os/kernelhwsrv/kernel/eka/include/drivers/dpipe.h
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
// Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
//
sl@0
    15
sl@0
    16
sl@0
    17
sl@0
    18
sl@0
    19
#ifndef __DPIPE_H__
sl@0
    20
#define __DPIPE_H__
sl@0
    21
sl@0
    22
#define _TEST__
sl@0
    23
sl@0
    24
#if !defined(__KERNEL_H__)
sl@0
    25
#include <kernel/kernel.h>
sl@0
    26
#endif
sl@0
    27
sl@0
    28
#include <rpipe.h>
sl@0
    29
sl@0
    30
const TInt  KIdBase		= 0x0;
sl@0
    31
sl@0
    32
class DPipe;
sl@0
    33
sl@0
    34
class DPipeDevice : public DLogicalDevice
sl@0
    35
/**
sl@0
    36
The factory class is derived from Dlogical device. The user side calls 
sl@0
    37
User::LoadLogicalDevice() to load the LDD dll and create the LDD 
sl@0
    38
factory object in the kernel heap.
sl@0
    39
@internalTechnology
sl@0
    40
*/
sl@0
    41
{
sl@0
    42
public:
sl@0
    43
	/**
sl@0
    44
	 Set the version number
sl@0
    45
	 */
sl@0
    46
    DPipeDevice();
sl@0
    47
sl@0
    48
    ~DPipeDevice();
sl@0
    49
sl@0
    50
    // Inherited from DLogicalDevice
sl@0
    51
	/**
sl@0
    52
	 Second stage constructor and at least set a name for the 
sl@0
    53
	 driver object.
sl@0
    54
	 */
sl@0
    55
    virtual TInt Install();
sl@0
    56
sl@0
    57
sl@0
    58
    virtual void GetCaps(TDes8& aDes) const;
sl@0
    59
sl@0
    60
	/**
sl@0
    61
	 Called by the Kernel's Device driver framework to create a logical
sl@0
    62
	 Channel. This called in the context of the user thread. which requested
sl@0
    63
	 the creation of the logical channel.It checks if maximum pipe creation 
sl@0
    64
	 has reached before creating a new Kernel pipe object.
sl@0
    65
	 @param aChannel Set to point to the created logical channel
sl@0
    66
sl@0
    67
	 @return KErrNone if successful, otherwise system wide error codes.
sl@0
    68
	 */
sl@0
    69
    virtual TInt Create(DLogicalChannelBase*& aChannel);
sl@0
    70
sl@0
    71
	
sl@0
    72
	/**
sl@0
    73
	 Called by the Logical channel instance to create DPipe  and
sl@0
    74
	 associate itself.
sl@0
    75
	 */
sl@0
    76
	TInt  CreatePipe(const TDesC& aName, TInt aSize, DPipe*& aPipe, TAny* aCapCheck = NULL);
sl@0
    77
sl@0
    78
	DPipe* CreatePipe(TInt aSize);
sl@0
    79
	
sl@0
    80
	DPipe* FindNamedPipe(const TDesC* aName);
sl@0
    81
sl@0
    82
	DPipe* FindUnnamedPipe(const TInt aId);
sl@0
    83
sl@0
    84
	TInt Destroy(const TDesC* aName);
sl@0
    85
sl@0
    86
	TInt Close(TInt aId);
sl@0
    87
	
sl@0
    88
	
sl@0
    89
	inline DMutex& Mutex()
sl@0
    90
		{
sl@0
    91
		return *iMutex;
sl@0
    92
		}
sl@0
    93
sl@0
    94
	inline void Wait()
sl@0
    95
		{
sl@0
    96
		Kern::MutexWait(*iMutex);
sl@0
    97
		}
sl@0
    98
	
sl@0
    99
	inline void Signal()
sl@0
   100
		{
sl@0
   101
		Kern::MutexSignal(*iMutex);
sl@0
   102
		}
sl@0
   103
  
sl@0
   104
 private:
sl@0
   105
 	TInt GenerateId();
sl@0
   106
	
sl@0
   107
	TInt AddPipe(DPipe* aObj);
sl@0
   108
	
sl@0
   109
    void RemovePipe(DPipe** aObj);
sl@0
   110
    
sl@0
   111
    
sl@0
   112
private:
sl@0
   113
	 //! Represents the Data in a pipe.
sl@0
   114
	DPipe **iDpipes;
sl@0
   115
	
sl@0
   116
	DMutex *iMutex;	
sl@0
   117
	
sl@0
   118
	TInt iAllocated;
sl@0
   119
	
sl@0
   120
	TInt iCount;
sl@0
   121
	
sl@0
   122
    TInt iIdindex;
sl@0
   123
sl@0
   124
};
sl@0
   125
sl@0
   126
sl@0
   127
sl@0
   128
class DPipeChannel : public DLogicalChannelBase
sl@0
   129
/**
sl@0
   130
DPipe Channel provides the Kernel interface to the DPipe. The request from the RPipe handler 
sl@0
   131
in the context of user thread, is transfered to DPipeChannel class. This is the interface 
sl@0
   132
between the DPipe kernel object and the user request through RPipe handler. 
sl@0
   133
sl@0
   134
@internalTechnology
sl@0
   135
*/
sl@0
   136
	{
sl@0
   137
public:
sl@0
   138
     DPipeChannel();
sl@0
   139
     virtual ~DPipeChannel();
sl@0
   140
sl@0
   141
    // inherited from DObject 
sl@0
   142
    virtual TInt RequestUserHandle (DThread* aThread, TOwnerType aType);
sl@0
   143
sl@0
   144
    // inherited from DLogicalChannelBase
sl@0
   145
    virtual TInt DoCreate (TInt aUnit, const TDesC8* anInfo, const TVersion& aVer);
sl@0
   146
sl@0
   147
	virtual TInt Request(TInt aReqNo, TAny* a1, TAny* a2);
sl@0
   148
	
sl@0
   149
	
sl@0
   150
private:
sl@0
   151
sl@0
   152
    // The user request is mapped 
sl@0
   153
    TInt DoControl(TInt aFunction, TAny* a1, TAny* a2);
sl@0
   154
    
sl@0
   155
    TInt DoRequest(TInt aReqNo, TRequestStatus* aStatus, TAny* a1,    
sl@0
   156
    TAny* a2);
sl@0
   157
sl@0
   158
    // This function will be called under DoControl()
sl@0
   159
    TInt PipeCreate(TAny* a1,  TAny* a2);
sl@0
   160
	
sl@0
   161
    TInt PipeCreate(TInt aSize);
sl@0
   162
	
sl@0
   163
    TInt PipeOpen(const TDesC* aName, RPipe::TChannelType aType);
sl@0
   164
    
sl@0
   165
    TInt PipeOpen (const TInt aId);
sl@0
   166
    
sl@0
   167
    TInt OpenOnReader(const TDesC* aName);
sl@0
   168
    
sl@0
   169
    TInt PipeDestroy(const TDesC* aName);
sl@0
   170
sl@0
   171
    TInt Read (TAny* aBuff, TInt aSize);
sl@0
   172
sl@0
   173
    TInt Write (TAny* aBuff, TInt aSize);
sl@0
   174
    
sl@0
   175
    TInt Size();
sl@0
   176
sl@0
   177
    TInt CloseHandle();
sl@0
   178
    
sl@0
   179
    TBool CheckCap();
sl@0
   180
    
sl@0
   181
    // Registration of the Asynchronous request
sl@0
   182
    TInt NotifySpaceAvailable (TInt aSize, TRequestStatus* aStat, TBool aAllowDisconnected);
sl@0
   183
sl@0
   184
    TInt NotifyDataAvailable (TRequestStatus* aStat, TBool aAllowDisconnected);
sl@0
   185
sl@0
   186
    TInt WaitNotification (TRequestStatus* aStat, TAny* aName , TInt aChoice);
sl@0
   187
sl@0
   188
   void Flush();
sl@0
   189
	
sl@0
   190
	TBool ValidCancellation(TInt aReqType);
sl@0
   191
public:
sl@0
   192
sl@0
   193
	void CancelRequest (TInt aReqType);
sl@0
   194
	
sl@0
   195
	void DoRequestCallback();
sl@0
   196
	
sl@0
   197
private:
sl@0
   198
	/////// Accessed within pipe mutex ///////
sl@0
   199
	
sl@0
   200
	DThread *iRequestThread; ///< The thread awaiting notification.
sl@0
   201
	TClientRequest* iClientRequest;
sl@0
   202
sl@0
   203
	//Allows us to tell if a request cancellation is valid
sl@0
   204
	TInt iRequestType; ///< Access within Pipe Mutex
sl@0
   205
	
sl@0
   206
	//////////////////////////////////////////
sl@0
   207
sl@0
   208
sl@0
   209
	// Reference to  the DPipe
sl@0
   210
	DPipe* iData;
sl@0
   211
	
sl@0
   212
	//Effectively constant
sl@0
   213
	RPipe::TChannelType iChannelType;
sl@0
   214
};
sl@0
   215
sl@0
   216
sl@0
   217
sl@0
   218
class DPipe:public DBase
sl@0
   219
/**
sl@0
   220
This class represent the actual Kernel side Pipe. An instance of this class is constructed 
sl@0
   221
when ever user creates a named/un-named pipe through the methods provided by user handler RPipe. 
sl@0
   222
The owner of a DPipe instance is the DPipeDevice factory object and associates this DPipe 
sl@0
   223
instance to the appropriate DPipeChannel instance. Each DPipe object is associated with two 
sl@0
   224
DPipeChannel instances for read and writes operation
sl@0
   225
sl@0
   226
@internalTechnology
sl@0
   227
*/
sl@0
   228
{
sl@0
   229
	friend class DPipeChannel;
sl@0
   230
	friend class DPipeDevice;
sl@0
   231
public:
sl@0
   232
	
sl@0
   233
	virtual ~DPipe();
sl@0
   234
sl@0
   235
	// Creates a Named pipe
sl@0
   236
	static DPipe* CreatePipe(const TDesC& aName, TInt aSize, TAny* aPolicy = NULL);
sl@0
   237
sl@0
   238
	// check if the name referring  to a created pipe is valid.
sl@0
   239
	TBool MatchName(const TDesC* aName);
sl@0
   240
sl@0
   241
	// Check if the id referring to a created pipe is valid.
sl@0
   242
	TBool MatchId(const TInt aId);
sl@0
   243
sl@0
   244
sl@0
   245
	// Check if Buffer is Empty
sl@0
   246
	TInt IsBufferEmpty();
sl@0
   247
sl@0
   248
	// Write to Buffer
sl@0
   249
	TInt Write(TAny* aBuf, TInt aSize);
sl@0
   250
sl@0
   251
	// Read to Buffer
sl@0
   252
	TInt Read(TAny* aBuf, TInt aSize);
sl@0
   253
	
sl@0
   254
	void SetReadEnd(DPipeChannel * aChannel);
sl@0
   255
	
sl@0
   256
	void SetWriteEnd(DPipeChannel * aChannel);
sl@0
   257
sl@0
   258
sl@0
   259
	// Registering Notification from client thread
sl@0
   260
	TInt RegisterSpaceAvailableNotification(TInt aSize);
sl@0
   261
	
sl@0
   262
	TInt RegisterDataAvailableNotification();
sl@0
   263
	
sl@0
   264
	TInt RegisterWaitNotification(TInt aChoice);	
sl@0
   265
sl@0
   266
	//! Cancellation methods
sl@0
   267
	void CancelSpaceAvailable();
sl@0
   268
	
sl@0
   269
	void CancelDataAvailable();
sl@0
   270
	
sl@0
   271
	void CancelWaitNotifier();
sl@0
   272
	
sl@0
   273
	TInt CloseReadEnd();
sl@0
   274
	
sl@0
   275
	TInt CloseWriteEnd();
sl@0
   276
	
sl@0
   277
	void CloseAll();
sl@0
   278
sl@0
   279
	TBool IsNamedPipe();
sl@0
   280
	
sl@0
   281
	TBool IsPipeClosed();
sl@0
   282
	
sl@0
   283
	TBool IsReadEndOpened();
sl@0
   284
	
sl@0
   285
	TBool IsWriteEndOpened();
sl@0
   286
	
sl@0
   287
	TInt OpenId();
sl@0
   288
	
sl@0
   289
	TInt Size();
sl@0
   290
	
sl@0
   291
	void SetId(TInt aId);
sl@0
   292
	
sl@0
   293
	void FlushPipe();
sl@0
   294
	
sl@0
   295
	TInt AvailableDataCount();
sl@0
   296
	
sl@0
   297
	inline TSecurityPolicy* GetCap(){ return &iPolicy;}
sl@0
   298
sl@0
   299
	
sl@0
   300
private:
sl@0
   301
	TInt ConstructPipe(const TDesC& aName, TInt aSize,TAny* aPolicy = NULL);
sl@0
   302
	
sl@0
   303
	inline void Wait()
sl@0
   304
		{
sl@0
   305
		Kern::MutexWait(*iPipeMutex);
sl@0
   306
		DATAPAGING_TEST(Kern::SetRealtimeState(ERealtimeStateOn);)
sl@0
   307
		}
sl@0
   308
	
sl@0
   309
	inline void Signal()
sl@0
   310
		{
sl@0
   311
		DATAPAGING_TEST(Kern::SetRealtimeState(ERealtimeStateOff);)
sl@0
   312
		Kern::MutexSignal(*iPipeMutex);
sl@0
   313
		}
sl@0
   314
sl@0
   315
	void MaybeCompleteSpaceNotification();
sl@0
   316
sl@0
   317
	inline DMutex& Mutex()
sl@0
   318
		{
sl@0
   319
		return *iPipeMutex;
sl@0
   320
		}
sl@0
   321
sl@0
   322
private:
sl@0
   323
sl@0
   324
	//! constructor
sl@0
   325
	DPipeChannel *iReadChannel;
sl@0
   326
	
sl@0
   327
	DPipeChannel *iWriteChannel;
sl@0
   328
	
sl@0
   329
	TKName iName;  //! TBuf<KMaxKernelName> TKName
sl@0
   330
	
sl@0
   331
	TInt iID;	
sl@0
   332
sl@0
   333
	//! Members for Ring buffer
sl@0
   334
	TInt iSize;
sl@0
   335
	
sl@0
   336
	TBool iFull;
sl@0
   337
	
sl@0
   338
	TUint8 *iBuffer;
sl@0
   339
	
sl@0
   340
	TInt iWritePointer;
sl@0
   341
	
sl@0
   342
	TInt iReadPointer;
sl@0
   343
sl@0
   344
	//! Signify the presence of read and write channel
sl@0
   345
	
sl@0
   346
	TBool iSpaceAvailableRequest;
sl@0
   347
	
sl@0
   348
	TBool iDataAvailableRequest;
sl@0
   349
	
sl@0
   350
	TBool iWaitRequest;
sl@0
   351
	
sl@0
   352
	TInt  iSpaceAvailableSize;
sl@0
   353
	
sl@0
   354
	DMutex *iPipeMutex;
sl@0
   355
	DMutex *iReadMutex;
sl@0
   356
	DMutex *iWriteMutex;
sl@0
   357
sl@0
   358
	
sl@0
   359
	TSecurityPolicy iPolicy;
sl@0
   360
	
sl@0
   361
};
sl@0
   362
sl@0
   363
/**
sl@0
   364
Acquire the given lock on construction and release
sl@0
   365
on destruction.
sl@0
   366
@internalTechnology
sl@0
   367
*/
sl@0
   368
template<typename T>
sl@0
   369
class TAutoWait
sl@0
   370
	{
sl@0
   371
public:
sl@0
   372
	inline TAutoWait(T& aLock)
sl@0
   373
		:iLock(aLock)
sl@0
   374
		{
sl@0
   375
		Wait();
sl@0
   376
		}
sl@0
   377
sl@0
   378
	inline ~TAutoWait()
sl@0
   379
		{
sl@0
   380
		Signal();
sl@0
   381
		}
sl@0
   382
sl@0
   383
sl@0
   384
private:
sl@0
   385
	TAutoWait(TAutoWait&);
sl@0
   386
	TAutoWait& operator= (TAutoWait&);
sl@0
   387
sl@0
   388
	//disallow allocating on the heap since
sl@0
   389
	//this won't do what we want
sl@0
   390
	void* operator new(TUint aSize);
sl@0
   391
sl@0
   392
	inline void Wait();
sl@0
   393
	inline void Signal();
sl@0
   394
sl@0
   395
	T& iLock;
sl@0
   396
	};
sl@0
   397
sl@0
   398
template<>
sl@0
   399
void TAutoWait<DMutex>::Wait()
sl@0
   400
	{
sl@0
   401
	NKern::ThreadEnterCS();
sl@0
   402
	Kern::MutexWait(iLock);
sl@0
   403
	}
sl@0
   404
sl@0
   405
template<>
sl@0
   406
void TAutoWait<DMutex>::Signal()
sl@0
   407
	{
sl@0
   408
	Kern::MutexSignal(iLock);
sl@0
   409
	NKern::ThreadLeaveCS();
sl@0
   410
	}
sl@0
   411
sl@0
   412
#endif
sl@0
   413
sl@0
   414
sl@0
   415
sl@0
   416