os/kernelhwsrv/kernel/eka/euser/maths/um_tan.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// e32\euser\maths\um_tan.cpp
sl@0
    15
// Tangent.
sl@0
    16
// 
sl@0
    17
//
sl@0
    18
sl@0
    19
#include "um_std.h"
sl@0
    20
sl@0
    21
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
sl@0
    22
#error	__USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh 
sl@0
    23
#endif
sl@0
    24
sl@0
    25
sl@0
    26
#ifndef __USE_VFP_MATH
sl@0
    27
sl@0
    28
LOCAL_D const TUint32 TanCoeffs[] =
sl@0
    29
	{
sl@0
    30
	0x2168C235,0xC90FDAA2,0x7FFF0000,	// polynomial approximation to tan((pi/2)*x)
sl@0
    31
	0x2DF4707D,0xA55DE731,0x7FFF0000,	// for |x|<=0.25
sl@0
    32
	0xA9A1A71A,0xA335E33B,0x7FFF0000,
sl@0
    33
	0x0BB9E431,0xA2FFFCDD,0x7FFF0000,
sl@0
    34
	0x3E523A39,0xA2FA3863,0x7FFF0000,
sl@0
    35
	0x8A35C401,0xA2F9D38B,0x7FFF0000,
sl@0
    36
	0x91269411,0xA2F16003,0x7FFF0000,
sl@0
    37
	0xDA32CC78,0xA3A93B13,0x7FFF0000,
sl@0
    38
	0x4FB88317,0x9A146197,0x7FFF0000,
sl@0
    39
	0x0D787ECE,0xE131DEE5,0x7FFF0000
sl@0
    40
	};
sl@0
    41
sl@0
    42
LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000};		// 1.0
sl@0
    43
LOCAL_D const TUint32 Halfdata[] = {0x00000000,0x80000000,0x7FFE0000};		// 0.5
sl@0
    44
LOCAL_D const TUint32 PiBy2Invdata[] = {0x4E44152A,0xA2F9836E,0x7FFE0000};	// 2/pi
sl@0
    45
sl@0
    46
sl@0
    47
sl@0
    48
sl@0
    49
EXPORT_C TInt Math::Tan(TReal& aTrg, const TReal& aSrc)
sl@0
    50
/**
sl@0
    51
Calculates the tangent of a number.
sl@0
    52
sl@0
    53
@param aTrg A reference containing the result.
sl@0
    54
@param aSrc The argument of the tan function in radians. 
sl@0
    55
sl@0
    56
@return KErrNone if successful, otherwise another of
sl@0
    57
        the system-wide error codes. 
sl@0
    58
*/
sl@0
    59
	{
sl@0
    60
	// Calculate tan(aSrc) and write result to aTrg.
sl@0
    61
	// Algorithm:
sl@0
    62
	//		Let x=aSrc/(pi/2). Throw away integer part, but if integer part odd
sl@0
    63
	//			then replace final result y with -1/y
sl@0
    64
	//			( use identities tan(x+n*pi)=tan(x), tan(x+pi/2)=-1/tan(x) )
sl@0
    65
	//		Replace x with fractional part after division.
sl@0
    66
	//		If x>=0.5, replace x with 1-x and replace result y with 1/y
sl@0
    67
	//			( use identity tan(pi/2-x)=1/tan(x) )
sl@0
    68
	//		If x>=0.25, replace x with 0.5-x and replace result y with (1-y)/(1+y)
sl@0
    69
	//			( use identity tan(pi/4-x)=(1-tan(x))/(1+tan(x)) )
sl@0
    70
	//		Use polynomial approximation to calculate tan(pi*x/2) for |x|<=0.25
sl@0
    71
sl@0
    72
	const TRealX& One = *(const TRealX*)Onedata;
sl@0
    73
	const TRealX& Half = *(const TRealX*)Halfdata;
sl@0
    74
	const TRealX& PiBy2Inv = *(const TRealX*)PiBy2Invdata;
sl@0
    75
sl@0
    76
	TRealX x;
sl@0
    77
	TInt r=x.Set(aSrc);
sl@0
    78
	if (r==KErrNone)
sl@0
    79
		{
sl@0
    80
		TInt8 sign=x.iSign;
sl@0
    81
		x.iSign=0;
sl@0
    82
		x*=PiBy2Inv;
sl@0
    83
		TInt n=(TInt)x;
sl@0
    84
		if (n<KMaxTInt && n>KMinTInt)
sl@0
    85
			{
sl@0
    86
			TInt flags=(n&1)<<1;
sl@0
    87
			x-=TRealX(n);
sl@0
    88
			if (x.iExp>=0x7FFE)
sl@0
    89
				{
sl@0
    90
				x=One-x;
sl@0
    91
				flags^=2;
sl@0
    92
				}
sl@0
    93
			if (x.iExp>=0x7FFD)
sl@0
    94
				{
sl@0
    95
				x=Half-x;
sl@0
    96
				flags^=1;
sl@0
    97
				}
sl@0
    98
			TRealX y;
sl@0
    99
			PolyX(y,x*x,9,(const TRealX*)TanCoeffs);
sl@0
   100
			y*=x;
sl@0
   101
			if (flags==3)
sl@0
   102
				y=(One+y)/(One-y);
sl@0
   103
			else if (flags==2)
sl@0
   104
				y=One/y;
sl@0
   105
			else if (flags==1)
sl@0
   106
				y=(One-y)/(One+y);
sl@0
   107
			y.iSign=TInt8(sign ^ (n&1));
sl@0
   108
			return y.GetTReal(aTrg);
sl@0
   109
			}
sl@0
   110
		}
sl@0
   111
	SetNaN(aTrg);
sl@0
   112
	return KErrArgument;
sl@0
   113
	}
sl@0
   114
sl@0
   115
#else // __USE_VFP_MATH
sl@0
   116
sl@0
   117
// definitions come from RVCT math library
sl@0
   118
extern "C" TReal tan(TReal);
sl@0
   119
sl@0
   120
EXPORT_C TInt Math::Tan(TReal& aTrg, const TReal& aSrc)
sl@0
   121
	{
sl@0
   122
	if (aSrc<KMaxTInt && aSrc>KMinTInt)
sl@0
   123
		{
sl@0
   124
		aTrg = tan(aSrc);
sl@0
   125
		if (Math::IsFinite(aTrg))
sl@0
   126
			return KErrNone;
sl@0
   127
		}
sl@0
   128
	SetNaN(aTrg);
sl@0
   129
	return KErrArgument;
sl@0
   130
	}
sl@0
   131
sl@0
   132
#endif