os/kernelhwsrv/kernel/eka/include/drivers/usbcshared.h
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
// Copyright (c) 2000-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// e32\include\drivers\usbcshared.h
sl@0
    15
// Kernel side definitions for the USB Device driver stack (PIL + LDD).
sl@0
    16
// 
sl@0
    17
//
sl@0
    18
sl@0
    19
/**
sl@0
    20
 @file usbcshared.h
sl@0
    21
 @internalTechnology
sl@0
    22
*/
sl@0
    23
sl@0
    24
#ifndef __USBCSHARED_H__
sl@0
    25
#define __USBCSHARED_H__
sl@0
    26
sl@0
    27
#include <drivers/usbcque.h>
sl@0
    28
sl@0
    29
// Define here what options are required:
sl@0
    30
// (USB_SUPPORTS_CONTROLENDPOINTS and USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
sl@0
    31
//  have never been tested though...)
sl@0
    32
//#define USB_SUPPORTS_CONTROLENDPOINTS
sl@0
    33
//#define USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
sl@0
    34
sl@0
    35
#include <drivers/usbcdesc.h>
sl@0
    36
sl@0
    37
// Debug Support
sl@0
    38
sl@0
    39
// Use for debugging purposes only (commented out for normal operation):
sl@0
    40
//#define USBC_LDD_BUFFER_TRACE
sl@0
    41
sl@0
    42
static const char KUsbPILPanicCat[] = "USB PIL FAULT"; // kernel fault category
sl@0
    43
_LIT(KUsbPILKillCat, "USB PIL KILL");					// thread kill category
sl@0
    44
_LIT(KUsbLDDKillCat, "USB LDD KILL");					// thread kill category
sl@0
    45
sl@0
    46
/** Error code for stalled endpoint.
sl@0
    47
*/
sl@0
    48
const TInt KErrEndpointStall = KErrLocked;
sl@0
    49
sl@0
    50
/** Error code for Ep0 write prematurely ended by a host OUT token.
sl@0
    51
*/
sl@0
    52
const TInt KErrPrematureEnd = KErrDiskFull;
sl@0
    53
sl@0
    54
/** The following constants control the buffer arrangement for OUT transfers (IN transfers have only 1
sl@0
    55
	buffer). The total size of buffering for an OUT endpoint will be number of buffers * buffersize,
sl@0
    56
	so that, for example, a Bulk OUT endpoint will have KUsbcDmaBufNumBulk * KUsbcDmaBufSzBulk bytes of
sl@0
    57
	buffering.
sl@0
    58
	These buffers will be physically contiguous, so that DMA may be used.
sl@0
    59
	The number of buffers MUST be >=2 - otherwise the buffering scheme won't work.
sl@0
    60
	The buffer sizes should be an exact fraction of 4kB and the number of buffers such that the
sl@0
    61
	buffersize * number of buffers is an exact multiple of 4kB, otherwise memory will be wasted.
sl@0
    62
*/
sl@0
    63
/** Size of a Control ep buffer.
sl@0
    64
*/
sl@0
    65
const TInt KUsbcDmaBufSzControl = 1024;
sl@0
    66
sl@0
    67
/** Size of a Bulk ep buffer.
sl@0
    68
*/
sl@0
    69
const TInt KUsbcDmaBufSzBulk = 4096;
sl@0
    70
sl@0
    71
/** Size of an Interrupt ep buffer.
sl@0
    72
*/
sl@0
    73
const TInt KUsbcDmaBufSzInterrupt = 4096;
sl@0
    74
sl@0
    75
/** Size of an Isochronous ep buffer.
sl@0
    76
*/
sl@0
    77
const TInt KUsbcDmaBufSzIsochronous = 4096;
sl@0
    78
sl@0
    79
/** Number of buffers for Control OUT endpoints.
sl@0
    80
*/
sl@0
    81
const TInt KUsbcDmaBufNumControl = 2;
sl@0
    82
sl@0
    83
/** Number of buffers for Isochronous OUT endpoints.
sl@0
    84
*/
sl@0
    85
const TInt KUsbcDmaBufNumIsochronous = 2;
sl@0
    86
sl@0
    87
/** Number of buffers for Bulk OUT endpoints.
sl@0
    88
*/
sl@0
    89
const TInt KUsbcDmaBufNumBulk = 2;
sl@0
    90
sl@0
    91
/** Number of buffers for Interrupt OUT endpoints.
sl@0
    92
*/
sl@0
    93
const TInt KUsbcDmaBufNumInterrupt = 2;
sl@0
    94
sl@0
    95
/** Maximum buffer number.
sl@0
    96
*/
sl@0
    97
const TInt KUsbcDmaBufNumMax = MAX4(KUsbcDmaBufNumControl, KUsbcDmaBufNumIsochronous,
sl@0
    98
									KUsbcDmaBufNumBulk, KUsbcDmaBufNumInterrupt);
sl@0
    99
sl@0
   100
/** Maximum number of recorded packets possible.
sl@0
   101
*/
sl@0
   102
const TUint KUsbcDmaBufMaxPkts = 2;
sl@0
   103
sl@0
   104
/** Number of arrays.
sl@0
   105
*/
sl@0
   106
const TInt KUsbcDmaBufNumArrays = 2;
sl@0
   107
sl@0
   108
/** Max size that Ep0 packets might have.
sl@0
   109
*/
sl@0
   110
const TInt KUsbcBufSzControl = 64;
sl@0
   111
sl@0
   112
/** The Ep0 RX data collection buffer area.
sl@0
   113
	(Arbitrary size, judged to be sufficient for SET_DESCRIPTOR requests)
sl@0
   114
*/
sl@0
   115
const TInt KUsbcBufSz_Ep0Rx = 1024;
sl@0
   116
sl@0
   117
/** The Ep0 TX buffer area.
sl@0
   118
	(Size sufficient to hold as much data as can be requested via GET_DESCRIPTOR)
sl@0
   119
*/
sl@0
   120
const TInt KUsbcBufSz_Ep0Tx = 1024 * 64; 
sl@0
   121
sl@0
   122
sl@0
   123
/** The USB version the stack is compliant with: 2.0 (BCD).
sl@0
   124
*/
sl@0
   125
const TUint16 KUsbcUsbVersion = 0x0200;
sl@0
   126
sl@0
   127
/** Maximum number of endpoints an interface (i.e. LDD) may have.
sl@0
   128
*/
sl@0
   129
const TInt KUsbcMaxEpNumber = 5;
sl@0
   130
sl@0
   131
/** Status FIFO depth; enough for 2 complete configs.
sl@0
   132
*/
sl@0
   133
const TInt KUsbDeviceStatusQueueDepth = 15;
sl@0
   134
sl@0
   135
/** = 'no status info'.
sl@0
   136
*/
sl@0
   137
const TUint32 KUsbDeviceStatusNull = 0xffffffffu;
sl@0
   138
sl@0
   139
/** = 'no buffer available'.
sl@0
   140
*/
sl@0
   141
const TInt KUsbcInvalidBufferIndex = -1;
sl@0
   142
sl@0
   143
/** = 'no packet available'.
sl@0
   144
*/
sl@0
   145
const TUint KUsbcInvalidPacketIndex = (TUint)(-1);
sl@0
   146
sl@0
   147
/** = 'no drainable buffers'.
sl@0
   148
*/
sl@0
   149
const TInt KUsbcInvalidDrainQueueIndex = -1;
sl@0
   150
sl@0
   151
/** Number of possible bandwidth priorities.
sl@0
   152
*/
sl@0
   153
const TInt KUsbcDmaBufMaxPriorities = 4;
sl@0
   154
sl@0
   155
// The following buffer sizes are used within the LDD for the different
sl@0
   156
// user-selectable endpoint bandwidth priorities
sl@0
   157
// (EUsbcBandwidthOUTDefault/Plus1/Plus2/Maximum + the same for 'IN').
sl@0
   158
// These values, in particular those for the Maximum setting, were obtained
sl@0
   159
// empirically.
sl@0
   160
sl@0
   161
/** Bulk IN buffer sizes for different priorities (4K, 16K, 64K, 512K).
sl@0
   162
*/
sl@0
   163
const TInt KUsbcDmaBufSizesBulkIN[KUsbcDmaBufMaxPriorities] =
sl@0
   164
	{KUsbcDmaBufSzBulk, 0x4000, 0x10000, 0x80000};
sl@0
   165
sl@0
   166
/** Bulk OUT buffer sizes for different priorities (4K, 16K, 64K, 512K).
sl@0
   167
*/
sl@0
   168
const TInt KUsbcDmaBufSizesBulkOUT[KUsbcDmaBufMaxPriorities] =
sl@0
   169
	{KUsbcDmaBufSzBulk, 0x4000, 0x10000, 0x80000};
sl@0
   170
sl@0
   171
/** Number of UDCs supported in the system.
sl@0
   172
	(Support for more than one UDC is preliminary.)
sl@0
   173
*/
sl@0
   174
const TInt KUsbcMaxUdcs = 2;
sl@0
   175
sl@0
   176
/** Number of endpoints a USB device can have.
sl@0
   177
	(30 regular endpoints + 2 x Ep0)
sl@0
   178
*/
sl@0
   179
const TInt KUsbcEpArraySize = KUsbcMaxEndpoints + 2;
sl@0
   180
sl@0
   181
/** Number of notification requests of the same kind that can be registered at
sl@0
   182
	a time. As normally not more than one request per kind per LDD is
sl@0
   183
	permitted, this number is roughly equivalent to the maximum number of LDDs
sl@0
   184
	that can be operating at the same time.
sl@0
   185
	This constant is used by the PIL while maintaining its request lists
sl@0
   186
	(iClientCallbacks, iStatusCallbacks, iEpStatusCallbacks, iOtgCallbacks) to
sl@0
   187
	ensure that the lists are of a finite length and thus the list traverse
sl@0
   188
	time is bounded.
sl@0
   189
	This value is chosen with the maximum number of USB interfaces (not
sl@0
   190
	settings) allowed by the spec for a single device in mind.
sl@0
   191
*/
sl@0
   192
const TInt KUsbcMaxListLength = 256;
sl@0
   193
sl@0
   194
/** Used by the LDD.
sl@0
   195
*/
sl@0
   196
typedef TUint32 TUsbcPacketArray;
sl@0
   197
sl@0
   198
sl@0
   199
/** Used as a return value from DUsbClientController::EnquireEp0NextState(),
sl@0
   200
	the purpose of which is to enable the PSL to find out what the next stage
sl@0
   201
	will be for a newly received Setup packet.
sl@0
   202
sl@0
   203
	The enum values are self-explanatory.
sl@0
   204
sl@0
   205
	@publishedPartner
sl@0
   206
	@released
sl@0
   207
*/
sl@0
   208
enum TUsbcEp0State
sl@0
   209
	{
sl@0
   210
	EEp0StateDataIn,
sl@0
   211
	EEp0StateDataOut,
sl@0
   212
	EEp0StateStatusIn
sl@0
   213
	};
sl@0
   214
sl@0
   215
sl@0
   216
/** Used to show the direction of a transfer request to the Controller.
sl@0
   217
sl@0
   218
	@see TUsbcRequestCallback
sl@0
   219
*/
sl@0
   220
enum TTransferDirection {EControllerNone, EControllerRead, EControllerWrite};
sl@0
   221
sl@0
   222
sl@0
   223
/** These event codes are used by the PSL to tell the PIL what has happened.
sl@0
   224
sl@0
   225
	@publishedPartner
sl@0
   226
	@released
sl@0
   227
*/
sl@0
   228
enum TUsbcDeviceEvent
sl@0
   229
	{
sl@0
   230
	/** The USB Suspend bus state has been detected. */
sl@0
   231
	EUsbEventSuspend,
sl@0
   232
	/** USB Resume signalling has been detected. */
sl@0
   233
	EUsbEventResume,
sl@0
   234
	/** A USB Reset condition has been detected. */
sl@0
   235
	EUsbEventReset,
sl@0
   236
	/** Physical removal of the USB cable has been detected. */
sl@0
   237
	EUsbEventCableRemoved,
sl@0
   238
	/** Physical insertion of the USB cable has been detected. */
sl@0
   239
	EUsbEventCableInserted
sl@0
   240
	};
sl@0
   241
sl@0
   242
sl@0
   243
/** USB LDD client callback.
sl@0
   244
*/
sl@0
   245
class TUsbcClientCallback
sl@0
   246
    {
sl@0
   247
public:
sl@0
   248
	inline TUsbcClientCallback(DBase* aOwner, TDfcFn aCallback, TInt aPriority);
sl@0
   249
	inline DBase* Owner() const;
sl@0
   250
	inline TInt DoCallback();
sl@0
   251
	inline void Cancel();
sl@0
   252
	inline void SetDfcQ(TDfcQue* aDfcQ);
sl@0
   253
public:
sl@0
   254
	/** Used by the PIL to queue callback objects into a TSglQue. */
sl@0
   255
	TSglQueLink iLink;
sl@0
   256
private:
sl@0
   257
	DBase* iOwner;
sl@0
   258
	TDfc iDfc;
sl@0
   259
    };
sl@0
   260
sl@0
   261
sl@0
   262
/** The endpoint halt/clear_halt status.
sl@0
   263
*/
sl@0
   264
class TUsbcEndpointStatusCallback
sl@0
   265
	{
sl@0
   266
public:
sl@0
   267
	inline TUsbcEndpointStatusCallback(DBase* aOwner, TDfcFn aCallback, TInt aPriority);
sl@0
   268
	inline void SetState(TUint aState);
sl@0
   269
	inline TUint State() const;
sl@0
   270
	inline DBase* Owner() const;
sl@0
   271
	inline TInt DoCallback();
sl@0
   272
	inline void Cancel();
sl@0
   273
	inline void SetDfcQ(TDfcQue* aDfcQ);
sl@0
   274
public:
sl@0
   275
	/** Used by the PIL to queue callback objects into a TSglQue. */
sl@0
   276
	TSglQueLink iLink;
sl@0
   277
private:
sl@0
   278
	DBase* iOwner;
sl@0
   279
	TDfc iDfc;
sl@0
   280
	TUint iState;
sl@0
   281
	};
sl@0
   282
sl@0
   283
sl@0
   284
/** Maximum number of device status requests that can be queued at a time.
sl@0
   285
	The value chosen is thought to be sufficient in all situations.
sl@0
   286
*/
sl@0
   287
const TInt KUsbcDeviceStateRequests = 8;
sl@0
   288
sl@0
   289
sl@0
   290
/** The USB device status.
sl@0
   291
*/
sl@0
   292
class TUsbcStatusCallback
sl@0
   293
	{
sl@0
   294
public:
sl@0
   295
	inline TUsbcStatusCallback(DBase* aOwner, TDfcFn aCallback, TInt aPriority);
sl@0
   296
	inline void SetState(TUsbcDeviceState aState);
sl@0
   297
	inline TUsbcDeviceState State(TInt aIndex) const;
sl@0
   298
	inline void ResetState();
sl@0
   299
	inline DBase* Owner() const;
sl@0
   300
	inline TInt DoCallback();
sl@0
   301
	inline void Cancel();
sl@0
   302
	inline void SetDfcQ(TDfcQue* aDfcQ);
sl@0
   303
public:
sl@0
   304
	/** Used by the PIL to queue callback objects into a TSglQue. */
sl@0
   305
	TSglQueLink iLink;
sl@0
   306
private:
sl@0
   307
	DBase* iOwner;
sl@0
   308
	TDfc iDfc;
sl@0
   309
	TUsbcDeviceState iState[KUsbcDeviceStateRequests];
sl@0
   310
	};
sl@0
   311
sl@0
   312
sl@0
   313
/** A USB transfer request.
sl@0
   314
sl@0
   315
	@publishedPartner
sl@0
   316
	@released
sl@0
   317
*/
sl@0
   318
class TUsbcRequestCallback
sl@0
   319
	{
sl@0
   320
public:
sl@0
   321
	/** @internalTechnology */
sl@0
   322
	inline TUsbcRequestCallback(const DBase* aOwner, TInt aEndpointNum, TDfcFn aDfcFunc,
sl@0
   323
						 TAny* aEndpoint, TDfcQue* aDfcQ, TInt aPriority);
sl@0
   324
	/** @internalTechnology	*/
sl@0
   325
	inline ~TUsbcRequestCallback();
sl@0
   326
	/** @internalTechnology	*/
sl@0
   327
	inline void SetRxBufferInfo(TUint8* aBufferStart, TPhysAddr aBufferAddr,
sl@0
   328
								TUsbcPacketArray* aPacketIndex, TUsbcPacketArray* aPacketSize,
sl@0
   329
								TInt aLength);
sl@0
   330
	/** @internalTechnology	*/
sl@0
   331
	inline void SetTxBufferInfo(TUint8* aBufferStart, TPhysAddr aBufferAddr, TInt aLength);
sl@0
   332
	/** @internalTechnology	*/
sl@0
   333
	inline void SetTransferDirection(TTransferDirection aTransferDir);
sl@0
   334
	/** @internalTechnology	*/
sl@0
   335
	inline const DBase* Owner() const;
sl@0
   336
	/** @internalTechnology	*/
sl@0
   337
	inline TInt DoCallback();
sl@0
   338
	/** @internalTechnology	*/
sl@0
   339
	inline void Cancel();
sl@0
   340
public:
sl@0
   341
	/** Used by the PIL to queue callback objects into a TSglQue.
sl@0
   342
		@internalTechnology
sl@0
   343
	*/
sl@0
   344
	TSglQueLink iLink;
sl@0
   345
public:
sl@0
   346
	/** The endpoint number. */
sl@0
   347
	const TInt iEndpointNum;
sl@0
   348
	/** The 'real' endpoint number, as used by the PDD. */
sl@0
   349
	TInt iRealEpNum;
sl@0
   350
	/** Indicates the LDD client for this transfer. */
sl@0
   351
	const DBase* const iOwner;
sl@0
   352
	/** DFC, used by PIL to call back the LDD when transfer completes to the LDD. */
sl@0
   353
	TDfc iDfc;
sl@0
   354
	/** Direction of transfer request. */
sl@0
   355
	TTransferDirection iTransferDir;
sl@0
   356
	/** Start address of this buffer. */
sl@0
   357
	TUint8* iBufferStart;
sl@0
   358
	/** Physical address of buffer start (used for DMA). */
sl@0
   359
	TPhysAddr iBufferAddr;
sl@0
   360
	/** Array of pointers into iBufferStart (actually TUsbcPacketArray (*)[]). */
sl@0
   361
	TUsbcPacketArray* iPacketIndex;
sl@0
   362
	/** Array of packet sizes (actually TUsbcPacketArray (*)[]). */
sl@0
   363
	TUsbcPacketArray* iPacketSize;
sl@0
   364
	/** Length in bytes of buffer (iBufferStart). */
sl@0
   365
	TInt iLength;
sl@0
   366
	/** For IN transfers, if a zlp might be required at the end of this transfer. */
sl@0
   367
	TBool iZlpReqd;
sl@0
   368
	/** Number of bytes transmitted; changed by the PSL. */
sl@0
   369
	TUint iTxBytes;
sl@0
   370
	/** Number of packets received (if it is a read); changed by the PSL. */
sl@0
   371
	TUint iRxPackets;
sl@0
   372
	/** The error code upon completion of the request; changed by the PSL. */
sl@0
   373
	TInt iError;
sl@0
   374
	};
sl@0
   375
sl@0
   376
/** USB On-The-Go feature change callback.
sl@0
   377
*/
sl@0
   378
class TUsbcOtgFeatureCallback
sl@0
   379
    {
sl@0
   380
public:
sl@0
   381
	inline TUsbcOtgFeatureCallback(DBase* aOwner, TDfcFn aCallback, TInt aPriority);
sl@0
   382
	inline void SetFeatures(TUint8 aFeatures);
sl@0
   383
	inline TUint8 Features() const;
sl@0
   384
	inline DBase* Owner() const;
sl@0
   385
	inline TInt DoCallback();
sl@0
   386
	inline void Cancel();
sl@0
   387
	inline void SetDfcQ(TDfcQue* aDfcQ);
sl@0
   388
public:
sl@0
   389
	/** Used by the PIL to queue callback objects into a TSglQue. */
sl@0
   390
	TSglQueLink iLink;
sl@0
   391
private:
sl@0
   392
	DBase* iOwner;
sl@0
   393
	TDfc iDfc;
sl@0
   394
	TUint8 iValue;
sl@0
   395
    };
sl@0
   396
sl@0
   397
//
sl@0
   398
//########################### Physical Device Driver (PIL + PSL) ######################
sl@0
   399
//
sl@0
   400
sl@0
   401
class TUsbcLogicalEndpoint;
sl@0
   402
sl@0
   403
/** This models a physical (real) endpoint of the UDC.
sl@0
   404
*/
sl@0
   405
class TUsbcPhysicalEndpoint
sl@0
   406
	{
sl@0
   407
public:
sl@0
   408
	TUsbcPhysicalEndpoint();
sl@0
   409
	~TUsbcPhysicalEndpoint();
sl@0
   410
	TBool EndpointSuitable(const TUsbcEndpointInfo* aEpInfo, TInt aIfcNumber) const; // Check Todo, SC will pass pointer to derived class
sl@0
   411
	TInt TypeAvailable(TUint aType) const;
sl@0
   412
	TInt DirAvailable(TUint aDir) const;
sl@0
   413
public:
sl@0
   414
	/** This endpoint's capabilities. */
sl@0
   415
	TUsbcEndpointCaps iCaps;
sl@0
   416
	/** USB address: 0x00, 0x80, 0x01, 0x81, etc. */
sl@0
   417
	TUint8 iEndpointAddr;
sl@0
   418
	/** Pointer to interface # this endpoint has been assigned to. */
sl@0
   419
	const TUint8* iIfcNumber;
sl@0
   420
	/** Pointer to corresponding logical endpoint or NULL. */
sl@0
   421
	const TUsbcLogicalEndpoint* iLEndpoint;
sl@0
   422
	/** Only used when searching for available endpoints. */
sl@0
   423
	TBool iSettingReserve;
sl@0
   424
	/** True if endpoint is halted (i.e. issues STALL handshakes), false otherwise. */
sl@0
   425
	TBool iHalt;
sl@0
   426
	};
sl@0
   427
sl@0
   428
sl@0
   429
class DUsbClientController;
sl@0
   430
class TUsbcInterface;
sl@0
   431
sl@0
   432
/** This is a 'logical' endpoint, as used by our device configuration model.
sl@0
   433
*/
sl@0
   434
class TUsbcLogicalEndpoint
sl@0
   435
	{
sl@0
   436
public:
sl@0
   437
	TUsbcLogicalEndpoint(DUsbClientController* aController, TUint aEndpointNum,
sl@0
   438
						 const TUsbcEndpointInfo& aEpInfo, TUsbcInterface* aInterface,
sl@0
   439
						 TUsbcPhysicalEndpoint* aPEndpoint);		// Check Todo, SC will pass pointer to derived class
sl@0
   440
	~TUsbcLogicalEndpoint();
sl@0
   441
public:
sl@0
   442
	/** Pointer to controller object. */
sl@0
   443
	DUsbClientController* iController;
sl@0
   444
	/** The virtual (logical) endpoint number. */
sl@0
   445
	const TInt iLEndpointNum;
sl@0
   446
	/** This endpoint's info structure. */
sl@0
   447
	TUsbcEndpointInfo iInfo;										// Check Todo, SC will pass pointer to derived class
sl@0
   448
	/** Stores the endpoint size to be used for FS. */
sl@0
   449
	TInt iEpSize_Fs;
sl@0
   450
	/** Stores the endpoint size to be used for HS. */
sl@0
   451
	TInt iEpSize_Hs;
sl@0
   452
	/** 'Back' pointer. */
sl@0
   453
	const TUsbcInterface* iInterface;
sl@0
   454
	/** Pointer to corresponding physical endpoint, never NULL. */
sl@0
   455
	TUsbcPhysicalEndpoint* const iPEndpoint;
sl@0
   456
	};
sl@0
   457
sl@0
   458
sl@0
   459
class TUsbcInterfaceSet;
sl@0
   460
sl@0
   461
/** This is an 'alternate setting' of an interface.
sl@0
   462
*/
sl@0
   463
class TUsbcInterface
sl@0
   464
	{
sl@0
   465
public:
sl@0
   466
	TUsbcInterface(TUsbcInterfaceSet* aIfcSet, TUint8 aSetting, TBool aNoEp0Requests);
sl@0
   467
	~TUsbcInterface();
sl@0
   468
public:
sl@0
   469
	/** Array of endpoints making up (belonging to) this setting. */
sl@0
   470
	RPointerArray<TUsbcLogicalEndpoint> iEndpoints;
sl@0
   471
	/** 'Back' pointer. */
sl@0
   472
	TUsbcInterfaceSet* const iInterfaceSet;
sl@0
   473
	/** bAlternateSetting (zero-based). */
sl@0
   474
	const TUint8 iSettingCode;
sl@0
   475
	/** KUsbcInterfaceInfo_NoEp0RequestsPlease: stall non-std Setup requests. */
sl@0
   476
	const TBool iNoEp0Requests;
sl@0
   477
	};
sl@0
   478
sl@0
   479
sl@0
   480
/** This is an 'interface' (owning 1 or more alternate settings).
sl@0
   481
sl@0
   482
	@see TUsbcInterface
sl@0
   483
*/
sl@0
   484
class TUsbcInterfaceSet
sl@0
   485
	{
sl@0
   486
public:
sl@0
   487
	TUsbcInterfaceSet(const DBase* aClientId, TUint8 aIfcNum);
sl@0
   488
	~TUsbcInterfaceSet();
sl@0
   489
	inline const TUsbcInterface* CurrentInterface() const;
sl@0
   490
	inline TUsbcInterface* CurrentInterface();
sl@0
   491
public:
sl@0
   492
	/** Array of alternate settings provided by (belonging to) this interface. */
sl@0
   493
	RPointerArray<TUsbcInterface> iInterfaces;
sl@0
   494
	/** Pointer to the LDD which created and owns this interface. */
sl@0
   495
	const DBase* const iClientId;
sl@0
   496
	/** bInterfaceNumber (zero-based). */
sl@0
   497
	TUint8 iInterfaceNumber;
sl@0
   498
	/** bAlternateSetting (zero-based). */
sl@0
   499
	TUint8 iCurrentInterface;
sl@0
   500
	};
sl@0
   501
sl@0
   502
sl@0
   503
/** This is a 'configuration' of the USB device.
sl@0
   504
	Currently we support only one configuration.
sl@0
   505
*/
sl@0
   506
class TUsbcConfiguration
sl@0
   507
	{
sl@0
   508
public:
sl@0
   509
	TUsbcConfiguration(TUint8 aConfigVal);
sl@0
   510
	~TUsbcConfiguration();
sl@0
   511
public:
sl@0
   512
	/** Array of interfaces making up (belonging to) this configuration. */
sl@0
   513
	RPointerArray<TUsbcInterfaceSet> iInterfaceSets;
sl@0
   514
	/** bConfigurationValue (one-based). */
sl@0
   515
	const TUint8 iConfigValue;
sl@0
   516
	};
sl@0
   517
sl@0
   518
sl@0
   519
/** A USB Setup packet.
sl@0
   520
sl@0
   521
	Used mainly internally by the PIL but also by
sl@0
   522
	DUsbClientController::ProcessSetConfiguration(const TUsbcSetup&),
sl@0
   523
	which is classified as publishedPartner.
sl@0
   524
sl@0
   525
	@publishedPartner @released
sl@0
   526
*/
sl@0
   527
struct TUsbcSetup
sl@0
   528
	{
sl@0
   529
	/** bmRequestType */
sl@0
   530
	TUint8 iRequestType;
sl@0
   531
	/** bRequest */
sl@0
   532
	TUint8 iRequest;
sl@0
   533
	/** wValue */
sl@0
   534
	TUint16 iValue;
sl@0
   535
	/** wIndex */
sl@0
   536
	TUint16 iIndex;
sl@0
   537
	/** wLength */
sl@0
   538
	TUint16 iLength;
sl@0
   539
	};
sl@0
   540
sl@0
   541
sl@0
   542
/** The USB controller's power handler class.
sl@0
   543
*/
sl@0
   544
class DUsbcPowerHandler : public DPowerHandler
sl@0
   545
	{
sl@0
   546
public:
sl@0
   547
	void PowerUp();
sl@0
   548
	void PowerDown(TPowerState);
sl@0
   549
public:
sl@0
   550
	DUsbcPowerHandler(DUsbClientController* aController);
sl@0
   551
private:
sl@0
   552
	DUsbClientController* iController;
sl@0
   553
	};
sl@0
   554
sl@0
   555
sl@0
   556
/*
sl@0
   557
This is the EndpointInfo class used by the usb shared chunk client driver. 
sl@0
   558
*/
sl@0
   559
sl@0
   560
class TUsbcScEndpointInfo;
sl@0
   561
sl@0
   562
sl@0
   563
/**
sl@0
   564
Used to represent an array of (or inheriting from) TUsbcEndpointInfo objects.
sl@0
   565
sl@0
   566
@see DUsbClientController::SetInterface
sl@0
   567
*/
sl@0
   568
sl@0
   569
class TUsbcEndpointInfoArray
sl@0
   570
	{
sl@0
   571
public:
sl@0
   572
	typedef enum {EUsbcEndpointInfo, EUsbcScEndpointInfo} TArrayType;
sl@0
   573
sl@0
   574
	TUsbcEndpointInfoArray(const TUsbcEndpointInfo* aData, TInt aDataSize=0);
sl@0
   575
	TUsbcEndpointInfoArray(const TUsbcScEndpointInfo* aData, TInt aDataSize=0);
sl@0
   576
	inline TUsbcEndpointInfo& operator[](TInt aIndex) const; 
sl@0
   577
sl@0
   578
	TArrayType iType;
sl@0
   579
private:
sl@0
   580
	TUint8* iData;
sl@0
   581
	TInt iDataSize;
sl@0
   582
	};
sl@0
   583
sl@0
   584
class TUsbcRequestCallback; // todo?? required only for class below
sl@0
   585
sl@0
   586
/** The USB Device software controller class.
sl@0
   587
sl@0
   588
	Implements the platform-independent layer (PIL), and defines the interface to the
sl@0
   589
	platform-specific layer PSL).
sl@0
   590
sl@0
   591
	The implementation of the platform-specific layer interfaces with the hardware.
sl@0
   592
*/
sl@0
   593
class DUsbClientController : public DBase
sl@0
   594
	{
sl@0
   595
friend class DUsbcPowerHandler;
sl@0
   596
friend TUsbcLogicalEndpoint::~TUsbcLogicalEndpoint();
sl@0
   597
	//
sl@0
   598
	// --- Platform Independent Layer (PIL) ---
sl@0
   599
	//
sl@0
   600
sl@0
   601
public:
sl@0
   602
sl@0
   603
	//
sl@0
   604
	// --- The following functions constitute the PIL interface to the LDD ---
sl@0
   605
	//
sl@0
   606
sl@0
   607
	virtual ~DUsbClientController();
sl@0
   608
	IMPORT_C void DisableClientStack();
sl@0
   609
	IMPORT_C void EnableClientStack();
sl@0
   610
	IMPORT_C TBool IsActive();
sl@0
   611
	IMPORT_C TInt RegisterClientCallback(TUsbcClientCallback& aCallback);
sl@0
   612
	IMPORT_C static DUsbClientController* UsbcControllerPointer(TInt aUdc=0);
sl@0
   613
	IMPORT_C void EndpointCaps(const DBase* aClientId, TDes8 &aCapsBuf) const;
sl@0
   614
	IMPORT_C void DeviceCaps(const DBase* aClientId, TDes8 &aCapsBuf) const;
sl@0
   615
	IMPORT_C TInt SetInterface(const DBase* aClientId, DThread* aThread, TInt aInterfaceNum,
sl@0
   616
							   TUsbcClassInfo& aClass, TDesC8* aString, TInt aTotalEndpointsUsed,
sl@0
   617
							   const TUsbcEndpointInfo aEndpointData[], TInt (*aRealEpNumbers)[6],
sl@0
   618
							   TUint32 aFeatureWord);
sl@0
   619
	IMPORT_C TInt SetInterface(const DBase* aClientId, DThread* aThread,
sl@0
   620
												 TInt aInterfaceNum, TUsbcClassInfo& aClass,
sl@0
   621
												 TDesC8* aString, TInt aTotalEndpointsUsed,
sl@0
   622
												 const TUsbcEndpointInfoArray aEndpointData,
sl@0
   623
												 TInt aRealEpNumbers[], TUint32 aFeatureWord);
sl@0
   624
	IMPORT_C TInt ReleaseInterface(const DBase* aClientId, TInt aInterfaceNum);
sl@0
   625
	IMPORT_C TInt ReEnumerate();
sl@0
   626
	IMPORT_C TInt PowerUpUdc();
sl@0
   627
	IMPORT_C TInt UsbConnect();
sl@0
   628
	IMPORT_C TInt UsbDisconnect();
sl@0
   629
	IMPORT_C TInt RegisterForStatusChange(TUsbcStatusCallback& aCallback);
sl@0
   630
	IMPORT_C TInt DeRegisterForStatusChange(const DBase* aClientId);
sl@0
   631
	IMPORT_C TInt RegisterForEndpointStatusChange(TUsbcEndpointStatusCallback& aCallback);
sl@0
   632
	IMPORT_C TInt DeRegisterForEndpointStatusChange(const DBase* aClientId);
sl@0
   633
	IMPORT_C TInt GetInterfaceNumber(const DBase* aClientId, TInt& aInterfaceNum) const;
sl@0
   634
	IMPORT_C TInt DeRegisterClient(const DBase* aClientId);
sl@0
   635
	IMPORT_C TInt Ep0PacketSize() const;
sl@0
   636
	IMPORT_C TInt Ep0Stall(const DBase* aClientId);
sl@0
   637
	IMPORT_C void SendEp0StatusPacket(const DBase* aClientId);
sl@0
   638
	IMPORT_C TUsbcDeviceState GetDeviceStatus() const;
sl@0
   639
	IMPORT_C TEndpointState GetEndpointStatus(const DBase* aClientId, TInt aEndpointNum) const;
sl@0
   640
	IMPORT_C TInt SetupReadBuffer(TUsbcRequestCallback& aCallback);
sl@0
   641
	IMPORT_C TInt SetupWriteBuffer(TUsbcRequestCallback& aCallback);
sl@0
   642
	IMPORT_C void CancelReadBuffer(const DBase* aClientId, TInt aRealEndpoint);
sl@0
   643
	IMPORT_C void CancelWriteBuffer(const DBase* aClientId, TInt aRealEndpoint);
sl@0
   644
	IMPORT_C TInt HaltEndpoint(const DBase* aClientId, TInt aEndpointNum);
sl@0
   645
	IMPORT_C TInt ClearHaltEndpoint(const DBase* aClientId, TInt aEndpointNum);
sl@0
   646
	IMPORT_C TInt SetDeviceControl(const DBase* aClientId);
sl@0
   647
	IMPORT_C TInt ReleaseDeviceControl(const DBase* aClientId);
sl@0
   648
	IMPORT_C TUint EndpointZeroMaxPacketSizes() const;
sl@0
   649
	IMPORT_C TInt SetEndpointZeroMaxPacketSize(TInt aMaxPacketSize);
sl@0
   650
	IMPORT_C TInt GetDeviceDescriptor(DThread* aThread, TDes8& aDeviceDescriptor);
sl@0
   651
	IMPORT_C TInt SetDeviceDescriptor(DThread* aThread, const TDes8& aDeviceDescriptor);
sl@0
   652
	IMPORT_C TInt GetDeviceDescriptorSize(DThread* aThread, TDes8& aSize);
sl@0
   653
	IMPORT_C TInt GetConfigurationDescriptor(DThread* aThread, TDes8& aConfigurationDescriptor);
sl@0
   654
	IMPORT_C TInt SetConfigurationDescriptor(DThread* aThread, const TDes8& aConfigurationDescriptor);
sl@0
   655
	IMPORT_C TInt GetConfigurationDescriptorSize(DThread* aThread, TDes8& aSize);
sl@0
   656
	IMPORT_C TInt SetOtgDescriptor(DThread* aThread, const TDesC8& aOtgDesc);
sl@0
   657
	IMPORT_C TInt GetOtgDescriptor(DThread* aThread, TDes8& aOtgDesc) const;
sl@0
   658
	IMPORT_C TInt GetOtgFeatures(DThread* aThread, TDes8& aFeatures) const;
sl@0
   659
	IMPORT_C TInt GetCurrentOtgFeatures(TUint8& aFeatures) const;
sl@0
   660
	IMPORT_C TInt RegisterForOtgFeatureChange(TUsbcOtgFeatureCallback& aCallback);
sl@0
   661
	IMPORT_C TInt DeRegisterForOtgFeatureChange(const DBase* aClientId);
sl@0
   662
	IMPORT_C TInt GetInterfaceDescriptor(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   663
										 TDes8& aInterfaceDescriptor);
sl@0
   664
	IMPORT_C TInt SetInterfaceDescriptor(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   665
										 const TDes8& aInterfaceDescriptor);
sl@0
   666
	IMPORT_C TInt GetInterfaceDescriptorSize(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   667
											 TDes8& aSize);
sl@0
   668
	IMPORT_C TInt GetEndpointDescriptor(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   669
										TInt aEndpointNum, TDes8& aEndpointDescriptor);
sl@0
   670
	IMPORT_C TInt SetEndpointDescriptor(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   671
										TInt aEndpointNum, const TDes8& aEndpointDescriptor);
sl@0
   672
	IMPORT_C TInt GetEndpointDescriptorSize(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   673
											TInt aEndpointNum, TDes8& aSize);
sl@0
   674
	IMPORT_C TInt GetDeviceQualifierDescriptor(DThread* aThread, TDes8& aDeviceQualifierDescriptor);
sl@0
   675
	IMPORT_C TInt SetDeviceQualifierDescriptor(DThread* aThread, const TDes8& aDeviceQualifierDescriptor);
sl@0
   676
	IMPORT_C TInt GetOtherSpeedConfigurationDescriptor(DThread* aThread, TDes8& aConfigurationDescriptor);
sl@0
   677
	IMPORT_C TInt SetOtherSpeedConfigurationDescriptor(DThread* aThread, const TDes8& aConfigurationDescriptor);
sl@0
   678
	IMPORT_C TInt GetCSInterfaceDescriptorBlock(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   679
												TDes8& aInterfaceDescriptor);
sl@0
   680
	IMPORT_C TInt SetCSInterfaceDescriptorBlock(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   681
												const TDes8& aInterfaceDescriptor, TInt aSize);
sl@0
   682
	IMPORT_C TInt GetCSInterfaceDescriptorBlockSize(DThread* aThread, const DBase* aClientId,
sl@0
   683
													TInt aSettingNum, TDes8& aSize);
sl@0
   684
	IMPORT_C TInt GetCSEndpointDescriptorBlock(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   685
											   TInt aEndpointNum, TDes8& aEndpointDescriptor);
sl@0
   686
	IMPORT_C TInt SetCSEndpointDescriptorBlock(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   687
											   TInt aEndpointNum, const TDes8& aEndpointDescriptor,
sl@0
   688
											   TInt aSize);
sl@0
   689
	IMPORT_C TInt GetCSEndpointDescriptorBlockSize(DThread* aThread, const DBase* aClientId, TInt aSettingNum,
sl@0
   690
												   TInt aEndpointNum, TDes8& aSize);
sl@0
   691
	IMPORT_C TInt GetStringDescriptorLangId(DThread* aThread, TDes8& aLangId);
sl@0
   692
	IMPORT_C TInt SetStringDescriptorLangId(TUint16 aLangId);
sl@0
   693
	IMPORT_C TInt GetManufacturerStringDescriptor(DThread* aThread, TDes8& aString);
sl@0
   694
	IMPORT_C TInt SetManufacturerStringDescriptor(DThread* aThread, const TDes8& aString);
sl@0
   695
	IMPORT_C TInt RemoveManufacturerStringDescriptor();
sl@0
   696
	IMPORT_C TInt GetProductStringDescriptor(DThread* aThread, TDes8& aString);
sl@0
   697
	IMPORT_C TInt SetProductStringDescriptor(DThread* aThread, const TDes8& aString);
sl@0
   698
	IMPORT_C TInt RemoveProductStringDescriptor();
sl@0
   699
	IMPORT_C TInt GetSerialNumberStringDescriptor(DThread* aThread, TDes8& aString);
sl@0
   700
	IMPORT_C TInt SetSerialNumberStringDescriptor(DThread* aThread, const TDes8& aString);
sl@0
   701
	IMPORT_C TInt RemoveSerialNumberStringDescriptor();
sl@0
   702
	IMPORT_C TInt GetConfigurationStringDescriptor(DThread* aThread, TDes8& aString);
sl@0
   703
	IMPORT_C TInt SetConfigurationStringDescriptor(DThread* aThread, const TDes8& aString);
sl@0
   704
	IMPORT_C TInt RemoveConfigurationStringDescriptor();
sl@0
   705
	IMPORT_C TInt GetStringDescriptor(DThread* aThread, TUint8 aIndex, TDes8& aString);
sl@0
   706
	IMPORT_C TInt SetStringDescriptor(DThread* aThread, TUint8 aIndex, const TDes8& aString);
sl@0
   707
	IMPORT_C TInt RemoveStringDescriptor(TUint8 aIndex);
sl@0
   708
	IMPORT_C TInt AllocateEndpointResource(const DBase* aClientId, TInt aEndpointNum,
sl@0
   709
										   TUsbcEndpointResource aResource);
sl@0
   710
	IMPORT_C TInt DeAllocateEndpointResource(const DBase* aClientId, TInt aEndpointNum,
sl@0
   711
											 TUsbcEndpointResource aResource);
sl@0
   712
	IMPORT_C TBool QueryEndpointResource(const DBase* aClientId, TInt aEndpointNum,
sl@0
   713
										 TUsbcEndpointResource aResource);
sl@0
   714
	IMPORT_C TInt EndpointPacketSize(const DBase* aClientId, TInt aEndpointNum);
sl@0
   715
sl@0
   716
	//
sl@0
   717
	// --- Public (pure) virtual (implemented by PSL, used by LDD) ---
sl@0
   718
	//
sl@0
   719
sl@0
   720
	/** Forces the UDC into a non-idle state to perform a USB remote wakeup operation.
sl@0
   721
sl@0
   722
		The PSL should first check the current value of iRmWakeupStatus_Enabled
sl@0
   723
		to determine whether or not to actually send a Remote Wakeup.
sl@0
   724
sl@0
   725
		@see iRmWakeupStatus_Enabled
sl@0
   726
sl@0
   727
		@return KErrGeneral if Remote Wakeup feature is not enabled or an error is encountered,
sl@0
   728
		KErrNone otherwise.
sl@0
   729
sl@0
   730
		@publishedPartner @released
sl@0
   731
	*/
sl@0
   732
	IMPORT_C virtual TInt SignalRemoteWakeup() =0;
sl@0
   733
sl@0
   734
	/** Dumps the contents of (all or part of) the UDC registers to the serial console.
sl@0
   735
		This is for debugging purposes only.
sl@0
   736
sl@0
   737
		@publishedPartner @released
sl@0
   738
	*/
sl@0
   739
	IMPORT_C virtual void DumpRegisters() =0;
sl@0
   740
sl@0
   741
	/** Returns a pointer to the DFC queue that should be used by the USB LDD.
sl@0
   742
sl@0
   743
		@return A pointer to the DFC queue that should be used by the USB LDD.
sl@0
   744
sl@0
   745
		@publishedPartner @released
sl@0
   746
	*/
sl@0
   747
	IMPORT_C virtual TDfcQue* DfcQ(TInt aUnit) =0;
sl@0
   748
sl@0
   749
	/** Returns information about the current operating speed of the UDC.
sl@0
   750
sl@0
   751
		(Function is not 'pure virtual' for backwards compatibility with existing USB PSLs.
sl@0
   752
		 The default implementation in the PIL returns EFalse.)
sl@0
   753
sl@0
   754
		@return ETrue if the UDC is currently operating at High speed, EFalse
sl@0
   755
		otherwise (i.e. controller is operating at Full speed).
sl@0
   756
sl@0
   757
		@publishedPartner @released
sl@0
   758
	*/
sl@0
   759
	IMPORT_C virtual TBool CurrentlyUsingHighSpeed();
sl@0
   760
sl@0
   761
	//
sl@0
   762
	// --- Public PIL functions ---
sl@0
   763
	//
sl@0
   764
sl@0
   765
	DUsbClientController* RegisterUdc(TInt aUdc);
sl@0
   766
sl@0
   767
protected:
sl@0
   768
sl@0
   769
	//
sl@0
   770
	// --- Functions and data members provided by PIL, called by PSL ---
sl@0
   771
	//
sl@0
   772
sl@0
   773
	TBool InitialiseBaseClass(TUsbcDeviceDescriptor* aDeviceDesc,
sl@0
   774
							  TUsbcConfigDescriptor* aConfigDesc,
sl@0
   775
							  TUsbcLangIdDescriptor* aLangId,
sl@0
   776
							  TUsbcStringDescriptor* aManufacturer =0,
sl@0
   777
							  TUsbcStringDescriptor* aProduct =0,
sl@0
   778
							  TUsbcStringDescriptor* aSerialNum =0,
sl@0
   779
							  TUsbcStringDescriptor* aConfig =0,
sl@0
   780
							  TUsbcOtgDescriptor* aOtgDesc =0);
sl@0
   781
	DUsbClientController();
sl@0
   782
	TInt DeviceEventNotification(TUsbcDeviceEvent aEvent);
sl@0
   783
	void EndpointRequestComplete(TUsbcRequestCallback* aCallback);
sl@0
   784
	TInt Ep0RequestComplete(TInt aRealEndpoint, TInt aCount, TInt aError);
sl@0
   785
	void MoveToAddressState();
sl@0
   786
	void SetCurrent(TInt aCurrent);
sl@0
   787
	TUsbcEp0State EnquireEp0NextState(const TUint8* aSetupBuf) const;
sl@0
   788
	TInt ProcessSetConfiguration(const TUsbcSetup& aPacket);
sl@0
   789
	void HandleHnpRequest(TInt aHnpState);
sl@0
   790
sl@0
   791
	/** This info can be used by the PSL before sending ZLPs.
sl@0
   792
sl@0
   793
		@publishedPartner @released
sl@0
   794
	*/
sl@0
   795
	TBool iEp0ReceivedNonStdRequest;
sl@0
   796
sl@0
   797
	/** True if RMW is currently enabled (set by either PIL or PSL).
sl@0
   798
sl@0
   799
		@publishedPartner @released
sl@0
   800
	*/
sl@0
   801
	TBool iRmWakeupStatus_Enabled;
sl@0
   802
sl@0
   803
	/** Ep0 incoming (rx) data is placed here (one packet).
sl@0
   804
sl@0
   805
		@publishedPartner @released
sl@0
   806
	*/
sl@0
   807
	TUint8 iEp0_RxBuf[KUsbcBufSzControl];
sl@0
   808
sl@0
   809
private:
sl@0
   810
sl@0
   811
	//
sl@0
   812
	// --- Platform Specific Layer (PSL) ---
sl@0
   813
	//
sl@0
   814
sl@0
   815
	/** This function will be called by the PIL upon decoding a SET_ADDRESS request.
sl@0
   816
sl@0
   817
		UDCs which require a manual setting of the USB device address should do that in this function.
sl@0
   818
sl@0
   819
		@param aAddress A valid USB device address that was received with the SET_ADDRESS request.
sl@0
   820
sl@0
   821
		@return KErrNone if address was set successfully or if this UDC's address cannot be set manually,
sl@0
   822
		KErrGeneral otherwise.
sl@0
   823
sl@0
   824
		@publishedPartner @released
sl@0
   825
	*/
sl@0
   826
	virtual TInt SetDeviceAddress(TInt aAddress) =0;
sl@0
   827
sl@0
   828
	/** Configures (enables) an endpoint (incl. Ep0) for data transmission or reception.
sl@0
   829
sl@0
   830
		@param aRealEndpoint The number of the endpoint to be enabled.
sl@0
   831
		@param aEndpointInfo A reference to a properly filled-in endpoint info structure.
sl@0
   832
sl@0
   833
		@return KErrArgument if endpoint number or endpoint info invalid, KErrNone if endpoint
sl@0
   834
		successfully configured, KErrGeneral otherwise.
sl@0
   835
sl@0
   836
		@publishedPartner @released
sl@0
   837
	*/
sl@0
   838
	virtual TInt ConfigureEndpoint(TInt aRealEndpoint, const TUsbcEndpointInfo& aEndpointInfo) =0;
sl@0
   839
sl@0
   840
	/** De-configures (disables) an endpoint (incl. Ep0).
sl@0
   841
sl@0
   842
		@param aRealEndpoint The number of the endpoint to be disabled.
sl@0
   843
sl@0
   844
		@return KErrArgument if endpoint number invalid, KErrNone if endpoint successfully de-configured,
sl@0
   845
		KErrGeneral otherwise.
sl@0
   846
sl@0
   847
		@publishedPartner @released
sl@0
   848
	*/
sl@0
   849
	virtual TInt DeConfigureEndpoint(TInt aRealEndpoint) =0;
sl@0
   850
sl@0
   851
	/** Allocates an endpoint resource.
sl@0
   852
sl@0
   853
		If the resource gets successfully allocated, it will be used from when the current bus transfer
sl@0
   854
		has been completed.
sl@0
   855
sl@0
   856
		@param aRealEndpoint The number of the endpoint.
sl@0
   857
		@param aResource The endpoint resource to be allocated.
sl@0
   858
sl@0
   859
		@return KErrNone if the resource has been successfully allocated, KErrNotSupported if the endpoint
sl@0
   860
		does not support the resource requested, and KErrInUse if the resource is already consumed and
sl@0
   861
		cannot be allocated.
sl@0
   862
sl@0
   863
		@publishedPartner @deprecated
sl@0
   864
	*/
sl@0
   865
	virtual TInt AllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) =0;
sl@0
   866
sl@0
   867
	/** Deallocates (frees) an endpoint resource.
sl@0
   868
sl@0
   869
		The resource will be removed from when the current bus transfer has been completed.
sl@0
   870
sl@0
   871
		@param aRealEndpoint The number of the endpoint.
sl@0
   872
		@param aResource The endpoint resource to be deallocated.
sl@0
   873
sl@0
   874
		@return KErrNone if the resource has been successfully deallocated, KErrNotSupported if the endpoint
sl@0
   875
		does not support the resource requested.
sl@0
   876
sl@0
   877
		@publishedPartner @deprecated
sl@0
   878
	*/
sl@0
   879
	virtual TInt DeAllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) =0;
sl@0
   880
sl@0
   881
	/** Queries the use of and endpoint resource.
sl@0
   882
sl@0
   883
		@param aRealEndpoint The number of the endpoint.
sl@0
   884
		@param aResource The endpoint resource to be queried.
sl@0
   885
sl@0
   886
		@return ETrue if the specified resource is in use at the endpoint, EFalse if not.
sl@0
   887
sl@0
   888
		@publishedPartner @released
sl@0
   889
	*/
sl@0
   890
	virtual TBool QueryEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) const =0;
sl@0
   891
sl@0
   892
	/** Opens a DMA channel (if possible).
sl@0
   893
sl@0
   894
		@param aRealEndpoint The number of the endpoint for which to open the DMA channel.
sl@0
   895
sl@0
   896
		@return KErrArgument if endpoint number invalid, KErrNone if channel successfully opened or if
sl@0
   897
		endpoint not DMA-capable, KErrGeneral otherwise.
sl@0
   898
sl@0
   899
		@publishedPartner @released
sl@0
   900
	*/
sl@0
   901
	virtual TInt OpenDmaChannel(TInt aRealEndpoint);
sl@0
   902
sl@0
   903
	/** Closes a DMA channel (if possible).
sl@0
   904
sl@0
   905
		@param aRealEndpoint The number of the endpoint for which to close the DMA channel.
sl@0
   906
sl@0
   907
		@publishedPartner @released
sl@0
   908
	*/
sl@0
   909
	virtual void CloseDmaChannel(TInt aRealEndpoint);
sl@0
   910
sl@0
   911
	/** Sets up a read request on an endpoint (excl. Ep0) for data reception.
sl@0
   912
sl@0
   913
		For endpoint 0 read requests, SetupEndpointZeroRead() is used instead.
sl@0
   914
sl@0
   915
		@param aRealEndpoint The number of the endpoint to be used.
sl@0
   916
		@param aCallback A reference to a properly filled-in request callback structure.
sl@0
   917
sl@0
   918
		@return KErrArgument if endpoint number invalid, KErrNone if read successfully set up,
sl@0
   919
		KErrGeneral otherwise.
sl@0
   920
sl@0
   921
		@publishedPartner @released
sl@0
   922
	*/
sl@0
   923
	virtual TInt SetupEndpointRead(TInt aRealEndpoint, TUsbcRequestCallback& aCallback) =0;
sl@0
   924
sl@0
   925
	/** Sets up a write request on an endpoint (excl. Ep0) for data transmission.
sl@0
   926
sl@0
   927
		For endpoint 0 write requests, SetupEndpointZeroWrite() is used instead.
sl@0
   928
sl@0
   929
		@param aRealEndpoint The number of the endpoint to be used.
sl@0
   930
		@param aCallback A reference to a properly filled-in request callback structure.
sl@0
   931
sl@0
   932
		@return KErrArgument if endpoint number invalid, KErrNone if write successfully set up,
sl@0
   933
		KErrGeneral otherwise.
sl@0
   934
sl@0
   935
		@publishedPartner @released
sl@0
   936
	*/
sl@0
   937
	virtual TInt SetupEndpointWrite(TInt aRealEndpoint, TUsbcRequestCallback& aCallback) =0;
sl@0
   938
sl@0
   939
	/** Cancels a read request on an endpoint (excl. Ep0).
sl@0
   940
sl@0
   941
		Note that endpoint 0 read requests are never cancelled by the PIL, so
sl@0
   942
		there is also no CancelEndpointZeroRead() function.
sl@0
   943
sl@0
   944
		@param aRealEndpoint The number of the endpoint to be used.
sl@0
   945
sl@0
   946
		@return KErrArgument if endpoint number invalid, KErrNone if read successfully cancelled,
sl@0
   947
		KErrGeneral otherwise.
sl@0
   948
sl@0
   949
		@publishedPartner @released
sl@0
   950
	*/
sl@0
   951
	virtual TInt CancelEndpointRead(TInt aRealEndpoint) =0;
sl@0
   952
sl@0
   953
	/** Cancels a write request on an endpoint (incl. Ep0).
sl@0
   954
sl@0
   955
		The PIL calls this function also to cancel endpoint zero write requests.
sl@0
   956
sl@0
   957
		@param aRealEndpoint The number of the endpoint to be used.
sl@0
   958
sl@0
   959
		@return KErrArgument if endpoint number invalid, KErrNone if write successfully cancelled,
sl@0
   960
		KErrGeneral otherwise.
sl@0
   961
sl@0
   962
		@publishedPartner @released
sl@0
   963
	*/
sl@0
   964
	virtual TInt CancelEndpointWrite(TInt aRealEndpoint) =0;
sl@0
   965
sl@0
   966
	/** Same as SetupEndpointRead(), but for endpoint zero only.
sl@0
   967
sl@0
   968
		No callback is used here as this function is only used internally by the PIL and no user side request
sl@0
   969
		exists for it. The data buffer to be used (filled) is iEp0_RxBuf.
sl@0
   970
sl@0
   971
		@return KErrGeneral if (&iEndpoints[KEp0_Out]->iRxBuf != NULL) or some other error occurs,
sl@0
   972
		KErrNone if read successfully set up.
sl@0
   973
sl@0
   974
		@publishedPartner @released
sl@0
   975
	*/
sl@0
   976
	virtual TInt SetupEndpointZeroRead() =0;
sl@0
   977
sl@0
   978
	/** Same as SetupEndpointWrite(), but for endpoint zero only.
sl@0
   979
sl@0
   980
		No callback is used here as this function is only used internally by the PIL and no user side request
sl@0
   981
		exists for it.
sl@0
   982
sl@0
   983
		@param aBuffer This points to the beginning of the data to be sent.
sl@0
   984
		@param aLength The number of bytes to be sent.
sl@0
   985
		@param aZlpReqd ETrue if a zero-length packet (ZLP) is to be sent after the data.
sl@0
   986
sl@0
   987
		@return KErrGeneral if (&iEndpoints[KEp0_In]->iTxBuf != NULL) or some other error occurs,
sl@0
   988
		KErrNone if write successfully set up.
sl@0
   989
sl@0
   990
		@publishedPartner @released
sl@0
   991
	*/
sl@0
   992
	virtual TInt SetupEndpointZeroWrite(const TUint8* aBuffer, TInt aLength, TBool aZlpReqd=EFalse) =0;
sl@0
   993
sl@0
   994
	/** Sets up on Ep0 the transmission of a single zero-length packet (ZLP).
sl@0
   995
sl@0
   996
		@return KErrNone if ZLP successfully set up, KErrGeneral otherwise..
sl@0
   997
sl@0
   998
		@publishedPartner @released
sl@0
   999
	*/
sl@0
  1000
	virtual TInt SendEp0ZeroByteStatusPacket() =0;
sl@0
  1001
sl@0
  1002
	/** Stalls an endpoint (incl. Ep0).
sl@0
  1003
sl@0
  1004
		Isochronous endpoints cannot be stalled.
sl@0
  1005
sl@0
  1006
		@param aRealEndpoint The number of the endpoint to be stalled.
sl@0
  1007
sl@0
  1008
		@return KErrArgument if endpoint number invalid, KErrNone if endpoint successfully stalled,
sl@0
  1009
		KErrGeneral otherwise.
sl@0
  1010
sl@0
  1011
		@publishedPartner @released
sl@0
  1012
	*/
sl@0
  1013
	virtual TInt StallEndpoint(TInt aRealEndpoint) =0;
sl@0
  1014
sl@0
  1015
	/** Clears the stall condition on an endpoint (incl. Ep0).
sl@0
  1016
sl@0
  1017
		Isochronous endpoints cannot be stalled.
sl@0
  1018
sl@0
  1019
		@param aRealEndpoint The number of the endpoint to be stalled.
sl@0
  1020
sl@0
  1021
		@return KErrArgument if endpoint number invalid, KErrNone if endpoint successfully de-stalled,
sl@0
  1022
		KErrGeneral otherwise.
sl@0
  1023
sl@0
  1024
		@publishedPartner @released
sl@0
  1025
	*/
sl@0
  1026
	virtual TInt ClearStallEndpoint(TInt aRealEndpoint) =0;
sl@0
  1027
sl@0
  1028
	/** Returns the stall status of an endpoint (incl. Ep0).
sl@0
  1029
sl@0
  1030
		Isochronous endpoints cannot be stalled.
sl@0
  1031
sl@0
  1032
		@param aRealEndpoint The number of the endpoint to be used.
sl@0
  1033
sl@0
  1034
		@return KErrArgument if endpoint number invalid, 1 if endpoint is currently stalled, 0 if not.
sl@0
  1035
sl@0
  1036
		@publishedPartner @released
sl@0
  1037
	*/
sl@0
  1038
	virtual TInt EndpointStallStatus(TInt aRealEndpoint) const =0;
sl@0
  1039
sl@0
  1040
	/** Returns the error status of an endpoint (incl. Ep0).
sl@0
  1041
sl@0
  1042
		@param aRealEndpoint The number of the endpoint to be used.
sl@0
  1043
sl@0
  1044
		@return KErrArgument if endpoint number invalid, KErrNone if no error at this endpoint,
sl@0
  1045
		KErrGeneral if there is an error.
sl@0
  1046
sl@0
  1047
		@publishedPartner @released
sl@0
  1048
	*/
sl@0
  1049
	virtual TInt EndpointErrorStatus(TInt aRealEndpoint) const =0;
sl@0
  1050
sl@0
  1051
	/** Resets the data toggle bit for an endpoint (incl. Ep0).
sl@0
  1052
sl@0
  1053
		Isochronous endpoints don't use data toggles.
sl@0
  1054
sl@0
  1055
		@param aRealEndpoint The number of the endpoint to be used.
sl@0
  1056
sl@0
  1057
		@return KErrArgument if endpoint number invalid, KErrNone if data toggle successfully reset,
sl@0
  1058
		KErrGeneral otherwise.
sl@0
  1059
sl@0
  1060
		@publishedPartner @released
sl@0
  1061
	*/
sl@0
  1062
	virtual TInt ResetDataToggle(TInt aRealEndpoint) =0;
sl@0
  1063
sl@0
  1064
	/** Returns the (11-bit) frame number contained in the last received SOF packet.
sl@0
  1065
sl@0
  1066
		This information is used for isochronous transfers.
sl@0
  1067
sl@0
  1068
		@return The (11-bit) frame number contained in the last received SOF packet.
sl@0
  1069
sl@0
  1070
		@publishedPartner @released
sl@0
  1071
	*/
sl@0
  1072
	virtual TInt SynchFrameNumber() const =0;
sl@0
  1073
sl@0
  1074
	/** Stores the (11-bit) frame number that should be sent in response to the next SYNCH_FRAME request(s).
sl@0
  1075
sl@0
  1076
		@publishedPartner @released
sl@0
  1077
	 */
sl@0
  1078
	virtual void SetSynchFrameNumber(TInt aFrameNumber) =0;
sl@0
  1079
sl@0
  1080
	/** Starts the UDC.
sl@0
  1081
sl@0
  1082
		This initializes the device controller hardware before any other operation can be
sl@0
  1083
		performed. Tasks to be carried out here might include
sl@0
  1084
		- resetting the whole UDC design
sl@0
  1085
		- enabling the UDC's clock
sl@0
  1086
		- binding & enabling the UDC (primary) interrupt
sl@0
  1087
		- write meaningful values to some general UDC registers
sl@0
  1088
		- enabling the USB Reset interrupt
sl@0
  1089
		- enabling the UDC proper (for instance by setting an Enable bit)
sl@0
  1090
sl@0
  1091
		@return KErrNone if UDC successfully started, KErrGeneral if there was an error.
sl@0
  1092
sl@0
  1093
		@publishedPartner @released
sl@0
  1094
	*/
sl@0
  1095
	virtual TInt StartUdc() =0;
sl@0
  1096
sl@0
  1097
	/** Stops the UDC.
sl@0
  1098
sl@0
  1099
		This basically makes undone what happened in StartUdc(). Tasks to be carried out
sl@0
  1100
		here might include:
sl@0
  1101
		- disabling the UDC proper (for instance by clearing an Enable bit)
sl@0
  1102
		- disabling the USB Reset interrupt
sl@0
  1103
		- disabling & unbinding the UDC (primary) interrupt
sl@0
  1104
		- disabling the UDC's clock
sl@0
  1105
sl@0
  1106
		@return KErrNone if UDC successfully stopped, KErrGeneral if there was an error.
sl@0
  1107
sl@0
  1108
		@publishedPartner @released
sl@0
  1109
	*/
sl@0
  1110
	virtual TInt StopUdc() =0;
sl@0
  1111
sl@0
  1112
	/** Connects the UDC  - and thus the USB device - physically to the bus.
sl@0
  1113
sl@0
  1114
		This might involve a call into the Variant DLL, as the mechanism to achieve the connection can be
sl@0
  1115
		specific to the platform (rather than UDC specific). Since this functionality is not part of the USB
sl@0
  1116
		specification it has to be explicitly supported, either by the UDC itself or by the hardware
sl@0
  1117
		platform. If it is supported, then the member function SoftConnectCaps should be implemented to return
sl@0
  1118
		ETrue.
sl@0
  1119
sl@0
  1120
		@see SoftConnectCaps()
sl@0
  1121
sl@0
  1122
		@return KErrNone if UDC successfully connected, KErrGeneral if there was an error.
sl@0
  1123
sl@0
  1124
		@publishedPartner @released
sl@0
  1125
	*/
sl@0
  1126
	virtual TInt UdcConnect() =0;
sl@0
  1127
sl@0
  1128
	/** Disconnects the UDC	 - and thus the USB device - physically from the bus.
sl@0
  1129
sl@0
  1130
		This might involve a call into the Variant DLL, as the mechanism to achieve the disconnection can be
sl@0
  1131
		specific to the platform (rather than UDC specific). Since this functionality is not part of the USB
sl@0
  1132
		specification it has to be explicitly supported, either by the UDC itself or by the hardware
sl@0
  1133
		platform. If it is supported, then the member function SoftConnectCaps should be implemented to return
sl@0
  1134
		ETrue.
sl@0
  1135
sl@0
  1136
		@see SoftConnectCaps()
sl@0
  1137
sl@0
  1138
		@return KErrNone if UDC successfully disconnected, KErrGeneral if there was an error.
sl@0
  1139
sl@0
  1140
		@publishedPartner @released
sl@0
  1141
	*/
sl@0
  1142
	virtual TInt UdcDisconnect() =0;
sl@0
  1143
sl@0
  1144
	/** Returns the USB cable connection status.
sl@0
  1145
sl@0
  1146
		@return ETrue if the device is connected (via the USB cable) to a USB host, EFalse if not.
sl@0
  1147
sl@0
  1148
		@publishedPartner @released
sl@0
  1149
	*/
sl@0
  1150
	virtual TBool UsbConnectionStatus() const  =0;
sl@0
  1151
sl@0
  1152
	/** Returns a truth value showing if the VBUS line is powered or not.
sl@0
  1153
sl@0
  1154
		Lack of power may indicate an unpowered host or upstream hub, or a disconnected cable.
sl@0
  1155
sl@0
  1156
		@return ETrue if VBUS is powered, EFalse otherwise.
sl@0
  1157
sl@0
  1158
		@publishedPartner @released
sl@0
  1159
	*/
sl@0
  1160
	virtual TBool UsbPowerStatus() const =0;
sl@0
  1161
sl@0
  1162
	/** Returns the current power status of the USB device.
sl@0
  1163
sl@0
  1164
		@return ETrue if the device is currently self-powered, EFalse if not.
sl@0
  1165
sl@0
  1166
		@publishedPartner @released
sl@0
  1167
	*/
sl@0
  1168
	virtual TBool DeviceSelfPowered() const =0;
sl@0
  1169
sl@0
  1170
	/** Returns a pointer to an array of TUsbcEndpointCaps structures, which describe the endpoint
sl@0
  1171
		capabilities of this UDC.
sl@0
  1172
sl@0
  1173
		The dimension of the array can be obtained by calling the member function DeviceTotalEndpoints().
sl@0
  1174
		Note that there might be gaps in the array, as the endpoints are numbered using the 'real endpoint'
sl@0
  1175
		numbering scheme. Here is how an array could look like:
sl@0
  1176
sl@0
  1177
		@code
sl@0
  1178
		static const TInt KUsbTotalEndpoints = 5;
sl@0
  1179
		static const TUsbcEndpointCaps DeviceEndpoints[KUsbTotalEndpoints] =
sl@0
  1180
		{
sl@0
  1181
		//															 UDC #	  iEndpoints index
sl@0
  1182
		{KEp0MaxPktSzMask,	(KUsbEpTypeControl	   | KUsbEpDirOut)}, //	 0 -  0
sl@0
  1183
		{KEp0MaxPktSzMask,	(KUsbEpTypeControl	   | KUsbEpDirIn )}, //	 0 -  1
sl@0
  1184
		{KUsbEpNotAvailable, KUsbEpNotAvailable},					 // --- Not present
sl@0
  1185
		{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 1 -  3
sl@0
  1186
		{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}	 //	 2 -  4
sl@0
  1187
		};
sl@0
  1188
		@endcode
sl@0
  1189
sl@0
  1190
		For the endpoint max packet sizes on a USB 2.0 High-speed UDC, the PSL should provide
sl@0
  1191
		the overlaid values for both FS and HS, as the PIL can deduce the appropriate values
sl@0
  1192
		for either speed.
sl@0
  1193
sl@0
  1194
		@see TUsbcEndpointCaps
sl@0
  1195
		@see DeviceTotalEndpoints()
sl@0
  1196
sl@0
  1197
		@return A pointer to an array of TUsbcEndpointCaps structures, which describe the endpoint
sl@0
  1198
		capabilities of this UDC.
sl@0
  1199
sl@0
  1200
		@publishedPartner @released
sl@0
  1201
	*/
sl@0
  1202
	virtual const TUsbcEndpointCaps* DeviceEndpointCaps() const =0;
sl@0
  1203
sl@0
  1204
	/** Returns the number of elements in the array pointed to by the return value of DeviceEndpointCaps().
sl@0
  1205
sl@0
  1206
		Note that this is not necessarily equal to the number of usable endpoints. In the example to the
sl@0
  1207
		DeviceEndpointCaps() function, this value would be 5 even though there are only 4 endpoints.
sl@0
  1208
sl@0
  1209
		@see DeviceEndpointCaps()
sl@0
  1210
sl@0
  1211
		@return The number of elements in the array pointed to by the return value of DeviceEndpointCaps().
sl@0
  1212
sl@0
  1213
		@publishedPartner @released
sl@0
  1214
	*/
sl@0
  1215
	virtual TInt DeviceTotalEndpoints() const =0;
sl@0
  1216
sl@0
  1217
	/** Returns a truth value indicating whether or not this UDC or platform has the capability to disconnect
sl@0
  1218
		and re-connect the USB D+ line under software control.
sl@0
  1219
sl@0
  1220
		@see UdcConnect()
sl@0
  1221
		@see UdcDisconnect()
sl@0
  1222
sl@0
  1223
		@return ETrue if software connect/disconnect is supported, EFalse otherwise.
sl@0
  1224
sl@0
  1225
		@publishedPartner @released
sl@0
  1226
	*/
sl@0
  1227
	virtual TBool SoftConnectCaps() const =0;
sl@0
  1228
sl@0
  1229
	/** Returns a truth value indicating whether or not this UDC allows the accurate tracking of the USB
sl@0
  1230
		device state.
sl@0
  1231
sl@0
  1232
		This capability affects how device state change notifications to the LDD/user are being handled.
sl@0
  1233
sl@0
  1234
		@return ETrue if this UDC allows the tracking of the USB device state, EFalse otherwise.
sl@0
  1235
sl@0
  1236
		@publishedPartner @released
sl@0
  1237
	*/
sl@0
  1238
	virtual TBool DeviceStateChangeCaps() const =0;
sl@0
  1239
sl@0
  1240
	/** Returns a truth value indicating whether the USB device controller (UDC) hardware supports
sl@0
  1241
		detection of a plugged-in USB cable even when not powered.
sl@0
  1242
sl@0
  1243
		This capability affects the power management strategy used by the USB Manager.
sl@0
  1244
sl@0
  1245
		(Function is not 'pure virtual' for backwards compatibility with existing USB PSLs.
sl@0
  1246
		 The default implementation in the PIL returns EFalse.)
sl@0
  1247
sl@0
  1248
		@return ETrue if this UDC supports USB cable detection when not powered, EFalse otherwise.
sl@0
  1249
sl@0
  1250
		@publishedPartner @released
sl@0
  1251
	*/
sl@0
  1252
	virtual TBool CableDetectWithoutPowerCaps() const;
sl@0
  1253
sl@0
  1254
	/** Returns a truth value indicating whether the USB device controller (UDC) hardware supports
sl@0
  1255
		USB High-speed operation.
sl@0
  1256
sl@0
  1257
		This capability affects driver functionality and behaviour throughout the implementation.
sl@0
  1258
sl@0
  1259
		(Function is not 'pure virtual' for backwards compatibility with existing USB PSLs.
sl@0
  1260
		 The default implementation in the PIL returns EFalse.)
sl@0
  1261
sl@0
  1262
		@return ETrue if this UDC supports USB High-speed operation, EFalse otherwise.
sl@0
  1263
sl@0
  1264
		@publishedPartner @released
sl@0
  1265
	*/
sl@0
  1266
	virtual TBool DeviceHighSpeedCaps() const;
sl@0
  1267
sl@0
  1268
	/** Returns a truth value indicating whether this PSL supports the new
sl@0
  1269
		('V2') endpoint resource request scheme.
sl@0
  1270
sl@0
  1271
		This capability can be queried from the user-side and may determine the
sl@0
  1272
		way the USB application issues resource allocation requests.
sl@0
  1273
sl@0
  1274
		(Function is not 'pure virtual' for backwards compatibility with existing USB PSLs.
sl@0
  1275
		 The default implementation in the PIL returns EFalse.)
sl@0
  1276
sl@0
  1277
		@return ETrue if PSL supports the new endpoint resource request scheme,
sl@0
  1278
		EFalse otherwise.
sl@0
  1279
sl@0
  1280
		@publishedPartner @released
sl@0
  1281
	*/
sl@0
  1282
	virtual TBool DeviceResourceAllocV2Caps() const;
sl@0
  1283
sl@0
  1284
	/** Returns a truth value indicating whether this UDC handles OTG HNP bus
sl@0
  1285
		connects/disconnects automatically in hardware.
sl@0
  1286
sl@0
  1287
		This capability will be queried by the PIL and determines the way the
sl@0
  1288
		PIL calls the functions behind the
sl@0
  1289
		iEnablePullUpOnDPlus / iDisablePullUpOnDPlus pointers.
sl@0
  1290
sl@0
  1291
		If HNP is handled by hardware (TBool = ETrue) then the PIL will (in
sl@0
  1292
		that order)
sl@0
  1293
sl@0
  1294
		1) make calls to those function pointers dependent only on the
sl@0
  1295
		readiness or otherwise of user-side USB Client support (i.e. the Client
sl@0
  1296
		LDD calls DeviceConnectToHost() / DeviceDisconnectFromHost()), as
sl@0
  1297
		opposed to also evaluating Client PDD EnableClientStack() /
sl@0
  1298
		DisableClientStack() calls from the OTG driver.
sl@0
  1299
sl@0
  1300
		2) delay its USB Reset processing incl. the notification of upper
sl@0
  1301
		layers (LDD + user-side), plus the initial setting up of an Ep0 read
sl@0
  1302
		until user-side USB Client support readiness has been signalled
sl@0
  1303
		(i.e. until after a call to DeviceConnectToHost()).
sl@0
  1304
sl@0
  1305
		(Function is not 'pure virtual' for backwards compatibility with
sl@0
  1306
		 existing USB PSLs. The default implementation in the PIL returns EFalse.)
sl@0
  1307
sl@0
  1308
		@return ETrue if UDC/PSL handles HNP connects/disconnects in hardware,
sl@0
  1309
		EFalse otherwise.
sl@0
  1310
sl@0
  1311
		@publishedPartner @released
sl@0
  1312
	*/
sl@0
  1313
	virtual TBool DeviceHnpHandledByHardwareCaps() const;
sl@0
  1314
sl@0
  1315
	/** Implements anything the UDC (PSL) might require following bus Suspend signalling.
sl@0
  1316
sl@0
  1317
		This function gets called by the PIL after it has been notified (by the PSL) about the Suspend
sl@0
  1318
		condition.
sl@0
  1319
sl@0
  1320
		@publishedPartner @released
sl@0
  1321
	*/
sl@0
  1322
	virtual void Suspend() =0;
sl@0
  1323
sl@0
  1324
	/** Implements anything the UDC (PSL) might require following bus Resume signalling.
sl@0
  1325
sl@0
  1326
		This function gets called by the PIL after it has been notified (by the PSL) about the Resume event.
sl@0
  1327
sl@0
  1328
		@publishedPartner @released
sl@0
  1329
	*/
sl@0
  1330
	virtual void Resume() =0;
sl@0
  1331
sl@0
  1332
	/** Implements anything the UDC (PSL) might require following bus Reset signalling.
sl@0
  1333
sl@0
  1334
		This function gets called by the PIL after it has been notified (by the PSL) about the Reset event.
sl@0
  1335
sl@0
  1336
		@publishedPartner @released
sl@0
  1337
	*/
sl@0
  1338
	virtual void Reset() =0;
sl@0
  1339
sl@0
  1340
	/** Called by the PIL to signal to the PSL that it has finished processing a received Setup packet (on
sl@0
  1341
		Ep0) and that the PSL can now prepare itself for the next Ep0 reception (for instance by re-enabling
sl@0
  1342
		the Ep0 interrupt).
sl@0
  1343
sl@0
  1344
		The reason for having this function is the situation where no Ep0 read has been set up by the user and
sl@0
  1345
		thus a received Setup packet cannot immediately be delivered to the user. Once the user however sets
sl@0
  1346
		up an Ep0 read, the PIL completes the request and eventually calls this function. This way we can
sl@0
  1347
		implement some sort of flow-control.
sl@0
  1348
sl@0
  1349
		@publishedPartner @released
sl@0
  1350
	*/
sl@0
  1351
	virtual void Ep0ReadSetupPktProceed() =0;
sl@0
  1352
sl@0
  1353
	/** Called by the PIL to signal to the PSL that it has finished processing a received Ep0 data packet and
sl@0
  1354
		that the PSL can now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0
sl@0
  1355
		interrupt).
sl@0
  1356
sl@0
  1357
		The reason for having this function is the situation where no Ep0 read has been set up by the user and
sl@0
  1358
		thus a received packet cannot immediately be delivered to the user. Once the user however sets up an
sl@0
  1359
		Ep0 read, the PIL completes the request and eventually calls this function. This way we can implement
sl@0
  1360
		some sort of flow-control.
sl@0
  1361
sl@0
  1362
		@publishedPartner @released
sl@0
  1363
	*/
sl@0
  1364
	virtual void Ep0ReceiveProceed() =0;
sl@0
  1365
sl@0
  1366
	/** Returns a truth value indicating whether the USB controller hardware (UDC) supports being powered
sl@0
  1367
		down while (a configuration is) active.
sl@0
  1368
sl@0
  1369
		This capability affects the power management strategy used by the USB Manager.
sl@0
  1370
sl@0
  1371
		(Function is not 'pure virtual' for backwards compatibility with existing USB PSLs. The default
sl@0
  1372
		implementation in the PIL - to be on the safe side - returns EFalse.)
sl@0
  1373
sl@0
  1374
		@return ETrue if this UDC supports power-down while active, EFalse otherwise.
sl@0
  1375
sl@0
  1376
		@publishedPartner @released
sl@0
  1377
	*/
sl@0
  1378
	virtual TBool PowerDownWhenActive() const;
sl@0
  1379
sl@0
  1380
	/** Powers the UDC down, i.e. puts it into a (hardware-dependent) power-saving mode. Note that this
sl@0
  1381
		function is not the same as StopUdc(). The difference is that while StopUdc() effectively turns the
sl@0
  1382
		UDC off and so may invalidate all its settings, after a call to PowerDown() the UDC is expected to
sl@0
  1383
		return to its previous state when PowerUp() is called. This function is also not the same as
sl@0
  1384
		Suspend() which gets called by the PIL in response to a Suspend event on the bus, and only then
sl@0
  1385
		(but apart from that the two functions are very similar).
sl@0
  1386
sl@0
  1387
		This function won't be called by the PIL once the UDC is active if PowerDownWhenActive() returns
sl@0
  1388
		EFalse (which it by default does).
sl@0
  1389
sl@0
  1390
		(Function is not 'pure virtual' for backwards compatibility with existing USB PSLs. The default
sl@0
  1391
		implementation in the PIL does nothing.)
sl@0
  1392
sl@0
  1393
		@see PowerUp()
sl@0
  1394
		@see PowerDownWhenActive()
sl@0
  1395
sl@0
  1396
		@return KErrNone if UDC was successfully powered down, KErrGeneral otherwise.
sl@0
  1397
sl@0
  1398
		@publishedPartner @released
sl@0
  1399
	*/
sl@0
  1400
	virtual TInt PowerDown();
sl@0
  1401
sl@0
  1402
	/** Powers the UDC up by exiting a (hardware-dependent) power-saving mode. Note that this function is not
sl@0
  1403
		the same as StartUdc(). The difference is that while StartUdc() starts the UDC from zero and merely
sl@0
  1404
		leads to the default state (i.e. not an active configuration), after a call to PowerUp() the UDC is
sl@0
  1405
		expected to have returned to the state it was in before PowerDown() was called.
sl@0
  1406
sl@0
  1407
		(Function is not 'pure virtual' for backwards compatibility with existing USB PSLs. The default
sl@0
  1408
		implementation in the PIL does nothing.)
sl@0
  1409
sl@0
  1410
		@see PowerDown()
sl@0
  1411
sl@0
  1412
		@return KErrNone if UDC was successfully powered up, KErrGeneral otherwise.
sl@0
  1413
sl@0
  1414
		@publishedPartner @released
sl@0
  1415
	*/
sl@0
  1416
	virtual TInt PowerUp();
sl@0
  1417
sl@0
  1418
	/** Puts the controller into a specific test mode (during HS operation only).
sl@0
  1419
sl@0
  1420
		9.4.9 Set Feature: "The transition to test mode must be complete no later than 3 ms after the
sl@0
  1421
		completion of the status stage of the request." (The status stage will have been completed
sl@0
  1422
		immediately before this function gets called.)
sl@0
  1423
sl@0
  1424
		(Function is not 'pure virtual' for backwards compatibility with existing USB PSLs.
sl@0
  1425
		 The default implementation in the PIL returns KErrNotSupported.)
sl@0
  1426
sl@0
  1427
		@param aTestSelector The specific test mode selector (@see usb.h).
sl@0
  1428
sl@0
  1429
		@return KErrNone if the specified test mode was entered successfully,
sl@0
  1430
		KErrGeneral otherwise.
sl@0
  1431
sl@0
  1432
		@publishedPartner @released
sl@0
  1433
	*/
sl@0
  1434
	virtual TInt EnterTestMode(TInt aTestSelector);
sl@0
  1435
sl@0
  1436
	/** Turn on USB client functionality in an OTG/Host setup.
sl@0
  1437
sl@0
  1438
		This PSL function is called by the PIL when the OTG stack calls the PIL
sl@0
  1439
		function EnableClientStack(). Immediately afterwards the PIL may
sl@0
  1440
		connect the B-device to the bus (via the OTG stack). OtgEnableUdc() is
sl@0
  1441
		called always after StartUdc().
sl@0
  1442
sl@0
  1443
		There is no equivalent to this function in the non-OTG version of the
sl@0
  1444
		USB PDD.
sl@0
  1445
sl@0
  1446
		@return KErrNone if UDC successfully enabled, KErrGeneral otherwise.
sl@0
  1447
sl@0
  1448
		@publishedPartner @released
sl@0
  1449
	*/
sl@0
  1450
	virtual TInt OtgEnableUdc();
sl@0
  1451
sl@0
  1452
	/** Turn off USB client functionality in an OTG/Host setup.
sl@0
  1453
sl@0
  1454
		This function is called by the PIL when the OTG stack calls the PIL
sl@0
  1455
		function DisableClientStack(); the PIL will do this immediately after
sl@0
  1456
		it has disconnected the B-device from the bus (via the OTG stack) and
sl@0
  1457
		before calling StopUdc().
sl@0
  1458
sl@0
  1459
		There is no equivalent to this function in the non-OTG version of the
sl@0
  1460
		USB PDD.
sl@0
  1461
sl@0
  1462
		@return KErrNone if UDC successfully disabled, KErrGeneral otherwise.
sl@0
  1463
sl@0
  1464
		@publishedPartner @released
sl@0
  1465
	*/
sl@0
  1466
	virtual TInt OtgDisableUdc();
sl@0
  1467
sl@0
  1468
private:
sl@0
  1469
sl@0
  1470
	//
sl@0
  1471
	// --- Private member functions (used by PIL) ---
sl@0
  1472
	//
sl@0
  1473
sl@0
  1474
	TInt DeRegisterClientCallback(const DBase* aClientId);
sl@0
  1475
	TBool CheckEpAvailability(TInt aEndpointsUsed, const TUsbcEndpointInfoArray& aEndpointData, TInt aIfcNumber)
sl@0
  1476
		const;
sl@0
  1477
	TUsbcInterface* CreateInterface(const DBase* aClientId, TInt aIfc, TUint32 aFeatureWord);
sl@0
  1478
	TInt CreateEndpoints(TUsbcInterface* aIfc, TInt aEndpointsUsed, const TUsbcEndpointInfoArray& aEndpointData,
sl@0
  1479
						 TInt *aRealEpNumbers);
sl@0
  1480
	TInt SetupIfcDescriptor(TUsbcInterface* aIfc, TUsbcClassInfo& aClass, DThread* aThread, TDesC8* aString,
sl@0
  1481
							const TUsbcEndpointInfoArray& aEndpointData);
sl@0
  1482
	TInt ClientId2InterfaceNumber(const DBase* aClientId) const;
sl@0
  1483
	TUsbcInterfaceSet* ClientId2InterfacePointer(const DBase* aClientId) const;
sl@0
  1484
	const DBase* InterfaceNumber2ClientId(TInt aIfcSet) const;
sl@0
  1485
	TUsbcInterfaceSet* InterfaceNumber2InterfacePointer(TInt aIfcSet) const;
sl@0
  1486
	inline const DBase* PEndpoint2ClientId(TInt aRealEndpoint) const;
sl@0
  1487
	inline TInt PEndpoint2LEndpoint(TInt aRealEndpoint) const;
sl@0
  1488
	TInt ActivateHardwareController();
sl@0
  1489
	void DeActivateHardwareController();
sl@0
  1490
	void DeleteInterfaceSet(TInt aIfcSet);
sl@0
  1491
	void DeleteInterface(TInt aIfcSet, TInt aIfc);
sl@0
  1492
	void CancelTransferRequests(TInt aRealEndpoint);
sl@0
  1493
	void DeleteRequestCallback(const DBase* aClientId, TInt aEndpointNum, TTransferDirection aTransferDir);
sl@0
  1494
	void DeleteRequestCallbacks(const DBase* aClientId);
sl@0
  1495
	void StatusNotify(TUsbcDeviceState aState, const DBase* aClientId=NULL);
sl@0
  1496
	void EpStatusNotify(TInt aRealEndpoint);
sl@0
  1497
	void OtgFeaturesNotify();
sl@0
  1498
	void RunClientCallbacks();
sl@0
  1499
	void ProcessDataTransferDone(TUsbcRequestCallback& aRcb);
sl@0
  1500
	void NextDeviceState(TUsbcDeviceState aNextState);
sl@0
  1501
	TInt ProcessSuspendEvent();
sl@0
  1502
	TInt ProcessSuspendEventProceed();
sl@0
  1503
	TInt ProcessResumeEvent();
sl@0
  1504
	TInt ProcessResetEvent(TBool aPslUpcall=ETrue);
sl@0
  1505
	TInt ProcessCableInsertEvent();
sl@0
  1506
	TInt ProcessCableRemoveEvent();
sl@0
  1507
	TInt ProcessEp0ReceiveDone(TInt aCount);
sl@0
  1508
	TInt ProcessEp0TransmitDone(TInt aCount, TInt aError);
sl@0
  1509
	TInt ProcessEp0SetupReceived(TInt aCount);
sl@0
  1510
	TInt ProcessEp0DataReceived(TInt aCount);
sl@0
  1511
	TInt ProcessGetDeviceStatus(const TUsbcSetup& aPacket);
sl@0
  1512
	TInt ProcessGetInterfaceStatus(const TUsbcSetup& aPacket);
sl@0
  1513
	TInt ProcessGetEndpointStatus(const TUsbcSetup& aPacket);
sl@0
  1514
	TInt ProcessSetClearDevFeature(const TUsbcSetup& aPacket);
sl@0
  1515
	TInt ProcessSetClearIfcFeature(const TUsbcSetup& aPacket);
sl@0
  1516
	TInt ProcessSetClearEpFeature(const TUsbcSetup& aPacket);
sl@0
  1517
	TInt ProcessSetAddress(const TUsbcSetup& aPacket);
sl@0
  1518
	TInt ProcessGetDescriptor(const TUsbcSetup& aPacket);
sl@0
  1519
	TInt ProcessSetDescriptor(const TUsbcSetup& aPacket);
sl@0
  1520
	TInt ProcessGetConfiguration(const TUsbcSetup& aPacket);
sl@0
  1521
	TInt ProcessGetInterface(const TUsbcSetup& aPacket);
sl@0
  1522
	TInt ProcessSetInterface(const TUsbcSetup& aPacket);
sl@0
  1523
	TInt ProcessSynchFrame(const TUsbcSetup& aPacket);
sl@0
  1524
	void ProceedSetDescriptor();
sl@0
  1525
	void SetClearHaltFeature(TInt aRealEndpoint, TUint8 aRequest);
sl@0
  1526
	TInt ClearHaltFeature(TInt aRealEndpoint);
sl@0
  1527
	void ChangeConfiguration(TUint16 aValue);
sl@0
  1528
	void InterfaceSetup(TUsbcInterface* aIfc);
sl@0
  1529
	void InterfaceSetTeardown(TUsbcInterfaceSet* aIfc);
sl@0
  1530
	void ChangeInterface(TUsbcInterface* aIfc);
sl@0
  1531
	TInt DoForEveryEndpointInUse(TInt (DUsbClientController::*aFunction)(TInt), TInt& aCount);
sl@0
  1532
	void EnterFullSpeed();
sl@0
  1533
	void EnterHighSpeed();
sl@0
  1534
	TInt EvaluateOtgConnectFlags();
sl@0
  1535
	inline const TUsbcConfiguration* CurrentConfig() const;
sl@0
  1536
	inline TUsbcConfiguration* CurrentConfig();
sl@0
  1537
	inline TBool InterfaceExists(TInt aNumber) const;
sl@0
  1538
	inline TBool EndpointExists(TUint aAddress) const;
sl@0
  1539
	inline void Buffer2Setup(const TAny* aBuf, TUsbcSetup& aSetup) const;
sl@0
  1540
	inline TUint EpIdx2Addr(TUint aRealEndpoint) const;
sl@0
  1541
	inline TUint EpAddr2Idx(TUint aAddress) const;
sl@0
  1542
	inline void SetEp0DataOutVars(const TUsbcSetup& aPacket, const DBase* aClientId = NULL);
sl@0
  1543
	inline void ResetEp0DataOutVars();
sl@0
  1544
	inline TBool IsInTheStatusList(const TUsbcStatusCallback& aCallback);
sl@0
  1545
	inline TBool IsInTheEpStatusList(const TUsbcEndpointStatusCallback& aCallback);
sl@0
  1546
	inline TBool IsInTheOtgFeatureList(const TUsbcOtgFeatureCallback& aCallback);
sl@0
  1547
	inline TBool IsInTheRequestList(const TUsbcRequestCallback& aCallback);
sl@0
  1548
	static void ReconnectTimerCallback(TAny* aPtr);
sl@0
  1549
	static void CableStatusTimerCallback(TAny* aPtr);
sl@0
  1550
	static void PowerUpDfc(TAny* aPtr);
sl@0
  1551
	static void PowerDownDfc(TAny* aPtr);
sl@0
  1552
sl@0
  1553
private:
sl@0
  1554
sl@0
  1555
	//
sl@0
  1556
	// --- Private data members ---
sl@0
  1557
	//
sl@0
  1558
sl@0
  1559
	static DUsbClientController* UsbClientController[KUsbcMaxUdcs];
sl@0
  1560
sl@0
  1561
	TInt iDeviceTotalEndpoints;								// number of endpoints reported by PSL
sl@0
  1562
	TInt iDeviceUsableEndpoints;							// number of endpoints reported to LDD
sl@0
  1563
	TUsbcDeviceState iDeviceState;							// states as of USB spec chapter 9.1
sl@0
  1564
	TUsbcDeviceState iDeviceStateB4Suspend;					// state before entering suspend state
sl@0
  1565
	TBool iSelfPowered;										// true if device is capable of beeing self-powered
sl@0
  1566
	TBool iRemoteWakeup;									// true if device is capable of signalling rmwakeup
sl@0
  1567
	TBool iTrackDeviceState;								// true if we should track the device state in s/w
sl@0
  1568
	TBool iHardwareActivated;								// true if controller silicon is in operating state
sl@0
  1569
	TBool iOtgSupport;										// true if OTG is supported by this device
sl@0
  1570
	TBool iOtgHnpHandledByHw;								// true if HNP dis/connect is handled by hardware
sl@0
  1571
	TUint8 iOtgFuncMap;										// bitmap indicating OTG extension features
sl@0
  1572
	TBool iHighSpeed;										// true if currently operating at high-speed
sl@0
  1573
	TUsbcSetup iSetup;										// storage for a setup packet during its DATA_OUT
sl@0
  1574
	TInt iEp0MaxPacketSize;									// currently configured max packet size for Ep0
sl@0
  1575
	const DBase* iEp0ClientId;								// see comment at the begin of ps_usbc.cpp
sl@0
  1576
	TUint16 iEp0DataReceived;								// indicates how many bytes have already been received
sl@0
  1577
	TBool iEp0DataReceiving;								// true if ep0's in DATA_OUT stage
sl@0
  1578
	TBool iEp0WritePending;									// true if a write on ep0 has been set up
sl@0
  1579
	TBool iEp0ClientDataTransmitting;						// true if ep0's in DATA_IN on behalf of a client
sl@0
  1580
	const DBase* iEp0DeviceControl;							// Device Ep0 requests are delivered to this LDD
sl@0
  1581
	TUsbcDescriptorPool iDescriptors;						// the descriptors as of USB spec chapter 9.5
sl@0
  1582
	TUint8 iCurrentConfig;									// bConfigurationValue of current Config (1-based!)
sl@0
  1583
	RPointerArray<TUsbcConfiguration> iConfigs;				// the root of the modelled USB device
sl@0
  1584
	TUsbcPhysicalEndpoint iRealEndpoints[KUsbcEpArraySize]; // array will be filled once at startup
sl@0
  1585
	TUint8 iEp0_TxBuf[KUsbcBufSz_Ep0Tx];					// ep0 outgoing (tx) data is placed here
sl@0
  1586
#ifdef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
sl@0
  1587
	TUint8 iEp0_RxCollectionBuf[KUsbcBufSz_Ep0Rx];			// used for (optional) SET_DESCRIPTOR request
sl@0
  1588
#endif
sl@0
  1589
	TInt iEp0_RxExtraCount;									// number of bytes received but not yet delivered
sl@0
  1590
	TBool iEp0_RxExtraData;									// true if iEp0_RxExtraCount is valid
sl@0
  1591
	TInt iEp0_TxNonStdCount;								// number of bytes requested by non-std Ep0 request
sl@0
  1592
	TUsbcRequestCallback* iRequestCallbacks[KUsbcEpArraySize]; // xfer requests; indexed by real ep number
sl@0
  1593
	TSglQue<TUsbcRequestCallback> iEp0ReadRequestCallbacks;	// list of ep0 read requests
sl@0
  1594
	TSglQue<TUsbcClientCallback> iClientCallbacks;          // registered LDD clients and their callback functions
sl@0
  1595
	TSglQue<TUsbcStatusCallback> iStatusCallbacks;			// list of device state notification requests
sl@0
  1596
	TSglQue<TUsbcEndpointStatusCallback> iEpStatusCallbacks; // list of endpoint state notification requests
sl@0
  1597
	TSglQue<TUsbcOtgFeatureCallback> iOtgCallbacks;		    // list of OTG feature change requests
sl@0
  1598
	NTimer iReconnectTimer;									// implements USB re-enumeration delay
sl@0
  1599
	NTimer iCableStatusTimer;								// implements USB cable status detection delay
sl@0
  1600
	DUsbcPowerHandler* iPowerHandler;						// pointer to USB power handler object
sl@0
  1601
sl@0
  1602
protected:
sl@0
  1603
	TDfc iPowerUpDfc;										// queued by power handler upon power-up
sl@0
  1604
	TDfc iPowerDownDfc;										// queued by power handler upon power-down
sl@0
  1605
sl@0
  1606
private:
sl@0
  1607
	TBool iStandby;											// toggled by power handler as appropriate
sl@0
  1608
	TBool iStackIsActive;									// client stack's function is usable
sl@0
  1609
	TBool iOtgClientConnect;								// OTG stack wishes to connect to the host
sl@0
  1610
	TBool iClientSupportReady;								// user-side USB Client support is loaded & active
sl@0
  1611
	TBool iDPlusEnabled;									// set if both sides agree and DPLUS is asserted
sl@0
  1612
	TBool iUsbResetDeferred;								// set when user-side wasn't ready yet
sl@0
  1613
sl@0
  1614
public:
sl@0
  1615
	TInt (*iEnablePullUpOnDPlus)(TAny* aOtgContext);		// these are to be filled in by the Host component
sl@0
  1616
	TInt (*iDisablePullUpOnDPlus)(TAny* aOtgContext);		// in an OTG setup (otherwise unused)
sl@0
  1617
	TAny* iOtgContext;										// to be passed into the above 2 functions
sl@0
  1618
	};
sl@0
  1619
sl@0
  1620
sl@0
  1621
/** Simple queue of status changes to be recorded.
sl@0
  1622
	Items are fetched by userside when able.
sl@0
  1623
*/
sl@0
  1624
class TUsbcDeviceStatusQueue
sl@0
  1625
	{
sl@0
  1626
public:
sl@0
  1627
	TUsbcDeviceStatusQueue();
sl@0
  1628
	void AddStatusToQueue(TUint32 aDeviceStatus);
sl@0
  1629
	TInt GetDeviceQueuedStatus(TUint32& aDeviceStatus);
sl@0
  1630
	void FlushQueue();
sl@0
  1631
sl@0
  1632
private:
sl@0
  1633
	TUint32 iDeviceStatusQueue[KUsbDeviceStatusQueueDepth];
sl@0
  1634
	TInt iStatusQueueHead;
sl@0
  1635
	};
sl@0
  1636
sl@0
  1637
#include <drivers/usbcshared.inl>
sl@0
  1638
sl@0
  1639
#endif	// __USBCSHARED_H__
sl@0
  1640
sl@0
  1641
sl@0
  1642
sl@0
  1643
sl@0
  1644
sl@0
  1645
sl@0
  1646
sl@0
  1647
sl@0
  1648
sl@0
  1649
sl@0
  1650
sl@0
  1651
sl@0
  1652
sl@0
  1653
sl@0
  1654
sl@0
  1655
sl@0
  1656
sl@0
  1657