "Defrag::DoMovePage");
|
sl@0
|
5276 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage() old=%08x",aOld));
|
sl@0
|
5277 |
TInt r = KErrNotSupported;
|
sl@0
|
5278 |
#if defined(__CPU_X86) && defined(__MEMMODEL_MULTIPLE__)
|
sl@0
|
5279 |
return r;
|
sl@0
|
5280 |
#endif
|
sl@0
|
5281 |
aNew = KPhysAddrInvalid;
|
sl@0
|
5282 |
NKern::LockSystem();
|
sl@0
|
5283 |
SPageInfo* pi = SPageInfo::SafeFromPhysAddr(aOld);
|
sl@0
|
5284 |
if (!pi)
|
sl@0
|
5285 |
{
|
sl@0
|
5286 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage() fails: page has no PageInfo"));
|
sl@0
|
5287 |
r = KErrArgument;
|
sl@0
|
5288 |
goto fail;
|
sl@0
|
5289 |
}
|
sl@0
|
5290 |
if (pi->LockCount())
|
sl@0
|
5291 |
{
|
sl@0
|
5292 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage() fails: page is locked"));
|
sl@0
|
5293 |
goto fail;
|
sl@0
|
5294 |
}
|
sl@0
|
5295 |
|
sl@0
|
5296 |
switch(pi->Type())
|
sl@0
|
5297 |
{
|
sl@0
|
5298 |
case SPageInfo::EUnused:
|
sl@0
|
5299 |
// Nothing to do - we allow this, though, in case the caller wasn't
|
sl@0
|
5300 |
// actually checking the free bitmap.
|
sl@0
|
5301 |
r = KErrNotFound;
|
sl@0
|
5302 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage(): page unused"));
|
sl@0
|
5303 |
break;
|
sl@0
|
5304 |
|
sl@0
|
5305 |
case SPageInfo::EChunk:
|
sl@0
|
5306 |
{
|
sl@0
|
5307 |
// It's a chunk - we need to investigate what it's used for.
|
sl@0
|
5308 |
DChunk* chunk = (DChunk*)pi->Owner();
|
sl@0
|
5309 |
TInt offset = pi->Offset()<<KPageShift;
|
sl@0
|
5310 |
|
sl@0
|
5311 |
switch(chunk->iChunkType)
|
sl@0
|
5312 |
{
|
sl@0
|
5313 |
case EKernelData:
|
sl@0
|
5314 |
case EKernelMessage:
|
sl@0
|
5315 |
// The kernel data/bss/heap chunk pages are not moved as DMA may be accessing them.
|
sl@0
|
5316 |
__KTRACE_OPT(KMMU, Kern::Printf("MmuBase::MovePage() fails: kernel data"));
|
sl@0
|
5317 |
goto fail;
|
sl@0
|
5318 |
|
sl@0
|
5319 |
case EKernelStack:
|
sl@0
|
5320 |
// The kernel thread stack chunk.
|
sl@0
|
5321 |
r = MoveKernelStackPage(chunk, offset, aOld, aNew, aBlockZoneId, aBlockRest);
|
sl@0
|
5322 |
__KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: k stack r%d",r));
|
sl@0
|
5323 |
__NK_ASSERT_DEBUG(NKern::HeldFastMutex()==0);
|
sl@0
|
5324 |
goto released;
|
sl@0
|
5325 |
|
sl@0
|
5326 |
case EKernelCode:
|
sl@0
|
5327 |
case EDll:
|
sl@0
|
5328 |
// The kernel code chunk, or a global user code chunk.
|
sl@0
|
5329 |
r = MoveCodeChunkPage(chunk, offset, aOld, aNew, aBlockZoneId, aBlockRest);
|
sl@0
|
5330 |
__KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: code chk r%d",r));
|
sl@0
|
5331 |
__NK_ASSERT_DEBUG(NKern::HeldFastMutex()==0);
|
sl@0
|
5332 |
goto released;
|
sl@0
|
5333 |
|
sl@0
|
5334 |
case ERamDrive:
|
sl@0
|
5335 |
case EUserData:
|
sl@0
|
5336 |
case EDllData:
|
sl@0
|
5337 |
case EUserSelfModCode:
|
sl@0
|
5338 |
// A data chunk of some description.
|
sl@0
|
5339 |
r = MoveDataChunkPage(chunk, offset, aOld, aNew, aBlockZoneId, aBlockRest);
|
sl@0
|
5340 |
__KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: data chk r%d",r));
|
sl@0
|
5341 |
__NK_ASSERT_DEBUG(NKern::HeldFastMutex()==0);
|
sl@0
|
5342 |
goto released;
|
sl@0
|
5343 |
|
sl@0
|
5344 |
case ESharedKernelSingle:
|
sl@0
|
5345 |
case ESharedKernelMultiple:
|
sl@0
|
5346 |
case ESharedIo:
|
sl@0
|
5347 |
case ESharedKernelMirror:
|
sl@0
|
5348 |
// These chunk types cannot be moved
|
sl@0
|
5349 |
r = KErrNotSupported;
|
sl@0
|
5350 |
__KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: shared r%d",r));
|
sl@0
|
5351 |
break;
|
sl@0
|
5352 |
|
sl@0
|
5353 |
case EUserCode:
|
sl@0
|
5354 |
default:
|
sl@0
|
5355 |
// Unknown page type, or EUserCode.
|
sl@0
|
5356 |
// EUserCode is not used in moving model, and on multiple model
|
sl@0
|
5357 |
// it never owns any pages so shouldn't be found via SPageInfo
|
sl@0
|
5358 |
__KTRACE_OPT(KMMU,Kern::Printf("Defrag::DoMovePage fails: unknown chunk type %d",chunk->iChunkType));
|
sl@0
|
5359 |
Panic(EDefragUnknownChunkType);
|
sl@0
|
5360 |
}
|
sl@0
|
5361 |
}
|
sl@0
|
5362 |
break;
|
sl@0
|
5363 |
|
sl@0
|
5364 |
case SPageInfo::ECodeSegMemory:
|
sl@0
|
5365 |
// It's a code segment memory section (multiple model only)
|
sl@0
|
5366 |
r = MoveCodeSegMemoryPage((DMemModelCodeSegMemory*)pi->Owner(), pi->Offset()<<KPageShift, aOld, aNew, aBlockZoneId, aBlockRest);
|
sl@0
|
5367 |
__KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: codeseg r%d",r));
|
sl@0
|
5368 |
__NK_ASSERT_DEBUG(NKern::HeldFastMutex()==0);
|
sl@0
|
5369 |
goto released;
|
sl@0
|
5370 |
|
sl@0
|
5371 |
case SPageInfo::EPagedROM:
|
sl@0
|
5372 |
case SPageInfo::EPagedCode:
|
sl@0
|
5373 |
case SPageInfo::EPagedData:
|
sl@0
|
5374 |
case SPageInfo::EPagedCache:
|
sl@0
|
5375 |
case SPageInfo::EPagedFree:
|
sl@0
|
5376 |
{// DP or RamCache page so attempt to discard it. Added for testing purposes only
|
sl@0
|
5377 |
// In normal use ClearDiscardableFromZone will have already removed RAM cache pages
|
sl@0
|
5378 |
r = KErrInUse;
|
sl@0
|
5379 |
MmuBase& mmu = *MmuBase::TheMmu;
|
sl@0
|
5380 |
RamCacheBase& ramCache = *(mmu.iRamCache);
|
sl@0
|
5381 |
if (ramCache.IsPageDiscardable(*pi))
|
sl@0
|
5382 |
{
|
sl@0
|
5383 |
if (ramCache.DoDiscardPage(*pi, KRamZoneInvalidId, EFalse))
|
sl@0
|
5384 |
{// Sucessfully discarded the page.
|
sl@0
|
5385 |
r = KErrNone;
|
sl@0
|
5386 |
}
|
sl@0
|
5387 |
}
|
sl@0
|
5388 |
__KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: paged r%d",r));
|
sl@0
|
5389 |
goto fail; // Goto fail to release the system lock.
|
sl@0
|
5390 |
}
|
sl@0
|
5391 |
|
sl@0
|
5392 |
|
sl@0
|
5393 |
case SPageInfo::EPageTable:
|
sl@0
|
5394 |
case SPageInfo::EPageDir:
|
sl@0
|
5395 |
case SPageInfo::EPtInfo:
|
sl@0
|
5396 |
case SPageInfo::EInvalid:
|
sl@0
|
5397 |
case SPageInfo::EFixed:
|
sl@0
|
5398 |
case SPageInfo::EShadow:
|
sl@0
|
5399 |
// These page types cannot be moved (or don't need to be moved)
|
sl@0
|
5400 |
r = KErrNotSupported;
|
sl@0
|
5401 |
__KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: PT etc r%d",r));
|
sl@0
|
5402 |
break;
|
sl@0
|
5403 |
|
sl@0
|
5404 |
default:
|
sl@0
|
5405 |
// Unknown page type
|
sl@0
|
5406 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage() fails: unknown page type %d",pi->Type()));
|
sl@0
|
5407 |
Panic(EDefragUnknownPageType);
|
sl@0
|
5408 |
}
|
sl@0
|
5409 |
|
sl@0
|
5410 |
fail:
|
sl@0
|
5411 |
NKern::UnlockSystem();
|
sl@0
|
5412 |
released:
|
sl@0
|
5413 |
__KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage() returns %d",r));
|
sl@0
|
5414 |
return r;
|
sl@0
|
5415 |
}
|
sl@0
|
5416 |
|
sl@0
|
5417 |
|
sl@0
|
5418 |
TInt MmuBase::DiscardPage(TPhysAddr aAddr, TUint aBlockZoneId, TBool aBlockRest)
|
sl@0
|
5419 |
{
|
sl@0
|
5420 |
TInt r = KErrInUse;
|
sl@0
|
5421 |
NKern::LockSystem();
|
sl@0
|
5422 |
SPageInfo* pageInfo = SPageInfo::SafeFromPhysAddr(aAddr);
|
sl@0
|
5423 |
if (pageInfo != NULL)
|
sl@0
|
5424 |
{// Allocatable page at this address so is it a discardable one?
|
sl@0
|
5425 |
if (iRamCache->IsPageDiscardable(*pageInfo))
|
sl@0
|
5426 |
{
|
sl@0
|
5427 |
// Discard this page and return it to the ram allocator
|
sl@0
|
5428 |
if (!iRamCache->DoDiscardPage(*pageInfo, aBlockZoneId, aBlockRest))
|
sl@0
|
5429 |
{// Couldn't discard the page.
|
sl@0
|
5430 |
if (aBlockRest)
|
sl@0
|
5431 |
{
|
sl@0
|
5432 |
__KTRACE_OPT(KMMU, Kern::Printf("ClearDiscardableFromZone: page discard fail addr %x", aAddr));
|
sl@0
|
5433 |
NKern::UnlockSystem();
|
sl@0
|
5434 |
return KErrNoMemory;
|
sl@0
|
5435 |
}
|
sl@0
|
5436 |
}
|
sl@0
|
5437 |
else
|
sl@0
|
5438 |
{// Page discarded successfully.
|
sl@0
|
5439 |
r = KErrNone;
|
sl@0
|
5440 |
}
|
sl@0
|
5441 |
}
|
sl@0
|
5442 |
}
|
sl@0
|
5443 |
NKern::UnlockSystem();
|
sl@0
|
5444 |
return r;
|
sl@0
|
5445 |
}
|
sl@0
|
5446 |
|
sl@0
|
5447 |
TUint MmuBase::NumberOfFreeDpPages()
|
sl@0
|
5448 |
{
|
sl@0
|
5449 |
TUint free = 0;
|
sl@0
|
5450 |
if(iRamCache)
|
sl@0
|
5451 |
{
|
sl@0
|
5452 |
free = iRamCache->NumberOfFreePages();
|
sl@0
|
5453 |
}
|
sl@0
|
5454 |
return free;
|
sl@0
|
5455 |
}
|
sl@0
|
5456 |
|
sl@0
|
5457 |
|
sl@0
|
5458 |
EXPORT_C TInt Epoc::MovePhysicalPage(TPhysAddr aOld, TPhysAddr& aNew, TRamDefragPageToMove aPageToMove)
|
sl@0
|
5459 |
{
|
sl@0
|
5460 |
CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::MovePhysicalPage");
|
sl@0
|
5461 |
__KTRACE_OPT(KMMU,Kern::Printf("Epoc::MovePhysicalPage() old=%08x pageToMove=%d",aOld,aPageToMove));
|
sl@0
|
5462 |
|
sl@0
|
5463 |
switch(aPageToMove)
|
sl@0
|
5464 |
{
|
sl@0
|
5465 |
case ERamDefragPage_Physical:
|
sl@0
|
5466 |
break;
|
sl@0
|
5467 |
default:
|
sl@0
|
5468 |
return KErrNotSupported;
|
sl@0
|
5469 |
}
|
sl@0
|
5470 |
|
sl@0
|
5471 |
MmuBase::Wait();
|
sl@0
|
5472 |
TInt r=M::MovePage(aOld,aNew,KRamZoneInvalidId,EFalse);
|
sl@0
|
5473 |
if (r!=KErrNone)
|
sl@0
|
5474 |
aNew = KPhysAddrInvalid;
|
sl@0
|
5475 |
MmuBase::Signal();
|
sl@0
|
5476 |
__KTRACE_OPT(KMMU,Kern::Printf("Epoc::MovePhysicalPage() returns %d",r));
|
sl@0
|
5477 |
return r;
|
sl@0
|
5478 |
}
|
sl@0
|
5479 |
|
sl@0
|
5480 |
|
sl@0
|
5481 |
TInt M::RamDefragFault(TAny* aExceptionInfo)
|
sl@0
|
5482 |
{
|
sl@0
|
5483 |
// If the mmu has been initialised then let it try processing the fault.
|
sl@0
|
5484 |
if(MmuBase::TheMmu)
|
sl@0
|
5485 |
return MmuBase::TheMmu->RamDefragFault(aExceptionInfo);
|
sl@0
|
5486 |
return KErrAbort;
|
sl@0
|
5487 |
}
|
sl@0
|
5488 |
|
sl@0
|
5489 |
|
sl@0
|
5490 |
void M::RamZoneClaimed(SZone* aZone)
|
sl@0
|
5491 |
{
|
sl@0
|
5492 |
// Lock each page. OK to traverse SPageInfo array as we know no unknown
|
sl@0
|
5493 |
// pages are in the zone.
|
sl@0
|
5494 |
SPageInfo* pageInfo = SPageInfo::FromPhysAddr(aZone->iPhysBase);
|
sl@0
|
5495 |
SPageInfo* pageInfoEnd = pageInfo + aZone->iPhysPages;
|
sl@0
|
5496 |
for (; pageInfo < pageInfoEnd; ++pageInfo)
|
sl@0
|
5497 |
{
|
sl@0
|
5498 |
NKern::LockSystem();
|
sl@0
|
5499 |
__NK_ASSERT_DEBUG(pageInfo->Type()==SPageInfo::EUnused);
|
sl@0
|
5500 |
pageInfo->Lock();
|
sl@0
|
5501 |
NKern::UnlockSystem();
|
sl@0
|
5502 |
}
|
sl@0
|
5503 |
// For the sake of platform security we have to clear the memory. E.g. the driver
|
sl@0
|
5504 |
// could assign it to a chunk visible to user side. Set LSB so ClearPages
|
sl@0
|
5505 |
// knows this is a contiguous memory region.
|
sl@0
|
5506 |
Mmu::Get().ClearPages(aZone->iPhysPages, (TPhysAddr*)(aZone->iPhysBase|1));
|
sl@0
|
5507 |
}
|