os/kernelhwsrv/kernel/eka/include/e32math.h
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// e32\include\e32math.h
sl@0
    15
// 
sl@0
    16
//
sl@0
    17
sl@0
    18
#ifndef __E32MATH_H__
sl@0
    19
#define __E32MATH_H__
sl@0
    20
#include <e32std.h>
sl@0
    21
sl@0
    22
sl@0
    23
/**
sl@0
    24
@publishedAll
sl@0
    25
@released
sl@0
    26
*/
sl@0
    27
const TInt KMaxPrecision=15;
sl@0
    28
sl@0
    29
/**
sl@0
    30
@publishedAll
sl@0
    31
@released
sl@0
    32
sl@0
    33
This constant specifies the maximum number of significant digits available with floating 
sl@0
    34
point computations. Rounding and string formatting methods will not use more digits than this.
sl@0
    35
*/
sl@0
    36
const TInt KPrecisionLimit=12;
sl@0
    37
sl@0
    38
/**
sl@0
    39
@publishedAll
sl@0
    40
@released
sl@0
    41
sl@0
    42
Let D be the set of real numbers exactly representable by an IEEE-754 'double'
sl@0
    43
For any positive integer n let X_n be the set of real numbers with an exact
sl@0
    44
decimal representation using n significant digits.
sl@0
    45
Let r_n : D -> X_n be defined by r_n(x)=y such that
sl@0
    46
|y-x| = inf { |z-x| : z in X_n }
sl@0
    47
and (in the case where two such y exist) that the last significant digit in the
sl@0
    48
decimal representation of y is even.
sl@0
    49
This constant is the least n such that r_n is injective.
sl@0
    50
*/
sl@0
    51
const TInt KIEEEDoubleInjectivePrecision=17;
sl@0
    52
sl@0
    53
/**
sl@0
    54
@publishedAll
sl@0
    55
@released
sl@0
    56
*/
sl@0
    57
const TInt KMantissaBits=53;
sl@0
    58
/**
sl@0
    59
@publishedAll
sl@0
    60
@released
sl@0
    61
*/
sl@0
    62
const TInt KMaxExponent=1023;
sl@0
    63
/**
sl@0
    64
@publishedAll
sl@0
    65
@released
sl@0
    66
*/
sl@0
    67
const TInt KExponentBias=1022;
sl@0
    68
/**
sl@0
    69
@publishedAll
sl@0
    70
@released
sl@0
    71
*/
sl@0
    72
const TInt KSpecialExponent=2047;
sl@0
    73
//
sl@0
    74
sl@0
    75
sl@0
    76
/**
sl@0
    77
@publishedAll
sl@0
    78
@released
sl@0
    79
sl@0
    80
The maximum exponent for a 32-bit floating point number.
sl@0
    81
*/
sl@0
    82
const TInt KTReal32MaxExponent=128;			// changed from 127
sl@0
    83
sl@0
    84
sl@0
    85
/**
sl@0
    86
@publishedAll
sl@0
    87
@released
sl@0
    88
sl@0
    89
The minimum exponent for a 32-bit floating point number.
sl@0
    90
*/
sl@0
    91
const TInt KTReal32MinExponent=-125;
sl@0
    92
/**
sl@0
    93
@publishedAll
sl@0
    94
@released
sl@0
    95
*/
sl@0
    96
const TInt KTReal32ExponentBias=126;
sl@0
    97
/**
sl@0
    98
@publishedAll
sl@0
    99
@released
sl@0
   100
*/
sl@0
   101
const TInt KTReal32SpecialExponent=255;		// changed from KTReal32ExponentBad
sl@0
   102
sl@0
   103
sl@0
   104
/**
sl@0
   105
@publishedAll
sl@0
   106
@released
sl@0
   107
sl@0
   108
A zero exponent value for a 32-bit floating point number. 
sl@0
   109
*/
sl@0
   110
const TInt KTReal32ZeroExponent=0;
sl@0
   111
//
sl@0
   112
sl@0
   113
sl@0
   114
/**
sl@0
   115
@publishedAll
sl@0
   116
@released
sl@0
   117
sl@0
   118
The maximum exponent for a 64-bit floating point number.
sl@0
   119
*/
sl@0
   120
const TInt KTReal64MaxExponent=1024;		// changed from 1023
sl@0
   121
sl@0
   122
sl@0
   123
/**
sl@0
   124
@publishedAll
sl@0
   125
@released
sl@0
   126
sl@0
   127
The minimum exponent for a 64-bit floating point number.
sl@0
   128
*/
sl@0
   129
const TInt KTReal64MinExponent=-1021;
sl@0
   130
sl@0
   131
sl@0
   132
/**
sl@0
   133
@publishedAll
sl@0
   134
@released
sl@0
   135
*/
sl@0
   136
const TInt KTReal64ExponentBias=1022;
sl@0
   137
sl@0
   138
sl@0
   139
/**
sl@0
   140
@publishedAll
sl@0
   141
@released
sl@0
   142
*/
sl@0
   143
const TInt KTReal64SpecialExponent=2047;	// changed from KTReal64BadExponent
sl@0
   144
sl@0
   145
sl@0
   146
/**
sl@0
   147
@publishedAll
sl@0
   148
@released
sl@0
   149
sl@0
   150
A zero exponent value for a 64-bit floating point number. 
sl@0
   151
*/
sl@0
   152
const TInt KTReal64ZeroExponent=0;
sl@0
   153
//
sl@0
   154
sl@0
   155
sl@0
   156
/**
sl@0
   157
@publishedAll
sl@0
   158
@released
sl@0
   159
sl@0
   160
The minimum value of a 64-bit floating point number.
sl@0
   161
*/
sl@0
   162
const TReal KMinTReal=2.2250738585072015E-308;	// changed from TReal64
sl@0
   163
sl@0
   164
sl@0
   165
/**
sl@0
   166
@publishedAll
sl@0
   167
@released
sl@0
   168
sl@0
   169
The maximum value of a 64-bit floating point number.
sl@0
   170
*/
sl@0
   171
const TReal KMaxTReal=1.7976931348623157E+308;	//
sl@0
   172
//
sl@0
   173
sl@0
   174
sl@0
   175
/**
sl@0
   176
@publishedAll
sl@0
   177
@released
sl@0
   178
sl@0
   179
The minimum value of a 32-bit floating point number.
sl@0
   180
*/
sl@0
   181
const TReal32 KMinTReal32=1.17549435E-38f;
sl@0
   182
sl@0
   183
sl@0
   184
/**
sl@0
   185
@publishedAll
sl@0
   186
@released
sl@0
   187
sl@0
   188
The maximum value of a 32-bit floating point number.
sl@0
   189
*/
sl@0
   190
const TReal32 KMaxTReal32=3.4028234663852885981170418348452e+38f;
sl@0
   191
//
sl@0
   192
sl@0
   193
sl@0
   194
/**
sl@0
   195
@publishedAll
sl@0
   196
@released
sl@0
   197
sl@0
   198
The minimum value of a 64-bit floating point number.
sl@0
   199
*/
sl@0
   200
const TReal64 KMinTReal64=2.2250738585072015E-308;
sl@0
   201
sl@0
   202
sl@0
   203
/**
sl@0
   204
@publishedAll
sl@0
   205
@released
sl@0
   206
sl@0
   207
The maximum value of a 64-bit floating point number.
sl@0
   208
*/
sl@0
   209
const TReal64 KMaxTReal64=1.7976931348623157E+308;
sl@0
   210
//
sl@0
   211
sl@0
   212
sl@0
   213
/**
sl@0
   214
@publishedAll
sl@0
   215
@released
sl@0
   216
*/
sl@0
   217
const TReal KSqhf=0.70710678118654752440;
sl@0
   218
sl@0
   219
sl@0
   220
/**
sl@0
   221
@publishedAll
sl@0
   222
@released
sl@0
   223
sl@0
   224
Log 2 to the base "e".
sl@0
   225
*/
sl@0
   226
const TReal KRln2=1.4426950408889634;
sl@0
   227
sl@0
   228
sl@0
   229
/**
sl@0
   230
@publishedAll
sl@0
   231
@released
sl@0
   232
sl@0
   233
Log 10 to the base "e".
sl@0
   234
*/
sl@0
   235
const TReal KRln10=0.4342944819032518;
sl@0
   236
sl@0
   237
sl@0
   238
/**
sl@0
   239
@publishedAll
sl@0
   240
@released
sl@0
   241
sl@0
   242
Log 2 to the base 10.
sl@0
   243
*/
sl@0
   244
const TReal KRlg2=0.3010299956639812;
sl@0
   245
sl@0
   246
sl@0
   247
/**
sl@0
   248
@publishedAll
sl@0
   249
@released
sl@0
   250
sl@0
   251
The mathematical constant Pi.
sl@0
   252
*/
sl@0
   253
const TReal KPi=3.1415926535897932;
sl@0
   254
sl@0
   255
sl@0
   256
/**
sl@0
   257
@publishedAll
sl@0
   258
@released
sl@0
   259
sl@0
   260
The reciprocal of the mathematical constant Pi. 
sl@0
   261
*/
sl@0
   262
const TReal KPiInv=0.3183098861837907;
sl@0
   263
sl@0
   264
sl@0
   265
/**
sl@0
   266
@publishedAll
sl@0
   267
@released
sl@0
   268
sl@0
   269
The mathematical constant Pi divided by 2.
sl@0
   270
*/
sl@0
   271
const TReal KPiBy2=1.5707963267948966;
sl@0
   272
sl@0
   273
sl@0
   274
/**
sl@0
   275
@publishedAll
sl@0
   276
@released
sl@0
   277
sl@0
   278
Not used.
sl@0
   279
*/
sl@0
   280
const TReal KDrpi=0.6366197723675813;
sl@0
   281
sl@0
   282
sl@0
   283
/**
sl@0
   284
@publishedAll
sl@0
   285
@released
sl@0
   286
sl@0
   287
The square root of 3.
sl@0
   288
*/
sl@0
   289
const TReal KSqt3=1.7320508075688773;
sl@0
   290
sl@0
   291
sl@0
   292
/**
sl@0
   293
@publishedAll
sl@0
   294
@released
sl@0
   295
*/
sl@0
   296
const TReal KMsq3=0.2679491924311227;
sl@0
   297
sl@0
   298
sl@0
   299
/**
sl@0
   300
@publishedAll
sl@0
   301
@released
sl@0
   302
sl@0
   303
The multiplying factor to convert radians to degrees.
sl@0
   304
*/
sl@0
   305
const TReal KRadToDeg=57.29577951308232;
sl@0
   306
sl@0
   307
sl@0
   308
/**
sl@0
   309
@publishedAll
sl@0
   310
@released
sl@0
   311
sl@0
   312
The multiplying factor to convert degrees to radians.
sl@0
   313
*/
sl@0
   314
const TReal KDegToRad=0.017453292519943296;
sl@0
   315
sl@0
   316
sl@0
   317
sl@0
   318
sl@0
   319
class TRealX
sl@0
   320
/**
sl@0
   321
@publishedAll
sl@0
   322
@released
sl@0
   323
sl@0
   324
A class encapsulating an extended precision real value.
sl@0
   325
sl@0
   326
This class provides 64 bit precision and a dynamic range of approximately
sl@0
   327
1E-9863 to 1E+9863. All member functions are optimized for speed.
sl@0
   328
*/
sl@0
   329
	{
sl@0
   330
public:
sl@0
   331
	enum TRealXOrder {ELessThan=1,EEqual=2,EGreaterThan=4,EUnordered=8};
sl@0
   332
public:
sl@0
   333
	IMPORT_C TRealX();
sl@0
   334
	IMPORT_C TRealX(TInt aInt);
sl@0
   335
	IMPORT_C TRealX(TUint aInt);
sl@0
   336
	IMPORT_C TRealX(TUint aExp, TUint aMantHi, TUint aMantLo);
sl@0
   337
	IMPORT_C TRealX(const TInt64 &aInt);
sl@0
   338
	IMPORT_C TRealX(TReal32 aReal) __SOFTFP;
sl@0
   339
	IMPORT_C TRealX(TReal64 aReal) __SOFTFP;
sl@0
   340
	IMPORT_C TRealX &operator=(TInt aInt);
sl@0
   341
	IMPORT_C TRealX &operator=(TUint aInt);
sl@0
   342
	IMPORT_C TRealX &operator=(const TInt64& aInt);
sl@0
   343
	IMPORT_C TRealX &operator=(TReal32 aReal) __SOFTFP;
sl@0
   344
	IMPORT_C TRealX &operator=(TReal64 aReal) __SOFTFP;
sl@0
   345
	IMPORT_C TInt Set(TInt aInt);
sl@0
   346
	IMPORT_C TInt Set(TUint aInt);
sl@0
   347
	IMPORT_C TInt Set(const TInt64& aInt);
sl@0
   348
	IMPORT_C TInt Set(TReal32 aReal) __SOFTFP;
sl@0
   349
	IMPORT_C TInt Set(TReal64 aReal) __SOFTFP;
sl@0
   350
	IMPORT_C operator TInt() const;
sl@0
   351
	IMPORT_C operator TUint() const;
sl@0
   352
	IMPORT_C operator TInt64() const;
sl@0
   353
	IMPORT_C operator TReal32() const __SOFTFP;
sl@0
   354
	IMPORT_C operator TReal64() const __SOFTFP;
sl@0
   355
	IMPORT_C TInt GetTReal(TReal32 &aVal) const;
sl@0
   356
	IMPORT_C TInt GetTReal(TReal64 &aVal) const;
sl@0
   357
	IMPORT_C void SetZero(TBool aNegative=EFalse);
sl@0
   358
	IMPORT_C void SetNaN();
sl@0
   359
	IMPORT_C void SetInfinite(TBool aNegative);
sl@0
   360
	IMPORT_C TBool IsZero() const;
sl@0
   361
	IMPORT_C TBool IsNaN() const;
sl@0
   362
	IMPORT_C TBool IsInfinite() const;
sl@0
   363
	IMPORT_C TBool IsFinite() const;
sl@0
   364
	IMPORT_C const TRealX &operator+=(const TRealX &aVal);
sl@0
   365
	IMPORT_C const TRealX &operator-=(const TRealX &aVal);
sl@0
   366
	IMPORT_C const TRealX &operator*=(const TRealX &aVal);
sl@0
   367
	IMPORT_C const TRealX &operator/=(const TRealX &aVal);
sl@0
   368
	IMPORT_C const TRealX &operator%=(const TRealX &aVal);
sl@0
   369
	IMPORT_C TInt AddEq(const TRealX &aVal);
sl@0
   370
	IMPORT_C TInt SubEq(const TRealX &aVal);
sl@0
   371
	IMPORT_C TInt MultEq(const TRealX &aVal);
sl@0
   372
	IMPORT_C TInt DivEq(const TRealX &aVal);
sl@0
   373
	IMPORT_C TInt ModEq(const TRealX &aVal);
sl@0
   374
	IMPORT_C TRealX operator+() const;
sl@0
   375
	IMPORT_C TRealX operator-() const;
sl@0
   376
	IMPORT_C TRealX &operator++();
sl@0
   377
	IMPORT_C TRealX operator++(TInt);
sl@0
   378
	IMPORT_C TRealX &operator--();
sl@0
   379
	IMPORT_C TRealX operator--(TInt);
sl@0
   380
	IMPORT_C TRealX operator+(const TRealX &aVal) const;
sl@0
   381
	IMPORT_C TRealX operator-(const TRealX &aVal) const;
sl@0
   382
	IMPORT_C TRealX operator*(const TRealX &aVal) const;
sl@0
   383
	IMPORT_C TRealX operator/(const TRealX &aVal) const;
sl@0
   384
	IMPORT_C TRealX operator%(const TRealX &aVal) const;
sl@0
   385
	IMPORT_C TInt Add(TRealX& aResult,const TRealX &aVal) const;
sl@0
   386
	IMPORT_C TInt Sub(TRealX& aResult,const TRealX &aVal) const;
sl@0
   387
	IMPORT_C TInt Mult(TRealX& aResult,const TRealX &aVal) const;
sl@0
   388
	IMPORT_C TInt Div(TRealX& aResult,const TRealX &aVal) const;
sl@0
   389
	IMPORT_C TInt Mod(TRealX& aResult,const TRealX &aVal) const;
sl@0
   390
	IMPORT_C TRealXOrder Compare(const TRealX& aVal) const;
sl@0
   391
	inline TBool operator==(const TRealX &aVal) const;
sl@0
   392
	inline TBool operator!=(const TRealX &aVal) const;
sl@0
   393
	inline TBool operator>=(const TRealX &aVal) const;
sl@0
   394
	inline TBool operator<=(const TRealX &aVal) const;
sl@0
   395
	inline TBool operator>(const TRealX &aVal) const;
sl@0
   396
	inline TBool operator<(const TRealX &aVal) const;
sl@0
   397
public:
sl@0
   398
    /**
sl@0
   399
	The mantissa.
sl@0
   400
	*/
sl@0
   401
	// Represented as two adjacent 32 bit values, rather than one 64 value.
sl@0
   402
	// This is to avoid EABI introduced padding overheads and BC breakages. 
sl@0
   403
	// This representation works because the mantissa is always accessed from
sl@0
   404
	// assembler code as two 32 bit quantities. The C++ code that accesses it
sl@0
   405
	// now constructs an automatic TInt64 with the two components.
sl@0
   406
	TUint32 iMantLo;
sl@0
   407
	TUint32 iMantHi;
sl@0
   408
	
sl@0
   409
	/**
sl@0
   410
	The sign: 0 for +, 1 for -
sl@0
   411
	*/
sl@0
   412
	TInt8 iSign;	
sl@0
   413
	
sl@0
   414
	/**
sl@0
   415
	Flags: 0 for exact, 1 for rounded down, 2 for rounded up
sl@0
   416
	*/ 
sl@0
   417
	TUint8 iFlag;
sl@0
   418
	
sl@0
   419
	/**
sl@0
   420
	Exponent: biased by 32767, iExp=0 => zero, +65535 => infinity or NaN
sl@0
   421
	*/
sl@0
   422
	TUint16 iExp;
sl@0
   423
	};
sl@0
   424
sl@0
   425
sl@0
   426
sl@0
   427
sl@0
   428
struct SPoly
sl@0
   429
/**
sl@0
   430
@publishedAll
sl@0
   431
@released
sl@0
   432
sl@0
   433
A structure containing the set of coefficients for a polynomial.
sl@0
   434
sl@0
   435
@see Math::Poly
sl@0
   436
*/
sl@0
   437
    {
sl@0
   438
    TInt num;
sl@0
   439
	TReal c[1];
sl@0
   440
    };
sl@0
   441
sl@0
   442
sl@0
   443
sl@0
   444
sl@0
   445
class Math
sl@0
   446
/**
sl@0
   447
@publishedAll
sl@0
   448
@released
sl@0
   449
sl@0
   450
A collection of mathematical functions.
sl@0
   451
*/
sl@0
   452
	{
sl@0
   453
public:
sl@0
   454
	IMPORT_C static TInt ACos(TReal &aTrg,const TReal &aSrc);
sl@0
   455
	IMPORT_C static TInt ASin(TReal &aTrg,const TReal &aSrc);
sl@0
   456
	IMPORT_C static TInt ATan(TReal &aTrg,const TReal &aSrc);
sl@0
   457
	IMPORT_C static TInt ATan(TReal &aTrg,const TReal &aSrcY,const TReal &aSrcX);
sl@0
   458
	IMPORT_C static TInt Cos(TReal &aTrg,const TReal &aSrc);
sl@0
   459
	
sl@0
   460
	/**
sl@0
   461
	This function is not implemented by Symbian OS.
sl@0
   462
	*/
sl@0
   463
	IMPORT_C static TInt DtoR(TReal &aTrg,const TDesC &aSrc,TInt &aPos,const TChar aPoint);
sl@0
   464
	IMPORT_C static TInt Exp(TReal &aTrg,const TReal &aSrc);
sl@0
   465
	IMPORT_C static TInt Frac(TReal &aTrg,const TReal &aSrc);
sl@0
   466
	IMPORT_C static TInt Int(TReal &aTrg,const TReal &aSrc);
sl@0
   467
	IMPORT_C static TInt Int(TInt16 &aTrg,const TReal &aSrc);
sl@0
   468
	IMPORT_C static TInt Int(TInt32 &aTrg,const TReal &aSrc);
sl@0
   469
	IMPORT_C static TInt Log(TReal &aTrg,const TReal &aSrc);
sl@0
   470
	IMPORT_C static TInt Ln(TReal &aTrg,const TReal &aSrc);
sl@0
   471
	IMPORT_C static TInt Mod(TReal &aTrg,const TReal &aSrc,const TReal &aModulus);
sl@0
   472
	IMPORT_C static TReal Poly(TReal aVal,const SPoly *aPoly) __SOFTFP;
sl@0
   473
	IMPORT_C static TInt Pow(TReal &aTrg,const TReal &aSrc,const TReal &aPower);
sl@0
   474
	IMPORT_C static TInt Pow10(TReal &aTrg,const TInt exp);
sl@0
   475
	IMPORT_C static TInt Rand(TInt64 &aSeed);
sl@0
   476
	IMPORT_C static TReal FRand(TInt64 &aSeed) __SOFTFP;
sl@0
   477
	IMPORT_C static TUint32 Random();
sl@0
   478
	IMPORT_C static TInt Round(TReal &aTrg,const TReal &aSrc,TInt aDecimalPlaces);
sl@0
   479
	IMPORT_C static TInt Sin(TReal &aTrg,const TReal &aSrc); 
sl@0
   480
	IMPORT_C static TInt Sqrt(TReal &aTrg,const TReal &aSrc);
sl@0
   481
	IMPORT_C static TInt Tan(TReal &aTrg,const TReal &aSrc);
sl@0
   482
	IMPORT_C static TBool IsZero(const TReal &aVal);
sl@0
   483
	IMPORT_C static TBool IsNaN(const TReal &aVal);
sl@0
   484
	IMPORT_C static TBool IsInfinite(const TReal &aVal);
sl@0
   485
	IMPORT_C static TBool IsFinite(const TReal &aVal);
sl@0
   486
	IMPORT_C static void PolyX(TRealX& aY, const TRealX& aX, TInt aDeg, const TRealX *aCoef);
sl@0
   487
	static TInt MultPow10X(TRealX& aTrg, TInt aPower);
sl@0
   488
	IMPORT_C static void Mul64(Int64 aX, Int64 aY, Int64& aOutH, Uint64& aOutL);
sl@0
   489
	IMPORT_C static void UMul64(Uint64 aX, Uint64 aY, Uint64& aOutH, Uint64& aOutL);
sl@0
   490
	IMPORT_C static Int64 DivMod64(Int64 aDividend, Int64 aDivisor, Int64& aRemainder);
sl@0
   491
	IMPORT_C static Uint64 UDivMod64(Uint64 aDividend, Uint64 aDivisor, Uint64& aRemainder);
sl@0
   492
private:
sl@0
   493
	IMPORT_C static void SetZero(TReal &aVal,TInt aSign=0);
sl@0
   494
	IMPORT_C static void SetNaN(TReal &aVal);
sl@0
   495
	IMPORT_C static void SetInfinite(TReal &aVal,TInt aSign);
sl@0
   496
	};
sl@0
   497
sl@0
   498
#include <e32math.inl>
sl@0
   499
sl@0
   500
#endif // __E32MATH_H__