os/kernelhwsrv/kernel/eka/include/e32huffman.h
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// e32\include\e32huffman.h
sl@0
    15
// 
sl@0
    16
//
sl@0
    17
sl@0
    18
#include <e32std.h>
sl@0
    19
sl@0
    20
/** @file
sl@0
    21
	@internalTechnology
sl@0
    22
*/
sl@0
    23
sl@0
    24
/** Bit output stream.
sl@0
    25
	Good for writing bit streams for packed, compressed or huffman data algorithms.
sl@0
    26
sl@0
    27
	This class must be derived from and OverflowL() reimplemented if the bitstream data
sl@0
    28
	cannot be generated into a single memory buffer.
sl@0
    29
*/
sl@0
    30
class TBitOutput
sl@0
    31
	{
sl@0
    32
public:
sl@0
    33
	IMPORT_C TBitOutput();
sl@0
    34
	IMPORT_C TBitOutput(TUint8* aBuf,TInt aSize);
sl@0
    35
	inline void Set(TUint8* aBuf,TInt aSize);
sl@0
    36
	inline const TUint8* Ptr() const;
sl@0
    37
	inline TInt BufferedBits() const;
sl@0
    38
//
sl@0
    39
	IMPORT_C void WriteL(TUint aValue, TInt aLength);
sl@0
    40
	IMPORT_C void HuffmanL(TUint aHuffCode);
sl@0
    41
	IMPORT_C void PadL(TUint aPadding);
sl@0
    42
private:
sl@0
    43
	void DoWriteL(TUint aBits, TInt aSize);
sl@0
    44
	virtual void OverflowL();
sl@0
    45
private:
sl@0
    46
	TUint iCode;		// code in production
sl@0
    47
	TInt iBits;
sl@0
    48
	TUint8* iPtr;
sl@0
    49
	TUint8* iEnd;
sl@0
    50
	};
sl@0
    51
sl@0
    52
/** Set the memory buffer to use for output
sl@0
    53
sl@0
    54
	Data will be written to this buffer until it is full, at which point OverflowL() will
sl@0
    55
	be called. This should handle the data and then can Set() again to reset the buffer
sl@0
    56
	for further output.
sl@0
    57
	
sl@0
    58
	@param aBuf The buffer for output
sl@0
    59
	@param aSize The size of the buffer in bytes
sl@0
    60
*/
sl@0
    61
inline void TBitOutput::Set(TUint8* aBuf,TInt aSize)
sl@0
    62
	{iPtr=aBuf;iEnd=aBuf+aSize;}
sl@0
    63
	
sl@0
    64
/** Get the current write position in the output buffer
sl@0
    65
sl@0
    66
	In conjunction with the address of the buffer, which should be known to the
sl@0
    67
	caller, this describes the data in the bitstream.
sl@0
    68
*/
sl@0
    69
inline const TUint8* TBitOutput::Ptr() const
sl@0
    70
	{return iPtr;}
sl@0
    71
	
sl@0
    72
/** Get the number of bits that are buffered
sl@0
    73
sl@0
    74
	This reports the number of bits that have not yet been written into the
sl@0
    75
	output buffer. It will always lie in the range 0..7. Use PadL() to
sl@0
    76
	pad the data out to the next byte and write it to the buffer.
sl@0
    77
*/
sl@0
    78
inline TInt TBitOutput::BufferedBits() const
sl@0
    79
	{return iBits+8;}
sl@0
    80
sl@0
    81
sl@0
    82
/** Bit input stream. Good for reading bit streams for packed, compressed or huffman
sl@0
    83
	data algorithms.
sl@0
    84
*/
sl@0
    85
class TBitInput
sl@0
    86
	{
sl@0
    87
public:
sl@0
    88
	IMPORT_C TBitInput();
sl@0
    89
	IMPORT_C TBitInput(const TUint8* aPtr, TInt aLength, TInt aOffset=0);
sl@0
    90
	IMPORT_C void Set(const TUint8* aPtr, TInt aLength, TInt aOffset=0);
sl@0
    91
//
sl@0
    92
	IMPORT_C TUint ReadL();
sl@0
    93
	IMPORT_C TUint ReadL(TInt aSize);
sl@0
    94
	IMPORT_C TUint HuffmanL(const TUint32* aTree);
sl@0
    95
private:
sl@0
    96
	virtual void UnderflowL();
sl@0
    97
private:
sl@0
    98
	TInt iCount;
sl@0
    99
	TUint iBits;
sl@0
   100
	TInt iRemain;
sl@0
   101
	const TUint32* iPtr;
sl@0
   102
	};
sl@0
   103
sl@0
   104
/** Huffman code toolkit.
sl@0
   105
sl@0
   106
	This class builds a huffman encoding from a frequency table and builds
sl@0
   107
	a decoding tree from a code-lengths table
sl@0
   108
sl@0
   109
	The encoding generated is based on the rule that given two symbols s1 and s2, with 
sl@0
   110
	code length l1 and l2, and huffman codes h1 and h2:
sl@0
   111
sl@0
   112
		if l1<l2 then h1<h2 when compared lexicographically
sl@0
   113
		if l1==l2 and s1<s2 then h1<h2 ditto
sl@0
   114
sl@0
   115
	This allows the encoding to be stored compactly as a table of code lengths
sl@0
   116
*/
sl@0
   117
class Huffman
sl@0
   118
	{
sl@0
   119
public:
sl@0
   120
	enum {KMaxCodeLength=27};
sl@0
   121
	enum {KMetaCodes=KMaxCodeLength+1};
sl@0
   122
	enum {KMaxCodes=0x8000};
sl@0
   123
public:
sl@0
   124
	IMPORT_C static void HuffmanL(const TUint32 aFrequency[],TInt aNumCodes,TUint32 aHuffman[]);
sl@0
   125
	IMPORT_C static void Encoding(const TUint32 aHuffman[],TInt aNumCodes,TUint32 aEncodeTable[]);
sl@0
   126
	IMPORT_C static void Decoding(const TUint32 aHuffman[],TInt aNumCodes,TUint32 aDecodeTree[],TInt aSymbolBase=0);
sl@0
   127
	IMPORT_C static TBool IsValid(const TUint32 aHuffman[],TInt aNumCodes);
sl@0
   128
//
sl@0
   129
	IMPORT_C static void ExternalizeL(TBitOutput& aOutput,const TUint32 aHuffman[],TInt aNumCodes);
sl@0
   130
	IMPORT_C static void InternalizeL(TBitInput& aInput,TUint32 aHuffman[],TInt aNumCodes);
sl@0
   131
	};